This guide was developed to help teachers use the 14th season of NEWTON'S APPLE in their classrooms and contains lessons formatted to follow the National Science Education Standards. The "Overview," "Main Activity," and "Try-This" sections were created with inquiry-based learning in mind. Each lesson page begins with "Getting Started," which contains a simple activity and a series of open-ended, inquiry-based questions to engage students. These activities are designed to gauge what the students know about the subject and to initiate discussion. Lessons include background information, interdisciplinary connections, resources, and hands-on activities. Also included is a Guide to Enjoying NEWTON'S APPLE at Home that encourages family participation in science education. Topics are as follows: (1) Spelunking; (2) Human Eye; (3) Tahiti Special which includes Sharks and Black Pearls; (4) Riverboats; (5) Body Fat; (6) Hypercoaster; (7) Nicotine; (8) Avalanche Rescue; (9) Prosthetic Limbs; (10) Andes Special on Inca Engineering; (11) Ski Jumping; (12) Bee Stings; (13) Rain Forest Special which includes Rain Forest Plants and Rain Forest Animals; (14) Olympic Solar Energy; (15) Soccer; (16) Malaria Tracking; (17) Clocks; (18) Post Office; (19) Gems; (20) Ethanol; (21) Bones; and (22) Water Special that includes Wetlands and Drinking Water. (JRH)
Greetings from 3M and NEWTON'S APPLE

NEWTON'S APPLE continues to provide innovative, fun, and meaningful programming for young people. At 3M, we believe early exposure to science increases interest and appetite for learning, and helps foster appreciation for the importance of and opportunities in science. We're proud to sponsor the 14th season of NEWTON'S APPLE.

An important aspect of 3M's sponsorship is our work with KTCA-TV and the National Science Teachers Association to produce these NEWTON'S APPLE classroom materials. These materials help bring to life the wonder of science and can instill greater curiosity about science, our world, and our future.

The five-member NEWTON'S APPLE team travels the world over and explores our backyards to find out the answers to YOUR science questions. NEWTON'S team members climb into caves, swim with sharks, plunge down one of the country's largest roller coasters, learn the secrets of the rain forest and the Andes mountains, track mosquito infestation and malaria incidence, follow a letter through the postal service, and more.

Eileen Galindo
Actress and comedienne Eileen Galindo joins the NEWTON'S APPLE team in its 14th season. Eileen travels to Switzerland to investigate how rescuers find people buried in avalanches. She then goes to the Andes mountains in Peru to learn how the ancient Incas used special beads called quipus to communicate. In the Warehouse, Eileen learns the art of soccer from a physicist and she gets her hands on some very valuable gems.

Dave Huddleston
Dave once again dives (literally!) into sticky situations to help answer your science questions. In Tahiti, he straps on scuba gear and swims with sharks to find out how they breathe. In Peru, he explores the rain forest to discover some of its unique animals: leaf cutter ants, snakes, and frogs. Back home, Dave takes a thrilling ride with a letter to find out how the postal service handles so much mail!

Brian Hackney
Brian's curiosity leads him to New Orleans, where he takes the helm of a Mississippi River boat to find out how steam power keeps it moving. In Switzerland, he teams up with championship ski jumpers to show how they fly through the air. Back at the Warehouse, Brian explores why nicotine is so addictive.

David Heil
After nine years with NEWTON'S APPLE, David's adventures continue as he travels to the Andes mountains of Peru to investigate how the ancient Incas built those huge stone structures without wheels, machines, or iron tools. Then he catches up with some researchers in the Amazon to find out why tropical rain forests are so important to world climate and health.

SuChin Pak
In her second season with NEWTON'S APPLE, SuChin, now a college senior, investigates science in the world around us—she goes to Tahiti to dig up the story on black pearls. Then see if she STILL wants to get that tattoo after learning more about them from the Tahitian people, famed for their ornate body art. In the Warehouse, SuChin learns how popcorn gets its pop!

Welcome to the NEWTON’S APPLE
TEACHER’S GUIDE

This guide was developed to help you use the 14th season of NEWTON’S APPLE in your classroom.

New Features
The new NEWTON’S APPLE Teacher’s Guide lessons are formatted to follow the National Science Education Standards. The “Overview,” “Main Activity,” and “Try-This” sections have been created with inquiry-based learning in mind.

Getting Started
Each lesson page begins with “Getting Started,” which contains a simple activity and a series of open-ended, inquiry-based questions to engage your students before you conduct the lesson or show the segment. These activities are designed to gauge what your students know about the subject and to initiate discussion.

Key Concepts
The “Key Words” section, previously listed on each lesson page, has been consolidated in the center of the book, on durable card-stock. “Key Concepts” words are highlighted on each lesson page for easy reference.

Features You’ve Come To Depend On

- An index to the 14th season lesson pages and an index to the past three seasons of NEWTON’S APPLE.
- A science subject index that gives you a quick overview of the science concepts presented in each 14th season lesson.
- Lessons, lessons, and more lessons (including background information, interdisciplinary connections, resources, and hands-on activities) focused on the major topics explored in the 14th season.
- Hands-on “Science Try It” experiments and a “Street Smart” quiz.
- A “Guide to Enjoying NEWTON’S APPLE at Home” that you can duplicate and send home with your students to encourage family participation in science education.
- Our 14th season poster, with easy-to-photocopy activities for the classroom on the back.

Using NEWTON’S APPLE in the Classroom

NEWTON’S APPLE allows three-year, off-air record rights for educational purposes. Tape the show, or have your resource center tape it, directly off the air and use it in the classroom as often as you like for three years.

The 14th season of NEWTON’S APPLE will air on most PBS stations beginning in October 1996 (check your local PBS listings for exact airdates and time). If you don’t find NEWTON’S APPLE listed in your local TV guide or PBS viewer’s guide, contact your local PBS station to find out when the 14th season will be airing in your area.

Public television stations depend on what they hear from viewers to help make their programming decisions, and you, as an educator, are one of public television’s most important constituents. If your public television station is not running NEWTON’S APPLE, you must let them know that it is important to you and your students. If your station is running the show, call them and let them know how much you depend on it in the classroom.

If you have any comments or questions, please write to:
Director of Outreach & Promotion
NEWTON’S APPLE
172 4TH ST E
SAINT PAUL MN 55101
e-mail: newtons.apple@umn.edu

NEWTON’S APPLE Teacher’s Guides also are available on the web at: http://ericir.syr.edu
The NEWTON'S APPLE educational materials were developed to help teachers approach some of the goals of the new National Science Education Standards.

The National Science Education Standards, recently published by the National Research Council, presents criteria to help state and local school personnel make decisions about every area of science education. From teaching and the quality of what students know to assessment practices and the system that supports teachers and programs, national standards bring coordination, consistency, and coherence to the improvement of every aspect of science education.

The National Science Teachers Association (NSTA) applauds the release of the National Science Education Standards, and encourages science educators to put the Standards into practice in the classroom. The world's largest organization dedicated to science education, NSTA has led the way in promoting the Standards with teacher institutes, awareness kits, and a Standards discussion area via the Internet. NSTA also has developed many publications to keep educators informed about the latest issues in science education, including a variety of resources for implementing the Standards.

This year, NSTA presents its Pathways to the Science Standards, practical guidebooks for bringing the standards to life in any school or classroom. Written by teachers for teachers, these books include examples, discussions, and demonstrations on how you can carry the vision of the Standards—for teaching, professional development, assessment, content, program, and system—into the real world of the classroom and school. Pathways is also a tool for you to use in collaborating with administrators, school boards, and other stakeholders in science education. Separate editions treat elementary, middle, and high school levels.

NSTA's project on Scope, Sequence, and Coordination recently updated its High School Framework for National Science Education Standards to help teachers implement the Standards within the SS&C model. A Framework for High School Science Education demonstrates how the content standards can be sequenced and integrated over the four years of high school. Integral to this publication is a series of "micro-units" that corresponds to the elements of the Framework's learning sequence. These micro-units consist of lab activities, readings, and assessment items that will help you put the national standards to work in your classroom.

The Standards: elementary, middle level, and high school editions of Pathways; and the SS&C High School Framework are available from NSTA. For a catalog and sales information, contact the NSTA Science Store at (800) 722-NSTA (6782) between the hours of 8 a.m. and 6 p.m. (EST).
There are two ways to locate any of the 25 lessons in this guide: check out the alphabetically arranged subject index found on the inside back cover, or look through the numerically arranged show index on this page.

Either way, once you've identified a topic you'd like to explore, look in the upper right-hand corner of each lesson page for the NEWTON'S APPLE show number (e.g., 1401, 1402) that corresponds to that topic. We've also included in the same corner the segment's approximate running time.

On the back of this page, you will find a guide to the past three seasons of NEWTON'S APPLE. These episodes may be rebroadcast on your local PBS station throughout the year, and we hope you will continue to use them in your classroom.

<table>
<thead>
<tr>
<th>1401</th>
<th>1405</th>
<th>1410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spelunking</td>
<td>Avalanche Rescue</td>
<td>Malaria Tracking</td>
</tr>
<tr>
<td>Human Eye</td>
<td>Prosthetic Limbs</td>
<td>Clocks</td>
</tr>
<tr>
<td>1402</td>
<td>1406</td>
<td>1411</td>
</tr>
<tr>
<td>Tahiti Special</td>
<td>Andes Special</td>
<td>Post Office</td>
</tr>
<tr>
<td>Sharks</td>
<td>Inca Engineering</td>
<td>Gems</td>
</tr>
<tr>
<td>Black Pearls</td>
<td>1407</td>
<td>1412</td>
</tr>
<tr>
<td>1403</td>
<td>Ski Jumping</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Riverboats</td>
<td>Bee Stings</td>
<td>Bones</td>
</tr>
<tr>
<td>Body Fat</td>
<td>1408</td>
<td>1413</td>
</tr>
<tr>
<td>Rain Forest Special</td>
<td>Rain Forest Plants</td>
<td>H2O Special</td>
</tr>
<tr>
<td>Rain Forest Animals</td>
<td>1409</td>
<td>Wetlands</td>
</tr>
<tr>
<td></td>
<td>Olympic Solar Energy</td>
<td>Drinking Water</td>
</tr>
<tr>
<td></td>
<td>Soccer</td>
<td>3M Innovation</td>
</tr>
</tbody>
</table>

We encourage duplication for educational non-commercial use.

Educational materials developed with the National Science Teachers Association.

NEWTON'S APPLE is a production of ETCA Saint Paul/Minneapolis. Made possible by a grant from 3M.
Index of Past Seasons

Newton's Apple
11th Season

Show 1101
Rock Climbing
Taste Test
Monty Hall
Baby Bobcats

Show 1102
Emergency Rescue
Black Holes
Pizza
Reindeer

Show 1103
Memory
In vitro Fertilization
Goose Bumps
Hummingbird

Show 1104
Newspaper
Bomb Squad
Echoes
Mosquitoes

Show 1105
Jumbo Jets
Meteors
Knuckle Crack
Paper Recycling

Show 1106
Windsurfing
Permafrost
Tumbleweeds
Zebras

Show 1107
Spotted Owls
Carpal Tunnel
Foggy Mirrors
Lizards

Show 1108
Archaeology
Mazes
Dolphins

Show 1201
Hang Gliding
Karate
Robin Leach
Elephant

Show 1202
Arctic Expedition
Special
Sled Dogs
Arctic Travel
Life in Camp
Arctic Weather

Show 1203
Aircraft Carrier
Brain
Carrier Life

Show 1204
Brain Mapping
Garlic
Sunscreens
Tasmanian Devil

Show 1205
Movie Dinosaurs
Bread Chemistry
Scott Hamilton
Wallaby

Show 1206
Movie Sound Effects
Sun
Globetrotters
Hedgehog

Show 1207
Dinosaur Extinction
Floods
Blue Seas
Siberian Tiger

Show 1208
Internet
Antibiotics
Panning for Gold
Taxidermy

Show 1209
Ethnobotany
Hubble Telescope
Inventor's Fair
Komodo Dragons

Show 1210
Raptor Hospital
Photography
Skipping Stones
Snakes

Show 1211
Redwoods
Electricity
Monuments
Red Fox

Show 1212
Printing Money
Gravity
Nature Labs

Show 1213
Bridges
Earthquakes
Chromakey
Grizzly Bear

Newton's Apple
13th Season

Show 1301
Waterskiing
Reflectors
Escalator
Fat-free Foods

Show 1302
Circus High Wire
Mummies
Bug Spray
Armadillo

Show 1303
Maya Bike Trek
Hearing
Parachutes
Wolves

Show 1309
Human Slingshot
Ride
Bone Marrow
King's Singers
Rotting Foods

Show 1310
Wild Lion Vet
Bicycles
Fish Breathing
Insect Warfare

Show 1314
Equator Special
Equator
Maasai Village
Coffee
Baby Elephants

Show 1311
Africa Special
Balloon Safari
Grasslands
Maasai Mara
Mara Animals

Show 1312
Bird Songs
Ergonomics
Inventor's Fair
Scorpions

Show 1313
Jungle Survival
Liver
Emus

Show 1305
Ice Surfing
DNA Fingerprinting
Bubble Gum
Cold Remedies

Show 1307
Disney World Special
Simulator Rides
Dolphin Communication
Laser Show

Show 1308
Hazardous Materials
In-line Skating
Skin Wrinkling
Compost

Newton's Apple is a production of KICA Saint Paul/Minneapolis, made possible by a grant from 3M.

We encourage duplication for educational non-commercial use.

Educational materials developed with the National Science Teachers Association.

Newton's Apple is a production of KICA Saint Paul/Minneapolis, made possible by a grant from 3M.
Here is an at-a-glance index of the science disciplines dealt with in the NEWTON'S APPLE lesson pages, incorporating the National Science Teachers Association's Scope, Sequence, and Coordination of Secondary School Science model.

We've also listed some extended concepts.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Biology</th>
<th>Chemistry</th>
<th>Physics</th>
<th>Earth/Space</th>
<th>Mathematics</th>
<th>Technology</th>
<th>Additional Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalanche Rescue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZOLOGY</td>
</tr>
<tr>
<td>1405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bee Stings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZOLOGY</td>
</tr>
<tr>
<td>1407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Pearls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZOLOGY</td>
</tr>
<tr>
<td>1402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEALTH, MEDICAL SCIENCE, FOOD/NUTRITION</td>
</tr>
<tr>
<td>1403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEALTH, MEDICAL SCIENCE, FOOD/NUTRITION</td>
</tr>
<tr>
<td>1412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HISTORY</td>
</tr>
<tr>
<td>1410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECOLOGY, ENVIRONMENT</td>
</tr>
<tr>
<td>1413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECOLOGY, ENVIRONMENT, Botany</td>
</tr>
<tr>
<td>1412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOLOGY</td>
</tr>
<tr>
<td>1411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Eye</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEDICAL SCIENCE</td>
</tr>
<tr>
<td>1401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypercoaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>1404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inca Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HISTORY, ENGINEERING, ARCHAEOLOGY, GEOLOGY</td>
</tr>
<tr>
<td>1406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria Tracking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GEOGRAPHY, Botany, Computer Science</td>
</tr>
<tr>
<td>1410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Science Subject Index

<table>
<thead>
<tr>
<th>Segment</th>
<th>Biology</th>
<th>Chemistry</th>
<th>Physics</th>
<th>Earth Space</th>
<th>Mathematics</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain Forest Plants</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>Spelunking</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
<tr>
<td>Wetlands</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
</tr>
</tbody>
</table>

Additional Applications

- Medical Science
- Health
- Social Studies
- Engineering
- Environment
- Computer Science
- Engineering
- Medical Science
- Zoology
- Ecology
- Environment
- Botany
- Ecology
- Food/Nutrition
- Environment
- Health
- Engineering
- Zoology
- Environment
- Engineering
- Physical Education
- Engineering
- Physical Education
- Engineering
- Physical Education
- Ecology
- Botany
- Environmental
How are caves formed?

What are some characteristics of a cave environment?

Getting Started

http://www.mnonline.org/ktca/newtons

How can you "see" when the lights go out? Many animals in caves are blind because there is no light. How do they navigate? Set up your own "touch tunnel" to see if you can navigate a room obstacle course strictly by feel. Can your other senses help you find the way?

Have you ever been inside a cave? How deep was it? Could you see any light? What did it look like? What did it smell like? What did the walls feel like? Was there any life in the cave?

How do you think caves are formed? Do you think all caves are the same? How many different plants and animals do you think can live in caves? What are some differences between these plants and animals and those living outdoors?

Overview

Caves have long been regarded as places of mystery and intrigue. Prehistoric people used them for shelter and decorated them with some of the earliest-known works of art. Pirates used them to hide their ill-gotten booty. By definition, a cave is simply a natural open space found underground. Sometimes caves form when large rocks get stacked up after a landslide, but most often they're the result of the chemical solution of limestone by subsurface water.

In pure water, limestone is actually quite stable. However, when water gets a little acidic, the limestone dissolves. When water percolates through the soil, it picks up carbon dioxide from rotting plants. This forms carbonic acid, the same acid found in soda pop. As this acid water flows through the soil, it eats away at the underlying limestone rock and a cave is formed. Sometimes larger caves are formed by sulfuric acid—the same acid found in battery acid. Sulfuric acid is created when the percolating water mixes with hydrogen sulfide from underground oil and gas and from acid rain.

Over time, small caves can grow to become elaborate systems of caverns containing large, needlelike structures that seem to grow down from the ceiling (stalactites) and up from the floor (stalagmites). These structures are formed by the slow, steady accumulation of calcium carbonate precipitating from the chemical-rich water dripping off the stones. Sometimes, these two "dripstones" meet, creating large pillars with spectacular colors.

Very few plants can grow in a cave because of the lack of light. Instead, fungi, algae, and even some simple mosses dominate caves. Insects, reptiles, and bats also are uniquely adapted to the cave environment. One of the most unusual cave dwellers is the "cave fish." Totally blind, this colorless creature navigates by touch, using tactile sensors on its body.

Sometimes, so much solution takes place inside a cave that the caprock can no longer support the weight of the surface above. The roof caves in and a feature known as a sinkhole forms. Each year, there are news stories about people returning home from work to find a large hole in the ground where their house once stood. By understanding the dynamics of what's happening inside a cave, scientists hope to minimize the risk of sinkholes in populated areas.

Connections

1. Since limestone dissolves in acidic water, how do you think increases in acid precipitation will affect the rate of sinkhole occurrences around the world? What can be done to offset this?

2. Areas of natural cave and sinkhole development are said to have karst topography. What special zoning and building codes have to be used in these areas to safeguard the structures?
NEWTON'S APPLE
SHOW NUMBER
1401
SPELUNKING

SPELUNKING: Student Activity

Test the behavior of three samples in three chemical solutions.

Many caves form because weakly acidic groundwater flows through cracks in limestone and slowly dissolves the rock. Caves form particularly well in areas where there is a resistant caprock like sandstone over the limestone below. In this activity, you will compare the solution rates of different minerals in liquids of differing pH to discover for yourself how some caves form. Note: It may take a week or longer to complete this activity.

Materials
• 9 large disposable plastic cups (12 oz or larger)
• 3 pieces of chalk (limestone)
• 3 quartz pebbles
• 3 small pieces of broken concrete
• bottle of vinegar
• bottle of clear ammonia
• pure water
• 9 self-stick labels or masking tape
• marking pen
• pen and paper

1. Fill three cups half full with vinegar and label them "acid." Fill three cups half full with pure water and label them "neutral." Fill three cups with 1 cm of ammonia and 5 cm of water. Label these "base." (Note: Ammonia from the bottle is too concentrated to use without dilution. Be careful because even diluted, it can irritate skin and eyes.)

2. Examine and describe each of the rock samples in as much detail as possible. Set up a data sheet for each sample and record your first observations under the heading "time zero." Make sure to include things like color, texture, size, and shape.

3. Place one piece of chalk in a cup with vinegar, a second in a cup with water, and the last in a cup with ammonia. Add the word "chalk" to each label. Repeat the procedure with the concrete and quartz pebble so that each cup now has a rock sample in it.

4. Place all nine cups in a dark corner and observe them the next day. Record any changes you see for each sample under the heading "day 1." Continue to make observations for each day until a full week has passed.

Questions
1. Based on your observations, what can you say about the behavior of limestone in the three different chemical environments?
2. Did any of the other samples show the same type of behavior? How might these similarities and differences help to explain how caves are formed?
3. Based on your observations, what material is used to help hold concrete together? What effect would acid rain have on structures made from concrete?
How does the human eye see?

How does the eyeball work?

Getting Started

You can draw your own simple stereogram. Draw two identical rectangles next to each other. Draw a small circle in the center of the one on the left. Draw an identical circle slightly to the left of center in the rectangle on the right. Hold the paper at arm's length or tape it to the wall and cross your eyes slightly so that the two squares exactly overlap. The circle will appear to float above the paper. See if you can construct more complex three-dimensional pictures.

How do your eyes work? Why do you have two of them and why are they placed where they are on your head?

Why do some people need glasses? Why do some people need them for distance and some need them for reading? How do optical illusions trick your eyes into seeing things you're not?

Overview

Look around. What do you see? Human beings can obtain a large amount of information about the surrounding environment through their sense of vision. But to see, we need light and the light-processing organs called eyeballs.

The outside of an eyeball is white, except for the clear, bulging cornea in front. Just behind the cornea is the iris, a colored area with a hole in the center called the pupil. Circular muscle tissue in the iris allows it to open and close the pupil to regulate the amount of light that gets inside the eyeball. Just behind the iris and pupil is the lens. The cornea and the lens work together to focus images on the retina, the light-sensitive layer that lines the inside of the eyeball.

Light moves in straight lines. Whenever a light ray encounters a surface of a different transparent medium, however, it bends (refracts) and heads off in another direction. The amount of bending depends on the nature of the transparent substance, the angle at which the light hits the surface, and the color of the light. On a curved surface such as a lens, parallel rays of light will hit the surface at different angles and will be bent differently. A greater curvature will lead to a greater difference in the amount of bending.

When your eye focuses on an object, all the light rays from a single point on that object are bent toward a single point on your retina. In the eyeball, light rays passing through the cornea are bent by its curvature toward the pupil. The lens flexes to change its curvature and finish the focusing process. Interestingly, the image projected on the retina is upside down because of the way the rays of light are bent by a double-convex lens.

On the retina are two kinds of cells that change light into nerve impulses. Rod cells do not see color but are best for night viewing because they react to very low light levels. Cone cells are for color viewing. They work best in good light and are found mostly in the center of the retina—an area called the macula, which provides the sharpest vision. Within each eye is a small blind spot with no rods or cones, where the optic nerve is attached to the eyeball. The optic nerve collects the nerve impulses and carries them to the brain, which interprets them as an image.

Connections

1. Many animals besides humans use vision. Are there any animals that do not have or use vision?
2. Two eyes are needed for "stereoscopic" or 3-D vision. Why do you think this is so? Do all animals that see have two eyes? Why are some animals' eyes on the side of the head rather than in the front?
IN AND OUT OF FOCUS

HUMAN EYE: Student Activity

Test different people to find out what makes an object look blurry in their eyes.

Main Activity

As an object approaches, the human eye's lens flexes to focus on it. Eventually the object gets so close, however, that the lens can no longer focus on it. Then the object begins to blur. How close can you bring an object before it looks blurry? Does this distance vary for different people or age groups? Does the shape or color of the object make any difference? Does it matter how brightly the object is illuminated?

Materials
- a 2.5-cm x 5-cm (1" x 2") swatch of printed words from a newspaper or magazine
- modeling clay or sculpting compound
- a 3" x 5" index card
- a cloth or soft vinyl tape measure like those used in sewing (CAUTION: Do not use any sharp or pointed objects, including wooden or plastic rulers, since these materials will be held close to students' faces.)

1. Glue or paste the newspaper or magazine selection in the center of the 3" x 5" card.
2. Roll the clay into a 5-cm (2") ball and mount the 3" x 5" card in it.
3. For the first test, have the test subject cover one eye with a hand.
4. Slowly bring the clay ball and words directly toward the test subject's uncoved eye. The test subject should try to focus on the words.
5. The test subject should say "stop" when she or he can no longer focus clearly on the words. Stop moving the ball at that point.
6. Have the test subject hold one end of the tape measure to her or his cheekbone just below the eye and measure the distance to the 3" x 5" card. (NOTE: Having the test subjects measure the distances helps ensure that no eyes get poked.)
7. Write down the measurement. Be sure to include whether or not the test subject wears glasses or contact lenses.
8. Repeat the test several times, using different test subjects and testing different variables. For example, try the test with both eyes uncovered, with and without glasses, with different amounts of light, and so on. Just remember to change only one variable for each test and to repeat each test at least once. Average the results of repeated tests.

Questions
1. What is the average distance where the image begins to blur for all test subjects? Is the average distance larger or smaller for people who wear glasses? Is it larger or smaller for one eye or both eyes? Is the distance the same for both eyes of the same person?
2. Can you design another experiment that tests how wide a person's field of vision is? How large an arc does the blind spot cover?
How do sharks find their prey?

If a shark sees you, will it bite? And if it bites, will it kill you?

Getting Started

Do vibrations travel differently through different substances? Begin with a large, empty, plastic zip-lock bag. First, blow air into the bag and zip it shut. Place your ear on one side of the bag and have a helper make a noise or say something on the other side. Now fill the bag with water and try again. Does the sound travel differently in water than in air? How does this affect how ocean animals hear?

What animals do you think are dangerous to humans? Why? What are these animals' primary diets? Are humans included? Why would an animal attack a human? How are these animals important to the world environment?

How many different types of sharks can you name? What do they eat? How do they find their food? What do they all have in common? What makes them different from other ocean animals?

Overview

Unlike the ferocious star of Jaws, most sharks pose little danger to humans. The world's 370-plus species of sharks eat a variety of foods. Whale sharks gulp in water and filter it out through their gills, trapping tiny plankton for food. Cookie cutter sharks fasten onto prey, then twist and pull away flesh, leaving a hole like that made by a cookie cutter. Nurse sharks use thick lips to suck food from rocky crevices.

A keen sense of smell helps sharks find food. Through touch, hearing, and sight, they detect movement in the water. A special organ on the snouts of sharks, called the ampullae of Lorenzini, allows them to detect weak electrical voltages from living creatures or ocean currents.

Humans pose a greater danger to sharks than sharks do to humans. People kill about 100 million sharks each year, eating shark fin soup and shark meat, using shark oil cosmetics, wearing sharkskin boots and shark tooth jewelry, and using parts of the shark to make medicines.

Despite many differences, sharks have one thing in common—no bones! Most fish have bony skeletons, but sharks have skeletons made of cartilage. Also, throughout their lives, all sharks grow new teeth, with one set of teeth constantly growing in behind another. And instead of scales, sharks have a rough surface covered with denticles or skin-teeth.

Sharks come in many sizes. Whale sharks weigh up to about 13 metric tons (14 U.S. tons) and grow up to 18 meters (60 feet) long. The dwarf dog shark measures less than 20 centimeters (8 inches) long.

Some sharks lay eggs from which young sharks, called pups, hatch. Other species give birth to live pups. Pups fend for themselves from the first day, growing slowly to adult size over as long as 15 years.

Fossil records show that the earliest sharks lived nearly 400 million years ago. Despite their long history on earth, many mysteries about them remain.

Connections

1. The gray reef shark makes a "threat display" with specific posture and movements. How do other animals (including humans) use physical posture or gestures to show that they are threatened or about to attack?
2. What steps can be taken to minimize danger to sharks from humans?
SHARKS: Student Activity

Try your skill at setting up a classification system for items in your room.

Try This

How fast and how far do smells travel? Slice an onion at the front of the classroom. How far away can the onion be smelled? Wait 30 minutes. Now how far away can the onion be smelled? What has happened?

Main Activity

Have you ever wondered how scientists classify animals? Why, for example, are some fish that lay eggs and some fish that give birth to live pups both classified as sharks? What is the common link between a 6" shark and a 60" shark?

The classification of living organisms into a system is called taxonomy. In this activity, you will try to establish a classification system for the world of your classroom. There are many ways to classify things. For example, sharks might be put in separate classes according to size, according to whether they are meat eaters and/or plant eaters, according to how they bear young, or according to where they live.

1. Working in groups of three or four, devise a system for classifying every object in your classroom. First, list all the objects that you will classify. Then decide on general categories and subcategories that make sense to your group.
2. Draw a chart showing the categories and subcategories that your group has chosen. List objects in the classroom in each category.
3. Each group should explain its classification system to the class. Display and compare the charts. Are there ways in which they are similar? How are they different?

Questions

1. How many different ways of classifying things did your class list?
2. What kinds of things were easier to classify?
3. Were there some things that were classified by one group but ignored by another?
4. What are the advantages and disadvantages of each system of classification?
Black Pearls

How does the oyster make a pearl?

Getting Started

http://www.mnonline.org/kcta/newtons

What do you know about pearls? How long do you think it takes to make one?

What do you think the difference is between "natural" and "artificial"? Is a cultured pearl natural or artificial? Explain your reasoning.

Do you have any pearls? What do they feel like? What color are they? Where do they come from? Where are pearl molluscs found? How are pearls formed in nature and how are they made by humans? Is there some way humans can "help" nature make more beautiful pearls faster?

How do you think people discovered these beautiful things? Why are they so valuable?

Overview

For centuries, humans have treasured pearls. The lustrous play of light across the surfaces of good pearls is so attractive that people have paid fortunes for them, even though they have no human use except adornment.

Pearls actually come in many colors, sizes, and shapes, and are ranked in value according to these qualities. Perfectly round ones with a deep glowing luster, particularly in unusual colors that also show an iridescence (or orient), have always been the most prized and expensive; dull, irregular ones the least.

Pearls come from a group of water organisms called pearl molluscs, which includes oysters, mussels, and clams from both freshwater and saltwater. The pearl itself actually begins as an irritant. Sand, a pebble, or a pesky parasitic organism gets inside the oyster's shell. To reduce the irritation, the oyster coats the intruder with layers of a solid, slick material called nacre.

The oyster's mantle tissue secretes the two main components of nacre: thin layers of the mineral aragonite and a gluelike substance called concholin, which cements the layers together. Because the aragonite is translucent, light interacts with the overlapping layers to give the finished pearl its lustrous appearance. Pearl molluscs also coat the inside of their own shells with nacre, so some shells picked up at a seashore are shiny and iridescent inside.

Pearls used to be harvested by divers. However, it is a dangerous occupation and natural pearls of high quality are rare. People have now learned to farm pearl molluscs specifically to produce cultured pearls, small beads with layers of pearl material around them. Oyster larvae (called spat) are allowed to settle in sheltered locations underwater. Once they have attached themselves to ropes or rafts, the young oysters are grown for a few years. Then their shells are opened just wide enough to surgically insert a small pearl bead and a piece of mantle tissue from another mollusc into the soft tissue. This nucleation process provides the oyster with a spherical irritant to coat with nacre, increasing the likelihood of a symmetrical, round pearl. The farmer removes the cultured pearl from the oyster one to three years later. Cultured pearls, produced around the world, account for about 90 percent of all pearl sales.

Connections

1. Pearls are rated primarily for their beauty, based on the criteria of luster, color, shape, and size. What other objects around you do you rate in some way? How do you do it? What criteria do you use?
2. Why do you think people pay so much money for something as attractive but impractical as a pearl?

Resources

Mineral Gallery (Choose Aragonite from the List):
http://mineral.galleries.com/
Minerals/by_name.htm

Gems and Geology University of Texas at Austin (Many links to other Gem Pages):
http://www.lib.utexas.edu/Libs/GEO/GemBibl.html

Pearls and other organic gems:
http://geology.wisc.edu/~jill/Lecture17.html

What you should know about cultivated pearls—from a jeweler’s point of view:
http://www.jewelers.org/what/pearl/

Gemological Institute of America (GIA)
(800) 421-7250
(Ask for either the Library and Information Center or the Bookstore. The bookstore has children’s activity kits and books on pearls)

Newton’s Apple Video Cassette and Educational Materials Provide Further Information about This and Other Topics. Call (612) 222-1717 or check out our Web site at:
http://www.mnonline.org/kcta/newtons
Real pearls are too expensive to experiment on, but you can investigate their properties by studying oyster shells, which are coated with a layer of the same nacre, called mother-of-pearl.

Materials
- oyster shells, obtained from a fresh seafood store and scrubbed with a soft brush under water to remove the last bits of oyster (CAUTION: After handling raw seafood, always wash your hands thoroughly.)
- a piece of cloth or rag
- hammer
- sharp knife or chisel
- household liquids such as vinegar, lemon juice, ammonia, rubbing alcohol, and vegetable oil
- binocular dissecting microscope, or strong hand magnifying lens
- small flashlight
- safety glasses
- small cups or bowls
- make up new words to completely describe every characteristic?

Try This
1. Observe and describe the shell as thoroughly as possible. (Put on the safety glasses and wrap the shell in cloth if you want to smash the shell with a hammer.) Put a shell chip (with nacre) under a magnifying lens or microscope and draw what you see. How many different characteristics can you notice? Do you need to make up new words to completely describe every characteristic?
2. Scratch the shell using your fingernail, a sharp knife or chisel, a stone, or the back of your pen. How hard and scratch-resistant is nacre? Which substances scratch the surface and which do not? Can you pry up the layers in thin sheets and then re-layer them?
3. How does light interact with nacre? Does the luster change depending on the angle at which a flashlight beam strikes the surface or how far away you hold the flashlight? Can you see any iridescence? If you chip or dissolve off the outer layer of nacre in the shell with vinegar, do the inner layers show different light effects?
4. Soak an oyster shell in each of the household liquids. What happens? Why do you think that happens?
5. Share your observations with other groups.

Questions
What other kinds of questions do you have about these shells? How could you investigate those questions?
Is all fat bad? What’s the best way to lose fat?

What is fat? Why is it good for you? How does a fat cell function?

Getting Started

http://www.mnonline.org/ktca/newtons

Bring food labels to school representing as many of the five food groups as possible. Find the serving size and number of servings in each container or box. Since most fruits and vegetables do not come in containers, “guestimate” their size and check the serving size in a cookbook. Why is it important to know serving size? How does this information help in your daily menu planning?

Do you think you eat well? Why? Do you know anyone who has lost weight? How did they do it?

Do you pay attention to the nutritional value of the food you eat? Do you pay attention to how much fat is in your food? How does fat in your food relate to the fat in your body? Why is fat important to the human body? Why is too much fat bad?

Overview

To supply the calories our bodies need for energy, we must eat food. As food passes through our digestive systems, it is mechanically and chemically broken down into nutrients (amino acids, simple sugars, fatty acids, and monoglycerides) that our bodies use for growth, maintenance, and repair. When these simplified nutrients—especially the simple sugars and fats—reach the cells, they are metabolized as fuel. This releases heat, which is measured in calories.

With calories, the body works on a supply-and-demand system. If the daily calorie supply from food you’ve eaten meets the daily demand, all the calories from fats, proteins, and carbohydrates are converted to energy. If the daily supply exceeds the demand, the excess calories are stored in fat cells. These fat cells serve as energy warehouses for fat molecules, allowing your body to draw upon the stored fat when your demand for calories exceeds the daily supply from the food you consume.

Despite the recent negative publicity about fatty foods, we all need some fat in our diets. It’s a good source of the calories we require to fuel our bodies and to keep us going when our energy demands suddenly increase. One gram of fat provides nine calories of energy, while one gram of protein or carbohydrate offers only four. Fat also gives texture and flavor to foods. It helps us feel full and satisfied after we eat. In addition, it protects our organs, aids in the development of cell membranes and hormones, and insulates our bodies.

However, we should eat fat sparingly—it should make up no more than 30 percent of our daily caloric intake. Excess fat in our bodies is linked to health problems such as hardening of the arteries and heart disease, to name just two.

Throughout a day, a month, a year, and even a lifetime, the body’s supply of and demand for fat changes. Demand increases with activity and decreases in sedentary times. We can modify our caloric intake to meet these changing conditions. We can also manage the body’s fat supply through exercise, which uses fat as fuel. So, to maintain a healthy balance in our bodies, we need to monitor our food intake and energy demands and add a daily dose of exercise.

Connections

1. What part do calories and exercise play in our daily lives?
2. What role does fat have in our diets? Where does it come from and go to?
3. Why do we gain or lose weight?
4. What would happen if we had no fat in our diets?
5. What diseases are associated with excess fat intake?

Resources

CHOOSE A DIET LOW IN FAT, SATURATED FAT, AND CHOLESTEROL:
http://www.nalusa.gov/fsnic/dgfsdg95/lowfat.html

Surgeon General’s Report on Physical Activity and Health. For a copy, call (888) 232-4674, or request a summary sheet at:
http://www.cdc.gov

United States Department of Agriculture Nutrient Data Laboratory 6700 River Rd Riverdale, MD 20737 (301) 734-8491

Request Home and Garden Bulletin 872: Nutrient Value of Food.

Cooperative Extension Service: Fat Facts University of Illinois at Urbana-Champaign:
http://www.agen.ufl.edu/~foodasfl/1041.html

Newton’s Apple Video Cassettes and Educational Materials Provide Further Information About This and Other Topics. Call (512) 222-1177 or check out our Web site at:
http://www.mnonline.org/ktca/newtons

We encourage duplication for educational non-commercial use.

Newton’s Apple video cassettes and educational materials provide further information about this and other topics. Call (512) 222-1177 or check out our Web site at:
http://www.mnonline.org/ktca/newtons

Dave investigates why everyone is concerned about dietary fat.

Segment Length: 8:45

Edible materials developed with the National Science Teachers Association.

Newton’s Apple is production of KTCA St. Paul/Minneapolis. Made possible by a grant from 3M.

3M Innovation
CARRYING YOUR CALORIES

BODY FAT: Student Activity

Plan what you'd need to pack for a three-day hiking trip.

Main Activity

Want to get away from it all? Go mountain hiking? Now's your opportunity. Plan a three-day backpacking trip to the Rocky Mountains in Colorado. Your trip will involve climbing, carrying, eating, cooking, and sleeping. All these activities will challenge your body's supply of and demand for calories. Plan what you'll pack for your trip as if your life depended on it.

Materials
- scale
- food already in plastic bags
- metric conversion charts
- Food Guide Pyramid and servings chart

1. As a class, discuss what items you should include in your gear. Write these on the chalkboard. Discuss how important each one is for a safe trip.

2. For this trip your gear is limited to 40 pounds (18 kilograms), of which 15 pounds (6.75 kilograms) can be food. Plan for your nonfood gear to weigh 25 pounds (11.25 kilograms).

3. Estimate how many calories you'll need to consume each day. Keep in mind that your activity level will be higher than normal during this three-day hike so you'll burn more calories than you do normally.

4. Knowing your total caloric needs, figure how you can meet your daily nutritional needs in each of the five USDA food groups. What percentage of your total daily calories should come from each group?

5. Next, think of foods you can carry that will meet both your caloric and nutritional needs for three days, yet allow you to remain within your food weight limit. Discuss your food list with your classmates and your family.

6. Gather your food choices and weigh them. Add or subtract items as necessary, keeping in mind your daily food needs as well as water consumption needs.

Questions
1. What effect did vigorous activity have on your menu?
2. Why did you choose the foods you chose? How close were you to your weight limit?
3. How are you planning to meet your water needs?
4. What percentage of the calories were from fat?
5. What kinds of foods were light in weight but high in nutrition and calorie needs?

Try This

Go to your local grocery store and look for four or five products that have regular and light versions. An example would be yogurt. Read the labels of both the regular and light versions. How are they the same? How are they different? What ingredients are exchanged or lessened to get a light version? How do they compare in taste?

Try This

List all the things you usually order when you eat a meal at a fast-food restaurant. Do some research to find out what the calorie count is for each item. Add the total calories. If it exceeds 500 calories, what could you do to reduce the calories, but still eat the meal?

Try This

Fat is in almost everything you eat, especially those things that are on many people's "favorites" list. Like pizza, doughnuts, and potato chips. Your challenge is to plan a lunch or dinner meal with no fat. Good luck!
How does steam power big machinery?
Where does energy come from? Can you make energy?

Getting Started http://www.mnonline.org/ktca/newtons

Fill a glass with ice and water. Place it in direct sunlight. Stir the mixture. Measure the temperature of the water and record it. Every five minutes, stir the mixture and measure the temperature again. Keep recording your results for 20 minutes after all of the ice has melted. Graph your results. What happened? How does your graph change after the ice melts?

What is energy? Name things you use in everyday life that need energy. How are these items powered? How do you think this power is made? What do you think is the best source of energy?

Do you think one form of energy can be converted into another? Give some examples. Make a list of the different kinds of energy and then what each kind can be converted to.

What happens to energy after you've "used" it? For instance, when you drive a car and then park it, where does the energy go? Have you exhausted the source? Does a parked car with a full tank of gas have energy?

The fast-moving vapor molecules can hit objects hard and often, causing a lot of pressure against whatever they hit. This pressure can be used to do work such as pushing on the blades of a turbine, or pushing on the base of a piston. The thermal energy has become mechanical energy, allowing the machine to do work.

One type of piston drives a steamboat. Steam pushes the piston one way. Then that steam is released and new steam enters the other side, pushing the piston in the other direction. The piston pushes a long arm, called a pitman arm, which turns the paddle wheel. The paddle wheel pushes against the water, moving the boat forward. The steam in the system is cooled, heated again, and reused.

Steam engines were the first engines. They changed the way we work. Since their invention, people have discovered other ways of converting energy and now steam engines are used less.

Energy can change from one form to another. It can be stored (as potential energy) or it can be used in motion, heat, or electromagnetic radiation.

In a steam engine, fuel (such as oil, gas, coal, or wood) is burned to heat water. The unburned fuel has chemical potential energy. As it burns, the fuel's potential energy is released as thermal energy (heat). The thermal energy is absorbed by the liquid molecules in the heated water, exciting them enough so they can break away from the liquid pool. After breaking away, they shoot into the space above the liquid. When this happens, we say that the liquid has "vaporized," or changed its state, turning into steam.

Steam engines were the first engines. They changed the way we work. Since their invention, people have discovered other ways of converting energy and now steam engines are used less.

Connections

1. Many machines that used to be steam-powered now rely on other sources for energy. What examples can you think of? Why don't we use steam for those machines now?
2. Energy consumption (along with its side effects) and dwindling supplies of some energy sources are topics of concern today. How can we use available energy sources more efficiently?
One big challenge engineers face when designing a machine is how to transfer one kind of motion to another. For instance, on a steamboat, the piston moves back and forth, but it drives a paddle wheel around in a circular motion.

First, think about what kinds of motion are needed to do different tasks. What kind of motion is needed to open and close a garage door? To turn the wheels of a car? To operate an elevator?

Now, design your own machine that transfers one kind of motion to another.

Materials
(This is a partial list—use whatever you think will work to make this machine.)
- 3 mechanical pencil sharpeners
- meter sticks
- tape
- coathangers
- chairs

1. Break into three small groups. Your task is to design a machine that will operate a manual pencil sharpener. You can power your machine by tipping a chair back and forth but you can’t use your hands to turn the pencil sharpener’s crank. Your design also should include a way to keep the pencil in place while it is being sharpened.

2. Rube Goldberg was a cartoonist who invented fantastic machines (on paper) to do simple things. For instance, he might suggest that if you stepped on a cat’s tail, the cat would jump up, knocking over a wastebasket, which would release a ball that would roll down a ramp, pushing down the lever on a toaster. People have taken up the challenge and actually built Rube Goldberg contraptions. Your pencil sharpener is the beginning of a Rube Goldberg contraption. Try to expand it or build other inventions that go through complicated steps to perform simple tasks. You’ll be surprised at how much you can learn about the way machines work.

Questions
1. In your pencil-sharpening machine, how did the type of motion change from the beginning to the end? What was the most difficult challenge you faced when you actually put your machine together? How did you overcome the problems you encountered?
2. Which pencil-sharpening machine worked the best? Why? What conclusions can you draw from this experiment that might help you design a better machine in the future?
How do you know a roller coaster is safe?

What makes a roller coaster ride exciting?

Getting Started

http://www.mnonline.org/ktca/newtons

Place a marble on a table and turn a round cake pan upside down over it. Move the cake pan around so you can hear the marble rolling around in a circle against the inside edges of the pan. When you have the marble traveling in a consistent circle, pick up the cake pan. Does the marble keep moving in a circle? Why?

Have you ever been on a roller coaster? How did it make you feel? Did you wonder how the car stayed on the track?

What is the highest roller coaster you’ve ever ridden? How high can a roller coaster be before it is unsafe? How do you think engineers figure out how to make a roller coaster safe?

Overview

Isaac Newton never had a chance to ride a roller coaster. The first one was built 75 years after his death. But the principles involved in roller coasters are right up Sir Isaac’s alley.

Newton’s laws of motion describe how forces determine the motion of objects. Designers rely on the acceleration caused by those forces to make a roller coaster ride both thrilling and safe. The trick is knowing how to use the forces properly. If the forces are too great in one direction, for instance, they’ll throw the car off the track. If an upward force is too large (giving you a feeling of heaviness), your heart cannot pump enough blood to your head and you faint. On the other hand, the lack of supporting forces can create feelings of incredible lightness. This can provide an electrifying ride that delivers you safely to the end.

Hypercoasters are about twice as tall as regular roller coasters. This larger scale adds new design challenges. Going down a 200-foot hill, a car has more time to accelerate and gains more speed. If while going at this fast speed the car experiences a sudden change in direction or speed, the car’s acceleration changes. A big or sudden change in speed or direction can make a bigger acceleration. Since the force acting on the car (and you) is equal to its mass times its acceleration, the bigger the change in direction or speed and the less time that change takes, the greater the acceleration and the bigger the force you’ll feel.

To keep these forces at safe levels, the designer has to stretch out the time and the distance it takes to navigate the curve at the bottom of the hill. This spreads the change out over time, decreasing the force you feel. The top of the next hill has to be high enough to slow the coaster down, or stretched out to a gentler or banked curve, so the car doesn’t fly off the track.

Space is a problem. Coasters go forward two feet for every foot they climb. If the highest hill is 100 feet, it takes about 200 horizontal feet to get the car that high. If the highest hill is 200 feet, it takes 400 feet. Since land is expensive, the designers have to be creative about the use of space. A track shaped into a curve takes up less space than one left in a straight line.

Connections

1. Creators of amusement park rides apply their knowledge of physics in their designs. What rides can you think of, and what principles of physics do they rely on?

2. Highway engineers use many of the same principles as roller coaster designers. How does road design affect the speed limit?
Roller coaster design is a balance between a wild ride and safety. You try it.

Materials (for each group)
- 2 or more lengths of pipe insulation
- tape
- marbles (Be sure each team has one the same size and weight.)
- stopwatch
- steel ball
- scissors

1. Divide into groups.
2. Cut the pipe insulation in half lengthwise to make two long chutes. Using classroom furniture and materials as supports, each group should build a roller coaster. Use tape to hold the coaster in place. Start each ride at 1 meter (3.3’) high. Build the wildest ride you can that still delivers the marble to the end. Make the turns and dips as tight as possible. Measure the radius of the turns at the points where they work without a crash.
3. When all coasters are finished, evaluate them. Time five runs on each coaster. Rate each coaster on the following:
 - Average speed (length of original “track” divided by time)
 - Safety (Did it stay on the track?)
 - Number of turns and hills (include loops)
 - Originality
4. Test all the coaster tracks using a steel ball instead of a marble. Compare the times of the runs of this ball to the times for the marbles.
5. Work together as a class to design the “ultimate coaster” on the blackboard. Use the best qualities of each group coaster. Build and test your ultimate coaster. Decide what the best qualities for a ride are.
6. Build a hypercoaster. Start the first hill at 2 meters (6.6’). Make each hill twice as high as on your “ultimate coaster.” Make the turns as tight as possible. Compare your hypercoaster to your ultimate coaster. Measure the radius of the turns at the point when they work without a crash. How do they compare between the two coasters? Evaluate the hypercoaster using the list of criteria. Would you change the design in any way because of the size?

Questions
1. How does the height of the ramp affect the design of the coaster ride? Would you design a hypercoaster using a different set of criteria than a smaller coaster? What new problems do hyper-coasters present to the designers?
2. What constraints had to be set on the hill heights after the initial hill drop? Why?
3. What happened to the safe turn radius as the ride progressed downward? Why?
4. What effect did a heavier car (steel ball) have on the ride time?
Calculate the price of the cigarette habit. Say, for example, a smoker "burns up" a pack a day: $_______ (price per pack) x 365 days/year = $_______ per year. What could you buy or use that money for that would not harm your health?

Why do you think people smoke? Do you think they know that it's bad for them? Do you think it would be easy to quit and that everyone should?

Why is smoking bad for you? Can you name any other things that are unhealthy that people do anyway? Name some similarities between these things and smoking. If you had a friend or family member who smoked, what would you suggest to help that person quit?

Nicotine is both physically and psychologically addictive. Physical addiction is biochemical. A person who tries to quit smoking experiences withdrawal symptoms such as depression because the brain expects nicotine and becomes physically distressed without it. Smokers also tend to associate cigarettes with other pleasurable activities such as relaxing with friends or reading the newspaper at breakfast. This psychological addiction is hard to break because the smoker resists changing these daily routines.

Irrationally, tobacco-related illnesses are not directly linked to nicotine itself, but result from exposure to the several hundred other chemical substances inhaled in tobacco smoke or absorbed from chewing tobacco or snuff. Some of these chemicals come directly from the tobacco plant, while some are produced in chemical reactions as the cigarette burns. Because nicotine in small doses is probably not too harmful, doctors sometimes administer nicotine alone, usually in the form of gum or a skin patch. This nicotine replacement therapy helps reduce the physical craving for nicotine, so the smoker can more easily quit smoking.

Nicotine may have some medicinal value in addition to its addictive properties. What do you think is the best way for society to handle a drug like nicotine?
Smoking is a hotly debated topic. Many people express very strong views on the subject. What do smokers and nonsmokers have to say about smoking? Conduct some interviews to find out.

1. Find two smokers and two nonsmokers to interview. These might be family members, teachers, or friends.
2. Make a list of questions you want to ask, such as: Why did you start (or not start) smoking? When did you start smoking? Do you want to quit? How do you feel if you can't have a cigarette? Do you tell others they ought to quit or refuse to associate with smokers?
3. Take notes as you listen to the answers.
4. When you get back to your classroom, compare notes with the other students. Make bar graphs of some of your data. For example, you could record the number of people on the Y-axis and the age they started smoking on the X-axis.

Questions
1. Can you find some common themes? For example, do smokers seem to have started smoking at about the same age or for the same reasons?
2. When we have problems to solve in society, why is it important to listen to many different opinions? How might the information you obtained help establish better ways to deal with the smoking debate?
Put familiar substances with various odors into containers labeled with numbers. Herbs, spices, oils, and any other nontoxic substances that give off a distinctive odor will work. Smell each one. Write down what you think the odor is and how strong it is. Describe what each odor smells like (sweet, sour, like a flower or an old dishrag). Test your friends to see what smells they recognize. How good are you at identifying the substances? Does everyone describe odors the same way?

When an occupied building collapses, what is the first thing emergency crews do? How do they do it? What is the best way to find survivors in such a disaster? Would you use the same method if someone was buried under several feet of snow?

What kind of animal would be best for rescuing people who are lost or buried? What makes your choice ideal for such work?

Overview

Imagine you're skiing the deep snow of a mountain pass when you hear a low rumble. The snow beneath you suddenly gives way. In a terrifying instant you realize you've been caught in an avalanche.

A roaring sea of snow envelops you and you are buried under snow compacted as hard as concrete. Rescue must come fast. After only 30 minutes your chances of survival are 50 percent. If you are not equipped with an avalanche rescue beacon, your next best hope is a search-and-rescue (SAR) team working with avalanche rescue dogs.

How can a dog pick up your scent through densely packed snow, recognize the scent as the important one, and then hone in on it? Part of the answer is the dog's olfactory system, which is 10,000 to 10 million times more sensitive than a human's. Dogs have about 220 million scent cells, compared to about 5 million in humans.

Scent cells, or cilia, react to odor-carrying molecules that flow into noses. In dogs, these cells line the canine mucosa, a membrane at the rear of the snout which is folded so many times that, if smoothed out, it would be larger than the dog's body. When the hairlike cilia encounter an odor-carrying molecule, they trigger nerve cells that signal the dog's brain.

It takes three to six years to teach a dog to track a human scent, for the dog must learn to pick up and follow an individual scent it hasn't smelled before, and do it in rough terrain amid distractions. The task is made more difficult when the victim is buried under an avalanche and has left no scent trail.

Dogs can smell a buried person because our bodies constantly shed skin cells and give off odors in the form of gases. A person walking across the ground leaves these cells and odors in a scent trail the dog can follow. A person buried under snow leaves no such trail, but dogs use air scenting to smell the human odors, or gases, rising up through the snow.

A dog searches an area until it finds the spot where the odors are strongest, then alerts rescuers by barking or digging. For dogs, tracking and searching is just a game. For the buried victim, it's a matter of life and death.

Connections

1. Do all dogs have the same sense of smell, or do dogs with bigger noses smell better than those with little noses?
2. People have used dogs to find things for centuries, but scientists still don't completely understand why dogs are so good at using their noses. Why is this difficult to understand?
AVALANCHE RESCUE: Student Activity

Main Activity

Many people believe dogs are the top smellers of the animal kingdom, although that has never been proven. Scientists do know that dogs smell much better than most animals, including humans. Researchers have also found that some dogs can smell better than others, even if they are of the same breed.

How sensitive is your nose? Can you smell better than some other people? And how does your nose stack up against a dog’s? To find out, try this smell sensitivity test.

1. Fill one glass jar with pure water and another with vinegar. Label the jars with a piece of tape and a marker. The water should not have an odor, while the vinegar will have its typical, distinct odor.
2. Put ¼ cup of vinegar in another jar, then add 2¼ cups of water and mix the solution. The ratio will be 9 parts water to 1 part vinegar. Label this jar #1. Can you smell the vinegar?
3. Pour ¼ cup of that 9:1 water/vinegar solution from jar #1 into a jar labeled #2. Add another 2 ¼ cups of water. You’ve just reduced the concentration of vinegar by an order of magnitude, making it ten times weaker. Can you still smell the vinegar?
4. Repeat step 3, this time pouring ¼ cup of the diluted solution from jar #2 into a jar labeled #3. Add 2 ¼ cups of water to jar #3 and mix. You’ve reduced the concentration of vinegar by another order of magnitude. Can you smell the vinegar?
5. Continue the process until no one in the group can smell the vinegar.

Questions

1. At what dilution could you no longer smell the vinegar?
2. Did anyone with a cold or allergies have a harder time smelling the vinegar? Why?
3. There are some odors that some people can’t smell at all, a condition called human specific anosmia. Is there anyone in your group who can’t smell vinegar at all?

Materials

- glass measuring cup like those used for cooking
- bottle of white vinegar
- distilled water
- several clean, medium-sized glass jars
- masking tape
- markers

Try This

1. Interview several dog trainers or police K-9 officers and find out what breeds they think make the best search dogs. Are different breeds better at finding certain things? What factors other than sense of smell do dog trainers look for?

2. Buy a small, solid air freshener and hide it in a room. Wait about a half hour, then bring a few friends in and ask them to find it. Using only their noses. Does one person have a better sense of smell than the others? Do people become less sensitive to the smell as time passes?

3. Pour ¼ cup of that 9:1 water/vinegar solution from jar #1 into a jar labeled #2. Add another 2 ¼ cups of water. You’ve just reduced the concentration of vinegar by an order of magnitude, making it ten times weaker. Can you still smell the vinegar?
4. Repeat step 3, this time pouring ¼ cup of the diluted solution from jar #2 into a jar labeled #3. Add 2 ¼ cups of water to jar #3 and mix. You’ve reduced the concentration of vinegar by another order of magnitude. Can you smell the vinegar?
5. Continue the process until no one in the group can smell the vinegar.

Questions

1. At what dilution could you no longer smell the vinegar?
2. Did anyone with a cold or allergies have a harder time smelling the vinegar? Why?
3. There are some odors that some people can’t smell at all, a condition called human specific anosmia. Is there anyone in your group who can’t smell vinegar at all?

Materials

- glass measuring cup like those used for cooking
- bottle of white vinegar
- distilled water
- several clean, medium-sized glass jars
- masking tape
- markers

1. Interview several dog trainers or police K-9 officers and find out what breeds they think make the best search dogs. Are different breeds better at finding certain things? What factors other than sense of smell do dog trainers look for?

2. Buy a small, solid air freshener and hide it in a room. Wait about a half hour, then bring a few friends in and ask them to find it. Using only their noses. Does one person have a better sense of smell than the others? Do people become less sensitive to the smell as time passes?

3. Fill one glass jar with pure water and another with vinegar. Label the jars with a piece of tape and a marker. The water should not have an odor, while the vinegar will have its typical, distinct odor.

4. Put ¼ cup of vinegar in another jar, then add 2¼ cups of water and mix the solution. The ratio will be 9 parts water to 1 part vinegar. Label this jar #1. Can you smell the vinegar?
PROSTHETIC LIMBS

How does a person control a prosthetic hand?

How does an artificial arm or leg work? What kinds of artificial limbs are there?

Getting Started http://www.mnonline.org/ktca/newtons

Try to use a clothespin to substitute for fine motor hand functions like picking up coins or counting and moving sheets of paper. Could you unzip a zipper or tie a shoelace? Try using chopsticks. Both tools can be viewed as kinds of prostheses—not too different from the look of a prosthetic claw hand.

If you were born without your hands or lost them in an accident, how would you pick up things? If you lost a foot in an accident, how would you walk? What characteristics would the ideal artificial hand have—what would you need to be able to do with it to live normally? What about a foot?

What would your ideal prosthesis look like? How would it work? What kinds of prostheses do you think exist right now? Is it possible that you’ve seen someone with a prosthetic limb and haven’t even noticed it? Why?

Overview

What would it be like to lose a hand, a foot, or even an entire arm or leg? Scary, that’s for sure. How can amputees pick up things or walk or play soccer or write a letter? Although nothing is as good as the original flesh and bone, doctors can provide artificial replacements, called prostheses, for some damaged body parts. In addition to replacing lost functions, prostheses can result in cosmetic improvements for the patient and build self-confidence.

Simple prostheses like peg legs have been around for centuries. If they do not use sophisticated electronics, these artificial limbs are called static prostheses. One kind of artificial arm, for example, ends in a pair of hooks rather than a hand. The other end is attached to the remaining portion of the patient’s arm, and then to a harness that straps over the shoulders. By moving the shoulder, the patient can pull on the harness, which in turn pulls on flexible cables to open and close the hooks, allowing the person to grasp objects. There is no sense of touch in this type of prosthesis, so the user has to watch closely what he or she is doing.

Dynamic prostheses, on the other hand, use sophisticated electronics. They can do this because the nerve and muscle systems in the human body are electrical. For example, an amputee with a myoelectric arm tenses his or her remaining arm muscle. Sensors detect this muscle electricity (myoelectricity) and transmit the signal to the artificial hand, powered by batteries, which then opens or closes.

Signals also can go from the environment to the patient, allowing an approximation of the sense of touch. For example, some prosthetic hands have sensors that can detect heat or cold and transmit that information to electrodes on the patient’s skin.

Researchers are still improving prostheses. New materials allow artificial feet to press and spring on the ground very much like a real foot. One type of artificial foot transmits electronic information about pressure to amputees, allowing them to balance because they can tell whether their weight is on the toes, heels, or sides of the feet.

Connections

1. Artificial limbs are very expensive. What do you think would be the fairest way for everyone, rich or poor, to have access to the prostheses they need?
2. Make a list of some of the movies you have seen recently. Are there any amputees in them? How are they portrayed? Why do you think this is?
Think of all the movements your hands make. These movements require sets of muscles that put opposing stress on the jointed bones in your fingers and palms. If one muscle in the set pulls harder, the hand opens. If another pulls harder, the hand closes. The muscles must work together to give you control over your movements. You can make a simple model of this process in your classroom.

Materials
- large, square block of wood with 12 hooks spaced equidistantly around the sides
- six 1.5-meter (5') lengths of light rope or clothesline
- masking tape and a marker
- large round table
- clock faces drawn on paper for recording data

1. Mark off a large circle on a table with the masking tape (1.5 meters in diameter, maximum) and mark numbers on it from 1 to 12 to make a clock face.
2. Have six students sit around the table and place the block in the center of the circle.
3. Each time you want to add the ability to pull the block from a new direction, tie another length of rope onto a hook and hand the end to someone sitting around the circle. If you decide to use all six lengths of rope, you will end up with a wheel with spokes, with the block at the center.
4. Pass a clock face paper to each observer, who will write the data and results on the clock face with lines and arrows.
5. Figure out how much combined tension from different directions it takes to perform more and more complicated movements of the block. (The ropes are models of individual muscles and the block is a model of a finger.) Try moving steadily in straight lines at first; then starting and stopping; then starting, stopping, and reversing direction; then moving in a half circle, a full circle, and so on. Each participant may only pull the rope toward her or him, or allow it to be pulled away, in order to help make the block move in a desired way. No fair extending arms, grabbing anyone else’s rope, starting a tug-of-war, or interfering with the block’s movement. Work together to make the block move.

Questions
1. What is the fewest number of ropes required to make the block start and stop quickly and reliably?
2. Can you make the block travel in a circular arc with only two ropes attached to it?
3. What is the fewest number of ropes required to make a complete circle around the numbers on the clock?
4. When moving the block in a complete circle, who must pull the hardest on his or her rope and when?
The Incas used simple, labor-intensive technology and earthquakes. Structures that harmonize with natural outcrops - machines, metal tools, or wheels, the Incas built frequently of a highly developed culture. Without terraces, and irrigation systems built in stones. "Stone structures, road systems, agriculture finds books in the running brooks and sermons in the Inca Empire, Shakespeare wrote that "our life ..." About 90 years after Spaniards conquered the Incas, engineers speak eloquently of a highly developed culture. Without machines, metal tools, or wheels, the Incas built structures that harmonize with natural outcroppings of stones found on the mountain tops. The precisely carved, carefully fitted stones required no mortar, yet have withstood 500 years of weather and earthquakes.

The Incas used simple, labor-intensive technology to help carve and move the stones harvested from nearby rockfalls. Many weighed more than 100 metric tons. Stonemasons shaped the blocks using a simple, effective method called flaking and a neolithic tool called a hammer stone. Made of granite, quartzite, or olivine basalt, hammer stones have a hardness of at least 5.5 on the Mohs scale, about the same hardness as the larger stones. Striking at a 15- to 20-degree angle, stonemasons could chip off pieces of the rock; alterations in the angle and force of the blow determined the size of the chips. Twenty quarry workers took about two weeks to dress four sides of one stone measuring 4.5 by 3.2 by 1.7 meters (14.8 by 10.5 by 5.6 feet).

Inclined planes, rope fashioned from the four-croya andina plant, and gravity helped transportation crews move the stones. They moved the massive blocks across several kilometers of valley, through a shallow river, and up the mountain face to 2,400 meters (7,875 feet) above sea level, where their buildings still stand. In his account, Garcilaso de la Vega reported that "they moved them, dragging them with muscle power using thick ropes; nor were the roads along which they hauled them level, but very rough mountains with steep slopes over which they were moved up and down with sheer human strength."

Excellent organization and management were required to accomplish this. Labor rather than money served to pay taxes, so a large labor force was seasonally available. Researchers estimate that 1,800 laborers were required to drag one 100-metric-ton block. This is equivalent to each laborer pulling approximately 54 kilograms (120 pounds). Evidence on or near the ramps suggests that the Incas may have used wet clay or gravel to reduce friction, which could have decreased the number of laborers needed to pull each stone.

Incan engineers worked with their environment, economy, and people to fashion "sermons in stones" that have withstood centuries. Today's challenge is to withstand the thousands of visitors that come to marvel at their accomplishments.

Connections

1. Why would you spend several months moving lots of hundred-ton stones up a mountain, and how would you convince several thousand friends to help?

2. Describe similarities and differences between Incan and Egyptian structures. What can you conclude about these cultures' concepts of science and engineering?
INCA ENGINEERING: Student Activity

Test different methods for reducing friction.

Main Activity

The Incas realized that by using wet clay or gravel on their roads, they needed fewer people to move huge stones. Do differences in the surface really reduce the friction? What effect do rollers or skids have on friction? Predict which method will work best, then try all of them.

Materials
- one 10-lb bag of flour, wrapped in a plastic bag
- one 4' -long, two-by-six board
- 5 bricks
- gravel
- fine sand
- mud
- spring scale
- four 8" dowels, 1/2" in diameter
- four 8" dowels, 1" in diameter
- two 4" dowels, 1/2" in diameter
- two 4" dowels, 1" in diameter
- paper
- pencils
- concrete block
- 2 pieces of twine, 2 meters each (6'1/2')

1. Make a stack of bricks about 5 bricks tall.
2. Lean the board on the stack to create a ramp.
3. On paper, create a table to keep track of which variable you alter each time you move the bag down the inclined plane. Alter only one variable at a time. Include a column for each variable. If you try other variables, be sure to create columns for them. Include rows for predictions, observations, and conclusions about what happens on each ramp.
4. Decide who will record your predictions and observations, who will move the bag or block on the ramp, and who will time each run.
5. Tie a piece of twine around the bag of flour and attach the other end to the hook on the spring scale.
6. Release the bag down the board. Record the force it takes to first lower, then raise the bag at a constant speed. Try replacing the flour bag with the concrete block. Spread sand, gravel, or mud on the ramp, and then try using skids and dowels. Each time you change the variable, first lower, then raise the block or bag at constant speed, carefully measuring the force necessary to do so.

Questions
1. What conclusions can you draw about the best way to reduce friction?
2. What kinds of companies or professions might be interested in finding ways to reduce friction to move things?
3. What factors did not affect the amount of force necessary to move the bag or block? Why?
How do ski jumpers go so far?

How do jumpers use physics to get the most out of their flight?

Getting Started

http://www.mnonline.org/ktda/newtons

How do the shapes of objects affect the flow of a fluid? Mix one quart of white Ivory dishwashing liquid with five drops of food coloring and place in a shallow baking pan. Try dragging different-shaped objects through the liquid and observe the flow patterns they create. The more swirls, the more turbulence and the less aerodynamic the shape. Based on this experiment, why do you think manufacturers don't make skis with square fronts?

Have you ever skied over a large bump and become airborne? Why do you think that happens? Do you watch the ski jumpers during the Winter Olympics? How far do the jumpers go before landing? Why do they hold their skis and their bodies a certain way?

Overview

There are few feats as breathtaking as a perfect ski jump. Hurtling down a snow-covered ramp at speeds in excess of 100 kilometers (60 miles) per hour, the skier literally dives off a cliff, soars through the air, and finally descends back to earth some 100 meters (328 feet) from takeoff.

To a novice, the steps in a ski jump look deceptively simple. In reality, each involves a complex balance of forces where only slight changes in equipment or body position can mean the difference between a gold medal and disaster.

Like a roller coaster, all the energy for a jump comes from gravitational potential energy acquired by going to the top of a hill—in this case, the inrun. Coming down the inrun, jumpers try to build up as much speed as possible while maintaining control. To minimize air resistance, they get in a low crouch, point their arms forward, and bend their heads slightly downward like a diver entering the water.

Halfway down the inrun, jumpers begin to reposition their bodies in preparation for leaping off. Near the end, where the inrun begins to curve upward, they raise their hips slightly while pressing the chest tight against the knees. This makes their legs act like a coiled spring storing additional energy for the takeoff. About three meters (10 feet) from the end of the inrun, jumpers begin their final adjustments before takeoff, bringing their arms perpendicular to the ground and rising up slightly.

The most important part of the jump occurs at takeoff. Within a tenth of a second, jumpers must combine two motions at once, leaping both forward and upward at the same time. The timing of the takeoff leap is what makes or breaks a jump. If jumpers spring before they reach the exact end of the takeoff table, their skis will point down, causing extra wind resistance which results in a short jump. If they spring too late, their skis are pointed too high, resulting in a serious loss of control.

In the air, jumpers become flying projectiles, using their bodies and skis like a giant airfoil. They lean forward, producing a positive angle of attack on the wind. Traditionally, jumpers always kept their skis straight in line with their bodies to lessen air resistance and reduce drag. In 1989, a jumper revolutionized jumping by holding his skis in a large V with the open end pointed forward. This positioning increases the surface area below the body, providing more lift toward the end of the flight. It extends the time in the air and the distance of the jump.

Connections

1. How is a ski jump like a roller coaster ride? How are the same forces used in different ways?
2. How do jumping skis act like the wings of an airplane? How would changing their shape affect the flight?
LAUNCH CONTROL

SKI JUMPING: Student Activity

Vary the angle of a ramp and chart your flight path.

Main Activity

http://www.mnonline.org/ktca/newtons

Ski jumping converts gravitational potential energy to kinetic energy. The objective is to launch a human projectile as far as possible. By manipulating a track, you can discover how changing the launch angle will change the direction and duration of flight.

Materials
- 1 meter (3.3’) of Styrofoam pipe insulation, cut lengthwise
- marble or small steel ball
- 8 to 10 thick books or bricks or a chair
- masking tape
- tape measure
- table
- paper and pencil

1. Start building your “inrun” by piling several books on a table so that they measure about 30 cm (12”) high. Place one end of the pipe insulation right on the edge of the table, and put the other end under one of the books at the top of the stack. Build up several books under the middle of the ramp so that it doesn’t sag or bend. Secure the insulation to the table and books with masking tape, making sure you don’t tape across the track.

2. Place your marble at the top of the ramp. Without pushing, let it roll. Observe the flight path and the place where it first lands on the floor. Repeat this step four more times so that you can get a consistent reading. Remember to start from the same place each time. Measure and record this distance under the heading “flat track” and draw the shape of the marble’s flight path.

3. Remove the books holding the middle of the ramp and adjust it so that it curves down to the table and runs flat along the table for about 20 cm (8”) before it reaches the end. Make sure that the edge of the table and once again secure it with masking tape.

4. Using the same marble as before, test the ramp again. Remember to start from the same place. Record the distance under the heading “curved track” and again draw the flight path of the marble.

5. Repeat step 4 but this time add a book to the end of the ramp so that instead of lying flat on the table, the ramp curves down and back up a bit. Record your measurements under the heading “U-shaped/one book” and draw this flight path.

Questions
1. What happened to the distance traveled by the marble each time you changed the launch angle of the ramp? Why did this happen?
2. How did the flight path of the marble change each time you changed the shape of the track?
3. What happened to the total amount of potential energy each time you changed the ramp?
Why do bees sting?

How are bee societies organized? What actually happens when a bee stings you?

Getting Started http://www.mnonline.org/kcca/newtons

Have you ever been stung by a bee? What were you doing at the time? Make a list of situations in which bees might sting. How can you avoid being stung by a bee? What should you do if you are stung by a bee? Do bees always die after they’ve stung someone?

If you were the bee “in charge” of a hive, how would you organize the society? What jobs would need to be done and how would you equip the different bees you’ve assigned to those jobs?

Overview

Ouch! A bee sting is a painfully memorable experience, but do you know what actually happens (to the bee and to you) when a bee stings? Not all bees have stingers—only those whose job it is to protect the hive. But there are other kinds of bees in a hive, whose jobs are as important as those of the stinging bees.

Bees belong to an ancient species that has continually adapted to the many challenges posed by the environment. As a result, a highly organized society has evolved. The development of a community lifestyle to ensure survival is but one example of the species’ evolutionary adaptations.

The hive of the honeybee provides a delectable prize for many predators. Insects such as ants, wasps, and other bees are common intruders, as well as many mammals—bears, skunks, badgers, raccoons, opossums, humans, anteaters, and even mice. Through generations of evolution, the attack behavior of bees developed as a defense to certain stimuli that signal the hive is in danger from an intruder. The bee’s stinger has a flexible design. It allows bees to defend themselves against less threatening insects and survive, but forces them to forfeit their lives when facing the bigger dangers posed by a mammal. This costly act of sacrifice activates an alarm system that calls other bees into battle and enables the colony to take advantage of strength in numbers.

Because the success of a beehive is dependent on collaborative efforts, bees have developed an extensive communication system, including the use of chemical odors known as pheromones. For example, when a bee stings, it releases one type of pheromone that alerts other bees to join the attack. Other pheromones are used to transmit different information, including membership in the colony, the location of a good food source or a new nesting site, or when to tend to the needs of the queen.

Rock paintings from 6000 B.C. provide evidence that humans have been collecting and eating honey for thousands of years. Throughout the centuries, people have developed a working relationship with bees based on an understanding of their remarkable behaviors. This information has allowed us to design adequate protection from bee stings and to identify what behaviors will stimulate an attack. Still, each year, more than 50 persons in the United States die of allergic reactions to bee stings. While a bee sting is not a pleasant occurrence, the very survival of our agricultural production is dependent on the busy bee’s pollinating activities. Therefore, it is best that we accept the bee as a friend instead of a foe.

Connections

1. What are some myths about avoiding bees and treating stings? How do these myths compare with the information presented in the segment and through your discussions?
2. What are Africanized bees? Where in North America are Africanized bees now? What effects have they had on agriculture?
Try This

Invite a beekeeper from a local bee society to show the class a bee suit and smoker and possibly a sample hive. Or, visit a local apiary where you can watch bees and beekeepers in action.

Materials
- blindfolds
- aromatic flower petals
- pinecone
- orange
- vinegar
- banana
- lemon
- jars for each smell
- honey samples

1. Make a maze in your classroom using desks, chairs, and moveable blackboards. Hide the honey inside one of the desks.
2. Discuss what each of the smells could mean to a bee. For instance, one could mean “Go right.” Another could mean “Danger, go back!” or “The honey is here.” Participants should take careful notes, or they won’t be successful bees.
3. Place the jars along the maze route, where they would lead a bee to the honey.

4. Students should split up into teams of three or four. Each team represents a colony of bees. One bee is blindfolded and goes through the maze, using only the scent “cues” to find the honey. The other members of the colony should guide the bee so he or she doesn’t get hurt in the maze, but only the scents can tell the bee where to go next. Record what happens with each bee.
5. Try moving the jars around and changing the maze so that a bee following the cues would not be able to find the honey.
6. Discuss the results of the honey hunt and make a chart comparing each colony’s success (or failure) to find the honey.
 Did everyone find the honey? Why or why not?
7. Discuss some of the real scents that bees use to help them find food, sense danger, and find their way back to the hive. Discuss what these real scents mean to a bee.

Questions
1. Was it easy to find the honey using the scent cues? Why or why not?
2. Do humans use their sense of smell as a communication tool? What do some smells mean to you?
DON'T MISS OUT!

Don't miss out on the next edition of the NEWTON'S APPLE Teacher's Guide.

Send back the postcard below today. The demand for these guides is so great that unless we receive a card from you, we cannot send the next issue!

The NEWTON'S APPLE Teacher's Guides also are available on the World Wide Web at: http://www.mnonline.org/ktca/newtons and at www://ericir.syr.edu

If you have questions or comments, please write to:

Director of Outreach & Promotion
NEWTON'S APPLE
172 4TH ST E
SAINT PAUL MN 55101

P.S. Peel the label off the back of this guide and affix it to this card. Please indicate any changes in name or address right on the label. If we don't receive a card from you, we will not send you these materials next year.

I F YOU WOULD LIKE TO BE ADDED TO OUR MAILING LIST, FILL IN THE INFORMATION BELOW AND RETURN THE CARD TODAY!

NAME
ADDRESS
CITY
STATE
ZIP

Any comments?

Thanks!
We're looking for America's Most Scientific Home Videos

Create a video presentation that answers a science question like we do on NEWTON'S APPLE and send it to us. We'll take the best ones and include them in one of our programs. Runners up will receive cool NEWTON'S APPLE stuff.

And watch Show 1411 to see finalists and winners from last year's contest.

For complete rules and prizes, write to us at:
America's Most Scientific Home Videos Contest
NEWTON'S APPLE
172 4TH ST E
SAINT PAUL MN 55101
AVALANCHE RESCUE
air scented with ozone is drifting through the air without having an odor trail to follow on the ground. The cilia minute hairs that move when stimulated and trigger nerve impulses that send signals to the brain. The nerve cell that transmits electrical signals to the brain and other parts of the body; also called a neuron. The neocortex system the combination of columns of microcilia, cilia, nerve cells, and other structures that allow humans, including humans, to smell odors. SAR the "search and rescue" acronym commonly used by SAR organizations and on the Internet.

BEE STINGS
a apiary a group of human-made beehives placed together to make bee-keeping easier. Defensive zone the area around the hive defensive behavior an aggressive action taken against any disturbance in the defensive zone. Drones male bees, few in number, that mate with the queen bee. Pheromones a chemical odor used for communication. The queen the only female in the hive who can reproduce by laying eggs. Worker bees female bees who perform most of the tasks; the majority of the bees in a colony.

BLACK PEALS
aragonite one mineral form of calcium carbonate, laid down in overlapping layers as the principal component of the pearl. Concholite the organic, glue-like substance that cements the layers of aragonite together in a pearl. Epithelial cells the outer layer of mantle cells in a pearl. Mollusk; they produce the aragonite and concholite necessary to make nacre. Nacre the outer membrane of a mollusk, just inside the shell and covering the soft tissue. Nacre is the solid, shiny coating that makes mollusks secrete on the inside of its shell and any irritants or foreign objects. Nucleation the process of infecting the pearl mollusk with an irritant to initiate the production of nacre for pearl culture. Orient an iridescent sheen exhibited by some of the best pearls. Pearl mollusk any shell with a freshwater creature that produces a nacreous coating on objects other than newborn larval larvae, which eventually attach themselves to an object.

BODY FAT
calipers a tool that can be used to measure body fat. Carbohydrates a food group that includes sugars, starches, and cellulose. Fat adipose tissue; a group of stored cells that store fat molecules. Enzymes substances that help speed up chemical changes; in digestive processes, these are called organic catalysts and are usually proteins. The metabolic rate the rate at which our bodies use up energy, or "burn" calories. Muscle a group of cells that work together to enable movement; they weigh more than an equal amount of fat cells. Protein a nutrient used for growth and repair of our muscles and organs.

BONES
Calcium a mineral that is vital to bone development. Growth plate a disk of cartilage along which bones extend their length or size. Facet a small space, cavity, or depression; a hollow mineral an essential element that helps keep our organs working smoothly. Osteoblast a cell that builds or produces bone. Osteoclast a cell that absorbs bone under certain conditions such as fractures. Osteoporosis a thinning of bone that occurs with aging or inactivity. Rickets a bone disease of infants or juveniles in which vitamin D deficiency causes skeletal deformities. Vitamin D a vitamin needed for development of healthy bones and teeth.

CLOCKS
Atomic clock a very accurate clock that keeps time by measuring the natural oscillations of a cesium atom. Horology the science of measuring time. Godzilla an upright, four-sided pillar that tallies up at its top. Oscillate to swing back and forth; with electricity, to switch between a high and a low charge. Quartz crystal when placed in an electric field, a quartz crystal vibrates and generates a regular electric signal that is a good resonator for running clocks and watches. Spring-driven clocks a clock that uses a pull of a heavy weight to provide energy for the clock. Weight-driven clocks old mechanical clocks that used the pull of a heavy weight to provide energy to run the clock.

DINKING WATER
Alum a colorless aluminum salt used as a flocculating agent in water treatment. Filtration mechanically separating out particles from a liquid such as water. Flocculant a chemical that causes tiny suspended particles to clump together into loosely packed flocks. Ion a charged atom. Microbe a microscopic organism such as a bacterium or a protozoan. Osmosis the process where a solvent moves across a semipermeable membrane to an area of higher concentration. Protozoa a microscopic organism such as amoeba which is made of a single cell. Sediment sand, silt, clay, and organic material that can be suspended in water and filtered out.

ETHANOL
Carbon dioxide a gas with molecules made up of one carbon atom and two oxygen atoms; part of the air that is released when living things respire. Carbon monoxide a poisonous gas with molecules made up of one carbon atom and one oxygen atom. Fossil fuel derived from fossil matter of a previous geologic age, such as petroleum, natural gas, and coal. Gasoline hydrocarbon mixed with a smaller amount of ethanol, such as a mixture of 90 percent gasoline and 10 percent methanol. Wood alcohol; formed from synthesis gas and by distillation of wood, coal, or farm wastes. Synthesis process by which plants turn carbon dioxide and water into glucose, using the sun's energy to drive the reaction.

HUMAN EYE
Cones see only color and are at their sharpest vision comes from the retina to the brain for interpretation. Pupil the hole in the center of the iris. Retina the light-sensitive layer of the eye that registers the image entering through the pupil; the sharpest vision comes from the macula portion of the retina. Rods and cones vision cells; rods see only black and white and are most useful for night vision; cones are the only color and do best in good light.

HYPERCOASTER
Acceleration the rate of change in speed or direction. Gravitation the force of attraction that every object in the universe has on every other object. Hypercoaster a giant roller coaster. Kinetic energy the energy associated with motion. Potential energy the energy associated with gravity or position. Kinetic energy is related to mass and velocity; potential energy is related to mass and position. Rusty nails tend to pull all bodies together, and gravity is the force that causes them to do so.

MAURITANIA TRACKING
Anopheles the genus of mosquito that includes species which transmit malaria in humans. Geographic Information Systems (GIS) a computer information system designed for storing, updating, analyzing, displaying, and manipulating spatial data in various ways. Infrared a form of heat radiation similar to light. Malaria a mosquito-borne disease caused by any one of four different blood parasites parasitizing an organism that grows, feeds, and is sheltered on or in a different organism while contributing nothing to the survival of its host. Rain forest a dense, evergreen forest occupying a tropical region with an annual rainfall of at least 6 meters (20 ft), very high humidity, and high rainfall.

INCA ENGINEERING
archeologist a scientist who studies artifacts, buildings, and other relics to learn about ancient cultures.

3M Innovation
3M Innovation is a division of 3M Company. 3M is an innovation company that helps customers solve problems and improve their lives. We have invented thousands of innovative products that make lives better.

We encourage duplication for educational non-commercial use. Newt's Apple is a production of KCA in Saint Paul. We make possible by a grant from 3M.
produce the soft tissue that lines the burrow. A hollow shell of calcium carbonate, or aragonite, is secreted on the inner surface of the shell of the aragonite and epithelial cells. The outer cements the layers of aragonite, laid down in overlapping manner. Worker bees and female bees produce by laying eggs. The sperm from males fertilize the eggs, and the eggs develop into larvae. Adult bees in a colony take on specific tasks; the majority of the workers are females who can reproduce. Males are only used by rescue groups to allow animals, including humans, to smell odors SAR the "search and rescue" acronym commonly used by rescue groups and a good search word on the Internet.

Key Concepts

Avalanche Rescue
- Air scanning finding odors that are drifting through the air without having an odor trail to follow on the ground.
- Cilia move when stimulated and trigger nerve impulses that send signals to the brain.
- The outer mantle of calcium carbonate cements the layers of aragonite, laid down in overlapping manner.
- Worker bees and female bees produce by laying eggs. The sperm from males fertilize the eggs, and the eggs develop into larvae. Adult bees in a colony take on specific tasks; the majority of the workers are females who can reproduce. Males are only used by rescue groups to allow animals, including humans, to smell odors.

Bee Stings
- An apiary is a group of human-made bee hives placed together to make beekeeping easier.
- Defensive zones are the area around the hive defensive behavior an aggressive action taken against any disturbance in the defensive zone drones male bees, few in number, that mate with the queen bee.
- The queen bee pheromone is a chemical odor used for communication.
- The queen is the only female in the hive who can reproduce by laying eggs. Worker bees, both male and female, perform most of the tasks; the majority of the bees in a colony.

Black Pearls
- Aragonite is one mineral form of calcium carbonate, laid down in overlapping layers as the principal constituent of a pearl.
- Conchologists study the organic material that cements the layers of aragonite in a pearl.
- Conchologists study the organic material that cements the layers of aragonite in a pearl.
- Conchologists study the organic material that cements the layers of aragonite in a pearl.

Human Eye
- The clear, curved portion of the eyeball directly over the iris and pupil.
- The colored portion of the eye that opens and closes the pupil in response to light intensity.
- Lens-shaped object that keeps the pupil in the center of the iris.

Ethanol
- Carbon dioxide is a gas with molecules made up of one carbon atom and two oxygen atoms; part of the air that is released when living things respire.
- Carbon dioxide is a product of the metabolism of all living things.

Clocks
- Atomic clock a very accurate clock that keeps time by measuring the natural oscillations of a cesium atom.
- The science of measuring time is called chronology.

Body Fat
- Calipers are a tool that can be used to measure body fat.
- Fat is a hydrocarbon a group of similar molecules that work together to provide energy for the body.

Clothing
- The fibers from this plant's stringy leaves were used by the Inca for sandals, cloth, and rope.

Friction
- Friction is the resistance to motion of two moving surfaces that are touching each other.

Gravity
- The force that tends to pull all bodies within the earth's atmosphere toward the center of the earth. Hammer stones small, rounded tools made of granite, quartzite, or quartz, used to break down rock and point the content surface between two bodies.

Malaria Tracking
- Anopheles is the genus of mosquito that includes species which transmit the parasite that causes malaria in humans.

Geodes
- A geode is a geologic formation that is a crystal that has a regular geometric internal structure.

Gems
- A gemstone is a piece of mineral that is cut and polished and is valuable because of its beauty, hardness, and durability.

Hypersensitivity
- The body's inability to tolerate substances that are usually harmless.

Human Eye
- The clear, curved portion of the eyeball directly over the iris and pupil is the colored portion of the eye that opens and closes the pupil in response to light intensity.

Vitamin D
- Vitamin D is a vitamin needed for development of healthy bones and teeth.

Irradiation
- Irradiation is the process of exposure to ionizing radiation.

Keystone Concepts
- The Inca used obsidian for cutting, polishing, and setting stones. Lapidary is a person who works with gem materials.

Malaria
- A parasitic disease caused by a parasite that grows, feeds, and is sheltered on or in a different organism while contributing nothing to the survival of its host.

Neptune's Apple
- A production of KTCA Saint Paul/Minneapolis. Made possible by a grant from the National Science Teachers Association.

Stem Cells
- Stem cells are cells that can develop into any cell type in the body.

Species
- Species is a group of organisms that share a common ancestor and can interbreed to produce fertile offspring.

Tomato
- The tomato is a fruit that is grown in gardens and used in cooking and eating.

Vitamin D
- Vitamin D is a vitamin needed for development of healthy bones and teeth.

Pesticides
- Pesticides are substances used to control pests such as insects, disease organisms, and weeds.

Water Treatment
- The process of removing impurities from water to make it safe for use.

Clocks
- Atomic clock a very accurate clock that keeps time by measuring the natural oscillations of a cesium atom.
- The science of measuring time is called chronology.

Boys
- A boy is a male child who is younger than a man.

Rocks
- Rocks are natural materials that are formed from minerals or other rocks.

** Minerals**
- Minerals are the basic building blocks of the earth.

Biogeochemical Cycles
- Biogeochemical cycles are cycles that involve the movement of chemicals between the atmosphere, land, and water.

Geological Time
- Geological time is the history of the earth as recorded in rocks and fossils.

Human Evolution
- Human evolution is the process by which humans evolved from an ancestor that was not human.

Key Concepts
- Key concepts are the main ideas that are important to understand the topic.

Technology
- Technology is the application of knowledge and skills to improve the quality of life.
Rain Forest Plants

What’s unique about plant life in the rain forest?
What are rain forests? Why are tropical forests important to everyone?

Getting Started

Openings called stomata on plant leaves allow the leaves to receive carbon dioxide and give off oxygen. Where are stomata located? Coat the bottom of two leaves on a healthy plant with a heavy layer of petroleum jelly. Coat the tops of two other leaves. Let the rest of the leaves remain uncoated. Observe the leaves daily for a week. Is there any difference between them? Explain.

What makes a rain forest tropical? Why do more than half the world’s plant and animal species live in rain forests? How do rain forest organisms depend on one another?

Overview

From the oxygen we breathe to the food we eat, we owe our lives to plants. Plant variety is essential to life, and rain forests shelter more than half of all plant and animal species on earth. Rain forests straddle the equator in a belt called the tropics. The tropics receive more direct sun than the rest of the earth. That means more solar energy for photosynthesis—the process plants use to make food. This supports more plants, which in turn support more animals in the food chain.

Rain forest plants compete with one another for scarce nutrients and for light and space to grow. Trees reach heights of 76 meters (250 feet). Many develop buttresses—roots that grow above ground from the trunk to create a wide, stable base for the tree. These are necessary due to the shallow depth of the roots. Shallow roots are present because there is fierce competition for nutrients among species at the surface of the soil. Leaves the size of dinner plates and high-climbing vines help some plants compete for light.

No species can exist without the help of others. Orchids and bromeliads can grow as epiphytes—plants that grow with their roots anchored to surfaces of other plants. Bromeliads use other plants for support while they collect rain and water run-off from the foliage above. The pool in a bromeliad’s center can hold a host of life, from insect larvae to tadpoles, lizards, and more.

Indigenous people have always found many uses for the chemical substances that rain forest plants make to repel predators and diseases or to attract animals for pollination and seed dispersal. Chemists use these compounds as the basis of insect repellents, insecticides, flavorings, dyes, other industrial raw materials, and medicines. (The use of plants to help people is called ethnobotany.) Although some compounds are now reproduced synthetically, many others can be obtained only from the plants themselves.

At least one-fourth of all prescription drugs have their origin in the rain forest. No one knows how many plants with powerful uses are still hidden away among vast numbers of unknown species. The most valuable thing about rain forests may not be what we know about them, but what we don’t yet know.

Connections

1. How are rain forests different from the forests in the area where you live?
2. How have plants in your area adapted to their surroundings?
Imagine life as an emergent rain forest tree. These trees grow very tall and often have many species living on them and in them. They need to stand up against high winds and soaking rains, yet they are anchored in a foundation of soil that's shallow and thin. How do they do it? Many grow buttressed roots. Buttresses come in different shapes, sizes, and thickness. Some are thin and flat. Others are twisted and branching. One scientist described a tree with such enormous buttresses and surface roots that it took a full five minutes to walk around it. Work in small groups to investigate how buttresses work.

Materials (per group)
- several sections, 15 to 30 cm (6” to 12”) long, cut from ends of tree branches
- shallow container such as a pie tin or deep paper plate, filled with 2.5 cm (1”) of sand
- cardboard, clay, small sticks, and other items to make buttresses
- tape
- fan or hair dryer to simulate wind
- water can to deliver rain

1. Place the branches upright in the sand to represent an emergent rain forest tree. What happens when your “tree” is subjected to winds and rains? Make predictions and put them to a test.
2. What adaptations can you create with available materials to help your tree withstand wind and rain in the shallow soil? Test out your designs.
3. Which adaptations were most successful? Why?

Questions
1. How have buttresses in nature been “adopted” in human-made structures you have seen?
2. How do climate and physical environments in different parts of the country affect the structure of plants?

Try This

- **SLIP A PLASTIC BAG OVER THE LEAFY END OF A BRANCH. PICK ONE THAT IS NOT EXPOSED TO FULL SUNLIGHT OR WAIT FOR A PARTLY CLOUDY DAY. SEAL THE OPEN END OF THE BAG TIGHTLY SHUT WITH A TWIST TIE. AFTER THREE HOURS, CHECK IT BEFORE REMOVING IT FROM THE BRANCH. WHERE DID THE MOISTURE INSIDE THE BAG COME FROM?**

- **OBSERVE A VARIETY OF LEAVES FOR CHARACTERISTICS THAT MAY HELP THE PLANTS SURVIVE IN PARTICULAR ENVIRONMENTS. FOR EXAMPLE, HOW MIGHT LEAF THICKNESS, TEXTURE, SHAPE, COATING, OR SIZE HELP A PLANT SURVIVE?**

- **TAKE AN UP-CLOSE LOOK AT TWO DIFFERENT MINI-ECOSYSTEMS OR HABITATS NEAR YOUR SCHOOL. EXAMPLES ARE A ROTTEN LOG, A TREE, A WOODLAND PARK, OR A SQUARE FOOT OF YARD. IDENTIFY AND COMPARE THE LIVING THINGS AND THEIR INTERACTIONS. MEASURE, DESCRIBE, AND COMPARE PHYSICAL FACTORS SUCH AS MOISTURE, LIGHT, AND SOIL TYPE.**
Our Featured Contributor is International Expeditions, Inc., Sponsor of Rainforest Workshops for Educators and Students. For more information call (800) 633-4734 or e-mail intlexp@aol.com

Rain Forest Animals

How are animals in the rain forest unique?

In what ways are rain forests important to your survival?

Getting Started

http://www.mnonline.org/ktca/newtons

Create a book about animal species found only in the Amazon rain forest. Find one species to represent each letter of the alphabet, and write each name on a different piece of paper. Illustrate with your original drawings or cut out pictures of each species. Use the book to speak to classmates, friends, or other groups about why it’s important to protect animals’ habitat and what is happening to the rain forest animals and plants.

Why do you think rain forests exist where they do in the world? How do they affect the environment where you live? Why are they so important?

Overview

Imagine a vast, unexplored kingdom, inhabited by more than 30 million different species ranging in size from microscopic to gigantic. A land where cooperation is just as vital to survival as competition. A land untamed by humans. This is a rain forest.

Now travel along the 6,275 kilometers (3,900 miles) of the Amazon River. Two-thirds of the world’s fresh water is found in the river and its 1,000 tributaries. Investigate territory covering more than 6 million square kilometers (2.3 million square miles) in Brazil, Peru, Ecuador, Bolivia, and Venezuela. You’ll meet up to three-fourths of all known species of plants and animals—and thousands of unnamed species as well.

Survival here depends on a highly complex system of interdependence and adaptation. In the equatorial ecosystem, birds eat insects and plants. Snakes eat birds and frogs. Frogs eat insects and each other. Plants provide homes for insects and animals and depend on those animals to disperse their seeds.

Leaf cutter ants provide an excellent example of a symbiotic relationship. Leaf cutters are herbivores that can’t digest cellulose. To survive, they collect plant leaves, cut or chew them, and “feed them” to the fungus in their enormous subterranean gardens. Fecal fluid from worker ants contains amino acids and enzymes that fertilize the fungus and break down the leaf proteins into smaller protein molecules that ants can digest.

Adaptation is another key factor in survival. Pink dolphins, about twice as large as the other species of river dolphins that inhabit the Amazon, are adapted to their environment in some interesting ways. The murky water has diminished their eyesight but sharpened their echolocation abilities, while the water’s warmth has eliminated the need for body fat.

Superstition has also contributed to the pink dolphins’ survival. Their unusual color (caused by blood flowing through capillaries beneath their translucent skin) has prompted locals to spin tales about them. Local lore has it that anyone who hunts or harms them can become ill or die, so everyone leaves them alone.

What external factors threaten survival? The number of people living in or near the rain forests is increasing. This puts many additional pressures on the ecosystem. Changes such as highway and dam construction, urbanization, commercial exploitation of animals, pollution, diseases, parasites, and the introduction of predators can all result in the destruction of habitat. Many experts believe that if current practices continue, the rain forests will soon be gone. And with them will go the millions of species that call the rain forest home.

Connections

1. Who and what is at risk if humans don’t learn to protect rather than destroy rain forests? Why?
2. What can you do to help the rain forests survive?

Our featured contributor is International Expeditions, Inc., sponsor of rainforest workshops for educators and students. For more information call (800) 633-4734 or e-mail intlexp@aol.com

INNOVATION - A DIFFERENT WAY TO LOOK AT INNOVATION.

NEWTON’S APPLE VIDEO CASSETTES AND EDUCATIONAL MATERIALS PROVIDE FURTHER INFORMATION ABOUT THIS AND OTHER TOPICS. CALL (612) 222-1717 OR CHECK OUT OUR WEB SITE AT: http://www.mnonline.org/ktca/newtons

Some Text Content:

- Leaf cutter ants provide an excellent example of a symbiotic relationship.
- The Amazon rain forest.
- Surrounded by millions of unnamed species.
- Changes such as highway and dam construction can result in the destruction of habitat.
- Superstition has contributed to the pink dolphins’ survival.
- Local lore has it that anyone who hunts or harms them can become ill or die.
- The number of people living in or near the rain forests is increasing.
- Leaf cutter ants collect plant leaves and feed them to the fungus in their gardens.
- Fecal fluid from worker ants contains enzymes that fertilize the fungus.
- Pink dolphins have adapted to their environment.
- Local lore has contributed to the pink dolphins’ survival.
- Superstition has contributed to the pink dolphins’ survival.
- Local lore has it that anyone who hunts or harms them can become ill or die, so everyone leaves them alone.

Resources

- International Expeditions One Environs Park Helena, AL 35080 (800) 633-4734 (Rain forest workshops and educational materials)
- Adventure in the Amazon Rainforest. (June 1993) National Geographic World. PP. 19-21.
- Sounds of leaf cutting ants: http://www.cfn.org/~dcharkma/
- Workshops, books, slides, videos: Amazon Center for Environmental Education and Research: http://www.infomedia.net/intexp/eworks.html

NEWTON’S APPLE VIDEO CASSETTES AND EDUCATIONAL MATERIALS PROVIDE FURTHER INFORMATION ABOUT THIS AND OTHER TOPICS. CALL (612) 222-1717 OR CHECK OUT OUR WEB SITE AT: http://www.mnonline.org/ktca/newtons
NEWTON'S APPLE

SHOW NUMBER

1408

RAIN FOREST ANIMALS

RAIN FOREST ANIMALS: Student Activity

Try This

Imagine you live in the Amazon rain forest. Write a diary describing one week of your life, including where you live, what you eat, what you wear, what sounds you hear as you wake up and fall asleep, and who your friends are. How does it feel to know that millions of acres of your home (the rain forest) are destroyed every year?

Try This

About 10 years ago, Brazil began to restrict efforts to develop the Amazon in order to protect their forest resources. Find out what your local city or county government has done to protect the natural resources where you live. If protective laws were passed, are they being enforced? Why or why not?

Try This

Design an animal and an environment in which it can live. Figure out how each will support the other. Add plants and insects that can coexist. What does each creature eat? How does each creature obtain its food? How do the living things interact?

Main Activity

The best way to learn about the Amazon rain forest is to go there. (See "Resources" for more information.) You can also create a corner of the rain forest in your classroom. This could be a project for a group of students in one class, or each classroom could design a different rain forest (Asian, African, etc.) as part of a whole school project.

Materials

- lots of imagination and creativity
- books and software about the rain forest
- magazines that you can cut up with pictures of the rain forest
- butcher paper
- construction paper
- paint, markers, colored pencils
- recycled materials (egg cartons, cereal boxes, etc.) to create animals and plants

1. Decide how much of your room or school you will use for the project.
2. Determine what role each member of your group will have in the project.
3. Decide whether you will recreate one area of the Amazon rain forest, or parts of different rain forests to compare and contrast the plant and animal life.
4. Think about how to best represent the different layers of the rain forest.
5. Do research to learn more about the plants and animals found in each layer. Collect pictures of these organisms, or make your own pictures or three-dimensional models of them.
6. Find or record sounds of rain forest animals to play in the room.
7. Make and post signs that describe the different plants and animals in your rain forest.
8. Create an area or poster that describes threats to the survival of the species that live in your rain forest.
9. Write to or invite speakers from conservation organizations to talk to your class or school about how we can help save the rain forest.
10. Invite other classes in your school to visit your rain forest. Serve snacks that might be found in the rain forest.

http://www.mnonline.org/ktca/newtons
Build a small “greenhouse” out of a plastic, cardboard, or wood box that has a clear cover on the top (glass or clear plastic). Put the tip of a thermometer in a container of black dirt inside the greenhouse, then place the house in the sun or under a floodlight. Check the temperature every 15 minutes to see how much hotter it is inside the greenhouse. Open the top or sides of the box and see what effect that has. Why does heat build up inside of a greenhouse? Can you maintain a constant temperature below the maximum temperature by opening and closing holes, or vents, in your greenhouse?

Overview

Olympic officials stand with a magnifying lens in the ancient temple of Zeus in Olympia, Greece, the site of the first Olympic Games 2,772 years ago. They focus rays of the sun on dry grass. The grass catches fire, and from that “Mother Flame” the Olympic torch is lit, just as it was by the original Olympians.

As the lighting of the Olympic flame shows, the solar energy that strikes the earth is tremendous, despite traveling 93 million miles across space to get here. The total annual energy consumption in the United States is only about two-hundredths of the solar energy that strikes the earth. The total annual energy consumption in the United States is only about two-hundredths of the solar energy that strikes the earth is tremendous, despite traveling 93 million miles across space to get here. The total annual energy consumption in the United States is only about two-hundredths of the solar energy falling on this country each year.

People harness solar energy in many different ways, but the most common methods use solar collectors to heat water and photovoltaic cells to convert sunlight directly into electricity.

Photovoltaic cells, thin wafers usually made of silicon crystals, were first used in 1958 to power satellites in space. Now the cells are used for everything from running lighting systems to powering space stations. Now the cells are used for everything from running lighting systems to powering satellites in space. Now the cells are used for everything from running lighting systems to powering satellites in space.

When photons (the tiny, individual packets of light energy that come from the sun) strike a cell, some are absorbed and transfer their energy to an electron in an atom. The electron, gaining energy from the photon, breaks free of its atom. The cells are made so that one layer of each cell is more highly charged than the other layer. The negative charges move toward the positive ones. The moving charges are an electric current, or electricity. This type of current production is called the photovoltaic effect.

At the 1996 Olympics in Atlanta, 2,856 photovoltaic cells covering 40,000 square feet provided 340 kilowatts of electricity to power the lights in the swimming complex. The water in the swimming pool—one million gallons of it—was heated by a solar thermal heating system. Such systems work by aiming large, black metal solar collectors at the sun. Black and other dark colors absorb more sunlight than light colors. Solar energy makes the collectors very hot, much like the surface of a blacktop road on a bright, sunny day. Water pumped through the collectors is heated naturally and then can be pumped back into the pool. Temperature sensors automatically turn on pumps to use the solar-heated water when the pool becomes too cool.

Solar thermal heaters for swimming pools typically reduce water heating costs by about 50 percent. Many big pools with solar heat also use natural gas heating as a backup for cloudy days when the sun isn’t shining.

Connections

1. What are the advantages of producing energy directly from the sun instead of burning coal or natural gas?
2. Photovoltaic cells, solar thermal heaters, and other solar systems have been around for a couple of decades. Why weren’t they more widely used?
OLYMPIC SOLAR ENERGY: Student Activity

Harness the energy from the sun to power a parabolic oven.

Main Activity

Solar thermal collectors work because they not only gather solar energy, but concentrate it in a small space. In this activity, you will build a solar oven that, by concentrating sunlight, will gather so much heat you can cook a hot dog.

Materials
- aluminum foil
- poster board
- unpainted coat hanger
- a cardboard box, about 10 1/2” on one side
- a medium-sized piece of cardboard
- glue
- scissors
- marker
- tape
- two nuts and bolts
- hot dogs

1. Cut two sections out of the piece of cardboard to form the ends of a parabolic cooking trough. Cut each piece so it has a straight edge that is 10” long. At the middle of this edge (5” from each end), measure a point 4 1/2” back onto the cardboard and make a mark. Draw an arc from one corner of your straight edge, through the point, then down to the other corner. Cut along the arc and you should end up with two pieces of cardboard that look roughly like half circles.

2. Curve the poster board around the two end pieces, with the aluminum foil facing in, and tape it in place.

3. Cut the top and front side off of your cardboard box and slide the back of your trough a couple of inches into the box. Secure the trough to the box by putting a bolt through each side of the trough and the sides of the box. Make sure the bolts are toward the rear of the trough. Fasten the two bolts with the nuts. The trough should be able to tilt up and down.

4. Straighten out the coat hanger and push it through the trough, from one side to the other, so it sits like a spit for cooking. It should sit about two inches back from the open front of the trough.

5. Put a hot dog lengthwise on the coat hanger and point the trough at the sun. How long does it take the hot dog to get warm? Does it cook faster if you move the coat hanger a little deeper into the trough?

Questions

1. What other machines could you build that would use the sun's energy?
2. What can the sun's energy do around your house? Draw plans that would maximize sunlight energy in your house without using photovoltaic cells.
How can I control the soccer ball?

How can physics help your team win the next soccer game?

Getting Started

http://www.mnonline.org/ktca/newtons

What science is involved in learning to play sports? Think about specific games and how your knowledge of science can help you play them.

When you play soccer, what must you do to make the ball move? What can you do with your foot to change the path, speed, and rotation of the ball? With what other parts of the body do soccer players hit the ball? How is the contact different from contact with the foot?

Overview

The score is tied, with only three minutes left in the game. To win, you need to think and move fast to control the ball, get it down the field, and shoot it past the goalie. Can science help?

Soccer (or football, as the game is known outside the United States) requires lots of training and practice. But while training books may not mention anything about momentum, collisions, or Newton's third law of motion, every move a soccer player makes involves physics.

How? When your foot, thigh, knee, chest, or forehead acts on the soccer ball, the ball reacts. Players need to know when to best use heading, dribbling, passing or power kicking, feinting, trapping, swerving, or shooting.

For example, a passing kick uses the inside of the foot and provides the largest surface area to contact the ball. This gives you better control of where the ball goes, but with your leg turned out, you can't swing it with maximum force. The ball won't go as far as it would with a power kick, where your knee points in the same direction the ball goes. That's why you need the force of a power kick to drive the ball down the field. And remember that to have more control, use the laces of your shoe rather than your toes to get a bit more surface area. It won't do much good to get the ball down the field if it doesn't go where it's supposed to!

How big you are and how fast you're moving when you make contact with the ball is an important factor, too. Why? Your momentum—whether you're running toward the ball when you kick it or toward the goal when someone passes it to you—can move that ball down the field at very high speeds. Your mass (which is related to your body weight) multiplied by your velocity, or motion in a particular direction, equals a lot of momentum. When your body collides with the ball, you share your momentum with it. The more momentum the ball gets from you, the faster and farther it will move. The bigger you are and the faster you're moving, the greater your momentum will be, and the more momentum you will have to share with the ball.

Of course, this all looks very different to the defending goalie. The goalie must be ready to absorb all the momentum of the ball you just kicked when it collides with her or his body. But if you do your job right, that person won't feel a thing—the net will.

Connections

1. How do you think a baseball player uses physics to hit a home run? What about golf, tennis, or basketball? Think about the science you use in your favorite sport.
2. How do you think sports have changed in the past 100 years? Think about the effects of changes in shoes and equipment, rules, playing fields, teams, and even advertising. Has the science of sports changed?
SOCCER KICKOFF

SOCCER: Student Activity

Conduct a kicking contest to figure out what makes the ball travel the farthest.

Main Activity

![Image of a soccer ball and a foot kicking it](image)

What factors determine how high or how far a ball goes when kicked? To find out, gather some friends to kick a soccer ball and take measurements.

Materials

- school athletic field or park
- paper
- pencils or pens
- masking tape
- soccer ball
- tape measure

1. Divide into two groups. Group A will kick the ball; Group B will observe the kicks and measure the distance the ball travels.
2. Create a table to record your observations and conclusions.
3. Use masking tape to mark the line where each kick will take place and to mark off the field at 5-meter (16') increments.
4. Each member of Group A will kick the ball six times—three times with a running kick and three times with a standing kick.
5. A member of Group B should write down how far the ball traveled in the air (that is, where it landed, not where it stopped rolling). Members of Group B can also estimate the angle at which the ball was kicked and note that in the table.
7. Average the running kick distances and the standing kick distances for all the kickers.

Questions

1. What effect does the condition of the playing field (dry, muddy, natural, or plastic) have on the momentum of the kickers and the ball? What effect do cleats have on the kickers' momentum?
2. How does a kicker's weight affect the results?
3. Based on the results recorded in your table, can you determine the kick angle that produces the longest distances?
MALARIA TRACKING

How can you locate disease-carrying mosquitoes?

When are mosquitoes dangerous? Why do female mosquitoes suck blood?

Getting Started

http://www.mnonline.org/ktda/newtons

Why do mosquitoes bite? Do all mosquitoes bite? How can mosquitoes spread disease? What diseases can mosquitoes carry?

How can we prevent mosquito-borne diseases? How can we use technology to control mosquitoes?

Overview

Mosquitoes aren't just irritating. They can carry diseases like malaria, a huge problem for people who live in the tropics where mosquitoes breed year-round. Malaria endangers the lives of millions worldwide, and the numbers are increasing.

Malaria is caused by a parasite that infects mosquitoes in the genus Anopheles. Both male and female mosquitoes feed on plant nectar, but females of most kinds of mosquitoes need a blood meal for protein so their bodies can make eggs. Anyone bitten by an infected female anopheles can also be infected with the malaria parasite.

One way to stop malaria and other diseases carried by mosquitoes is to eliminate the mosquitoes themselves. But many kinds of mosquitoes have become resistant to chemicals that have been used to get rid of them. New techniques are needed. For example, scientists have stocked mosquito fish in storm water ponds along highways as a biological control. This small, minnow-type fish consumes hundreds of mosquito larvae per day.

Eliminating the places where mosquitoes breed works well when it is possible. But it's tough for people to locate anopheles mosquito breeding sites in deep, dense rain forests. That's where satellites can help. Satellites that gather information through a technique called remote sensing help track the breeding sites of anopheles mosquitoes.

A GIS uses the power of the computer to help answer geographic questions by arranging and displaying useful information about places in maps, charts, or tables. When ground events or situations can be correlated with data sent from remote satellites, experts will be able to predict ground conditions from satellite data. This correlation is done through a process called ground truthing, or finding out through field studies how satellite images correspond to what is actually happening on the ground. When experts know the kind of vegetation anopheles mosquitoes prefer to feed on, and if they can see from satellite images where it is growing, they can plan and monitor long-term campaigns for the control of malaria.

Connections

1. What are some ways public health, industry, government, city planners, or business planners might use GIS—maps merged with other data?
2. What are some benefits of remote sensing? Some challenges?
3. Why is it difficult to stop malaria and other diseases carried by mosquitoes?
MOSQUITO PATROL

MALARIA TRACKING: Student Activity

Devise a plan to help prevent mosquito-borne diseases.

Main Activity

http://www.mnonline.org/ktca/newtons

Malaria is not the problem it once was in the United States, but container-type mosquitoes—those that lay eggs anywhere they find still or slow-moving water—are a national problem. For example, the tree hole mosquito carries LaCrosse encephalitis, a viral disease that can affect children under age 18. Tree hole mosquitoes breed and develop in water-holding tree holes and artificial containers such as old tires, cans, buckets, and children’s toys. This differs from the pest mosquitoes that use temporary pools of water (marshes and land depressions) for a breeding habitat. Very few tree hole mosquitoes in any area actually carry the virus, but children can become ill if they are bitten by one that does. If tree hole mosquito breeding sites are modified or removed from an area, then no adult tree hole mosquitoes are produced, and the LaCrosse virus cannot be transmitted to children.

Note: This activity is best suited for spring, summer, or early fall.

1. Brainstorm a list of places where mosquitoes breed.
2. Go on a mosquito patrol at home and school to identify and eliminate possible mosquito breeding sites. Report what you did to eliminate the site for breeding.
3. Create a leaflet to distribute in your neighborhood or community and spread the word: “Don’t raise mosquitoes!”

Questions

1. What did you learn about how mosquitoes develop? What other questions do you have?
2. How can knowing their breeding habits and life cycle help efforts to control mosquitoes?
3. What are some ways you can prevent mosquitoes from breeding where you live?
How do clocks keep time?

What was the world like without clocks? How did people keep appointments?

Getting Started [http://www.mnonline.org/ktca/newtons]

Without looking at the clock or your watch, look out the window and guess what time it is. How close were you to the "correct" time? What clues did you use to tell what time it was? Are there other things you could use? How do you know it's lunchtime without looking at a clock?

How does a clock measure time? What would happen if a minute were 100 seconds and an hour were 100 minutes? How would that change the way you schedule your day? How long would this class last? What about your school day?

Overview

The alarm clock rings in the morning and, even in your drowsy fog, you look to see what time it is. As you get dressed, you check the clock again and again to make sure you're not late for school.

We look at clocks all the time because these devices help us regulate our lives, telling us not only when to get up, but when to eat, sleep, play, and work. They are so much a part of our lives that we rarely think about what clocks really do.

Whether they are highly accurate atomic clocks or slightly less accurate quartz watches, electric alarm clocks or grandfather clocks with slowly swinging pendulums, all clocks have one thing in common—they consistently count precise units of time. Those units could be anything we want them to be, but for the world to function in harmony, we have a timekeeping standard based upon three units of time—seconds, minutes, and hours.

To measure these units, all clocks must have two things: a regular, repetitive resonator, or oscillator, to mark off equal units of time; and a way of displaying those units in an understandable form.

Most clocks and watches today keep time by applying electric energy to a quartz crystal, a system developed in the 1930s. The energy makes the crystal vibrate or oscillate at a constant frequency and produce regular electric pulses that regulate a motor. The motor advances the watch hands or, in a digital watch, the number display, by one-second increments.

Mechanical watches use a coiled mainspring for power. The mainspring drives gears that cause a hairspring to oscillate, rocking a lever to and fro. The lever drives other gears that move the clock hands.

Atomic clocks, the world's most accurate timekeepers, use the natural vibration, or oscillation, of the cesium atom as their resonator. Cesium atoms vibrate exactly 9,192,631,770 times a second, driving a clock that is accurate to within a millionth of a second per year.

In ancient times, people used the rising and setting sun to keep track of time. The first devices to measure time, invented in about 3500 B.C., were small towers called obelisks. The changing length and position of their shadows divided the day into morning and afternoon. Then came sundials, which split the day into hours; water clocks, which measured even smaller units of time; weight-driven mechanical clocks that were much more accurate; and finally, in about 1510, spring-driven clocks that led the way to clocks and watches accurate to within a minute or two a day.

Connections

1. How would your day be different if nobody had clocks or watches? What other ways could you tell time?
2. Why is it that time seems to pass quickly when you're doing something interesting or fun, and slowly when you're bored?
For many centuries, the best technology available for keeping time was the water clock. While these clocks weren’t very reliable, they worked indoors, at night, and on cloudy days, so they were much more useful than the sundial, the only other clock in use at the time. Over time, many styles of water clocks were invented. Here’s an activity that lets you find out just how accurate an “inflow” water clock is.

Materials
- 2 big eye screws
- A sturdy wooden stick, 30 cm (12”) long and 2.5 to 5 cm (1” to 2”) square
- A thin, round stick or dowel, 20 to 25 cm (8” to 10”) long, that fits through the eye screws
- 2 rubber bands
- A marker
- Glue and a small piece of sturdy paper or cardboard
- A cork
- 2 empty cans—medium sized, about 28 oz
- Can opener

1. Screw the eye screws into the 30-cm stick, the first an inch or so above the level of the cans, the other an inch or so below the top of the stick.
2. Run the thin, round stick through the openings in the eye screws and insert the lower end of the stick into a cork.
3. Fasten the large stick to the outside of one of the cans with the two rubber bands. Make sure the cork at the bottom of the thin stick doesn’t rub against the inside of the can.
4. Glue a small paper or cardboard pointer to the thin stick so that it points at, but doesn’t touch, the large stick.
5. Use the can opener to make a tiny hole in the side of your second can as close to the bottom as possible. You want the hole small enough so the water only drips out.
6. Fill the second can with water and set it on a platform so water drips from it into the first can. As the water slowly fills the first can, the cork will rise and push the thin stick and the pointer upward. Mark the starting level for the pointer on the large stick. Then every five minutes, as the water drips in, make another mark across from the rising pointer. At the end of the class period, you will have calibrated your clock.

Now, try it again and see if it remains accurate as it counts off the five-minute segments. There are many different designs for water clocks. Look for ideas on building other types of water clocks or come up with your own design. Compare the accuracy of different designs.

Questions
1. Does the clock run slower or faster if you use very cold water? Why?
2. Can you build two water clocks that measure time at the same rate? If not, why not?
3. What disadvantages are there to using this type of clock?
What happens to a letter dropped in a mailbox?

Why does some mail have a bar code on it? What happens to undeliverable mail?

Getting Started

http://www.mnonline.org/ktca/newtons

How many pieces of mail (letters and packages) do you think actually go through the postal system every day? How do you think the postal service keeps track of all that mail? If you look at a map of zip codes, can you see trends in the numbers? Why do you think we now use nine-digit zip codes?

Name all the ways (kinds of vehicles, people, etc.) the postal service gets mail from the mailbox to its destination. How do you think someone living on an island would get his or her mail? How about someone living in the tundra near the North Pole?

Overview

The U.S. Postal Service handles half a billion letters a day. How big is half a billion? If you started counting right now and did nothing else, it would take you 16 years to reach half a billion. How does the postal service get so much mail to us so fast?

The answer is the bar codes you see on your mail and computerized mail processing machines called optical character readers (OCRs) and bar code sorters (BCSs). These machines, located in post offices across the country, are programmed to “read” and sort up to 36,000 pieces of mail per hour. The size and the shape of the envelope and the way it’s addressed are important.

Machinable mail needs to be the right size and shape to pass easily through the equipment. Readable mail must be quickly and accurately read, coded, and sorted by the equipment. That means the address should be typed, computer generated, or neatly printed in the recommended format with a minimum of three lines, aligned at the left. The OCR best reads plain-style, capital letters on white envelopes.

Speedy conveyor belts move each piece of mail by the OCR’s scanner, which reads the delivery address. Then the OCR’s printer sprays on a bar code for that address or reads the bar code applied by a business customer before the envelope was mailed. The bar code can represent a five-digit zip code, a nine-digit zip+4 code, or an eleven-digit delivery point bar code. Next, the piece of mail zooms to one of the OCR’s sorting channels reserved for its proper delivery area. From there, bar-coded mail is fed to BCSs for fast and final separations—and with the delivery point bar code, it is placed in the order in which the letter carrier delivers the mail on the route.

The postal service is currently perfecting automated equipment for reading handwriting. But for now, an address not neatly printed or readable by the machine has to be handled by a human. Mail that can neither be delivered nor returned to the sender usually winds up in a mail recovery center in Atlanta, New York, Philadelphia, St. Paul, or San Francisco. This includes letters and packages that don’t have an address, mail with illegible addresses, or items from packages that have fallen apart, separating the contents from the address. All undeliverable mail is recorded on a computer so people can call to see if a lost item has been recovered. Every three months, the postal service holds an auction to sell any unclaimed items.

Connections

1. Electronic technology is making communications faster, easier, and cheaper than ever. People are now paying bills and banking online and using the Internet to send messages and documents, read newspapers and magazines, and order merchandise. How will this affect the postal service? Can you see any ways this technology will increase mail volume?
2. How can you help your mail get delivered quickly and accurately?
POST OFFICE: Student Activity

Conduct an experiment to see how the address format affects a letter's delivery.

Main Activity

What kind of writing can postal automation machines read? Design an experiment to find out.

Materials
- envelopes of readable size for machinable mail
- stamps

1. What is the best way to address a piece of mail to have it delivered on time? What might happen with different address formats? What if the address isn't perfect? List some ways in which you could write the address.

2. Divide into groups.
 - Group A should prepare envelopes addressed to the school in exactly the same way with block type neatly printed. Mail the envelopes at different boxes with similar pickup times.
 - Group B should prepare envelopes addressed to the school using variations on Group A's address format. Try varying the handwriting. Mail the envelopes from different boxes with similar pickup times. Keep a list of where everything was mailed.

3. Decide how you will keep track of the results so you can draw some conclusions.

Questions
1. What do you think affects how quickly mail gets delivered? Which is the most important factor?
2. What did you learn to ensure that the letters you send receive the best possible service from the U.S. Postal Service's new automated technology?
3. Get a copy of the postal service's recommended format and see who came closest.
How do gemstones get their colors?

What different factors control how a gemstone is colored?

Getting Started http://www.mnonline.org/ktca/newtons

How do the natural shapes of gemstone crystals control what the final cut gem will look like? Visit a local jewelry store or gem shop and see what you can find out from the experts on how gemstones are cut.

Where do gemstones come from? Do you own any jewelry with gems in it? What makes the gems sparkle? What shape are they? What color are they? What do you think affects the color of a gemstone?

Overview

There's nothing as eye-catching as a piece of fine jewelry covered with beautifully colored gemstones. Natural gemstones, however, are simply mineral crystals whose chemistry and structure make them look special. Of the 2,000 minerals identified in the world, only about 16 yield important gemstones. To be a gemstone, a mineral has to be beautifully colored, hard, quite durable, and, most of all, rare!

Color is the most obvious and attractive feature of gemstones. The color of any material is due to the nature of light itself. Sunlight, often called white light, is actually a mixture of different colors of light. When light passes through a material, some of the light may be absorbed, while the rest passes through. The part that isn't absorbed reaches our eyes as white light minus the absorbed colors. A ruby appears red because it absorbs all the other colors of white light—blue, yellow, green, etc.—and reflects the red light to the viewer. A colorless stone absorbs none of the light, and so it allows the white light to emerge unchanged.

Some minerals are idiochromatic, or "self-colored." Their colors are part of the chemical and physical makeup of the minerals themselves. Other minerals are allochromatic, or have some color added due to contamination by other chemicals.

Most raw gems (including diamonds) have a rough shape and a dull color. Only after they have been cut and polished do they take on that special glow that people have come to expect. A person who cuts gems is called a lapidary, but actually that person does very little cutting. Instead, a lapidary uses a variety of grinding wheels and grits to shape and polish the colored gems or stones.

Gems are usually cut to highlight their internal color or natural crystal shape. The two main cutting techniques produce either cabochons or faceted gemstones. Cabochons are stones that have been cut, ground into the shape of a dome, and then polished on the outer surface. This technique is used primarily for opaque stones like opals that don't let the light shine through.

Faceting is generally used with gems that are transparent. By grinding regular, flat surfaces in a predetermined geometric pattern on the outside of the gem, a lapidary turns a rough diamond stone into a brilliantly-sparkling gem.

When light enters a faceted gemstone, it is bent to a different angle. This is called refraction. The facets on the outside of the gem are positioned so that the light enters the stone from the top, is bent, and eventually is reflected back to the viewer, displaying the brilliance within the gem. Nature provides the gemstones, but it's human ingenuity that turns them into dazzling jewels.

Connections

1. Gemstones have been collected and traded for thousands of years. Has the process of mining and polishing changed much over time?
2. What industries depend on natural gemstones for high-tech applications? How have synthetic substitutes helped them expand and grow?

SEGMENT LENGTH: 7:00

Resources

Earth Magazine. Published bimonthly by Kalmbach Publishing Co. Lists regional mineral and gem shows: (800) 533-6644.

3-2-1 Classroom Contact: Crystals—they're habit-forming. Available from GPM: (800) 228-4630.

NEWTON'S APPLE VIDEO CASSETTES AND EDUCATIONAL MATERIALS PROVIDE FURTHER INFORMATION ABOUT THIS AND OTHER TOPICS. CALL (612) 222-1717 OR CHECK OUT OUR WEB SITE AT: http://www.mnonline.org/ktca/newtons
GEMS: Student Activity

Try growing your own 'synthetic gemstones' to see the shapes they form.

One of the things that makes gemstones look so spectacular is the way the light bends and bounces inside them. This light show is mainly due to the internal arrangement of atoms within the crystal's structure. As the chemistry of the mineral changes, so does the crystal shape, or “habit.” In this activity, you'll see for yourself how different chemical compounds produce different-shaped crystals when you cook up your own “gems.”

Materials
- 200 grams (7 oz) alum powder (available in a local pharmacy)
- 200 grams table salt
- 200 grams Epsom salt (available in a local pharmacy)
- 3 pieces of string, each about 15 cm (6”) long
- 3 paper clips or washers
- 3 sheets of aluminum foil, approximately 30 cm (12”) square
- 3 large plastic cups, at least 12 oz each
- hot tap water
- 3 plastic teaspoons
- roll of masking tape
- marking pen
- pocket magnifier

1. Fill each plastic cup about half full of hot tap water. In the first cup, begin stirring in spoonfuls of table salt until you can dissolve no more (usually about 68 spoons). Use a piece of masking tape and the marking pen to label this first cup NaCl. With a clean spoon repeat the procedure with the second cup, only this time use the Epsom salt. Label this cup MgSO4.
2. Tie a paper clip on the end of each string. Wet one string with water and rub some salt crystals on it. Take a piece of aluminum foil and poke a small hole in the middle of it. Thread the free end of the salted string through the hole in the foil, and then cover the cup marked NaCl with the foil. Pull up on the string so that the paper clip is just touching the bottom of the cup and then secure the free end of the string to the top of the cup with a piece of tape.
3. Repeat step 2 first with the Epsom salt and then the alum powder. When all three solutions have been set up, place them in a safe location away from any direct heat or sunlight. In about one week, visible crystals should start to develop on the end of each string.
4. Using a magnifier, observe each crystal and draw a picture of its habit (shape). Compare the crystals you are growing to the three materials you started with and record your observations.
5. Allow the crystals to grow for another two to three weeks and use a millimeter ruler to keep track of their growth rate. Make sure that you note any changes in their appearance over time.

Questions
1. What similarities and differences did you notice among the three crystals? How might their chemical formulas help to explain this?
2. Why was it important to cover each of the glasses and keep them out of the sunlight?
3. What might you do to reduce the amount of time needed to grow the crystals?

WE ENCOURAGE DUPLICATION FOR EDUCATIONAL NON-COMMERCIAL USE.
Research fuel consumption figures for city or school buses. Compare the bus efficiency to a Ford Taurus with a 31 mile-per-gallon rating. If the Ford Taurus carries four passengers, then it gets 124 passenger-miles per gallon. If it carries just one passenger, it gets only 31 passenger-miles per gallon. How many passengers does a bus have to carry to become more efficient than using individual cars for transportation?

What kind of gasoline does your family put in your car? Does it contain any additives? Do you think the additives make a difference in how the car runs? Do they make a difference in the amount of pollution cars produce?

Overview

As the number of people in the world keeps growing, so does our need for energy. Some energy sources, specifically fossil fuels like coal and oil, are in limited supply. Once we use up what’s in the ground, they will be gone forever. Other energy sources, such as wind, water power, and solar energy, are called renewable energy, because they will regenerate over and over again as we use them.

Ethanol is one form of renewable energy that is becoming widely used. Ethanol is a form of alcohol that can be burned in engines just like gasoline. But unlike gasoline, which is made by distilling crude oil, ethanol is made from the starchy parts of plants. Most ethanol in this country is created through fermentation of corn. Microscopic yeast cells break down the starch and water, creating ethanol and carbon dioxide gas.

In addition to being a renewable fuel, ethanol helps to reduce air pollution. When anything burns in air, molecules of that substance combine with oxygen. Gasoline is a substance made of carbon and hydrogen. When it burns, some, but not all, of the carbon atoms combine with oxygen to make carbon dioxide \((CO_2)\). Hydrogen in the gasoline combines with more of the air’s oxygen to make water \((H_2O)\). There isn’t enough oxygen left to combine with the remaining carbon atoms. Deadly carbon monoxide gas \((CO)\) is the result. Like gasoline, ethanol is made of carbon and hydrogen, but in addition it contains its own supply of oxygen. When ethanol burns with gasoline, its “extra” oxygen atoms combine with the “extra” carbon atoms to reduce or even eliminate CO in the exhaust gases.

In some parts of the U.S., ethanol is mixed with gasoline at 1 part ethanol to 9 parts gasoline to help reduce air pollution. No adjustment is needed for a car’s engine to burn this mixture. Some new cars are designed to burn fuel blends of up to 80 percent ethanol.

Ethanol costs more to make than gasoline. New production technologies may bring the price of ethanol down in the coming years.

Another disadvantage is that a gallon of ethanol doesn’t hold as much chemical energy as a gallon of gasoline. So even though ethanol burns more cleanly than gasoline, a car won’t go as many miles per gallon.

Connections

1. Half the oil we use in the U.S. comes from foreign countries. The plants we use to make ethanol are all grown inside this country. How would producing more ethanol affect the U.S. economy?
2. Much of the corn grown here is used to feed cattle. What might happen to meat and milk prices if more corn is used to make ethanol?
SHOW NUMBER 1412

STIRRING UP A STORM

ETHANOL: Student Activity

Discover the best food to ferment.

Main Activity

What kinds of foods are easiest to ferment for fuel? Ethanol is made from a variety of plant substances—corn, sugar cane, even some kinds of wood. In this activity, you will test different substances to see what you can learn about fermentation.

Materials
- 8 (or more) packets of yeast
- 4 clear glass, half-liter containers
- stirrers
- measuring spoons
- flour, salt, sugar, vinegar
- heating element

Part One—Fermenting Foods
1. Empty one packet of yeast into each of four half-liter (one pint) beakers of warm water. Stir for one minute.
2. Add 10 ml (2 tsp) of flour to each beaker. Stir again.
3. Add 5 ml (1 tsp) of salt to the first beaker, 5 ml of sugar to the second beaker, 5 ml of vinegar to the third, and leave the fourth alone. Stir again.
4. Wait 5 minutes. What do you observe? Record your observations.
5. Wait 15 minutes. What do you observe? Record your observations.
6. Let the solutions sit overnight. What do you observe? Record your observations.

Questions
1. What is the evidence that reactions are going on in any of the containers? How are these observations related to fermentation?
2. Can you draw any conclusions about which of the substances tested was most helpful to yeast fermentation?

Part Two—Changing Temperatures
1. In this part of the activity, you will observe the effect of different temperatures of water on fermentation. The teacher will prepare boiling water for the first beaker. Fill the second beaker with warm water—just a little warmer than skin temperature. Fill the third beaker with cold tap water. Fill the fourth beaker with ice water.
2. Empty one packet of yeast into each beaker. Stir to dissolve. Add 10 ml of flour and 5 ml of sugar to each jar. Stir again.
3. Wait 5 minutes. What do you observe? Record your observations.
4. Wait 15 minutes. What do you observe? Record your observations.

Questions
1. Were there any conditions under which the fermentation didn’t seem to proceed or went only very slowly? What were they? Can you think of explanations for these results?
2. Can you draw any conclusions about what temperature is best for yeast-flour-sugar fermentation? Try many different combinations of yeast and food and temperatures. What is the optimum mixture for fermentation?
How do bones get so strong?

How are the human body and a house alike? What does our skeletal system do?

Getting Started

http://www.mnonline.org/ktca/newtons

What keeps us from flopping to the floor like a rag doll? What functions do our bones perform besides protecting our organs. Why are some of our bones big while others are very small and delicate?

Do you know how many bones we have? Name some functions of these different bones. What is our largest bone and what is our smallest? What do you think is the most important bone we have? Why?

Overview

Like a house, the human body has a framework. But instead of wood, the body's framework is made of all the bones in our skeletal system. There are long bones (arms and legs), short bones (fingers and toes), flat bones (skull and sternum), and even tiny bones (in the middle ear). Some bones, like the ribs, permit respiration and protect vital organs such as the heart from harm. Others, like the spinal vertebrae, form the framework to keep us upright as well as surround and protect the spinal cord.

Unlike a house's framework, however, the body's framework is alive—bones are living tissue. From birth until mid- to late-adolescence, bones grow as we do. They reshape themselves throughout our lives. Some of the bone cells that carry on this growth and "remodeling" work are called osteoblasts and osteoclasts. Bones grow at special areas called growth plates.

The outer layer of hard "compact" bone (the cortex) consists of a system of tunnels that looks like a miniature collection of hollow pipes. These tunnels keep bones lightweight, yet provide the strength necessary to support the body. The tunnels also allow for the exchange of nutrients and waste products. Collagen, a protein, gives bones their elasticity while calcium salts make them hard. Bone marrow, located in the center of our long bones, makes blood cells.

To develop properly and grow strong, our bones need calcium, vitamin D, and regular exercise. Sources of calcium such as milk, yogurt, ice cream, and broccoli provide the nutrients for continuous bone building and remodeling. Vitamin D helps our bodies absorb this calcium through the gut. Vitamin D comes either from a chemical action of sunlight on our skin or from fortified milk. Finally, regular exercise makes bones stronger by stressing them. When bones are stressed, they respond by fortifying themselves. This cycle of stress and response to stress promotes strengthening.

When we don't get enough calcium, vitamin D, and exercise, our bones deteriorate. For example, young children who are deprived of calcium and vitamin D may develop a type of bone weakness called rickets. Older people, particularly women, may develop a form of weak bones called osteoporosis.

Prevention of bone weakness is crucial—one weakness occurs, it may not be reversible. So to have healthy bones and keep our body's living framework strong and supple, we must eat foods containing calcium every day, exercise on a regular basis, and get either a moderate amount of exposure to sunlight or drink milk fortified with vitamin D.

Connections

1. What contributes to making and keeping bones strong?
2. What would happen if bones didn't grow or stopped growing too soon? What are some ways to help with this problem?

60
BONE UP ON YOUR BODY

SHOW NUMBER
1412

BONES

BONES: Student Activity

Make an articulated skeleton using yourself as a model.

Main Activity

http://www.mnonline.org/ktca/newtons

Try This

Bring clean, dry chicken bones to class. Place half the bones in a bowl with a lid and cover them with vinegar. Place the remaining bones in a similar bowl and cover them with water. Cover the bowls. Check the bones daily for ten days. What effect did the different solutions have on the bones? Why?

Material

- poster board
- brads, medium and small
- glue
- scissors
- tape measures
- metric conversion charts
- anatomy book illustration of skeletal system
- chalkboard and chalk
- string

1. On the chalkboard, list the names of all the bones you want to include when you make your skeleton. Copy the list on paper.
2. Next, take measurements of all the bones on your list, using yourself as a model. Write measurements next to the appropriate bone on the list.
3. Either working in a small group or individually, start drawing your bone pieces on your poster board, using your measurements. Label all your pieces so you will know which are which. Then, cut out the pieces. Finally, connect the various bones using brads or glue.
4. When you have completed your skeleton, insert a string near the top of its head and hang your masterpiece in the classroom.

Questions

1. What things did you notice about your skeleton that are different from the real you? How could this skeleton move?
2. What did you notice about the bone sizes? Where are big bones? Little ones? Why?
3. What do the brad connectors and your joints have in common? Why is it necessary to use brads for joining some bone but not others?
What are wetlands and why are they so important?

What type of wildlife lives in wetlands? Why do people drain or fill them in?

Getting Started

http://www.mnonline.org/ktca/newtons

Collect about 1/4 liter (1 cup) each of several different soil types. Try sand, clay soil, forest soil, and any others you can find. Air-dry them. Put each soil sample in its own coffee filter and fit the filter into the neck of a jar. Tape it in place. Pour 1/2 liter (2 cups) of water into each jar, very slowly. The water that goes into the jar is water that the soil couldn't hold. How do they differ?

Do you live near a wetland? How is it unique from other areas? What kinds of wildlife live in the wetland? How does the wetland change from season to season? Which soil do you think would be best in a wetland? Why?

Overview

Heated controversy has surrounded attempts to preserve wetlands. For decades, many thought wetlands were mucky, mosquito-infested places and drained them to use as farmland, industrial sites, or residential areas. Fewer than half as many acres of wetlands remain in the continental United States compared with when the first European settlers arrived about 500 years ago. Now, wetlands are recognized as important wildlife refuges and water purification systems.

Wetlands are areas that have standing water for at least part of the year. Marshes, swamps, tidal flats and associated pools, bayous, and bogs are the most common. Marshes are water-saturated, poorly drained areas with both aquatic and grasslike plants. Swamps, unlike marshes, have trees and bushes. Water flows into swamps and marshes from streams, or even an ocean. Bogs are waterlogged, spongy ground in former lakes now filled with living and dead mosses, which eventually become peat.

Wetlands are important for many reasons. They support a large volume of plants, which in turn supply cover and food for animals. Wetlands retain water like a giant sponge—flowing water is slowed as it passes through and is absorbed by plants and soils. By soaking up the water, wetlands not only prevent floods but make water available during a drought. They also help reduce the threat of low salinities in coastal waters.

Wetlands can also clean up contaminated water. Organisms and soils in a wetland act as a filter for fertilizers and other pollutants. Algae and bacteria break down mineral and organic matter, which can then be used as food for plant life. Some municipalities use wetlands as the final stage in treating waste from sewage treatment plants. Other communities are actually constructing wetlands for this purpose. However, wetlands can't perform miracles. They can be ruined by too much waste.

Because the economic and health benefits of wetlands are now well known, Congress has passed several laws protecting them. However, in many areas developers want to build on the land, farmers want to cultivate it, and oil companies want to remove the oil under the ground. As long as our population keeps growing, the struggle over what will become of the wetlands will continue.

Connections

1. Flooding has always been a problem in many parts of the world, but it appears to be a growing problem. Why? What can we do to prevent it?
2. Imagine that you own property designated as a wetland. Should you be able to do whatever you want with that land?
WETLANDS: Student Activity

Examine the insects that live in a nearby pond or stream.

(Main Activity)

(Note: This activity should be done before the first frost of fall or after spring thaw.)

Wetlands are important habitats for animals. One kind of animal that you might not think to look for there is insects. Yet there are more species of insects than of all the other animal species combined, and they live in almost all known habitats on earth. You can find insects in any body of water, unless it's very polluted.

Materials
- kitchen strainer
- jars
- insect net (optional)
- magnifying glass
- field guide to insects
- notebook
- pencil

1. Go to a nearby body of water. Before you do any collecting, look around. What wildlife do you see? Do you notice any insects?
2. Draw or write about any insects that you see. Look them up in your field guide. Can you identify them?
3. See if you can catch any insects. Put them in a jar to take back to the classroom.
4. Now look in the water. What wildlife do you see? Do you notice any insects?
5. Pull your strainer through the water and look at what animals you catch. If it isn't a fish or pol-
Water has been called the universal solvent because it can dissolve just about anything over time. How does the solubility of water change with temperature? See how much salt you can dissolve in equal volumes of water at different temperatures. How can you use your test results to make predictions about water solubility around the world?

Overview

Each day, millions of Americans use billions of gallons of water without knowing where it comes from or what might be in it. As populations grow, the combination of increased demand and increased pollution means many of us are using sources of water that are less than pristine. Contamination from sediment, bacteria, protozoans, heavy metals, and synthetic organic compounds shows up with alarming frequency. As a result, many municipalities are having to pre-treat drinking water.

The first step in most municipal treatment systems involves gravity. If you've ever let a glass of chocolate milk stand for any length of time, you've probably noticed that much of the chocolate settles to the bottom of the glass. The same is true of sediment in water. When the water is allowed to stand in large pools, many of these suspended particles simply settle to the bottom where they are collected and disposed of.

Next comes flocculation. Here, a chemical is added to the water that causes tiny suspended particles to clump together. Usually, these flocs settle out just like large-sized sediment. But if they escape, they are caught by filters farther down the line.

To kill unwanted microbes, protozoans, and other living organisms, many municipalities chlorinate the water. Chlorine is a chemical that kills microorganisms. In drinking water, the concentrations are low enough that often you can't even taste it.

The final stage in most municipal treatments is filtration and aeration. Water is pumped through large tanks filled with fine sand, called rapid sand filters. As the water flows through the spaces between the sand grains, suspended particles and dead microbes get trapped. Sometimes, crushed anthracite coal is used in addition to sand. Because the coal grains carry a charge on their surface, they act like tiny magnets attracting other charged contaminants. Aeration is exactly what it sounds like—adding air to water. When sprayed through large, fountainlike devices, water not only gains a great deal of oxygen, but any volatile compounds that may have been in the water escape into the atmosphere.

In the end, all the water we use doesn't just go down the drain and disappear. It gets recycled by the evaporative power of the sun. When water evaporates, most of the contaminants stay behind, which in theory means it rains pure water back on the land. Unfortunately, because of gases in the air, much of the water that falls from the sky is coming down pre-polluted, so municipalities are going to have to work even harder in the future to treat the water we drink.

Connections

1. Before municipal water treatment became common, wetlands, streams, and grasslands provided much of the same cleansing action. How do these "natural" systems compare with municipal treatment methods? Would it be worth going "back to nature" to help get the job done?
2. Many municipalities are looking for solutions to water shortage problems. How do processes like ocean water distillation, water recycling, and "back to nature" to help get the job done?
SHOW NUMBER
1413
DRINKING WATER

DRINKING WATER: Student Activity

Calculate how much energy it takes to distill drinking water.

Main Activity

http://www.mnonline.org/ktnca/newtons

Since new sources of freshwater are hard to come by, some people have suggested using distilled seawater as a source of drinking water. In this activity, you will build a still and discover some of the costs associated with producing freshwater from the sea.

Materials
- 1 liter clean tap water
- 25 ml table salt
- clean 1000-ml beaker
- clean 1000-ml flask
- clean 500-ml beaker
- clean glass funnel with narrow (1/2" O.D.) opening
- clean 1-meter length of 1/2" I.D. high temperature plastic tubing that will fit snugly on the funnel
- electric hot plate
- graduated cylinder
- ring stand with test-tube clamp
- watch with second hand
- pot holder or oven mitt
- stirring rod
- paper and pencil
- goggles

1. Pour 25 ml table salt into 1 liter of clean tap water in the larger beaker to make your simulated seawater. Pour the seawater into the flask.
2. Place one end of the plastic tubing over the narrow end of the funnel. It should fit snugly. If not, secure with a hose clamp or rubber bands.
3. Place the flask on the hot plate and invert the funnel so that the wide end sits over the top of the flask. Use a test-tube clamp on the ring stand to hold the funnel in place and run the other end of the tubing into the empty 500-ml beaker.
4. Record your start time and turn on the hot plate to its highest setting for 15 minutes. The water will begin to heat up and boil. After 15 minutes, turn off the hot plate. Allow the system to cool down for 10 minutes and then record how much water has collected in the beaker by pouring it into the graduated cylinder. Be careful! This water will still be hot. Use an insulated glove!
5. Check the bottom of the hot plate to see how many watts of electricity it uses. (If there is no power indication, use 1000 watts, which is average.) Calculate the total amount of energy used to distill your sample by multiplying the wattage by .25 hours (15 minutes). Convert this number to kilowatt hours by dividing it by 1000. Example: 1000 watts x .25/1000 = .25 kW hrs.
6. Based on your experiment, calculate how much electricity would be required to distill one full liter of seawater. To do this, take 1000 ml and divide it by the volume you collected, then multiply by the amount of power you used in kW hrs. Example: If you collected 100 ml of fresh water: 1000 ml/100 ml = 10 x .25 kW hrs = 2.5 kW hrs of electricity/liter. Then use your electric company's current rate per kilowatt hour to discover the cost.

Questions
1. Based on your observations, what can you conclude about making "freshwater" from seawater?
2. Using the average billing rate for electricity in your community, how much would it cost you to make one liter of freshwater from seawater?
3. Are there any changes that you could make in the design of your still that would make this more efficient?
1 TRY IT! Can You Score?
Take an empty, 2-liter soda bottle and lay it on its side. Ball up a small piece of paper so that it will fit through the mouth of the bottle. Hold a hair dryer so it blows directly on the mouth of the bottle. Try to push the paper into the bottle using the air stream from the hair dryer. What do you think will happen to the paper? You'll have to try it!

2 TRY IT! Outta Sight!
Place a penny on a white piece of paper. Put a clear glass filled with water on top of the penny. Can you see the penny? Where is the best place to see it? Now place a saucer on top of the water glass. Try to find the penny without looking straight down through the water glass. Can you do it? You'll have to try it!

3 TRY IT! Pepper It Up!
Fill a dish with water. Sprinkle pepper all over the top of the water. Pour several drops of dish detergent into the center of the dish. What happens to the pepper? Is the same thing happening over the whole surface of the water, or just in the middle? You'll have to try it!

4 TRY IT! Racing Jars
Take two identical clear-glass jars, leave one empty, and fill one with water. Put the lids on both jars and tighten. Place a large, three-ring binder on a level floor, and start the jars from the top of the “ramp” the binder forms. Release them and watch what happens. Which one gets to the bottom of the ramp first? Which one rolls the farthest? You'll have to try it!
5 TRY IT! A Sucker's Bet
Fill a small jar with water. Poke a hole in the lid big enough for a straw. Put a straw into the water through the hole in the lid and seal up the space around the straw with modelling clay. Now try to suck water through the straw. Be sure there are no leaks. What happens? You'll have to try it!

6 TRY IT! Projectiles and Satellites
Put a quarter at the edge of a table. Put the edge of a ruler behind the quarter, with the rest of the ruler extending out over the table edge at an angle. Put another quarter on the end of the ruler that extends beyond the table edge. Take a second ruler and hit the first ruler (on the edge sticking out beyond the table edge) so that the first quarter is thrown off the edge of the table and the second drops off the ruler. You have to listen for the results so you want to do this over a hard floor. Listen carefully: Which quarter hits the ground first? You'll have to try it!

The science behind Science Try-Its

1. Why won't the paper go into the bottle?
In trying to push the paper into the bottle, you are aiming the air stream at the mouth of the soda bottle. The hair dryer pushes air into the bottle, filling it with air. In fact, the bottle is so full of air that there is room for nothing else—not even a little ball of paper. If you turn off the hair dryer or aim it away, the air can escape the bottle and there is room for the paper.

2. How did the penny disappear?
We see objects because light rays reflect off them and into our eyes. But light bends each time it hits a substance of a different density. The light reflecting off the penny must pass through air, glass, and water (all with different densities) to get to your eye but the light bends so many times that by the time it gets to your eye, it looks like it's someplace it's not!

3. Why did the pepper "run away"?
The pepper sprinkled on the water stays in place because the water is pulling on the pepper evenly in all directions. When the detergent comes into contact with the water in the center, it reduces the water's pulling action on the pepper and the pepper appears to run away from the detergent. But the water around the edges (untouched by the detergent) still has its pulling strength.

4. Why did the empty jar win?
Initially, the water-filled jar moves down the ramp faster than the empty one. This happens because its weight is evenly distributed throughout its volume, thanks to the water inside it. The empty jar's weight is all in the glass perimeter so it doesn't roll quite as fast. But as the jars begin rolling on the flat surface, the greater weight of the full jar causes friction between the jar and the floor as well as friction between the water and the inside of the jar. The full jar slows down, allowing the lighter, empty jar to take the lead!

5. Why couldn't I get any water from the jar?
When you drink from an open glass of water, air pressure allows the water to travel up the straw. When you reduce the pressure inside your mouth (by sucking on the straw), the surrounding air pressure pushes down on the water and forces the liquid up the straw. But when air pressure on the water is blocked (when you seal the jar lid), there is no air pressure to help push the water up your straw. The air can't get to the water to push on it, so it doesn't go up the straw. Regardless of how hard you suck, the water stays where it is!

6. Why did the quarters land at the same time?
The quarters start from the same height off the ground and are the same mass and shape, so gravity and air resistance worked on them in exactly the same way. Even if an object is thrown straight out, it will fall to the ground in exactly the same amount of time as an identical object that is dropped—the acceleration toward the ground that the objects experience as a result of gravity causes them to hit at the same time.
How Street Smart Are You?

1. What's the easiest way to catch a cold?
 - A. Sneezing
 - B. Sharing toothbrushes
 - C. Shaking hands
 - D. Going outside without a coat

2. What animal has the longest tail?
 - A. Armadillo
 - B. Giraffe
 - C. Anteater
 - D. Horse

3. What mammal gets the most sleep?
 - A. European hedgehog
 - B. Human being
 - C. Sperm whale
 - D. Kodiak bear

4. What's the largest reptile in the world?
 - A. Python
 - B. Alligator
 - C. Komodo dragon
 - D. Crocodile

5. In a day, how many minutes are your eyes closed from blinking?
 - A. 216 minutes
 - B. 30 minutes
 - C. 120 minutes
 - D. 3 hours

6. If all you had was beans to eat, what would be the most nutritious?
 - A. Lima beans
 - B. Soybeans
 - C. Kidney beans
 - D. Kazuke
1. Not so glad to meet you!
Going outside without a coat can make you more susceptible to colds, but the easiest way to catch a cold is by shaking hands with someone. A cold is a virus and your body causes you to sneeze and cough in an immune response to the virus—your immune system is trying to destroy the virus. All that sneezing and coughing causes some of the viral cells to be expelled in the mucous that comes from your nose and mouth. And some of that can get on your hands. The virus can remain infectious on your hands for up to three hours. And if you meet someone and shake hands, you’ve given them an unwelcome gift!

2. Now that’s a tall tale!
The animal with the longest tail also has a pretty long neck—Giraffa camelopardalis, also called the camel-leopard by the ancient Romans. It’s the male giraffe. This skinny guy’s tail can grow up to eight feet. The female giraffe’s tail may not be as long, but like the male, she has blunt, skin-covered horns on her head. And no wonder the Romans called them camels—giraffes can go up to one month without a drink of water!

3. Yawn! Big this bedtime story!
The sleepiest animal in the world is the European hedgehog. This prickly animal couldn’t work a nine to five—it sleeps 18 hours a day in the summer, and all winter through. And it still has time for a family—in July or August, female European hedgehogs give birth to four to eight young. Because the European hedgehog has a coat of long pointed spines, it looks like a porcupine. But it’s really closely related to the mole and the shrew.

4. Bigger than Jaws!
Just when you thought it was safe to go back in the water, beware; the largest reptile is the carnivorous saltwater crocodile, found in the coastal waters of India, southern China, and Malaysia. It can grow up to 26 feet, which, by the way, is longer than a great white shark. Like all members of the crocodile family, which evolved 200 million years ago, this amphibious creature differs from a lizard in two ways: it has bony plates on its back that make a kind of body armor and it has its teeth set into its jaw (like people do). It also can either walk upright or on all fours.

5. Open your eyes to this fact!
If you add up all those flickers, your eyes are closed for an average 30 minutes a day. Blinking is like a quick shower for your eyes. By bathing them with tears, blinking keeps your eyes from drying out and washes away dust that gets in your eyes. But how do your eyelids stay healthy? On the edges of the eyelids are a number of small glands that produce a fatty secretion that lubricates your eyelids and the eyelashes to keep them in tip-top shape!

6. Now that’s a healthy bean!
Let’s hear it for the soybean! It’s loaded with lots of protein, vitamins, potassium, magnesium, and iron. Soybeans have ten times the calcium of meat and twice that of eggs, and soybeans are low in fat. Soybeans were first grown in eastern China and brought to the United States in the 1800s. Today, it’s the third leading crop, behind corn and wheat, in this country. Soybean products are protein meal, which is used as a dietary supplement in livestock feed, and oil, which is used in margarine, mayonnaise, salad oil, and other edibles. But this will surprise you: that same edible soy oil is used in industrial products such as paint, varnish, linoleum, and rubber fabrics. Versatile, wouldn’t you say?
NEWTON'S APPLE is pleased that many of our viewers watch our show at school in their classes and at home as a family. Regardless of whom you are watching with, we encourage you to talk about the adventures you see on NEWTON'S APPLE and think about how science is all around you.

NEWTON'S APPLE's "Science Try-Its," "Street Smarts," "Most Scientific Home Videos," and regular demonstrations on the show allow home viewers to be part of the science action. Fun and easy to try at home, these activities help everyone learn together!

Do you have a science question about the world around you? Write us at:

NEWTON'S APPLE
Box 1500
172 4TH ST E
SAINT PAUL MN 55101

We may answer your question on the show!

NEWTON'S APPLE 14th Season

This special guide to our 14th season will let you know what topics are coming up in each new show. Check with your local PBS station for the exact dates and times that NEWTON'S APPLE airs in your area.

1401
Spelunking
Human Eye
Bettor White
Elks

1402
Tahiti Special
Sharks
Tattoos
Black Pearls
Coconuts

1403
Riverboats
Body Fat
Motorcycle Scientists
Parrots

1404
Hypercoaster
Nicotine
Erasers
Dance Scientists

1405
Avalanche Rescue
Prosthetic Limbs
Football Scientist
Popcorn

1406
Andes Special
Inca Engineering
Quipus
Potatoes
Alpacas

1407
Ski Jumping
Bee Stings
Fear
Ruminants

1408
Rain Forest Special
Rain Forest Researchers
Snakes
Frogs
Leaf Cutter Ants

1409
Olympic Solar Energy
Soccer
Trumpets
Earthquake Scientist

1410
Malaria Tracking
Clocks
Inventor's Fair
Deformed Frogs

1411
Post Office
Gems
Science Home Videos

1412
Ethanol
Bones
Coyotes

1413
H2O Special
Wetlands
Eco-Filtration Pond
Drinking Water
Water Towers

WE ENCOURAGE DUPLICATION FOR EDUCATIONAL NON-COMMERCIAL USE.

EDUCATIONAL MATERIALS DEVELOPED WITH THE NATIONAL SCIENCE TEACHERS ASSOCIATION.
NEWTON'S APPLE IS A PRODUCTION OF KTCA SAINT PAUL/MINNEAPOLIS. MADE POSSIBLE BY A GRANT FROM 3M.
Questioning, probing, and problem solving happen every day in 3M laboratories and result in innovative solutions like Post-it® Notes. However, 3M recognizes that innovation doesn't happen by accident, and science doesn't begin in our labs. At 3M, we believe that the wonder of discovery is a universal experience that makes science come alive for students of all ages.

Over the past 40 years, this philosophy has evolved into a series of Science Encouragement Programs that embody our endeavors to spread enthusiasm for science. 3M engages in a wide variety of activities, both on a local and national level, that are designed to raise the level of student learning. Our efforts are maximized through employee and retiree volunteers, who serve as tutors, mentors, and hosts, helping us support science education around the globe for kindergartners on up to high school students.

As NEWTON'S APPLE demonstrates in its weekly, award-winning programs, the power of science is limited only by the imagination. And as many 3M Science Encouragement students will attest, the wonders of science once unveiled can take the imagination by storm and create a lifelong passion for discovery.

3M Visiting Wizards
3M volunteer scientists become "wizards" to elementary and middle school students as they present exciting science principles in hands-on classroom demonstrations. Since 1985, 3M Visiting Wizards have spread enthusiasm for learning science to more than a quarter of a million children. On Super Science Saturday, more than 500 Wizards host a day-long science fair for their families, the 3M community, and other local community groups.

Elementary Teacher Workshop
Elementary school teachers gain ideas on how to incorporate fun in science lessons at this 3M-sponsored resource fair. About 600 teachers annually participate in the hands-on activities of this regional event.

TWIST (Teachers Working in Science and Technology)
Twenty-five science and math teachers learn real-world research applications while working alongside 3M scientists in this summer program. The six-week internship gives teachers practical understanding of science and math concepts through firsthand technical experience in an industrial laboratory.

TECH (Technical Teams Encouraging Career Horizons)
Enlightening middle and junior high school students about careers in science is the focus of this mentoring program. Teams of women and men scientists visit classrooms to discuss real-world opportunities in science and engineering, as well as how they apply their technical backgrounds in their current professions. The volunteer 3M scientists encourage students to maximize their career options by staying in challenging math and science classes.
STEP (Science Training Encouragement Program)
Academic mentoring and technical experience are cornerstones of this program, which lets minority and at-risk students explore their interests in scientific careers. High school students from St. Paul, MN develop relationships with "modern-day heroes" and culturally diverse 3M technical mentors, while holding full-time summer jobs in 3M laboratories.

Richard Drew Creativity Award Program
Honoring students for their creative instincts in science and math is the emphasis of this award program. The program captures the spirit of 3M scientist Richard Drew, who is remembered for his creative nature and for encouraging creativity in others. High school juniors from more than 200 Minnesota and Wisconsin schools are invited to 3M Center to celebrate the joy of creativity in science. The event includes tours of 3M laboratories, a careers-in-science panel discussion, and an evening program with parent participation.

Science Student Recognition Day (SSRD)
The first and longest-running 3M Science Encouragement program, SSRD invites 100 Upper Midwest high school seniors and their teachers to spend a day in our laboratories with 3M scientists and engineers. The program helps students see the link between academic training and real-world science careers.

Hillside Elementary Internet Project
A collaborative effort between Hillside Elementary School, the University of Minnesota College of Education, and 3M is bringing the world into classrooms via the Internet. Through this project, a seven-year-old student researched a report by contacting a science museum in Philadelphia and exchanging information with an eight-year-old in New Zealand. This dynamic program represents a benchmark for education in adopting the Internet as a learning tool.

Educational Outreach
3M supports local and national organizations that promote science and technology education and awareness. 3M shows its commitment through grants, educational materials, and volunteerism. Currently, 3M supports events and organizations including: MATHCOUNTS, National Engineers Week, National Science and Technology Week, WIZKIDS, National Action Council for Minorities in Engineering (NACME), the National Science Teachers Association (NSTA), and the Minnesota Science Teachers Association (MSTA).

NEWTON’S APPLE
3M began full sponsorship of this Emmy Award-winning family science show in 1991. Currently, 3M volunteers serve as consultants on programming and related educational materials. When it comes to science education, 3M and NEWTON’S APPLE staff often find themselves working together. For example, 3M employees and their families volunteered to demonstrate the science activities on the NEWTON’S APPLE poster in this packet.

If you would like additional information on any of 3M’s Science Encouragement Programs, please write to:

Technical Liaison Department
3M Center
Bldg. 225-3N-09
St. Paul, MN 55144-1000
Credits

NEWTON’S APPLE EDUCATIONAL MATERIALS PRODUCTION TEAM
Jennifer Caliandro, Director of Promotion & Outreach
Linda Zespy, Promotions Specialist
Richard Hudson, Executive Editor
Sue Wichmann, Editor

WRITING TEAM
Sue Ballou, Ft. Collins, CO
Jim Dawson, Minneapolis, MN
Jane Duden, Minneapolis, MN
Cheryl Lani Jarecz, South Miami, FL
Gail B.C. Marsella, Allentown, PA
Mary Turk, St. Paul, MN
Rachel Westermeyer, St. Paul, MN

NATIONAL SCIENCE TEACHERS ASSOCIATION
Gerald Wheeler, Executive Director
Karen Baker, Project Coordinator
Brian Aldridge, Program Manager
Jennifer Laughlin, Program Assistant

CONTENT REVIEW PANEL
Dale Atkins, Colorado Avalanche Information Center, Denver, CO
Alan R. Baker, M.D., Rockville, MD
Judy A. Bell, American Association for the Advancement of Science, Washington, DC
Clinton H. Brown, Thomas S. Wootton High School, Rockville, MD
Gary Brown, Winston Churchill High School, Potomac, MD
William L. Brown, U.S. Postal Service, Dulles, VA
Diane F. Cowan, Ph.D., The Lobster Conservancy, Orrs Island, ME
Al DeVito, Creative Ventures Inc., West Lafayette, IN
Robert S. Donaldson, Montgomery Blair High School, Silver Spring, MD
Gregg M. Gochman, Rockville High School, Rockville, MD
Mario Iona, Professor Emeritus, University of Denver, Denver, CO
Sheila Marshall, National Science Teachers Association, Arlington, VA
Joan Braungel McShane, Jefferson Elementary School, Davenport, IA
Melinda B. Mills, Space Center Intermediate School, Houston, TX
Raymond Rye, Smithsonian Institution, Washington, DC
Kismet E. Talaat, Rockville High School, Rockville, MD
Frank Weisel, Montgomery County Public Schools, Rockville, MD
Michael L. Weiss, National Aeronautics and Space Administration, Greenbelt, MD
Russell G. Wright, Ed D., Montgomery County Public Schools, Rockville, MD

ADVISORY PANEL
Harold Banks, Smithsonian Institution
Jerry Bell, American Association for the Advancement of Science
Jonny Goldstein, Public Broadcasting Service
Marlin Halla, National Council of Teachers of Mathematics
Joani Hamilton, Fairfax County Public Schools
Phyllis Maruccio, National Science Teachers Association
Norwood Powell, Chesterfield County Public Schools
Raymond Rye, Smithsonian Institution
Karen Santuff, Public Broadcasting Service
Winnie Wooley, Prince George’s County Public Schools
Russell Wright, Montgomery County Public Schools

3M/NEWTON’S APPLE EDUCATION COMMITTEE
Richard Hanson, Barbara Kaufmann, Chair
Robert W. Barton, Patt Brunez

SPECIAL THANKS TO THE ASKERIC PROJECT FOR THEIR ASSISTANCE IN DEVELOPING THE NEWTON’S APPLE TEACHER’S GUIDES ON THE WORLD WIDE WEB (http://ericir.syr.edu)

WE ENCOURAGE DUPLICATION FOR EDUCATIONAL NON-COMMERCIAL USE.

3M Innovation
Key Concepts

Avalanche rescue
- Air scenting finding odors that are drifting through the air without having an odor trail to follow on the ground
- Minute hairs that move when stimulated and trigger nerve impulses that send signals to the brain
- Nerve cell that transmits electrical signals to the brain and other parts of the body
- Also called a neuron

Bee stings
- Apiary a group of human-bees
- Stings on the Internet
- Humans, to smell odors
- Odor used for communication
- Worker bees female bees
- Worker bees male bees

Body fat
- Calipers a tool that can be used to measure body fat
- Carbohydrates a food group that includes sugars, starches, and cellulose
- Adipose tissue

Black pearls
- Aragonite one mineral form of calcium carbonate
- Aragonite is a mineral that is vital to bone development
- Growth plate a disk of cartilage that absorbs bone under certain conditions
- Bone cells; rods see only black and white and are most useful for night vision

Fossil fuel
- Derived from dead organisms
- Carbon dioxide a gas with molecules made up of one carbon atom and two oxygen atoms
- Carbon monoxide a poisonous gas with molecules made up of one carbon atom and one oxygen atom

Glacial pearls
- Pearl mollusc any shelled sea or freshwater creature
- Conchiolin the organic, pal constituent of a pearl
- Pearl molusc secretes over the mantle the outer membrane to an area of high electrical current

Hyperscience
- Acceleration in the rate of change in speed or direction
- Gravitation the force of attraction
- Sclera the white, outer part of the eyeball

Hypecoaster
- Roller coaster a high-speed, high-inertia object
- Coaster twice as high as the previous geologic age
- Sclera the white, outer part of the eyeball

Incredible engineering
- Archaeologist scientist who studies artifacts
- Buildings, and other relics to learn about ancient cultures

Malala tracking
- Anaphete the genus of mosquito that includes Culex quinquefasciatus
- Mosquito that includes Culex quinquefasciatus
- The parasite that causes malaria in humans

Uranus eye
- Cornea the clear, curved portion of the eyeball
- Iris the colored portion of the eye that opens and closes the pupil
- Optic nerve the nerve in the back of the eyeball that carries impulses from the retina to the brain for interpretation

Water and filtered out
- Vitamin D deficiency causes skeletal deformities
- Vitamin D a vitamin needed for development of healthy bones and teeth

Stainless steel
- Carbon dioxide a gas with molecules made up of one carbon atom and two oxygen atoms; part
- Carbon dioxide a gas with molecules made up of one carbon atom and two oxygen atoms
- Carbon monoxide a poisonous gas with molecules made up of one carbon atom and one oxygen atom

Gasohol
- Gasohol gasoline mixed with alcohol
- Such as petroleum, natural gas, and coal
- Gasohol gasoline mixed with a smaller amount of ethanol, such as a mixture placed in a container

Hyperscience
- Acceleration in the rate of change in speed or direction
- Gravitation the force of attraction
- Sclera the white, outer part of the eyeball

Hypecoaster
- Roller coaster a high-speed, high-inertia object
- Coaster twice as high as the previous geologic age
- Sclera the white, outer part of the eyeball

Incredible engineering
- Archaeologist scientist who studies artifacts
- Buildings, and other relics to learn about ancient cultures

Uranus eye
- Cornea the clear, curved portion of the eyeball
- Iris the colored portion of the eye that opens and closes the pupil
- Optic nerve the nerve in the back of the eyeball that carries impulses from the retina to the brain for interpretation

Water and filtered out
- Vitamin D deficiency causes skeletal deformities
- Vitamin D a vitamin needed for development of healthy bones and teeth

Stainless steel
- Carbon dioxide a gas with molecules made up of one carbon atom and two oxygen atoms; part
- Carbon dioxide a gas with molecules made up of one carbon atom and two oxygen atoms
- Carbon monoxide a poisonous gas with molecules made up of one carbon atom and one oxygen atom

Gasohol
- Gasohol gasoline mixed with alcohol
- Such as petroleum, natural gas, and coal
- Gasohol gasoline mixed with a smaller amount of ethanol, such as a mixture placed in a container

Hyperscience
- Acceleration in the rate of change in speed or direction
- Gravitation the force of attraction
- Sclera the white, outer part of the eyeball

Hypecoaster
- Roller coaster a high-speed, high-inertia object
- Coaster twice as high as the previous geologic age
- Sclera the white, outer part of the eyeball

Incredible engineering
- Archaeologist scientist who studies artifacts
- Buildings, and other relics to learn about ancient cultures

Uranus eye
- Cornea the clear, curved portion of the eyeball
- Iris the colored portion of the eye that opens and closes the pupil
- Optic nerve the nerve in the back of the eyeball that carries impulses from the retina to the brain for interpretation

nicotine addiction the physical or psychological dependence on a chemical (such as cocaine) or action (such as gambling) dopamine brain chemical that appears to produce feelings of reward or pleasure nicotine an addictive drug found in tobacco products; when pure, it looks like a clear liquid oil, but exposed to air, it turns brown receptor in the brain, an area that binds to a particular kind of molecule; after a receptor "receives" the molecule, some other physiological change usually happens replacement therapy the process of trying to quit smoking by ingesting small amounts of nicotine to reduce the craving for cigarettes tar the mixture of chemicals formed when tobacco is burned tolerance the increasing need for larger doses of an addictive substance with withdrawal symptoms an addicted person experiences when the supply of an addictive substance is removed

OLYMPIC SOLAR ENERGY electromagnetic radiation the form of energy that comes from the sun, most of it as visible light electron a subatomic particle with a negative charge that orbits the positively charged atomic nucleus photon a packet of electromagnetic energy that behaves both as a particle and a wave photovoltaic cells devices designed to convert sunlight into electricity sensors any of a variety of devices, usually electronic, that detect, measure, or record physical phenomenon such as temperature or pressure solar collector a device that gathers solar radiation to produce heat POST OFFICE bar code patterns of black lines that can be read by machine bar code reader (BCS) a computer-controlled machine that sorts letters with imprinted bar codes at speeds of 32,000 pieces an hour delivery bar code sorter (DBCS) a small, high-speed bar code sorter that finalizes letter sorting down to the carrier's sequence of mail delivery delivery point bar code (DPBC) a zip+4 bar code containing two additional digits that designate a specific delivery point machinable mail that can be read by automatic equipment optical character reader (OCR) a computer-controlled automatic machine that interprets address information on a piece of mail, sorts a bar code on it, and then sorts it remote barcode system (RBCS) a system that uses image data of handwritten and other machinable mail that can be read by an OCR; zip+4 code a five-digit numeric code that identifies areas within the United States and its territories zip code a nine-digit numeric code incorporating the original five-digit zip code, a hyphen, and additional digits; the four-digit add-on identifies a specific delivery segment such as a floor of a building or a group of post office boxes PROSTHETICS amputee a person who has lost part or all of a limb dynamic to move and respond to certain environmental influences myoelectric muscle electricity; a myoelectric prostheses has sensors that respond to the minute quantities of electricity produced by human muscle movements prosthetic an artificial body part, usually a replacement for a damaged or amputated body part RAINFOREST ANIMALS adaption various functions or structures of a plant or animal that provide the organism with a better chance of surviving in a particular environment cellulose a carbohydrate that forms the cell walls of plants echolocation bouncing sound off objects to provide information about size, location, and movement of targets the complex interactions among living and nonliving things and their physical environments myrmecologist an entomologist who specializes in the study of ants symbiosis two species that live together in harmony, each contributing to the survival of the other

RAINFOREST PLANTS bromeliad tropical plants in the pineapple family that often grow on the trunks and branches of trees butresses woody, finlike supports that radiate from the trunk of tall tropical forest trees canopy the layer of a forest that is formed by the crowns of trees that are often about 23 to 76 meters (75 to 250 feet) tall. Most rainforest life is concentrated here, where 90 percent of the rainforest's photosynthesis occurs. emergent a tree that grows taller than the canopy trees around it epiphyte plants that grow on other plants and send no roots to the ground ethnobotany the study of how people use plants to improve their quality of life the process by which water evaporates over the forest, providing vapor that can form clouds indigenous occurring naturally in a certain area; "indigenous people" are native people who understand the forest layer beneath the canopy that includes small trees, young canopy trees, shrubs, and herbs

RAINFALLOFFERS change of state what happens when matter changes from a solid, liquid, or gas to another phase energy the ability to do work example a cylinder or disk that fits tightly into a larger cylinder and moves under pressure from a liquid or gas; the piston takes the energy from the liquid or gas and turns it into a back-and-forth push pitman arm a connecting rod that links one moving part to another, such as the piston to the paddle wheel in a steamboat potential energy stored energy contained in an object that can fall has potential energy and fossil fuels (oil, gas, and coal) have potential energy that they stored when they were formed of decaying organic matter millions of years ago; pressure the amount of push, or force, on a surface turbine machine that is turned by a gas or liquid with the use of vanes or paddles; vapor a state of matter in which the molecules of a substance are completely separated from each other and are energetic enough to spread into all available space

SAILING amphere of Lorenzini jelly-filled canals connected to pores in the shark's snout, which detect low-frequency sounds, some specialized jelly-filled canals connect to ampullae of Lorenzini common; the ampullae of Lorenzini are sensitive to water pressure and can help a shark detect vibrations in the water that might indicate prey or danger SHARKS ampullae of Lorenzini jelly-filled canals connected to pores in the shark's snout, which detect low-frequency electrical charges; stalk a coral reef or island around a lagoon; cartilage rough connective tissue found in parts of the human body such as the nose, joints, or outer ear; coral a reef ridge of coral rising to or near the surface of a body of water dendritic hard, tooth-like points covering the shark's skin dorsal near the back or upper surface pectoral near the breast or abdomen

SKI JUMPING airfoil an elongated tear-drop shape with one side flattened; the joint that experiences a net lifting force when moving through air or a liquid angle of attack the tilt at which an airfoil or wing hits the onrushing air drag the resistance of a fluid (air, water, etc.) against a moving object gravitational potential energy the energy or ability to do work that an object has because of its position above ground level; lift the upward push of air against a surface like a wing or airfoil; outrun the hill or landing that a skier jumps lands on takeoff table the actual point at which a skier jumps lift off the bottom of the ramp transition curve the point at the end of the runway where the skier jumps; ramp curve back up to the takeoff table

SPELUNKING drooling advancing the ball by giving it a series of short kicks feinting moving your body in a way that deceives your opponent about your intended path heading the ball with your forehead momentum when an object is moving, its tendency to continue to move; an object's momentum is the product of its mass and its velocity Newton's third law of motion every action (or force) exerted by one body on a second body gives rise to a reaction (or opposing force) of equal strength but opposite direction by the second body on the first physics the science that deals with the properties, changes, and interactions of matter and energy; swirling the rolling ball across your body to make it spin trapping using your chess, head, foot, or thigh to stop the ball velocity the speed and direction of an object

SPELUNKING acid a solution having a pH lower than 7 with an excess of hydrogen cations caprock ceiling of a near-surface cave a natural underground cavity cavern a large cave system karst topography ground that is characterized by lineaments, sinkholes, and underground drainage pillar a column formed when a stalactite and stalagmite join sinkhole a hole in the land surface formed in a limestone cavity by the collapse of the top of a cave solution the process by which a material is dissolved by water stalactite a rock needle that hangs from the roof of a cave; formed by the precipitation of calcium carbonate stalagmite a geological feature formed on the floor of a cave by the precipitation of calcium carbonate solutions dripping from the ceiling

VEGETABLES algae aquatic plants with no true roots or leaves; seed plants a natural or synthetic material used to increase plant growth flood overflow of water onto land normally dry organic substance containing carbon, hydrogen, and other elements; all living things are made of organic molecules sewage treatment plant a place where wastewater is broken down and filtered, the water returning to its natural, uncontaminated condition wetland a low area on land that is saturated with moisture for most of the year.
<table>
<thead>
<tr>
<th>Segment Title</th>
<th>Show #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalanche Rescue</td>
<td>1405</td>
</tr>
<tr>
<td>Bee Stings</td>
<td>1407</td>
</tr>
<tr>
<td>Black Pearls</td>
<td>1402</td>
</tr>
<tr>
<td>Body Fat</td>
<td>1403</td>
</tr>
<tr>
<td>Bones</td>
<td>1412</td>
</tr>
<tr>
<td>Clocks</td>
<td>1410</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>1413</td>
</tr>
<tr>
<td>Ethanol</td>
<td>1412</td>
</tr>
<tr>
<td>Gems</td>
<td>1411</td>
</tr>
<tr>
<td>Human Eye</td>
<td>1401</td>
</tr>
<tr>
<td>Hypercoaster</td>
<td>1404</td>
</tr>
<tr>
<td>Inca Engineering</td>
<td>1406</td>
</tr>
<tr>
<td>Malaria Tracking</td>
<td>1410</td>
</tr>
<tr>
<td>Nicotine</td>
<td>1404</td>
</tr>
<tr>
<td>Olympic Solar Energy</td>
<td>1409</td>
</tr>
<tr>
<td>Post Office</td>
<td>1411</td>
</tr>
<tr>
<td>Prosthetic Limbs</td>
<td>1405</td>
</tr>
<tr>
<td>Rain Forest Animals</td>
<td>1408</td>
</tr>
<tr>
<td>Rain Forest Plants</td>
<td>1408</td>
</tr>
<tr>
<td>Riverboats</td>
<td>1403</td>
</tr>
<tr>
<td>Sharks</td>
<td>1402</td>
</tr>
<tr>
<td>Ski Jumping</td>
<td>1407</td>
</tr>
<tr>
<td>Soccer</td>
<td>1409</td>
</tr>
<tr>
<td>Spelunking</td>
<td>1401</td>
</tr>
<tr>
<td>Wetlands</td>
<td>1413</td>
</tr>
</tbody>
</table>

3M Innovation
Build a custom-designed vehicle propelled by photovoltaic cells.

Materials
- four small solar cells
- small 1 1/2 volt motor
- propeller
- toy car or parts

1. Place the solar cells side by side.
2. Connect them in a series by twisting the negative and the positive wire of one cell to the next cell.
3. Attach the motor to the remaining positive and negative wires.
4. Attach the propeller to the motor. Place the cells in bright light. Observe how fast the propeller turns. Move the light and the cells and note in your journal how the speed of the propeller changes.
5. Design a custom body for the car that can hold the propeller and the cells. Compare yours with your classmates.
6. Try a few time trials to see whose car is the fastest. How can you modify your car to make it go faster?

Questions
1. What would happen if you used more cells? Does placement of the cells affect the power of the motor?
2. Does the arrangement of the cells affect the design of your car? How could you arrange the cells to make the car more efficient?
3. Do you have any solar-powered items at home? Where else could solar cells be used at home? At school?

*Adapted with the permission from materials of the *Science Weekly*.
Examine why anatomy helps determine the sounds we make.

When you talk, you use your voice box. A bird makes sounds with a vocal organ called the syrinx. The vibration of thin muscles in the syrinx creates its song. Investigate and compare the vocal organ of a bird with that of a human.

Materials
* sheets of standard paper (8 1/2" x 11"), two per student
* pencils
* overhead transparency of a drawing of a bird's anatomy, showing trachea, lungs, air sacs, and syrinx
* overhead transparency of the head, throat and chest regions of a person's anatomy, showing trachea, bronchus, lungs, and larynx

Note: Make an overhead transparency by photocopying the artwork on this page, cutting out the illustrations, and transferring them to a transparency. Make sure the names of the parts do not appear on the transparency.

1. Give each student two sheets of paper.

2. Show the transparency with an overhead projector. Have everyone draw an outline of the bird's chest, neck, and head. As you explain the different parts of a bird's anatomy that help make its songs, have each student add those parts and label them.

3. Show the transparency of a person's vocal cords and anatomy. Have each student then draw an outline of the person. Explain the different parts of the body that a person uses to speak. As a part is discussed, have each student draw the additional part in its normal location on the outline, labeling each part.

4. Place the two outlines beside one another. Discuss differences and similarities that exist between a bird and a person. What effect would these differences have in determining the sounds a person makes compared to a bird's sound?

Questions
1. Besides sound, in what other ways do birds and humans communicate?

2. How is bird behavior different or similar to that of people (hair vs. feathers, gestures vs. wing positions)? Why does your voice become scratchy and deep when you have a sore throat?
WHAT IS NEWTON'S APPLE?

NEWTON'S APPLE, public television's family science show, is a fast-paced magazine format television program designed to excite viewers' curiosity. It is now in its 14th season on PBS and is carried on more than 250 public television stations nationwide. Starting from a viewer question, each program segment involves viewers in fascinating discoveries about science in the world around us.

Asking questions of NEWTON'S APPLE is a great classroom activity. Send your questions to: NEWTON'S APPLE, 172 4th Street E, Saint Paul MN 55101, or e-mail to <newtons.apple@umn.edu>.

NEWTON'S APPLE allows three-year, off-air record rights for educational purposes. If you miss a show or would like to obtain a segment from past seasons, call 800-228-4630.
EDUCATIONAL RESOURCES

An extensive Teacher’s Guide, developed with the National Science Teachers Association for use in the classroom, accompanies the series and includes background, keywords, resources, and multiple classroom activities for each major segment.

NEWTON’S APPLE offers many other educational resources through partnerships with educational materials developers and distributors:

* Hands-on science kits: a series of laboratory activity kits, including *Newton’s Greatest Hits* (Newton’s Laws of Physics kit), *Newton on Slime* (Colloidal Chemistry kit), *Newton on the Earth* (Solar System and Geology kit) and *Oh, Mr. Newton* (Science Overview kit). Each includes complete guides and all the equipment for experimenting at home or school.

* What’s the Secret? CD-ROMs: interactive science discovery programs for both Macintosh and Windows that explore a wide range of science subjects, from the heart to bees, roller coasters to glue, flight to skeletons.

* NEWTON’S APPLE...Live: A live in-school theatre production that explores and demonstrates air pressure and the weather through a fanciful drama about a young girl’s fear of thunder.

* NEWTON’S APPLE Multimedia Interactive Collection: two videodisc packages (Physical Sciences and Life Sciences) that offer easy access to NEWTON’S APPLE segments and teaching materials to help build curriculum.

* NEWTON’S APPLE Science Charts: 10 inquiry-based science charts using the real-life questioning approach of the television show that include four reproducible activities on the back.

For information about any of the many science education resources or to obtain a free NEWTON’S APPLE Teacher’s Guide, call 612-222-1717 or write to:

NEWTON’S APPLE
172 4th Street E
Saint Paul MN 55101

NEWTON’S APPLE is made possible on PBS by 3M. If you appreciate NEWTON’S APPLE and would like to see the show continue bringing science discovery to people of all ages, please write us and we’ll forward your thoughts to 3M.
NEWTON'S APPLE's award-winning World Wide Web site is chock full of useful information for teachers, students, parents, and viewers of all ages. Teacher's Guides are available online, as well as NEWTON'S APPLE show information; an interactive forum for viewer suggestions and questions; a CD-ROM demo from What's the Secret?; more information about the growing array of educational resources; and biographical information on the show's hosts. The NEWTON'S APPLE World Wide Web address is:

http://www.mnonline.org/ktca/newtons
The lift on the sail of a sailboard is similar to that on a wing of an airplane. What forces and pressures generate lift? Construct a model to demonstrate the force of lift.

Materials
- two 8 1/2” x 11” sheets of paper
- ruler
- transparent tape
- sharpened pencil
- 60-cm (24”) piece of monofilament fishing line
- one 15-cm (6”) straw
- two 7.5-cm (3”) straws

1. Fold one sheet of paper in half, but do not crease the fold.
2. Tape the long opened edge of paper with three small pieces of tape to keep it closed. This taped side will be known as your “trailing edge,” while the folded side will be known as the “leading edge.”
3. With the pencil, mark an “X” on the center line of the paper about one inch from the leading edge.
4. Punch a hole through both the top and bottom of the paper at the “X.” (Be careful not to crease the paper at the fold.)
5. Place the 15-cm straw through the hole you just punched. Use tape, if necessary, to hold the straw in place.
6. Tie one end of the fishing line to the middle of a 7.5-cm straw.
7. Pass the other end of the fishing line through the 15-cm straw which is attached to the paper.
8. Pull the fishing line through and tie this end to the other 7.5-cm straw. The 7.5-cm straws will be your handles.
9. On the other piece of paper, trace two copies of the airfoil shape below and cut out the shapes. Tape the shapes to the open ends of the “wing.” The flat edge of the shapes should be on the bottom of the wing (see illustration).
10. Taking the 7.5-cm straw handles, one in each hand, draw the fishing line tight and position it so the line is perpendicular to the floor. Make sure the flatter surface of the wing faces down.
11. With your arms out in front of you, make a quick sweeping motion through the air. Be certain that the leading edge of the wing is in front.

Questions
1. What did your piece of paper do?
2. What caused the wing to move upward?
3. Explain how this demonstration relates to a sail.
4. Explain the forces that move the paper upward.
NEWTON'S APPLE premieres in October on public television stations nationwide. Contact your local PBS station to find out the exact air date and time of NEWTON'S APPLE and other public television programs. If you find out that your PBS station isn't planning to air NEWTON'S APPLE, call or write them and explain how you plan to use the program and how valuable it is to you and your students. If they are airing NEWTON'S APPLE, let them know you appreciate it!

Special thanks for donating science props and images for this poster:

The Minnesota Zoo
The Raptor Center
The Science Museum of Minnesota and its Museum on the Move
Cedar Fair LP
3M

Special thanks for appearing in this poster:

3M, its employees, and their families
KTCA, its employees, and their families
Friends of NEWTON'S APPLE
Build a tightrope setup and go for a walk!

Make your dreams of running away to join the circus come true—at least for a little while. In this activity, you construct a tightrope setup, learn the basics of tightrope walking, and understand a little more about the physics behind balancing! Get an adult to help you build the setup, as well as to double-check cushioning and spot you as you learn.

Materials
- one 8'-long two-by-four board
- two 4'-long two-by-four boards
- two smooth poles, one about 3' long, the other about 6' (The length doesn't have to be exact, so long as the two sticks have about 3' difference between them.)
- sandpaper
- hammer
- 3" nails
- soft, grassy area or cushioned mats
- two half-gallon plastic jugs filled with water
- broom
- 50 cm (20") of string or cord cut into two equal lengths

1. Place the two-by-fours on their thinner edges, forming an H (see illustration). Center and nail the shorter boards onto the ends of the longest two-by-four. Sand down the entire surface, making sure there are no rough edges or slivers.

2. Place your “tightrope” on the soft, grassy area. If you put it on cushioned mats, make sure there is enough padded area to protect your entire body if you fall.

3. First, try walking from end to end very slowly. Where do you find yourself holding your hands and arms? Try holding them still—first straight out from your body, then overhead, then stiff by your sides. How do these different positions affect your balance? Why? Try these same positions holding a filled plastic milk jug in each hand. Does the added weight make balancing easier or harder? Why?

4. Try walking your tightrope with your longer pole. Move your hands together until they touch in the middle of the pole and walk the tightrope holding the pole horizontally. Now spread your hands as far apart as possible on the pole and walk the tightrope again. Does your hand position affect your ability to balance? How? Why? Try the two hand positions again with a broom. Is there any difference? Why?

5. Using the hand position you found to be the best for balancing, try walking your tightrope first with your short pole, then with your long pole. Which length helps you balance better? Why?

6. Tie the filled plastic milk jugs to the ends of your long pole and walk the tightrope again. Do the weights affect your balancing ability? How? Why?

7. Using the short pole, walk across your tightrope. What happens to the pole when you start to lose your balance? What happens to your body? Can you use the pole to deliberately make yourself lose your balance?

8. Add some tricks to your repertoire. Try walking backwards from end to end, balancing on one foot, or turning around on one foot. Can you think of other tricks you can add with practice? (Here are a couple ideas—try stepping over your balancing pole, or playing with a hula hoop.)

Question
1. What combination of factors gave you the best balance? Why?
Look inside for information about the newest season of NEWTON'S APPLE. NEWTON'S APPLE is taking you around the world—and into your own backyard—to bring you and your students more science fun and discoveries!

In addition to this free teacher's guide, NEWTON'S APPLE has lots of new science education products that help put kids, teachers, and parents in the driver's seat, including:

- WHAT'S THE SECRET? CD-ROMs
- NEWTON'S APPLE SCIENCE KITS FOR HOME AND SCHOOL
- NEWTON'S APPLE EDUCATIONAL MATERIALS ON-LINE
- NEWTON'S APPLE CLASSROOM SCIENCE CHARTS
- NEWTON'S APPLE LIVE! TRAVELING THEATER SHOW
- NEWTON'S APPLE MULTIMEDIA COLLECTION VIDEODISCS AND SOFTWARE

DON'T MISS OUT!

Don't miss out on the next edition of the NEWTON'S APPLE Teacher's Guide. Send back the postcard inside today. The demand for these guides is so great that unless we receive a card from you, we cannot send the next issue!
NOTICE

Reproduction Basis

☐ This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☒ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").