Research in science education demonstrates the importance and effectiveness of the hands-on approach in student learning. Activity-oriented instruction offers multi-modal opportunities for learning science. However, there is very little research on the sensory nature of hands-on science learning. How do science educators describe lab activities in terms of visual, kinesthetic, auditory, and motor characteristics? This paper describes a study investigating (n=10) inservice teachers' perceptions of hands-on science, the purpose of the activities, and instructional materials they use. (Contains 19 references.) (Author/YDS)
Examining the Multi-Sensory Characteristics of Hands-on Science Activities

E. Barbara Klemm
University of Hawaii
1776 University Avenue (WA 2-222)
Honolulu, HI 96822
808-956-3823
klemm@hawaii.edu

Lee A. Plourde
Central Washington University
(509) 665-2600
(509) 665-2601 FAX
plourdel@cwu.edu

Abstract
Activities-oriented instruction offers multi modal opportunities for learning science. How do science educators describe lab activities in terms of visual, kinesthetic, auditory and motor characteristics?

Theoretical Background
Ingrained notions in science education are that science is for all learners and that science is preferred when it uses constructivist approaches that provide hands-on, concrete, experiential learning opportunities. The national science education standards call for “science for all” (Rutherford & Alghren, 1990; American Association for Advancement of Science, 1993; National Research Council, 1996). Research on the human brain and cognition supports the research in science education on the effectiveness of such instructional approaches as the Learning Cycle. Further research demonstrates the effectiveness of using hands-on science learning approaches for students with disabilities (Atwood & Oldham, 1985; Hadary & Cohen, 1978, Mastropieri & Scruggs, 1992; Mastropieri & Scruggs, 1994; Patton, 1993, Patton, 1995; Scruggs & Mastropieri, 1993, Mastropieri, Scruggs, Magnusen, 1999).

An underlying assertion made by researchers is that hands-on, concrete, experiential science instruction inherently involves multi-sensory learning (multi-modal experiences, including sight, sound, touch and taste), which provide multiple opportunities for differentiated instruction. Although research clearly demonstrates the efficacy of hands-on experiential approaches, to our surprise, little research has been reported which systematically characterizes the sensory nature of hands-on science learning, or which links the sensory characteristics of hands-on activities to opportunities for differentiating instruction. As science teacher educators, our work is based on the belief that information about the sensory characteristics of hands-on science activities is needed to better prepare teachers to make science learning accessible to all learners.
Relation to Other Efforts

We began this line of study several years ago when searching for science activities suitable for the very diverse needs of adolescent learners in a science camp for youth with moderate to severe disabilities (Klemm, Skouge, Radtke & Laszlo, 2000). Although we found general suggestions in science methods and resource books for ways to accommodate learners with disabilities, sometimes together with suggestions for adapting activities to make the activities more accessible, we found no systematic approach to aid us in locating and selecting activities for the science camp.

We thus devised the Levels of Accessibility Matrix (LAM) system as a way to evaluate the sensory and motor/manipulative accessibility of hands on activities (Klemm & Laszlo, 2001). LAM consists of a matrix with sensory inputs arrayed horizontally and types of disability impairments, vertically. We proposed a rating scale of 0 (completely inaccessible) to 4 (completely accessible) as a means of characterizing hands-on activities.

We realized that the LAM system could help others too as a means of selecting science activities, and that it could serve as a heuristic device to facilitate preservice teachers' thinking about selecting and modifying activities to accommodate learner needs. Accommodation of the needs of learners with disabilities is not an option, as it is mandated under federal special education legislation. We further reasoned that preservice (and inservice science teachers) as well as special educators who work with science teachers might benefit using a system like LAM. Thus, we tested the LAM system using a series of activities related to hands-on exploration of sound in elementary science methods classes (Klemm, Plourde & Laszlo, 2002). We reported that our findings demonstrated the effectiveness of the LAM system in focusing preservice teachers' thinking on the kinds of sensory experiences related to the activity. Specifically, LAM focused thinking in terms of what the learner does; the learner's abilities to see, hear, or feel; what sensory experiences are related to the activity; and what modifications could be made so that the activity is more accessible to students with disability.

Since 2002, we further tested the LAM system, this time with inservice teachers engaged in a series of hands-on activities related to magnetism. We found that they too reported that the LAM approach stimulated their thinking about the nature of the activities as well as potential accommodations for diverse learners. Here we do not provide detailed analysis of the results using the magnetism activity, except to note that the inservice teachers also found that the LAM system prompted them to think about the sensory characteristics of hands-on activities in ways that they had not done before. This experience also demonstrated that LAM works with prompting thinking about magnets and magnetic force, so that we knew at that point that LAM works with at least two topics in physics.

The inservice teachers who did the magnet activities suggested that we separate out the two dimensions of the LAM matrix. That is, they suggested that we focus first on the characteristics of the hands-on lab activities, then as a second step consider the
accessibility of specific activities to learners with sensory or motor disabilities. Reflecting our experiences thus far, we reasoned that, in general, we ought to be able to obtain agreement among participants as to the sensory characteristics of a given hands-on activity.

The Present Study

Therefore, we decided to find out how a different group of inservice teachers would describe the sensory characteristics of yet another hands-on science learning activity. This time, ten inservice teachers were asked to characterize the hands-on activities they had just done related to Newton's Laws of Motion. We asked them what they expected their students to see, hear, touch (feel) or manipulate. Of note here is that in this workshop the teachers constructed mini-ramps and devised pulleys using an assortment of recycled materials, not standard purchased lab supplies. In other words, these teachers had to think through the purpose of the activity and how the materials were used to make observations and collect data. We had not prompted them to think through the sensory characteristics of the activity beforehand, but rather, waited until after they had carried out the activity, predicted results, and collected and interpreted data.

With this group we did not present the LAM table as a way to think about the activities or their accessibility. Instead, we focused separately on each aspect of LAM. First, we asked the teachers to characterize the sensory nature of the activities they had just completed. Specifically, we asked

How would you characterize these lab activities? What are your students expected to see, hear, touch (feel) and/or manipulate in order to do this activity? Please focus on the properties of the lab activities and not on your instructional strategies or how you would group the students (e.g., individuals, pairs or cooperative groups), or what individual accommodations you might make. Circle the best phrase for each characteristic.

Teachers' responses are shown in Table 1. All (100%) agreed that the activities were highly visual in nature. Responses were the most divided on the auditory characteristics of the activities, and somewhat divided on tactile characteristics. We did not ask, and therefore do not know their reasoning behind their responses, something we will tend to in future studies. We had expected greater consistency among their responses, especially because the group was small, had actively engaged in discussing the activities among themselves, and because all were experienced teachers. One possibility that might explain differences in responses is lack of definitional clarity in the terms we used. Another is that such ratings are subjective and may well reflect the sensory capabilities of these teachers as much as the sensory characteristics of the labs they experienced.

Second, we asked the teachers to rate the accessibility of the activities to students with disabilities in terms of the visual, tactile, auditory and motor requirements of the labs. See Table 2. Teachers were asked to consider four categorical types of learners:
Recall that our original purpose was to devise a simple way to characterize hands-on science labs. By calculating the overall mean rating of the teachers, and using our rating scale, the accessibility of the labs on Newton’s Laws may be characterized as follows:

<table>
<thead>
<tr>
<th>Disability</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech/Language impairment</td>
<td>3.7</td>
</tr>
<tr>
<td>Profound hearing impairment/Deaf</td>
<td>3.0</td>
</tr>
<tr>
<td>Motor impairment</td>
<td>2.4</td>
</tr>
<tr>
<td>Visual impairment/Blind</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Descriptively, these numbers tell us that the activities are almost fully accessible for learners with speech/language disability (3.7); accessible with lab modifications but no personal assistance for learners with profound hearing impairment (3.0); in the range of accessible with lab modifications and some personal assistance for learners with motor impairment (2.4); and closer to the range of might be accessible with lab modification and personal assistance than not at all accessible for learners with profound visual impairment/blindness (1.9).

These means however, do not reflect the spread in ratings, which with a larger sample size would be examined in terms of standard deviations. Clearly, larger samples are needed to ascertain whether the notion of numerical rating of the accessibility of hands-on science labs is feasible. For example, the spreads in teacher ratings might be affected by prior experiences in working with learners with disabilities or with more or less familiarity with working with the activities. In an earlier study (Klemm, Laszlo & Plourde, 2002), we observed differences in responses between preservice teachers with and without a prior course in special education. We began this study thinking that we needed to examine two factors, the sensory characteristics of the a hands-on lab and the accessibility of the labs to categorized groups of students with disability. From the results of this study, we now realize that teachers’ own perceptual abilities and their prior teaching experiences may be factors too.

Relevance of Work to Teacher Education

Our present work focuses on characterizing the sensory nature of well-known hands-on, inquiry science learning activities. This study builds on our earlier work, which began out of need to find appropriate science learning activities for youth with moderate to severe disabilities, including sensory and motor disabilities. Subsequently,
as teacher educators, we realized that we also needed to find ways to engage preservice
teachers in thinking about the accessibility of hands-on science activities to learners with
a wide, diverse range of needs.

According to Stefanich, "Multi-modality instruction is especially critical in
helping students with disabilities gain a familiarity with the content material" (Stefanich,
2001). Clearly, better understanding of the sensory characteristics of science inquiry
learning has relevance for instruction of learners with profound sensory or motor
impairment. Statistically, physical and orthopedic impairments are low incident
disabilities, comprising less than 5% of those learners classified as disabled (U. S. Dept.
Education, 1998). However, activity-oriented science is advocated for all learners,
including those who are English language learners (ESOL). Central to reasons for
advocating hands-on approaches to science learning is that the concrete and multi-
sensory nature of hands-on science provides multiple ways for students to learn. The
science education community largely accepts this today, so information is needed to
elucidate the multi-sensory, multi-modal nature of that which is advocated.

We prepare teachers today, advocating that they adopt constructivist instructional
approaches and assume the role of facilitator of learning, so it is reasonable to ask what
we know about facilitating learning that is multi-sensory in nature. Our approach to
science education is founded on the notion that science as a body of knowledge is
founded upon the use of one or more science process skills. Often the first listed among
the science process skills is observing, which Abruscato (2000, p. 3) explains as “using
the senses to obtain information, or data, about objects and events.” We note here that
Abruscato, like other authors of science methods texts, then exemplifies “observing” with
suggested activities that engage learners in use of visual senses.

Furthermore, we know from instructional approaches like the Learning Cycle or
the 5E Instructional approach, that as a first step we expect learners to engage in
exploring and observing phenomena. We often ask learners to “observe” or to “make
observations.” How often, though, do we ask them to “use all of their senses” or to “use
as many of your senses as you can”? As we move further towards student-centered,
problem-based learning, where students devise their own procedures, how have we
prepared them for observational encounters with phenomena? At the least, common
sense, bolstered by safety concerns, has shown us that we do indeed need to teach
learners how to use their senses to safely detect smells, handle extremely cold or hot
objects, and mitigate very loud noise.

As researchers, we plan to continue our work for the purpose of better preparing
teachers to differentiate instruction for diverse learners, including examining the role of
sensory learning in working with students who are learning disabled or English language
learners. In seeking to better understand the sensory characteristics of science learning
activities, our work has taken on a broader series of questions, several of which we pose
here. Aside from safety concerns, does it really matter whether or not we as teachers
understand the sensory characteristics of science activities, or whether our students
engage a range of senses in making observations? When exploring real world situations
on their own, what sensory observation skills and knowledge might they need? As technology and multimedia tools are increasingly making simulations and virtual reality viable in classroom learning environments, what senses will students be using as they learn science, and what experienced based learning is gained or lost in this technological shift?

References

Appendix

Table 1. Teachers’ sensory characterization of the Newton’s Laws lab activities

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Visual Characteristics</th>
<th>Tactile Characteristics</th>
<th>Auditory Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highly visual</td>
<td>Highly tactile</td>
<td>Highly auditory</td>
</tr>
<tr>
<td></td>
<td>100% (N=10)</td>
<td>78% (N=7)</td>
<td>22% (N=2)</td>
</tr>
<tr>
<td></td>
<td>Somewhat visual</td>
<td>Somewhat tactile</td>
<td>Somewhat auditory</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>22% (N=2)</td>
<td>56 % (N=5)</td>
</tr>
<tr>
<td></td>
<td>Not visual</td>
<td>Not tactile</td>
<td>Not auditory</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
<td>22% (N=2)</td>
</tr>
</tbody>
</table>
Table 2. Accessibility of the activities on Newton’s laws of motion arranged by sum of means.

<table>
<thead>
<tr>
<th>Disability</th>
<th>Visual Input Accessibility</th>
<th>Tactile Input Accessibility</th>
<th>Auditory Input Accessibility</th>
<th>Motor Requirement Accessibility</th>
<th>Overall Mean Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech/Language Impairment</td>
<td>3.9</td>
<td>3.7</td>
<td>3.4</td>
<td>3.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Profound hearing impairment/deaf</td>
<td>3.7</td>
<td>3.7</td>
<td>1.1</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Motor Impairment</td>
<td>3.6</td>
<td>1.6</td>
<td>3.3</td>
<td>0.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Visual impairment/blind</td>
<td>0.5</td>
<td>2.0</td>
<td>2.6</td>
<td>2.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Scale for rating levels of disabilities:

0 = Not Accessible (even with lab modifications and personal assistance)
1 = Might be Accessible (with lab modifications and personal assistance)
2 = Accessible (with lab modifications and personal assistance)
3 = Accessible (with lab modifications, no personal assistance required)
4 = Fully Accessible (without lab modifications or personal assistance)