This report describes a classroom observation study in Korean primary mathematics classrooms. What was discovered in Korean classrooms was children, through higher level questioning, were being led to conceptualize the constructs and operations. The textbook was focused on the concepts in a concise, coherent and systematic manner similar to what was observed in the classroom. This report includes sample translation of a textbook chapter used in one of the lessons. (KHR)
Conceptualization of the Constructs in Korean Primary Mathematics

Janice Grow-Maienza
Truman State University, Missouri
jgrow@truman.edu

Susan Beal
Saint Xavier University, Chicago, Illinois
beal@sxu.edu

Tamara Randolph
Southeast Missouri State University
trandolph@semo.edu

Presentation at AERA Annual Meeting 2003
April 25, 2003, Chicago

This project was partially funded by the National Science Foundation ESIE SGER 0086580. The opinions expressed in this paper are those of the authors, not the NSF.
Conceptualization of the Constructs in Korean Primary Mathematics

Grow-Maienza was invited to fill an exchange professorship at Pusan National University in South Korea just as the results of the TIMSS were coming out ranking Korean students second in the world to Singapore (and the United States students 28th in 41 nations tested). Grow-Maienza took the opportunity to replicate some of the work Harold Stevenson and his group at the University of Michigan had done in Japan, Taiwan, and China in the ‘80’s and ‘90’s in primary mathematics classrooms using the Michigan instruments. With Hahn and Joo in Pusan, Grow-Maienza conducted the first classroom observation study in Korean primary mathematics classrooms, and published the results in the *Journal of Educational Psychology* in June, 2001.

What was discovered in Korean classrooms was children, through higher level questioning, were being led to conceptualize the constructs and operations. Informed by the graduate student observers that teachers were staying very close to the textbook, we translated a textbook chapter used in one of the lessons. We found the textbook to be focused on the concepts in a concise, coherent and systematic manner similar to what was observed in the classroom.

Through Truman Faculty Research grants Eisenhower Foundation funds and largely through National Science Foundation Award #0086580 most of the series has been translated. Analysis of the series can be accessed in the report to the NSF at: http://eisenhowermathematics.truman.edu.
Here are some highlights about *Korean Mathematics*.

Highlights of Differences in Korean Mathematics

- Focus on conceptualization of just a few constructs in 5 domains you will recognize:
- Block structure than can be easily accessed and integrated into other curricula, reform curricula or traditional curricula
- Coherence that comes from at least 2 sources:
 1. The lessons tell a story, have a beginning, a middle, and an end, and move from simple and concrete to more and more complex.
 2. Connections are made in the lessons to the deep meanings of fundamental mathematics.
 b. *Korean Mathematics* focuses always on the decimal, base 10 system, so that children from the beginning understand place value.
- All concepts in *Korean Mathematics* are presented in multiple models, and multiple modes.

Korean Mathematics is focused on just a few constructs in 5 domains that is easily recognized.

Domains in Korean Mathematics compared to NCTM Content Strands

<table>
<thead>
<tr>
<th>Content Strands in NCTM (2000)</th>
<th>Domains in Korean Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number and Operations</td>
<td>Numbers</td>
</tr>
<tr>
<td>Algebra</td>
<td>Operations</td>
</tr>
<tr>
<td>Geometry</td>
<td>Figures</td>
</tr>
<tr>
<td>Measurement</td>
<td>Measurement</td>
</tr>
<tr>
<td>Data Analysis and Probability</td>
<td>Relations</td>
</tr>
</tbody>
</table>
Korean Mathematics is focused on a block structure that can be easily accessed and integrated into other curricula—reform curricula or traditional curricula.

<table>
<thead>
<tr>
<th>6-1</th>
<th>Mixed multiplication of fractions by decimals</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-2</td>
<td>Multiplication of 3 decimals</td>
</tr>
<tr>
<td></td>
<td>Decimal x decimal</td>
</tr>
<tr>
<td></td>
<td>Position of decimal point</td>
</tr>
<tr>
<td></td>
<td>Mixed decimal x natural number</td>
</tr>
<tr>
<td></td>
<td>Decimal x Natural Number</td>
</tr>
<tr>
<td>5-1</td>
<td>Multiplication of fractions</td>
</tr>
<tr>
<td></td>
<td>Relation between fractions and decimals</td>
</tr>
<tr>
<td>4-2</td>
<td>Multiplication</td>
</tr>
<tr>
<td>4-1</td>
<td>Places of decimals</td>
</tr>
<tr>
<td>3-2</td>
<td>Introduction of decimals</td>
</tr>
<tr>
<td>3-1</td>
<td>Application of multiplication</td>
</tr>
<tr>
<td></td>
<td>Mental multiplication of 2-place number x 1-place number</td>
</tr>
<tr>
<td></td>
<td>Multiplication of 2-place number x 1-place number</td>
</tr>
<tr>
<td>2-2</td>
<td>Division using multiplication table</td>
</tr>
<tr>
<td></td>
<td>Multiplication table</td>
</tr>
<tr>
<td>2-1</td>
<td>Basics of multiplication</td>
</tr>
<tr>
<td>2-1</td>
<td>Counting by 2’s, 3’s, 4’s, 5’s</td>
</tr>
<tr>
<td></td>
<td>Numbers increased by 2, 5, 3, or 4</td>
</tr>
<tr>
<td></td>
<td>Counting by jumping 2, 5, 3, or 4</td>
</tr>
<tr>
<td></td>
<td>Number of groups and total sum</td>
</tr>
<tr>
<td></td>
<td>Number in a group and number of groups</td>
</tr>
</tbody>
</table>

1-1 | Numbers

Grow-Maienza, Beal and Randolph
In the teachers' manuals and student texts, in general, each instructional sequence follows this sequence:

- Have students in groups discover how we might use the concept studied
- Present a word problem
- Explain the problem on a number line
- Formalize the problem into a sentence, then into an algorithm
- Calculate vertically, and
- Then solve more word problems.

Multiplication of Decimals

Let's study multiplication of decimals and natural numbers. Emily drinks 0.5 liters of milk per day. How many liters would she drink in 3 days?

How can we calculate 0.5×3?

$$0.5 \hspace{1cm} 0.5 \hspace{1cm} 0.5$$

<table>
<thead>
<tr>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
</tr>
</thead>
</table>

On the number line, we see $0.5 \times 3 = 1.5$

Or $0.5 \times 3 = \frac{5}{10} \times 3 = \frac{5 \times 3}{10} = \frac{15}{10} = 1.5$

Like the example above, we change the decimal to a fraction and multiply natural numbers, and change the fraction to a decimal.

$$0.3 \times 7 = \frac{3}{10} \times 7 = \frac{21}{10} = 2.1$$

From Korean Mathematics, Book 5-2-1, p. 8

Coherence comes from at least two sources. First, the lessons tell a story - have a beginning, a middle and an end. Each instructional sequence goes from the simple and concrete to more complex. For instance, in these lessons on multiplication of decimals in one of four chapters in the two 5th-grade texts the topics in the instructional sequences are formatted the same and each sequence using the same format becomes more and more complex.

<table>
<thead>
<tr>
<th>Decimal x Natural Number</th>
<th>0.5 x 3 = 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed decimal x natural number</td>
<td>3.15 x 12</td>
</tr>
<tr>
<td>Position of decimal point</td>
<td>9 x (0.004) = (9 \times \frac{4}{1000}) = (\frac{9 \times 4}{1000}) = (\frac{36}{1000}) = 0.036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal x decimal</th>
<th>0.5 x 0.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication of 3 decimals</td>
<td>1.2 x 0.3 x 4.21</td>
</tr>
</tbody>
</table>

Secondly, coherence in *Korean Mathematics* comes from the connections to the deep meanings within mathematics. Generalizations made in the report to the NSF about *Korean Mathematics* point up the connections that mark the series with coherence, and clear, in-depth conceptualizations for every construct in the series. Three of those connections illustrated here are: focus on the inverse relationships in mathematics, focus on the base 10 decimal system in mathematics, and multiple models and strategies in every lesson.
Focus on the Inverse Relationships in Mathematics

All operations in *Korean Mathematics* are systematically and coherently linked to the inverse relationships of addition & subtraction, and of multiplication & division.

Addition and Subtraction

From the very beginning of study on number, addition and subtraction are not separated but taught from as the inverse of one another. That is, in the very first number lesson in Book 1-1, objects are put together and taken apart to demonstrate that 2 & 1 put together are the same number as 3, and that 3 separated into 2 & 1 are the same number.

Instruction on the operations of addition and subtraction begin in Grade one with one chapter titled "Merging and separating number", in Book 1-1, and four chapters named "Addition and Subtraction," two in Book 1-1, two in Book 1-2. The concepts of putting together, taking apart, and even comparing two sets to see how many more, are treated together, alternately one after the other.

Multiplication and Division

The inverse relationship between multiplication and division is treated in Grade 2 in *Korean Mathematics*, with:

1) an array,

```
  5   3 = 15
  
  15 ÷ 3 = 5
```

2) a two-part word problem focusing on division of 15 by the two multiples illustrated in the array above,

If 15 are bundled by 5, how many bundles?

15 ÷ 5 = □ □ bundles

If 15 is divided by 3 bundles, how many in a bundle?

15 ÷ 3 = □ □
3) a diagram demonstrating that the multiplication fact can be written as 2 division expressions.

\[5 \times 3 = 15 \]
\[15 \div 3 = 5 \]

From Korean Mathematics, Book 2-2-6

The relation between multiplication and division is conceptualized in Grade 3 with a two-part problem and a very explicit diagram showing the inverse relationship.

There are 12 pencils in one dozen pencils.

How many pencils in 3 dozen? 12 \(\times \) 3 = 36

If divided among 3 persons, how many pencils go to each person?

36 \(\div \) 3 = 12

![Diagram showing the relationship between multiplication and division.]

From Korean Mathematics, Book 3-1-6, p. 80

and with this function machine:

Fill in the boxes.

![Function machine diagram with placeholders for operations and numbers.]

From Korean Mathematics, Book 3-1-6, p. 87
Focus on the Base 10 Decimal System in Mathematics

Addition and Subtraction

From the beginning study of number, addition and subtraction are taught focused on the decimal place value system. Children are not expected to learn facts beyond sums of ten. Children are first taught numbers that sum to 5, then those that add to 10. Then, if adding 6 + 8, for instance, children base their responses on knowledge of sums of 10, separate the smaller addend (6) into 4 + 2, add 2 to 8 to make 10, and then add the remaining portion of 6 (4) to 10 to make 14.

Chapter 4 in Book 1-2 models in four different ways on one page the expression 5 + 7 = 12. First a picture of 12 children in groups of 5 and 7 which can be counted is shown, then the horizontal expression. The separation of 7 into 5 and 2 and the addition

There are 5 girls and 7 boys in the playground.
How many children are there?

\[
5 + 7 = \boxed{12}
\]

\[
\begin{array}{c|c}
5 & 2 \\
\hline
10 & \boxed{2}
\end{array}
\]

Korean Mathematics, Book 1-2-4, p. 46
Two ways of subtracting a one digit number from a number up to 19 with renaming are also taught in *Korean Mathematics*.

The Subtraction-Addition Method

```
13 - 8
10 3
10 - 8 + 3
2 + 3 = 5
```

From *Korean Mathematics*, Teacher Manual 1-2-4, p. 89

The student textbook models the concept with a word problem, the expression, a picture of a bundle of tens and one and a number diagram demonstrating the separation of the 11 into a ten and a one, as seen below.

There were 11 robins.
6 robins flew away.
How many robins are there now?

```
11 - 6 = 5
```

From *Korean Mathematics*, Book 1-2-4, p. 49
There are 13 eggs. 7 of the eggs are taken away. How many eggs are there now?

From *Korean Mathematics, Book 1-2-4*, p. 51
Multiple Models and Strategies in every Lesson

Multiple ways of modeling and multiple strategies are seen throughout the curriculum in *Korean Mathematics*. Major objectives in the teacher manuals are two: 1) understanding the principle, and 2) calculating the procedure. Each lesson models the problems with stories, pictures, number lines, diagrams, number sentences, and formats each operation both vertically and horizontally. This is one lesson observed by Grow-Maienza, Hahn and Joo in Pusan (2001).

Verbal:

Yun-Ho has 24 pieces of paper and Young-Mi has 43 pieces of paper. How many pieces do they have?

Numbers:

24 + 43 = on the felt board.

and

In response to teacher's leading questions as to how many tens and ones there were, children held up 6, then 7 fingers.

Fingers:

T. directed students with LQs to do the problem on desks with counters.

Concrete Manipulatives:

T. demonstrated addition of tens and ones on the blackboard thus, first adding the tens, then the single units:

First, the tens: 20 + 40 = 60

Then, the ones: 24 + 43 = 4 + 3 = 7

and then explained the tens and ones places.

Numbers in Horizontal Format

The same problem was presented on a number line:

Vertical Format:

Finally the problem was presented in a vertical format: 24 + 43
Number Lines

Number lines are ubiquitous in the Korean curriculum. The number line is used to conceptualize everything linear, including the concept of time. Below are some examples of how the number line is modeled across grade levels and domains in Korean Mathematics.

"Take away" subtraction modeled on the number line (Book 1-2-1, p. 9)

Rabbit has gone to the right from 0 how many places?
Turtle has gone to the right from 0 how many places?
How many more places did the rabbit go than the turtle?

"Comparison" subtraction modeled on the number line (Book 1-1-5, p. 65)

Emily drinks 0.5 liters of milk per day.
How many liters would she drink in 3 days?
How can we calculate 0.5 x 3?

"Time" modeled on the number line (Book 2-1-6, p. 62)

Stanford is making two animal shapes by dividing in half a wire 5m in length.
Let's find out the length of the wire for one animal shape.
How can we do the division, 5 ÷ 2?

Multiplication of a decimal with a natural number modeled on the number line (Book 5-2-1, p. 8)

Division of a number into fractions modeled on the number line (Book 5-2-2, p. 26)
Selected References

Sebastiao, J. (2002). A study of conceptually based mathematics instruction on division in a third grade classroom. Study submitted in partial fulfillment of the requirements for the degree of Master of Arts in Education. Truman State University.

I. DOCUMENT IDENTIFICATION:

<table>
<thead>
<tr>
<th>Title:</th>
<th>Conceptualization of the Constructs in Korean Primary Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s):</td>
<td>Grow-Maienza, Beal, Randolph</td>
</tr>
<tr>
<td>Corporate Source:</td>
<td></td>
</tr>
<tr>
<td>Publication Date:</td>
<td>04/25/2003</td>
</tr>
</tbody>
</table>

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2A</th>
<th>Level 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)</td>
<td>PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY, HAS BEEN GRANTED BY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)</td>
<td>PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.</td>
<td>Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.</td>
<td>Check here for Level 2B release, permitting reproduction and dissemination in microfiche only.</td>
</tr>
</tbody>
</table>

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: [Signature]

Printed Name/Position/Title: Susan Beal

Organization/Address: Saint Xavier University
3700 West 103rd Street
Chicago, Illinois 60655

Telephone: (773) 298-3401 FAX: (773) 779-9061

E-Mail Address: Beal@sxu.edu

Date: 4/25/03
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

<table>
<thead>
<tr>
<th>Publisher/Distributor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

<table>
<thead>
<tr>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

ERIC Clearinghouse on Assessment and Evaluation
University of Maryland, College Park
1129 Shriver Lab
College Park, MD 20742

EFF-088 (Rev. 4/2003)-TM-04-03-2003