During the 1990s, the use of meta-analytic methods in educational research has been widespread, and few aspects of education have escaped the meta-analytic revolution. The acceptance has not been complete, however, and several threats to validity remain. Prominent among these are the "normality" problem and the "independence" problem (whether multiple effect sizes from a single study should be analyzed independently). As a result, resampling methods have been proposed when it is assumed that distributions are nonnormal and multiple effect sizes are independent. However, resampling methods for nonnormal dependent multiple effect sizes have not been found. This paper discusses methods for resampling meta-analysis with dependent multiple effect sizes. First, the literature regarding the use of resampling for a univariate meta-analysis is reviewed. Then, a review of the independence problem (i.e., multiple effect sizes) is provided. Finally, resampling methods for countering the problems of nonnormality and nonindependence for the multivariate meta-analytic case are described. Educational researchers involved with meta-analysis are likely to find multiple effect sizes to be of issue. In most cases, if not all, multivariate methods will be preferred over univariate. Resampling methods can improve multivariate meta-analytic applications. (Contains 15 references.) (SLD)
Methods for Resampling Meta-Analyses with Multiple Effect Sizes

Robert Grisham Stewart

East Tennessee State University

Abstract

For the last decade, the use of meta-analytic methods in educational research has been widespread. Indeed, few aspects of education have escaped the meta-analytic revolution. However, the acceptance of findings has not been outright, as several validity threats remain debatable. Prominent among these are (a) the "normality" problem and (b) the "independence" problem (i.e., should multiple effect sizes from a single study be analyzed independently).

Accordingly, resampling methods have been proposed when it is assumed that (a) distributions are non-normal and (b) multiple effect sizes are independent. Incidentally, however, resampling methods suitable for non-normal dependent multiple effect sizes have not been found. Herein, methods for resampling meta-analyses with dependent multiple effect sizes are discussed. First, the literature regarding the use of resampling for a univariate meta-analysis is reviewed. Second, a review of the "independence problem" (i.e., multiple effect sizes) is provided. Finally, resampling methods for countering the problems of "non-normality" and "non-independence" for the multivariate meta-analytic case are described. For educational researchers involved with meta-analysis, it is likely that multiple effect sizes will be of issue. In most cases (if not all), multivariate methods will be preferred over univariate. Moreover, resampling methods can improve multivariate meta-analytic applications.
Methods for Resampling Meta-Analyses with Multiple Effect Sizes

In general, a biased estimate (statistic) is undesirable because it could lead one to misconclude and subsequently make ineffective decisions. In a meta-analytic review, effect size estimates may be grouped and cumulated to yield a “grand effect size” estimate. In this case, accumulation of bias is also possible. The importance of an unbiased effect size estimate is evident when one considers that a grand effect size is intended to provide a global decision point regarding a phenomena’s research base. Moreover, the scope of the meta-analytic applications (e.g., physical and social sciences) and range of interpretations (e.g., setting research priorities, establishing policies, drug certification) emphasize the need for improved bias control (modeling). Herein, resampling methods are explored as a means of controlling bias for multivariate non-normal effect size estimates.

Validity Threats to Meta-Analytic Findings

Independence Problem

In the simplest, non-degenerative case of a standardized mean difference (treatment effects) meta-analysis, a study (unit of analysis) will contain one treatment group and one endpoint (measure), thereby, producing one effect size estimate (statistic). However, a study can contain multiple treatment groups for a single control group and (or) multiple endpoints (measures) for each dependent variable. In these cases, multiple estimates of effect size within a single study are possible. Consequently, to statistically combine (synthesize) effect sizes within and (or) among studies, one must decide whether the multiple effect sizes are stochastically independent. Indeed, Rosenberg, Adams, and Gurevitch (2000) suggest that the assumption of independence “is an important and substantive issue for the person carrying out the analysis to think through with care” (p. 6).
To date, many approaches for modeling multiple effect sizes exist (see e.g., Hedges & Olkin, 1985 chap. 10; Glass, McGaw, & Smith, 1981, chap. 6; Gleser & Olkin, 1994; Kalaian & Raudenbush, 1996; Raudenbush, Becker, & Kalaian, 1988; Raudenbush & Bryk, chap. 7; Rosenthal & Rubin, 1986; Timm, 1999a, 1999b). However, current multivariate models assume that the distribution of population effect sizes is multivariate normal (parametric modeling). Accordingly, in cases where the assumption of distributional normality is not met, parametric models can produce biased results. In general, resampling schemes can be used to approximate the distributions of statistics (to include multivariate analyses) under almost no distributional assumptions (thereby reducing bias of the parametric model). Indeed, resampling schemes for independent non-normal meta-analytic data have been advanced (see Adams, Gurevitch, & Rosenberg, 1997; Brown, Homer, & Inman, 1998). However, resampling applications for non-independent non-normal cases have not been found. Consequently, the following question is of interest: Are resampling methods applicable to modeling multivariate effect sizes?

Rationale for Resampling Multiple Effect Sizes

The term “resampling”, as used herein, collectively refers to (a) jackknifing, (b) bootstrapping, and (c) permuting. A review of the suitability of each method to meta-analytic data now follows:

Jackknifing

In general, the “jackknife” procedure creates new samples (i.e., resamples) by sequentially removing an observation from the original (observed) data. Glass, McGaw, and Smith (1981) proposed using the jackknife to estimate confidence intervals for the multiple effect size case.
Based on simulation results, they concluded that “the jackknife method appears to be appropriate and equal to the task of handling data sets interlaced with complicated dependencies.” (p. 208).

Bootstrapping

In general, the “bootstrap” procedure creates new samples by selecting an exact size simple random sample from the original (observed) data. According to Shao and Tu (1995) “the bootstrap provides a nonparametric alternative for approximating the distributions of statistics in multivariate analysis under almost no distributional assumptions” (p. 373). Accordingly, the bootstrap would seem an useful approach for meta-analytic data. However, applications of the bootstrap to multiple effect sizes could not be found. Consequently, the author is working on a bootstrap approach for both (a) testing homogeneity of effects sizes and (b) computing class (grand) confidence intervals.

Permuting

In general, a “permutation” procedure creates a new sample by randomly assigning subjects (in our case, effect sizes) to class levels. According to Good (2000), for a permutation test to be exact and unbiased the observations must be exchangeable. Furthermore, exchangeable observations in the case of dependence must also have normally distributed random variables. Based on this constraint, permuting does not seem to be a viable resampling approach for multiple effect sizes with a non-normal distribution.

Research Agenda

To improve the resampling of multiple effect sizes the following research agenda is proposed:

1. Where applicable, do resampling methods (i.e., nonparametric approaches) offer an improvement over parametric approaches to modeling multivariate effect sizes?
2. Where more than one resampling method is applicable, how does each compare with regard to desirable modeling properties?

3. Do diagnostics techniques (e.g., double bootstrapping) and computational enhancements (e.g., Monte Carlo simulation) improve resampling methods for the non-normal non-independent case?

Conclusions

Today, educational researchers must engage decades of primary research that is often interdisciplinary and from fields that continue to subspecialize. Consequently, meta-analytic studies are essential for cumulating findings and revealing new research opportunities. Resampling methods can improve these efforts.
References

Author Note

This paper was prepared for the annual meeting of the Mid-South Educational Research Association (MSERA), November 6-8, 2002, Chattanooga, TN.

Correspondence concerning this paper should be addressed to the author at grisstew@aol.com.
I. DOCUMENT IDENTIFICATION:

<table>
<thead>
<tr>
<th>Title:</th>
<th>Methods for resampling multiple effect sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s):</td>
<td>Robert Gnisham Stewart</td>
</tr>
<tr>
<td>Corporate Source:</td>
<td></td>
</tr>
<tr>
<td>Publication Date:</td>
<td>2002</td>
</tr>
</tbody>
</table>

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample sticker shown below will be affixed to all Level 1 documents

```
PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS
BEEN GRANTED BY

_____________________________________________________
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)
```

Level 1

Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

The sample sticker shown below will be affixed to all Level 2A documents

```
PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN
MICROFICHE, AND IN ELECTRONIC MEDIA
FOR ERIC COLLECTION SUBSCRIBERS ONLY,
HAS BEEN GRANTED BY

_____________________________________________________
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)
```

Level 2A

Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.

The sample sticker shown below will be affixed to all Level 2B documents

```
PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN
MICROFICHE ONLY HAS BEEN GRANTED BY

_____________________________________________________
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)
```

Level 2B

Check here for Level 2B release, permitting reproduction and dissemination in microfiche only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

```
Sign here, please

Robert G. Stewart
East Tennessee State University

Robert Gnisham Stewart
(423) 282-4124
FAX: 423-282-1361
Email: Jgnshtew@etsu.edu
Date: 6 NOV 02
```

(Over)
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

ERIC CLEARINGHOUSE ON ASSESSMENT AND EVALUATION
UNIVERSITY OF MARYLAND
1129 SHRIVER LAB
COLLEGE PARK, MD 20742-5701
ATTN: ACQUISITIONS

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
4483-A Forbes Boulevard
Lanham, Maryland 20706

Telephone: 301-552-4200
Toll Free: 800-799-3742
FAX: 301-552-4700
e-mail: info@ericfac.piccard.csc.com
WWW: http://ericfacility.org

88 (Rev. 2/2001)