Two types of self-efficacy were investigated in this study: self-efficacy for course content and self-efficacy for online learning technologies. Specifically, the study examined how these two types of self-efficacy change throughout a semester. Secondly, it examined whether students' self-efficacy is predictive of their satisfaction and course performance. Three hypotheses were tested: (1) self-efficacy for both course content and online learning technologies change across a semester; (2) self-efficacy is predictive of student satisfaction with course; (3) self-efficacy is predictive of course performance. Participants were undergraduate students who enrolled in an online course at the University of Central Florida. In an attempt to longitudinally gauge the student's continuing self-efficacy, a self-efficacy survey for the course content and online learning technologies was administered every three weeks (Four times across a semester). At the end of the semester, students' perceived degree of satisfaction with the online course was measured and students' final course scores were obtained from the instructor. Results indicated that both self-efficacy for course content and self-efficacy for online technologies increased during the semester. In addition, while initial self-efficacy for course content was a significant predictor of students' satisfaction with the course, neither self-efficacy with the course content nor self-efficacy with online technologies was a significant predictor of performance. (Contains 39 references.) (Author/AEF)
Online Students' Perceived Self-Efficacy: Does It Change?

By: Lee, Cheng-Yuan; Witta, E. Lea
Online Students’ Perceived Self-Efficacy: Does It Change?

Cheng-Yuan (Corey) Lee
E. Lea Witta
University of Central Florida

Abstract
Two types of self-efficacy were investigated in this study: self-efficacy for course content and self-efficacy for online learning technologies. Specifically, we examined how these two types of self-efficacy change throughout a semester. Secondly, we examined whether students’ self-efficacy is predictive of their satisfaction and course performance. Three hypotheses were tested: (a) self-efficacy for both course content and online learning technologies change across a semester; (b) self-efficacy is predictive of student satisfaction with course; (c) self-efficacy is predictive of course performance. Participants were undergraduate students who enrolled in an online course at the University of Central Florida. In an attempt to longitudinally gauge the student’s continuing self-efficacy, a self-efficacy survey for the course content and online learning technologies was administered every three weeks (four times across a semester). At the end of the semester, students’ perceived degree of satisfaction with the online course was measured and students’ final course scores were obtained from the instructor. Results indicated that both self-efficacy for course content and self-efficacy for online technologies increased during the semester. In addition, while initial self-efficacy for course content was a significant predictor (p < 0.05) of students’ satisfaction with the course, neither self-efficacy with course content nor self-efficacy with online technologies was significant predictors of performance.

Introduction
The development of telecommunications technology since the early 90’s has led to an explosive growth in the World-Wide Web (WWW). According to the Ipsos-Reid (2001) and CyberAtlas’s (2001) reports, as many as 400 million people are already on the Internet, and nearly one billion people (about 15% of the world’s population) will be connected to the Internet by 2005. Along with the astonishing growth of Internet usage, an increasing number of educational institutions are now offering their courses via the Web, namely Web-based (online) education. International WHERE + HOW (2001) lists more than 55,000 online courses that are provided by higher educational institutions and training corporations. The benefits of online education are twofold: individuals are given an opportunity to enhance their professional development and expand career opportunities while juggling responsibilities between family and work, and online education provides educational institutions a means to reach a greater student population resulting in an increase in revenue.

Although online education is gaining tremendous popularity, it is accompanied with a serious problem: a high attrition rate. Students enrolled in distance courses are more likely to drop out than their traditional counterparts. According to Moore and Kearsley (1996), the attrition rate in distance education courses is between 30 and 50%, which is much higher than in traditional course settings. This results in some negative implications for students, as well as for institutions. For students, the negative effects of dropout include loss of opportunity for personal and career advancement, lowered self-esteem, and increased likelihood of future disappointment (Atman, Egan, Sebastian, Welch, & Page, 1991). For an institution, high attrition rate results in considerable financial loss (Keegan, 1986).

Background of the Study
A great deal of research has been conducted to investigate factors that lead to student attrition (Baynton, 1992; Coggins, 1988; Dille & Mezack, 1991; Eisenberg & Dowsett, 1990; Fjortoft, 1995; Frew & Weber, 1995; Garland, 1993; Keller, 1999; Miltiadou, 2000; Parker, 1995; Pugliese, 1994; Zajkowski, 1993). Among those factors identified, motivation is often considered a strong predictor of success in a distance course (Baynton, 1992; Coggins, 1988; Dille & Mezack, 1991; Fjortoft, 1995; Garland, 1993; Keller, 1999; Miltiadou, 2000; Zajkowski, 1993). Keller (1999) directly attributes attrition to a motivational problem.

While learning takes place at a distance, student motivation becomes particularly critical because distance learning places the responsibility of learning on the student much more so than does traditional learning. Cropley and Kahi (1983) stated:

“distance learners are thrown back upon their own motivational resources to a greater extent than is the case with face-to-face learners, since many of the factors which provide external motivation are absent or present only in an indirect form in distance education. Internal motivation is a highly desirable thing in face-to-face education, but is a necessary precondition in distance education” (p.32).

In numerous studies of learning motivation, self-efficacy has been identified as a significant predictor of student motivation (Bandura, 1997). Specifically, self-efficacy is predictive of academic performance and course satisfaction in traditional face-to-face classrooms (Bandura, 1997) and online courses (Miltiadou, 2000; Wang & Newlin, in press). Furthermore, an individual’s self-efficacy has a significant impact on his or her (a) actual performance (Locke, Frederick, Lee, & Bobko, 1984; Schunk, 1981); (b) emotions (Bandura, Adams, & Beyer, 1977; Stumpf, Brief, & Hartman, 1987); (c) choices of behavior (Betz &
Instruments through WebCT (WebCT is the course management tool used at the University of Central Florida). Participants and performance. Specifically, answers to the following questions were sought:

1. Does a student's self-efficacy for online technologies change across a semester?
2. Does self-efficacy of course content and online technologies serve as a significant predictor of student satisfaction and performance within a web-based course?

Purpose of the Study

In an effort to provide an in-depth understanding of student's self-efficacy and its effects on student satisfaction and performance, this study examined (1) whether students' self-efficacy regarding course content and online technologies change throughout a semester; (2) whether self-efficacy for course content and online technologies are predictive of student satisfaction and performance. Specifically, answers to the following questions were sought:

1. Does a student's self-efficacy for course content change across a semester?
2. Does a student's self-efficacy for online technologies change across a semester?
3. Does self-efficacy of course content and online technologies serve as a significant predictor of student satisfaction and performance within a web-based course?

Methods
Participants

A total of sixteen students attending the University of Central Florida (UCF) at Orlando participated in this study. These students were enrolled in an undergraduate course, Introduction to Educational Technology (EME 2040). This course was offered through WebCT (WebCT is the course management tool used at the University of Central Florida).

Instruments

- Self-Efficacy Instrument
  The Self-Efficacy Instrument measures two components of self-efficacy beliefs - self-efficacy for course content and self-efficacy for online technologies. A total of 27, 5-point Likert-scaled items were developed. The first three items measuring course content self-efficacy were generated based on Eccles and Wigfield's (1995) 7-point Likert-scaled items. The last 24 items measuring online technologies self-efficacy were developed based on Miltiadou and Yu's (in 2000).
Online Technologies Self-efficacy Scale (OTSES). Each statement is preceded by the phrase “I feel confident...” For each item, students are asked to indicate their attitude from “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”, to “Strongly Agree.”

The instrument was tested by a pilot study conducted with thirty-two students during Spring 2001. Reliability analysis (Cronbach’s coefficient alpha) showed that the reliability was .87 for the first three items measuring content self-efficacy and .90 for the rest 24 items measuring online technologies self-efficacy.

Student Satisfaction Instrument
In this study, student satisfaction with the course was measured by an attitude questionnaire that was administered during the last week of Summer 2001. This satisfaction instrument consists of 19 items measuring students’ self-reported level of satisfaction with the online course. Specifically, the attitudes instrument measured students’ self-reported level of satisfaction with the course materials, instructor, and the online technologies. For each item, students were asked to indicate their attitude from “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”, to “Strongly Agree.” In a pilot study conducted with thirty-two students during Spring 2001, reliability analysis (Cronbach’s coefficient alpha) indicated that the reliability was .93 for these 19 items in this instrument.

Procedures
Participating students were asked to take an online survey (Self-Efficacy Instrument) at four intervals during the course of the Summer 2001 semester. Every three weeks, students were asked to fill out an online survey measuring their course content self-efficacy and online technologies self-efficacy. Along with the fourth survey (the last survey), a satisfaction survey (Student Satisfaction Instrument) was administered to measure student’s degree of satisfaction with this online course. In addition, with students’ permission, their final course scores were obtained from their course instructor.

Two statistical analyses were employed in this study. First, a doubly multivariate repeated measures analysis of variance was used to examine whether self-efficacy for both course content and online learning technologies changed across a semester. Second, multiple linear regression was used to determine if course content self-efficacy and online technologies self-efficacy could predict satisfaction and performance.

Results and Discussion
The results of this study showed that there is a statistically significant change ($F_{6, 10} = 4.4, p = .02$) in self-efficacy for course content and self-efficacy for online technologies during the semester. Almost 73% (72.5%) of the change in combined self-efficacy can be accounted for by the time interval. Both self-efficacy for online technologies ($F_{3, 45} = 7.72, p < .01$) and self-efficacy for course content ($F_{3, 45} = 5.06, p < .01$) changed over time. Within subjects contrasts showed that self-efficacy for online technologies increased significantly ($F_{1, 15} = 5.64, p = .03$) during the first three weeks of the semester (between time 1 and time 2). Although the respondents’ confidence level with online technologies increased after the second time, neither the increase from the second time to the third time nor the increase from the third time to the fourth time was statistically significant ($p>.05$). On the other hand, within subjects contrasts using self-efficacy for course content showed a non-significant decrease ($p>.05$) from time 1 to time 2, a statistically significant increase from time 2 to time 3 ($F_{1, 13} = 5.4, p = .04$) and a statistically significant increase from time 3 to time 4 ($F_{1, 13} = 6.67, p = .02$). These results are displayed in Figures 1 and 2.

**Figure 1**
Self-Efficacy for Online Technologies

![Figure 1](image1.png)

**Figure 2**
Self-Efficacy for Course Content

![Figure 2](image2.png)
The results suggest that self-efficacy for both course content and online technologies is dynamic, indicating that self-efficacy is subject to change, even within a relatively short period of time (i.e., three weeks). A considerable change found in this study was the significant increase in student's level of self-efficacy for online technologies during the first three weeks of the semester. Commonsense dictates that, when students have more experience with online technologies, they feel more confident in using online technologies, and their self-efficacy increases, accordingly.

In predicting student's satisfaction with a course using the initial self-efficacy measurements, only course content self-efficacy was a statistically significant predictor ($r^2 = .77, p < .02$). This predictor alone accounted for 32% of the variance in satisfaction. When, however, a composite of self-efficacy for course content and self-efficacy for online technologies was used, the initial composite was a statistically significant ($R^2 = .71, F_{1,13} = 6.7, p = .01$) predictor of student satisfaction. The resulting equation, Satisfaction = $-2.89 + 4$ (Online Tech) + $3.49$ (Course Content), indicated that as self-efficacy increased for either online technologies or course content there was a resulting increase in satisfaction. Although initial self-efficacy for online technologies was not a significant predictor of satisfaction, more than 50% of the variance in final course satisfaction could be explained by the initial composite of online technologies and course content self-efficacy. By the third time period, self-efficacy for online technologies was a statistically significant predictor of satisfaction but self-efficacy for course content was not ($R^2 = .74, F_{2,13} = 7.9, p < .01$). Overall, these results indicated that when these two types of self-efficacy were compounded, the possibility of predicting student satisfaction was increased. Consequently, we concluded that these two types of self-efficacy play substantial roles in predicting satisfaction.

Finally, the findings of this study showed that neither self-efficacy for course content nor self-efficacy for online technologies were statistically significant predictors of student performance until the fourth (last) time period. The resulting equation, Performance = $114.4 - .48$ (Online Tech) + $2.99$ (Course Content), indicated that as self-efficacy for online technologies increased, performance decreased; and as self-efficacy for course content increased, performance increased. The linear composite of self-efficacy for course content and for online technologies explained 40.1% of the variance in performance ($R^2 = .63, F_{2,13} = 4.4, p < .05$).

Contrary to previous studies (Miltiadou, 2001; Wang & Newlin, in press), this study showed that initial self-efficacy for course content and online technologies was not a statistically significant predictor of student performance. The absence of a relationship between initial self-efficacy and performance might be due to the small sample size. However, in the last time period, a relationship between self-efficacy for online technologies and performance did appear. It is noticeable that the relationship was negative, indicating that students who were not efficacious with online technologies perform better than those who were efficacious. This finding corresponds with Miltiadou's (2001) study. A possible explanation for this phenomenon is that when online technologies were perceived as difficult and students were not confident in learning via this media, they were more likely to be cognitively engaged. However, when online technologies were perceived as easy, students seemed to expend less effort. Consequently, those who were efficacious with online technologies earned lower grades than those who were not efficacious. This phenomenon also appeared in Salomon's (1984) study, where the students considered learning from watching television easier than learning from reaching printed text. These students exerted less effort, resulting in poor performance.

Although self-efficacy for online technologies was negatively related to performance, a positive relationship was found between self-efficacy for course content and performance. This was consistent with research findings from previous studies conducted in traditional classrooms as well as online courses where self-efficacy was positively related to student achievement (Bandura, 1997; Locke, Frederick, Lee, & Bobko, 1984; Miltiadou, 2000; Schunk, 1981; Nicholls & Miller, 1994; Pajares & Kranzler, 1995; Wang & Newlin, in press).

Conclusions and Suggestions for Further Research
With the growing popularity of online education and the urgent need to curb the online attrition rate, understanding and fostering online students' motivation is imperative. This study investigated self-efficacy, a critical element of motivation, and identified its effects on satisfaction and performance. Although the small sample size of this study limits its generalizability to the larger population, the findings of this study revealed some important points: (a) self-efficacy, both for course content and online technologies, changed over time in a web-based course, (b) the initial composite of self-efficacy for course content and online technologies was identified as a significant predictor of satisfaction, (c) the final measure of self-efficacy with online technologies was identified as a significant predictor of performance (with a negative coefficient), and (d) the final measure of self-efficacy with course content was identified as a significant predictor of performance.

Given the findings of this study, there appear to be several implications for researchers and instructors in the field of online education. First, this study showed that self-efficacy is dynamic and changeable within the course of a semester. However, in previous studies (Miltiadou, 2000; Wang & Newlin, in press), the dynamic nature of self-efficacy was often overlooked and was measured only one time in order to predict satisfaction and performance. This approach does not provide a comprehensive picture of self-efficacy and, accordingly, reduces the researcher's ability to explain the impact of self-efficacy on learning. In light of this, a genuine examination of the effect of self-efficacy on learning requires repeated measures of self-efficacy. When multiple measurement of self-efficacy is not feasible, it is imperative to specify the point in the semester when self-efficacy is measured.

Second, in past studies on self-efficacy, attention was predominately paid to efficacy expectation regarding the content learned, and yet participants' efficacy with learning tools or instruction delivery systems was often neglected. Nevertheless, in a web-based learning environment, participants' efficacy expectation with online technologies can no longer be ignored. As shown in this study, while predicting satisfaction and performance in a web-based course, participants' self-efficacy with online technologies was as critical as self-efficacy with course content. More attention should be paid to students' efficacy expectations while teaching or designing a web-based course.
Third, this study showed an unexpected finding regarding the negative relationship between self-efficacy with online technologies and performance. Students who were confident with online technologies appeared to erroneously overestimate their abilities to deal with learning tasks, and thus exert less mental effort, which led to poor performance. To avoid the pitfall of faulty assumptions, students should be informed that no matter how proficient they are with the online technologies, participating in online learning requires no less effort than traditional classes.

The limitation of this study comes from its small sample size. In order to generalize the findings of this study, it is recommended that this study be replicated with a larger sample and with different types of classes in different academic settings (i.e. high schools, community colleges, and universities). In addition, the negative relationship between self-efficacy with online technologies and performance should be further explored. It is suggested that further studies look at whether students who are confident with online technologies do exert less mental effort in their online learning activities. This could unveil the mechanism that contributes to the negative relationship between online technologies self-efficacy and performance. Other studies could look at other possible predictors of student satisfaction and performance, such as task value, which has been identified as a significant predictor of both student learning achievement and satisfaction in traditional classes (Hammann & Stevens, 1998; Townsend & Hicks, 1995; Velayo & McKeachie, 1994). These findings could shed additional light into the prediction of student achievement and satisfaction in web-based courses.

References


NOTICE

Reproduction Basis

X This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☐ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").