This document presents a bibliography on the applications of information technologies in postsecondary distance education. An overview of postsecondary distance education and some descriptive statistics are provided in the report. The content of the report is divided into two sections. The introduction includes: (1) "Overview of Post-Secondary Distance Education"; (2) "Size and Scope of Postsecondary Distance Education"; (3) "Selection Criteria for the Bibliography"; (4) "Illustrative Findings from the Literature"; and (5) "Concluding Comment". The initial bibliography is then provided. (YDS)
The Application and Implications of Information Technologies in Postsecondary Distance Education: An Initial Bibliography

Special Report

Division of Science Resources Statistics
Directorate for Social, Behavioral, and Economic Sciences
National Science Foundation

December 2002
The Application and Implications of Information Technologies in Postsecondary Distance Education: An Initial Bibliography

Special Report

Prepared by David W. Cheney, SRI International

From material developed by
Michael G. Moore, Pennsylvania State University
Peter T. Knight, Telematics for Education and Development
Linda M. Black, Pennsylvania State University
Sandi de Levante, Marymount University and Telematics for Education and Development

Project Director, Eileen L. Collins
National Science Foundation

Division of Science Resources Statistics
Directorate for Social, Behavioral, and Economic Sciences

National Science Foundation

December 2002
DIVISION OF SCIENCE RESOURCES STATISTICS
The Division of Science Resources Statistics (SRS) fulfills the legislative mandate of the National Science Foundation Act to...

provide a central clearinghouse for the collection, interpretation, and analysis of data on scientific and engineering resources and to provide a source of information for policy formulation by other agencies of the Federal Government...

To carry out this mandate, SRS designs, supports, and directs periodic surveys as well as a variety of other data collections and research projects. These surveys yield the materials for SRS staff to compile, analyze, and disseminate quantitative information about domestic and international resources devoted to science, engineering, and technology.

If you have any comments or suggestions about this or any other SRS product or report, we would like to hear from you. Please direct your comments to:

National Science Foundation
Division of Science Resources Statistics
4201 Wilson Blvd., Suite 965
Arlington, VA 22230
Telephone: (703) 292-8774
Fax: (703) 292-9092
e-mail: srsweb@nsf.gov

Suggested Citation
National Science Foundation, Division of Science Resources Statistics, The Application and Implications of Information Technologies in Postsecondary Distance Education: An Initial Bibliography, NSF 03-305, Project Director, Eileen L. Collins (Arlington, VA 2002).

December 2002

SRS data are available through the World Wide Web (http://www.nsf.gov/sbe/srs/stats.htm). For more information about obtaining reports, contact paperpubs@nsf.gov or call (301) 947-2722. For NSF's Telephonic Device for the Deaf, dial (703) 292-5090.
ACKNOWLEDGMENTS

This publication was prepared by David W. Cheney of SRI International from material developed by Michael G. Moore, Pennsylvania State University; Peter T. Knight, Telematics for Education and Development; Linda M. Black, Pennsylvania State University; and Sandi de Levante, Marymount University and Telematics for Education and Development. The work was performed under contract with SRI International for the Division of Science Resources Statistics (SRS) at the National Science Foundation (NSF).

Overall direction and guidance were provided by Eileen L. Collins, Project Director, SRS; Catherine P. Ailes, Director, Science and Technology Policy Program, SRI International; Mary J. Frase, Deputy Division Director, SRS; and Lynda T. Carlson, Division Director, SRS. Ronald S. Fecso, Chief Statistician, SRS, supplied thoughtful and thorough statistical review. Valuable contributions and insights came from Lori Thurgood of SRI International.

Expert technical reviewers supplied important feedback on the draft manuscript, and their suggestions strengthened it considerably. These individuals include John C. Cherniavsky, NSF; Rachelle D. Hollander, NSF; Suzanne C. Iacono, NSF; Douglas Levin, American Institutes for Research; Janet Poley, American Distance Education Consortium and University of Nebraska; Farhad Saba, San Diego State University; and Lisa Towne, National Research Council.

Rolfe W. Larson, SRS, supervised, and Nita Congress performed, the technical editing of the manuscript. Tanya R. Gore, SRS, handled copyediting, processing, and final composition of the report. John R. Gawalt, Director of the SRS Information and Technology Services Program, and his Web team handled electronic publication.

Funding was provided by SRS and the Digital Society and Technologies Program in the NSF Division of Information and Intelligent Systems.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Overview of Postsecondary Distance Education</td>
<td>1</td>
</tr>
<tr>
<td>Size and Scope of Postsecondary Distance Education</td>
<td>1</td>
</tr>
<tr>
<td>Selection Criteria for the Bibliography</td>
<td>3</td>
</tr>
<tr>
<td>Illustrative Findings from the Literature</td>
<td>3</td>
</tr>
<tr>
<td>Concluding Comment</td>
<td>5</td>
</tr>
<tr>
<td>INITIAL BIBLIOGRAPHY</td>
<td>7</td>
</tr>
</tbody>
</table>
INTRODUCTION

Although distance education has been around in various forms for over a century, the revolution in information and communications technologies (ICT) that began in the 1980s has sparked significant expansion and renewed interest in distance education. The combination of widespread use of personal computers, the growth of the Internet and the World Wide Web, and reductions in telecommunications costs have facilitated new ways of designing, delivering, and administering distance education. As these new ICT-enabled forms of distance education become more prevalent and widespread, questions have arisen about their effects for example on learning, students, faculty, and the organization and administration of higher education. These and other questions about the application of ICT in distance education are active subjects for research and analysis.

This report provides a brief overview of postsecondary distance education, some descriptive statistics about its size and scope, illustrative findings from existing research about the implications of ICT in postsecondary distance education, and an initial bibliography of this research.

In this report, distance education is defined as education where learning occurs all or most of the time in a different place from teaching, and the principal means of communication between learners and teachers is through technology.

OVERVIEW OF POSTSECONDARY DISTANCE EDUCATION

Distance education has evolved continually since correspondence schools developed in the late 19th century. These correspondence schools, which were sometimes private for-profit businesses and sometimes extension units of publicly funded universities, originally presented instruction through printed materials—as many still do. Educational content also began to be delivered by radio in the 1930s and by television in the 1950s, and through recorded programs on audio- and videocassettes in the 1970s. Material was sent back to the school by students through the mail and later by fax. The 1970s also saw the establishment of “open universities”—i.e., institutions that are open to a broad segment of the population, offer a variety of traditional academic and nontraditional (e.g., career development and personal growth) courses, and make extensive use of distance education. The British Open University, which is one of the oldest and best known of these institutions, has approximately 200,000 students and is often considered the model for open universities. More than 20 similar systems have been set up in other nations.

From the mid-1980s to the mid-1990s, computers and videoconferencing were added to the suite of distance education technologies. Computer programs and resources were packaged on disks and CDs, and electronic mail and bulletin boards began to be used for two-way communication between educators and students. Audio- and videoconferencing via satellite, cable, and phone technologies became widely used. One leader in satellite delivery of distance education is the National Technological University, a consortium of some 50 universities. It offers master’s degree programs in 19 fields, over 1,400 academic courses specializing in continuing education for engineers and scientists, and some 200 courses and programs available via the World Wide Web.1

Since 1995, Internet technologies—and especially the World Wide Web—have become widely used throughout higher education. Their use has allowed both synchronous and asynchronous communication among students and between faculty and students.2 High-bandwidth connections permit more video and multimedia to be presented over the Internet. These and other devices and technologies have stimulated renewed interest in distance education.

SIZE AND SCOPE OF POSTSECONDARY DISTANCE EDUCATION

The most comprehensive data on the size and scope of postsecondary distance education come from the National Center for Education Statistics (NCES) 1997–98

1In February 2002, the National Technological University was acquired by Sylvan Learning Systems, Inc., a large, for-profit provider of education services.

2In synchronous communication, such as classroom instruction or videoconferences, all parties participate at the same time; in asynchronous communication (such as e-mail), participants do not need to be available at the same time.
survey and are reported in NCES 1999a. This NCES study found that 44 percent of higher education institutions in the United States offered distance education courses during the 1997/98 academic year, compared with 33 percent in fall 1995. (See figure 1.)

The total number of distance education courses offered by 2- and 4-year higher education institutions more than doubled over the period covered, rising from 25,730 in 1994/95 academic year to 52,270 in 1997/98.5

Figure 1. Percentage of U.S. higher education institutions offering distance education

<table>
<thead>
<tr>
<th>Percent</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of institution</td>
<td></td>
</tr>
<tr>
<td>All institutions</td>
<td>Fall 1995</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public 2-year</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private 2-year</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public 4-year</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Private 4-year</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All institutions include public and private 2- and 4-year institutions. Percentages for 1995 are based on an estimated 3,460 higher education institutions, and for 1997/98 on an estimated 3,580 higher education institutions.

Similarly, the total number of enrollments in all distance education courses by 2- and 4-year higher education institutions more than doubled, increasing from 753,640 in 1994/95 to 1,632,350 in 1997/98.

These figures include distance education delivered with a variety of audio, video, computer, and Internet technologies. The three most prevalent distance education delivery methods used by higher education institutions for distance education in 1997/98 were Internet courses using asynchronous computer-based instruction, two-way video with two-way audio, and one-way prerecorded video. The use of the first of these methods—asynchronous Internet-based technologies—increased substantially during the period under study. In fall 1995, only 22 percent of higher education institutions offering distance education used this method; this percentage increased to 60 in 1997/1998. The percentage of institutions using the other two technologies stayed approximately constant. (See figure 2.)

Figure 2. Percentage of higher education institutions that offer distance education courses using selected types of technologies

<table>
<thead>
<tr>
<th>Percent</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology type</td>
<td></td>
</tr>
<tr>
<td>Two-way video/two-way audio</td>
<td>Fall 1995</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerecorded video</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet courses using asynchronous computer-based instruction</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Data for 1995 are based on the estimated 1,130 higher education institutions that offered distance education courses in fall 1995; 1997/98 data are based on the estimated 1,590 higher education institutions that offered any distance education courses in 1997/98.

SELECTION CRITERIA FOR THE BIBLIOGRAPHY

This document provides an initial bibliography for readers who may wish to explore what the literature says about the implications of IT for postsecondary distance education. Criteria for selecting studies for inclusion in the bibliography were that they

- focus on formal (leading, or potentially leading, to a degree) higher education and continuing education;
- focus on the use of the Web and Internet as the principal delivery technology;
- were published in the United States between 1996 and mid-2001; and
- address the topic from an empirical base.

To locate empirically based studies, special attention was given to doctoral dissertations and to two key journals, the American Journal of Distance Education (the principal hard-copy research journal in the field) and the Journal of Asynchronous Learning Networks (the principal online journal). A search of Dissertation Abstracts International focused on keywords distance + learning, distance + education, distance + policy, distance + administration, and distance + digital divide. A search was also made of Periodical Abstracts, ERIC, ABI Inform, and principal distance education books.

ILLUSTRATIVE FINDINGS FROM THE LITERATURE

Although the literature about distance education is large and expanding, there is no universally accepted and comprehensive theoretical framework (McIsaac and Gunawardena 1996) for integrating and understanding research results. There is even disagreement about the extent to which distance education represents a cohesive concept for study.

The absence of a clear-cut integrating framework is due to a number of factors. Many variables influence the form and outcomes of distance education, including the degree of independence of students, the degree of interaction with teachers, the social environment, and how technology is used. There are differences in these variables among particular classroom instruction programs and particular distance education programs, as well as between distance education and traditional classroom instruction. Moreover, there are differences in the terms and concepts used to capture important features of distance education. Some of these ("tele-learning," "asynchronous learning," and "e-learning") emphasize a particular communications technology; others ("distributed learning" and "distant learning") emphasize the location of learners; still others ("open learning," "flexible learning") emphasize the relative freedom of learners to exercise a greater degree of control than in conventional education. In addition, distance education programs have a range of goals, including promoting access and convenience for diverse kinds of students, improving the cost effectiveness of education, and increasing student achievement.

The multiplicity of distance education programs and concepts and the absence of a widely accepted integrating framework make it difficult to aggregate conclusions from the diverse and developing literature. However, some illustrative findings can be gleaned. Following are highlighted points about the implications of ICT in postsecondary distance education for institutions, learners, courses, and faculty. The list is intended to suggest what can be found in the literature; it is not intended to be comprehensive or definitive.

INSTITUTIONS

Many traditional universities are offering distance (increasingly online, Web-based) courses (NCES 1999a). These institutions are increasingly in competition with for-profit schools (Knight 1998). Universities are also offering online courses for on-campus students, who find their convenience attractive. Accrediting agencies are developing procedures to strengthen distance education online (Carnavale 2000b). A variety of forms of interinstitutional collaboration also have emerged, including consortia of distance learning providers and distance education portals (Carnavale 2000a, Johnstone 1996, Olcott 1999).

New companies have been established to sell online training services, learning tools, and environments for colleges and universities to help them go online. Online certification and testing firms are also developing rapidly (Adelman 1997). Corporate "universities" have also increased in number and increasingly gone online, and some
have offered courses not only to their own personnel but also to suppliers, customers, and the public at large (Gallagher 2000, Meister 1998). A number of universities have established for-profit online affiliates, although some of the for-profits subsequently failed.

Economic, demographic, technological, and other factors are prompting American educational institutions to re-examine aspects of their educational mission, such as how to increase student access, improve the quality of education, become more cost efficient, and speed up the learning process for learners whose time is scarce and expensive (Kouki and Wright 1999, Morris et al. 1998).

LEARNERS

Research about learners has produced what might seem to be paradoxical results. On the one hand, successful distance learners tend to be self-sufficient, autonomous, and self-directed adults (Biner and Dean 1997; Gibson, ed., 1998; Guglielmino and Guglielmino 2001; Ozen 2000). On the other hand, students who are normally reserved and shy in classrooms are likely to participate more actively in computer-mediated education because they have time to think about what they express (Hillman 1999). Skilled online facilitation can help break down isolation. Student and faculty competency in the necessary computer skills is also important (Guglielmino and Guglielmino 2001, Lim 2000).

Dropout rates may be higher in distance education than in traditional courses (Carr 2000a). Strategies that can help reduce dropout rates include increasing instructor-student contact, especially at the beginning of a course (Curry, Baldwin, and Sharpe 1998); stimulating interaction among students; improving student support (Wilferth 1997); and providing better financial support (Young 2000a).

The cost of computers and lack of Internet access are barriers to distance education among poor and disadvantaged populations (Gladieux and Swail 1999, Morabito 1999).

Most studies that compare the achievement of learners in distance education (online and previous methods) with those in traditional classroom learning environments show that there is no significant difference (Kuntz 1999, Moore and Thompson 1997, Russell 1999, Sansoucie 1999). Some studies do find a positive advantage for distance learners (Day, Raven, and Newman 1998; Navarro and Shoemaker 2000). However, Phipps and Merisotis (1999) argue that much of this body of research is suspect, since many studies do not control for extraneous variables, and the validity and reliability of many of the instruments used to measure student outcomes and attitudes are questionable. As a result, they urge that the findings be approached skeptically.

It has also been noted that the quality of human interaction is more critical than the technology as a predictor of success (Kelsey 2000, White and Weight 2000). Further, institutions need to provide variety in their programs to meet the needs of learners with a wide range of characteristics (Gibson, ed., 1998; Grimes 1999; Scheer 2000). Some studies suggest the Web is superior to earlier distance education technologies because it allows teachers to build collaborative and team-oriented communities rather than either the passive classes of the conventional academy or the individual study of traditional correspondence courses (Gibson, ed., 1998; Hiltz 1997; Shneiderman et al. 1998).

COURSES

NCES (1999a) reports that the two large disciplines in which the most postsecondary education institutions offered distance education courses were English, the humanities, and the social and behavioral sciences (70 percent of institutions) and business and management (55 percent of institutions). (See table 1 for more detail.)

NCES (1999a) notes that, in general, institutions offer for-credit distance education courses more at the undergraduate level than at the graduate/first-professional level. The exceptions to this finding are in the fields of education, engineering, and library and information sciences, where institutions offered more college-level, credit-granting distance education courses at the graduate/first-professional level than at the undergraduate level.

These figures do not represent the curriculum in nondegree training courses, where information technology-related training is especially widespread.

A concern that has been expressed about Web-based distance learning systems is that the resulting high-volume, highly standardized courses may be predominantly English-based, and that this might expand the use of the English language in education and reduce cultural diversity worldwide (Collis and Remmers 1997). On the other hand, the perceived tenacity of cultural affiliation of many
Table 1. Fields of study covered by distance education courses offered by higher education institutions in 1997/98, by course level and field

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Undergrad/grad courses<sup>1</sup></th>
<th>Undergrad courses<sup>2</sup></th>
<th>Grad/first-professional courses<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>English, humanities, social and behavioral sciences</td>
<td>70</td>
<td>71</td>
<td>22</td>
</tr>
<tr>
<td>Business and management</td>
<td>55</td>
<td>51</td>
<td>30</td>
</tr>
<tr>
<td>Health professions</td>
<td>36</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Physical and biological/life sciences</td>
<td>33</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics</td>
<td>32</td>
<td>32</td>
<td>7</td>
</tr>
<tr>
<td>Education</td>
<td>29</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>Computer science</td>
<td>26</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Vocational/technical</td>
<td>17</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Engineering</td>
<td>12</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Agriculture and natural resources</td>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Library and information sciences</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

¹Based on the estimated 1,680 institutions that offered any distance education courses in 1997/98.

²Based on the estimated 1,620 institutions that had undergraduate programs and offered any distance education courses in 1997/98.

³Based on the estimated 750 institutions that had graduate or first-professional programs and offered any distance education courses in 1997/98.

groups and countries (Collis and Remmers 1997, Odasz 1997) and the potential for high-quality automatic translation (Silberman 2000) may weaken this effect. Moreover, there are trends toward increased use of English in education, with or without distance education.

Faculty

Many faculty members have welcomed new distance education technologies but have expressed concerns about the following, among others:

- the larger workload occasioned by increased preparation time and the need to deal with distance learners who can interact any time of day or night and expect quick responses (Bebko 1998, Ndahi 1998, Waldrop 2000);
- intellectual property—that is, who owns a course and instructional material and who derives income from them (Colyer 1997, Lipinski 1999, Noble 1998, Smith et al. 2000); and
- the need for specialized training for faculty to be effective in this new environment (Boehler 1999, Rockwell et al. 1999).

There are also economic, legal, institutional, and status issues associated with the unbundling of services traditionally performed by faculty (Noble 1998). For example, if online courses were prepared by a team of subject matter experts, performers, and Web designers and are subsequently taught by instructors, would the value and status of individual faculty members be diminished?

Concluding Comment

The initial bibliography collected for this project demonstrates that there is a substantial body of research about distance education. As noted above, there is no universally accepted integrating framework for this work; and there are limitations to existing data and research. Available statistics do not yet capture the full range of distance education applications and implications, and some studies cannot be generalized beyond their particular research setting. In addition, distance education is continually changing, as new technologies are developed, and new educational, organizational, and business approaches are tried (or abandoned). Research findings from one year may need to be reconsidered the next. This leaves a large agenda for future research to enhance and extend existing work.
INITIAL BIBLIOGRAPHY

Bebko, P. R. 1998. Influences Upon Higher Education Faculty Use of Distance Education Technology. Ph.D. dissertation. Florida Atlantic University.

Lim, C. 2000. Computer Self-Efficacy, Academic Self-Concept, and Other Factors as Predictors of Satisfaction and Future Participation of Adult Learners in Web-Based Distance Education. Ph.D. dissertation. Florida Atlantic University.

Riedling, A. M. 1996. An Exploratory Study: Distance Education Doctoral Students in the Field of Educational Policy Studies and Evaluation at the University of Kentucky. Ph.D. dissertation. University of Louisville.

The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants for research and education in the sciences, mathematics and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Web site at:

http://www.nsf.gov

Location: 4201 Wilson Blvd.
Arlington, VA 22230

For General Information (NSF Information Center): (703) 292-1111

TDD (for the hearing-impaired): (703) 292-5090

To Order Publications or Forms:
Send an e-mail to: paperpubs@nsf.gov
or telephone: (301) 947-2722

To Locate NSF Employees: (703) 292-8183
The Foundation provides awards for research and education in the sciences and engineering. The awardee is wholly responsible for the conduct of such research and preparation of the results for publication. The Foundation, therefore, does not assume responsibility for the research findings or their interpretation.

The Foundation welcomes proposals from all qualified scientists and engineers and strongly encourages women, minorities, and persons with disabilities to compete fully in any of the research and education related programs described here. In accordance with Federal statutes, regulations, and NSF policies, no person on grounds of race, color, age, sex, national origin, or disability shall be excluded from participation in, be denied the benefits of, or be subject to discrimination under any program or activity receiving financial assistance from the National Science Foundation.

Facilitation Awards for Scientists and Engineers with Disabilities (FASED) provide funding for special assistance or equipment to enable persons with disabilities (investigators and other staff, including student research assistants) to work on NSF projects. See the program announcement or contact the program coordinator at 703-292-8636.

The National Science Foundation has TDD (Telephonic Device for the Deaf) capability, which enables individuals with hearing impairment to communicate with the Foundation about NSF programs, employment, or general information. To access NSF TDD dial 703-292-5090; for FIRS, 1-800-877-8339.
NOTICE

Reproduction Basis

☐ This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☑ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").