This chapter is part of a book that recounts the year's work at the Early Childhood Development Center (ECDC) at Texas A & M University-Corpus Christi. Rather than an "elitist" laboratory school for the children of university faculty, the dual-language ECDC is a collaboration between the Corpus Christi Independent School District and the university, with an enrollment representative of Corpus Christi's population. The chapter describes a project at the ECDC to develop standards for the integration of technology into the school curriculum. The standards were synthesized from teacher concerns, examination of instructional materials, and review of national and Texas Essential Knowledge and Skills (TEKS) state standards. The project resulted in several products, including a set of tables describing each TEKS technology strand, corresponding performance objectives or tasks for each grade level, suggested student activities from thematic units, and required software. (EV)
Chapter 12

Developing a Curriculum Framework in Technology for Young Children

Stephen Rodriguez
Morgan Williams
Technology in Early Childhood Education

Many educators believe that computers and other instructional technologies hold great potential for enhancing school learning. However, successful and appropriate uses of technology in the schools are often hampered by a number of factors. How prepared are teachers to use technology effectively? What technology skills should students acquire? How might those skills relate to the traditional curriculum? These questions were examined in a research project that focused on early childhood education. The context for the project was the Early Childhood Development Center (ECDC) at Texas A&M University-Corpus Christi (TAMUCC). The university’s College of Education and the Corpus Christi Independent School District (CCISD) operate the school in partnership. Staffed by CCISD teachers, the school presently serves students at the prekindergarten through third grade levels.

Components of a Technology Framework

In initiating this project, the researchers first sought to identify the components of an effective technology framework. As a result of the research, three products were developed:

1. Scope and sequence documents that indicate computing competencies students are to acquire by grade-level
2. Tables organized in four technology strands that explain each strand and provide detailed descriptions of student tasks, related student activities, and germane software
3. A teacher handbook, which provides examples of curriculum-based, technology-oriented activities that a teacher can conduct with students.

As a follow-up to the project, the second author provided training to the ECDC teachers. This training focused on the development of the technology skills teachers required to follow through on implementation of the student technology standards established under the project.
Criticality of Planning for Technology Use

Using instructional technologies (IT) to improve young children's learning in the schools is not a simple matter. Rather, like any major social innovation, adoption and use of IT by teachers is a complex, multifaceted, and lengthy evolutionary process.

One is also cautioned to remember that technology is a means—a tool that must be used thoughtfully and in planned ways. Providing hardware and using technology are not end results in and of themselves:

Technology alone cannot improve teaching and learning . . . Technology use must be grounded firmly in curriculum goals, incorporated in sound instructional process, and deeply integrated with subject-matter content. Absent this grounding, which too often is neglected in the rush to glittery application, changes in student performance are unlikely (Baker, Herman, & Gearhart, 1996, p. 200).

Clearly, planning how to integrate uses of technology into the school curriculum has emerged as a critical issue. Growth of the Internet and the World Wide Web, advances in digital video technology, and the introduction of alternative, affordable storage media such as "write-able" CD-ROMs all add to the challenge of successfully integrating technology in today's school curricula.

The present project entailed development of student technology standards. These standards represent a major component of an evolving plan to bring about meaningful, sustained uses of technology by teachers and students in the ECDC School.

Constructivism and Technology Use

Constructivist conceptions about human learning have emerged in the literature and at professional conferences as a central theme associated with technology use in the schools. The constructivist view holds that learning and knowledge construction are grounded in meaningful experience and individual meaning-making. Jonassen (2000) asserts that students do not learn anything, per se, from computers. Instead, he argues that teachers should use computers to
engage students in thinking meaningfully and representing their knowledge. Under this view, "...the most effective uses of computers in classrooms are for accessing information and interpreting, organizing, and representing personal knowledge" (p.4) rather than for studying traditional instructional software. Constructivist approaches are also applicable in regard to instructing adults about technology (Rodriguez, 1997).

Whereas the constructivist view holds appeal for many, most educators recognize that constructivist approaches must be balanced with more traditional instructional strategies, including direct instruction. Educators should thus strive to balance use of commercially produced software with more constructive activities involving analysis and display of data, communication between people, and development of multimedia and web-based products, among others.

Method

In initiating this study, the researchers first obtained approval for the project from the individuals responsible for directing and administering the ECDC School. Subsequently, the researchers visited the ECDC School. At this early meeting, they met with teachers and reviewed the current school curriculum. The teachers were greatly concerned about how to match the use of technology in thematic units with the school district's local standards, which had a technology element.

The researchers also reviewed various instructional materials currently being used with students. The intent was to identify specific components of the curriculum that would lend themselves to the use of computing technology by students. The researchers also obtained and reviewed various student technology standards, which are discussed in the next section of this chapter. Based upon these reviews, they developed a synthesis of standards based upon the unique needs, curriculum, and student and teacher characteristics of the ECDC School. These served as the basis for other project components.

Throughout the course of the project, the principal and teachers of the school were consulted. Teachers were given drafts of various project documents and provided feedback and suggestions. The
principal supported the need for a scope and sequence document; this support was critical to the successful completion of the project. Equally critical was the feedback that teachers provided, especially with regard to the overall question of how to integrate technology within the existing curriculum.

The Search for Technology Standards

It is one thing to want to use technology with students. It is quite another to determine which body of skills and knowledge should be covered, and at what grade level. In order to derive a useful and appropriate set of standards for young children, the researchers reviewed accepted national, state, and local technology standards.

Those first reviewed were the International Society for Technology in Education (ISTE) National Educational Standards for Students, first published in 1998. These standards, representing a synthesis of responses from many groups and individuals across the country, are organized into six strands, with goals identified for each strand and performance indicators identified for each goal. The standards address the following areas:

1. Basic operations and concepts
2. Social, ethical, and human issues
3. Technology productivity tools
4. Technology communication tools
5. Technology research tools
6. Technology problem-solving and decision-making tools

Once national standards had been identified, the authors turned to the Texas Essential Knowledge and Skills (TEKS) for technology, also known as the TEKS for Technology Applications (Texas Education Agency, 2001). They can be used by school districts to focus the attention on teaching and learning of technology skills. The overall purpose is to promote students’ lifelong learning as citizens in a technological age. The immediate goal is to give teachers support for using technology in their curriculum by outlining clearly defined goals.

They can be used by school districts to focus the attention on teaching and learning of technology skills. The overall purpose is to
promote students' lifelong learning as citizens in a technological age. The immediate goal is to give teachers support for using technology in their curriculum by outlining clearly defined goals.

The TEKS address the acquisition of technology application skills as a continuum, progressing from the elementary to twelfth-grade level. The technology TEKS are organized by benchmarks, not by grade level, thus giving some flexibility in the way school campuses can achieve the goals over a three-year period. Students are expected to demonstrate targeted proficiency levels before exiting second-, fifth-, and eighth-grade. Embedded within the grade clusters are four strands, or levels, with appropriate student expectations in skills and knowledge for each strand.

The first strand is the Foundation Level, which compares directly with the ISTE standards Basic Operations and Concepts level. At the Foundation Level of the Texas Technology TEKS, the students are expected to demonstrate knowledge of hardware components. Specific skills at this level include using the correct and appropriate input and output devices, demonstrating keyboarding skills, navigating successfully within the desktop, saving files, and using peripherals. Also in this strand, the Texas technology standards address social, ethical, and human issues related to technology use. Related examples include following the school district's Acceptable Use Policy and displaying respect for intellectual property.

The second strand, the Information Acquisition Level, requires students to gather varieties of information from electronic sources. This involves performing keyboard searches and navigating successfully to access information in text, audio, video, graphical, or combined modes. Students must gather the information; they must also evaluate the relative success of the search and the credibility and usefulness of the acquired information.

The third area targets Problem-Solving. Here the students are expected to create and modify problem solutions, using software to incorporate audio, video or graphic components. At this level, students also conduct research using electronic tools in order to justify the recommended solution. The students should generally be able to use word processing and multimedia software to explain ideas and to solve problems.

The fourth strand is the Communication Level. Students should be able to present audiovisual information using appropriate fonts,
graphics, and color, all of which are geared to enhance communication. Other communication skills and knowledge include suitable printed output, consideration of monitor displays, video presentations, and use of electronic mail. The expectation is that the student should select appropriate applications in order to facilitate and evaluate communication.

The teachers at the ECDC were aware of the Texas Technology TEKS, but were more concerned about meeting the standards that had been set by the school district. CCISD’s standards are presented in Real-World Academics Standards: Standards for the New Millennium Pre-K Grade 6 (2000). Once again, elements of the national standards and the requirements of the state standards can be detected in the district’s standards.

The CCISD’s standards did not give a specific scope and sequence of skills that should be taught at different grade levels. Such a tool could prove useful to teachers when integrating technology within the curriculum because it would reveal levels of expected skill accomplishment.

Products Resulting from the Project

Overall, national, state, and local standards are fairly consistent. So the authors synthesized them to derive a coherent set of technology standards for teachers and students of the ECDC school. These were captured in a scope and sequence document, which provides a specific skills list by grade level. Major skill areas include Computer Familiarity, Keyboarding, Word Processing, Draw Applications, Desktop Publishing, Database Environment, Spreadsheet Environment, Telecomputing, Multimedia, Computer Simulation, and Computer Ethics (Williams & Rodriguez, 2000).

A set of tables was produced to demonstrate how the curriculum, the Texas Technology TEKS, and the ECDC technology scope and sequence could be merged to produce learning activities for the ECDC students. Each Texas Technology TEKS strand was described and then a number of tasks, or performance objectives, were listed for each grade level within the strand. A variety of student activities from the grade level thematic units were matched with each task, and the required software was listed. Examples of these activities are shown in Table 1. This was done for each strand and grade level. The teachers
could see examples for their own grade level. They could also use the tables for ideas and look across grade levels to see the desired progression (Williams & Rodriguez, 2000).

Table 1
Sample Scope-and-Sequence Activities Keyed to Texas Technology TEKS

<table>
<thead>
<tr>
<th>Strand</th>
<th>Grade Level</th>
<th>Task</th>
<th>Student Activity</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreK 3</td>
<td>PreK 3</td>
<td>Introduce concept of print and drawing as a form of communication.</td>
<td>Students draw and write on the screen and then explain their ideas to peers or other designated persons.</td>
<td>KidPix</td>
</tr>
<tr>
<td>PreK 4</td>
<td>PreK 4</td>
<td>Show that graphics can tell meaning.</td>
<td>Put together a sequence of pictures showing firemen going to the fire and putting fire out.</td>
<td></td>
</tr>
<tr>
<td>Kindergarten</td>
<td>Understand that large, bold print is designed to attract attention.</td>
<td>Study newspapers and notice headlines.</td>
<td>Claris Works</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>Send e-mail messages to known respondents.</td>
<td>Open Internet browser and send email message previously prepared</td>
<td>Netscape Navigator</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>Post message on an electronic bulletin board.</td>
<td>Subscribe to NASA and ask experts for information concerning class assignment.</td>
<td>Netscape Navigator</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>Determine when Internet search may be effective.</td>
<td>Use the download facility and then find the downloaded material for use. Discuss the concept that using a book or a CDROM, already available in the classroom may be more effective, and quicker than logging on to the Internet and then locating information.</td>
<td>Netscape Navigator Grolier Encyclopedia</td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>Access and navigate web sites.</td>
<td>Integrate the thematic units with Internet searches and CDROM searches.</td>
<td>Netscape Navigator</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>Topic</td>
<td>Activity</td>
<td>Tools</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Pre K3</td>
<td>Introduce basic terms: monitor, keyboard, mouse.</td>
<td>Obtain old computer that can be broken down and rebuilt.</td>
<td>Computer</td>
<td></td>
</tr>
<tr>
<td>Pre K4</td>
<td>Identify technology uses at work and at play.</td>
<td>Tour school to locate computers and their use.</td>
<td>Local School</td>
<td></td>
</tr>
<tr>
<td>Kindergarten</td>
<td>Demonstrate correct care and use of computers.</td>
<td>Show touch fingering and controlled mouse clicking</td>
<td>KidPix Broder bound stories</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>Key words and sentences using a word processor.</td>
<td>Participate in group writing of story; the story started by one group that leaves the computer after writing, then next group comes to read the story so far and continues.</td>
<td>KidPix Claris Works</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>Understand important issues in an information technology-based society.</td>
<td>Discuss any newsworthy issues regarding information technology e.g. hacking into networks.</td>
<td>Search Internet with Netscape and Internet search engines</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>Recognize that Copyright Law protects what a person, group or company has created.</td>
<td>Tell why it is against the law to make a copy of copyrighted software. Role-play situations that involve illegal copying of another person's computer work or software.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>Demonstrate proper keyboarding techniques for keying all letters.</td>
<td>Word process a paragraph using proper keyboarding techniques; edit the paragraph, save changes, print out.</td>
<td>ClarisWorks Children's Learning Center Storybook Weaver Deluxe</td>
<td></td>
</tr>
<tr>
<td>Strand</td>
<td>Grade Level</td>
<td>Task</td>
<td>Student Activity</td>
<td>Application</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pre K3</td>
<td>Develop awareness that technology has a function and a place.</td>
<td>Students to be shown various forms of technology and to develop an understanding for their use. Hardware such as TV, digital camera, and computers can be studied. Students can offer their use.</td>
<td>ClarisWorks</td>
<td></td>
</tr>
<tr>
<td>Pre K4</td>
<td>Discuss how technology helps people.</td>
<td>Teacher demonstrates use of computer to write a letter, or a newsletter, for home.</td>
<td>ClarisWorks</td>
<td></td>
</tr>
<tr>
<td>Kindergarten</td>
<td>Collect data and graph the data to help with problem solving.</td>
<td>Collect information on number of students who ride the bus compared with those who ride in a car. Graph data to see if the school needs more parking spaces for buses or cars.</td>
<td>ClarisWorks KidPix Graph Club</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>Data base library books in class.</td>
<td>Tracking class library books, a problem which can be addressed by building a database of books and then keeping record of borrowers. Simple two-field data base, which can grow as students become accomplished.</td>
<td>Claris Works</td>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>Use simulation software.</td>
<td>Model a town using boxes and other junk, then use SimTown to model the town and compare the differences and the similarities. Notice how the software can enhance the simulation.</td>
<td>SimTown</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>Use telecommunication for research into nature of problems and possible solutions.</td>
<td>Use newsrooms and BBS for support with ways to create more wildlife habitat within city e.g. Texas Parks and Wildlife website.</td>
<td>Netscape Navigator</td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>Record and communicate information regarding a problem.</td>
<td>Work with groups to solve a problem. Post problem and solution for other groups to consider.</td>
<td>ClarisWorks</td>
<td></td>
</tr>
</tbody>
</table>
Information Acquisition

<table>
<thead>
<tr>
<th>Grade</th>
<th>Activity Description</th>
<th>Teacher Activity</th>
<th>Technology Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre K3</td>
<td>Tell a short story.</td>
<td>Teacher transcribes story to computer for possible email letter to electronic pen pals.</td>
<td>Netscape Navigator</td>
</tr>
<tr>
<td>Pre K4</td>
<td>Group items by different attributes using manipulatives and/or software.</td>
<td>Students click on shapes and colors and sort into sets by dragging shapes or drawing created by teacher.</td>
<td>ClarisWorks</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>Select software from the Launcher that will provide the information needed.</td>
<td>Select from the teacher-made multimedia profile student of choice. Click on sound clips telling more about the student.</td>
<td>HyperStudio</td>
</tr>
<tr>
<td>First</td>
<td>Participate in the creation of a class multimedia sequential linear story.</td>
<td>Develop multimedia story from paper storyboard.</td>
<td>HyperStudio</td>
</tr>
<tr>
<td>Second</td>
<td>Collect, sort and organize information to display as a graph or chart.</td>
<td>Collect birthdays, days, colors, favorite pets and record in database. Present information in the form of a chart or a graph.</td>
<td>ClarisWorks</td>
</tr>
<tr>
<td>Third</td>
<td>Evaluate the success of strategies used to acquire information.</td>
<td>Evaluate the material found before printing or using. Download useful and appropriate graphic material.</td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>Describe examples of people using computers to access information in daily life.</td>
<td>Using email or postal service, write to a variety of previously contacted technology-using workers. Visit one nearby office and write up visit using slide show presentations with digital photographs.</td>
<td>Netscape Navigator ClarisWorks</td>
</tr>
</tbody>
</table>
Finally, the teacher handbook provides examples of curriculum-based, technology-oriented activities that teachers can conduct with students. Activities described in the teacher handbook are aligned with both the derived technology standards and the overall school curriculum.

Closing Thoughts

The present project represents an important step in the evolution of technology use in the ECDC School. Follow-through on the work accomplished under the present project will be critical. Regular contact with teachers of the ECDC School and the provision of related training will be essential in order to establish sustained use of the recommended student standards in technology.
References

Title:
Developing a Curriculum Framework in Technology for Young Children

Authors:
Jack Cassidy and Garrett Sherry (Eds.)

Corporate Source:
Center for Educational Development, Evaluation & Research (CEDER), Texas A&M University-Corpus Christi

Publication Date:
April 2002

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2A</th>
<th>Level 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

Check here for Level 1 release, permitting reproduction and dissemination in microfiche and/or other ERIC archival media (e.g., electronic) and paper copy.

Check here for Level 2A release, permitting reproduction and dissemination in microfiche and electronic media for ERIC Collection Subscribers only.

Check here for Level 2B release, permitting reproduction and dissemination in microfiche only.

Documents will be processed as indicated provided reproduction quality permits.

If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature:

Printed Name/Position/Title:

Telephone: (361) 885-3511

FAX: (361) 885-3511

Email Address: j Cassidy@falcon.tamucc.edu

Date: Aug 13, 2002
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

<table>
<thead>
<tr>
<th>Publisher/Distributor:</th>
<th>C.E.D.E.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>4300 Ocean Drive</td>
</tr>
<tr>
<td></td>
<td>Early Childhood Development Center</td>
</tr>
<tr>
<td></td>
<td>Corpus Christi, Texas 78412</td>
</tr>
<tr>
<td>Price:</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

Karen E. Smith, Acquisitions
ERIC/EECE, University of Illinois
Children's Research Center
51 Gerty Drive
Champaign, IL 61820

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
4483-A Forbes Boulevard
Lanham, Maryland 20706
Telephone: 301-552-4200
Toll Free: 800-759-3742
FAX: 301-552-4700
e-mail: info@ericfac.piccard.csc.com
WWW: http://ericfacility.org