
Council of Educational Facility Planners, International, Scottsdale, AZ.

PUB DATE 1998-01-25
NOTE 159p.; No longer available online.
PUB TYPE Collected Works - Proceedings (021)
EDRS PRICE MF01/PC07 Plus Postage.
DESCRIPTORS *Classroom Design; *Educational Facilities Planning; *Educational Technology; Elementary Secondary Education; Public Schools; *Technology Implementation
IDENTIFIERS Retrofitting; Technological Infrastructure; *Technology Implementation

ABSTRACT Participants in the 1998 annual technology conference of the Council of Educational Facility Planners, International discussed adapting today's school buildings to meet the new educational technology. This document presents the presentation materials (mostly copies of slides or transparencies, with little or no accompanying text) delivered by speakers at the conference. Each presenter addressed the overall subject of the classroom of the future and explored such topics as educational technology planning, developing computer and video infrastructures, educational technology costs, hardware considerations, and bidding and purchasing of technology. (GR)
Preparing Your School Building for Technology.

Proceedings of the

Council of Educational Facility Planners International (CEFPI) Conference

(Vancouver, British Columbia, Canada, October 4-7, 1998)
Table of Contents

I. Determining which Technology Works for Your Instructional Space
 A. Primary Factors
 B. Technology in Education
 C. Technology Cost Centers

II. Technology Implementation Process
 A. Implementation Overview
 B. Technology Master Plans

III. Support Staff Organization: Educational Technology Systems and Support

IV. Technology Infrastructure/Cabling

V. Implementation Costs for Technology Systems

VI. Networks: Basic Concepts and System Types
 A. Voice
 B. Data
 C. Media Retrieval
 D. Video
 E. Wide Area Networks

VII. Technology Bid Packages: Controlling the Process

VIII. Universal Service Report
CEFPI THANKS THE TECHWEST 1998 EXHIBITORS FOR THEIR GENEROSITY IN DISPLAYING THE

CLASSROOM OF THE FUTURE

INTERIOR CONCEPTS

NETWORK INFRASTRUCTURE CORPORATION (NIC)

RAULAND-BORG CORPORATION

ZENITH ELECTRONICS
INTERIOR CONCEPTS
1825 Trimble Court
Spring Lake, MI 49456
Phone: 616/842-5550
Fax: 616/846-3925
Cindy Wessel

NETWORK INFRASTRUCTURE CORPORATION
(NIC)
2109 E. Cedar Street, Suite 1
Tempe, AZ 85281
Phone: 602/804-0922
Fax: 602.804-0939
Elizabeth Barrett

RAULAND-BORG CORPORATION
3450 Oakton Street
Skokie, IL 60076-2951
Phone: 847/679-0900
Fax: 847/679-0625
Michael Shares

ZENITH ELECTRONICS
C/O HAGER SHARP
1090 Vermont Avenue, NW, 3rd Floor
Washington, DC 20005
Phone: 202/842-3600
Fax: 202/842-4032
Ben Casados
Preparing Your School Buildings for Technology

The Council of Educational Facility Planners, International is fortunate to have wonderful resources within its membership—people whose knowledge, understanding, and experience in educational facility development is unmatched worldwide. It is with great pride and gratitude that we thank the following outstanding CEFPI members and other professionals who have shared their expertise as presenters at our annual Technology Conference.

Shane Cabe
Vice President of Operations
Meeks Technology Group
209 New Edition Court
Cary, NC 27511
Phone: 919-468-9595
Fax: 919-468-9597

Ricki Fisher
South Central Regional Manager
Meeks Technology Group
5926 Balcones #240
Austin, TX 78731
Phone: 512-451-8666
Fax: 512-451-8777

Ginger Hovenic, Ed.D.
Executive Director
Classroom of the Future Foundation
San Diego County Office of Education
6401 Linda Vista Road
San Diego, CA 92111-7399
Phone: 619-292-3807
Fax: 619-571-5943

Warren Loveless
Regional Manager
Meeks Technology Group
5630 S. Waterbury Way, Suite B-101
Salt Lake City, UT 84121
Phone: 801-277-9791
Fax: 801-277-9810

Glenn E. Meeks, REFP
President
Meeks Technology Group
209 New Edition Court
Cary, NC 27511
Phone: 919-468-9595
Fax: 919-468-9597

Peggy O'Neill
Autocad/Autodesk Representative
The CAD Store
4220 W. Northern
Phoenix, AZ
Phone: 800-576-6789

Jake Schlumpf
Solutions Development Manager
Compaq Computer Corporation
20555 SH 249 M/S 580703
Houston, TX 77070-2698
Phone: 713-927-8650
Fax: 713-514-9680

Bill Walton
Founder/Director
ITC Learning Corporation
13515 Dulles Technology Drive
Herndon, VA 20171
Phone: 703-713-3335
Fax: 703-713-0065
MAXIMIZING YOUR PURCHASING DOLLARS.

© 1998 Meeks Technology Group

HOW DO YOU DETERMINE THE TECHNOLOGY WHICH WORKS FOR YOUR INSTRUCTIONAL SPACE?

© 1998 Meeks Technology Group
PRIMARY FACTOR WHICH DETERMINES TECHNOLOGY

Oversimplification:

THE "CURRICULUM"

What Do You Want The Learner To Learn In Your Instructional Space?

© 1998 Meeks Technology Group

THE CURRICULUM DRIVES THE INSTRUCTIONAL PROGRAM

- CURRICULUM - What Is The Learner Supposed To Learn?

- INSTRUCTIONAL PROGRAM - What Activities Enable The Learner To Gain The Knowledge Or Skill They Are Supposed To Gain?

(Classroom Activities/Tasks)

© 1998 Meeks Technology Group
SECOND PRIMARY FACTOR WHICH DEFINES TECHNOLOGY

INFORMATION DELIVERY CATEGORIES

How Many Learners Will Receive the Same Information At the Same Time?

© 1998 Meeks Technology Group
INFORMATION DELIVERY CATEGORIES

- Workstations
 One To Three People

- Work Groups
 Six To Eight People Utilizing Workstations Simultaneously / Interactively For A Project

- Presentation Systems
 Information Presentation To Ten Or More People

SPECIFIC TECHNOLOGIES LEND THEMSELVES TO SPECIFIC TASKS

Classroom Tasks

- Video
- No Computer Technology

© 1998 Meeks Technology Group
THIRD PRIMARY FACTOR WHICH DEFINES TECHNOLOGY

Do You Intend To Move The Learner To The Site of The Knowledge Base?

VERSUS

Do You Desire To Move The Knowledge Base To The Site Of The Learner?

© 1998 Meeks Technology Group

FACTORS WHICH INFLUENCE TECHNOLOGY FROM USERS VIEWPOINT

- Must Be Easy To Use
- Must Be Readily Available
- Must Improve Existing Method Of Doing Things
- There Must Be A Large Users Group Ready To Adopt The Use Of Technology

© 1998 Meeks Technology Group
THIS VIEWPOINT IMPLIES THERE SHOULD BE A PLAN.
(Maximizing Purchasing Dollars)

WHAT HAPPENS WHEN A "PLAN" IS NOT IMPLEMENTED?

© 1998 Meeks Technology Group

ISLANDS OF TECHNOLOGY

Various Technologies Are Purchased Independently Of Each Other, Which Are Not Capable Of Communicating With Each Other (Bridges Between The Islands)

© 1998 Meeks Technology Group
Technology Planning Involves More Than Planning For Hardware and Systems

Curriculum/Instructional Program, Staff Development Plans, Technology Plans

© 1998 Meeks Technology Group
The curriculum, staff development, and technology plan are interdependent with each other.

If you do not find common threads running through the different plans, there are holes in the process.

© 1998 Meeks Technology Group
STAFF DEVELOPMENT PLAN
Training the Instructor For Use of Technology in the Instructional Space

- Philosophy Of How Technology Changes Business In The Classroom.
- Training on How to Use Technology In The Instructional Space.
- Training on How to Generate Content For Use In Instructional Space.
- Training for Lesson Plans Revolving Around Technology.
- Start Process of Finding Appropriate Content (Shows, Workshops, Seminars.)

© 1998 Meeks Technology Group

TECHNOLOGY PLAN
Implementation of Technology in the Instructional Space

- Data Networks
- Voice Networks
- Video Networks
- Wide Area Networks
- Library and Administrative Systems
- Timeline and Cost Estimates

© 1998 Meeks Technology Group
CURRICULUM / INSTRUCTIONIAL PROGRAM

STAFF TECH. DEVLP. PLAN

PLANS RESONATE WITH EACH OTHER

© 1998 Meeks Technology Group

HOW THE PLANS INTERTWINE

- What Instructional Task Are You Accomplishing with Technology? (Cur.)
- What Courseware Meets Content Requirements? (Cur.)
- What Hardware Needs to Be in Place? (Tech.)
- What Facility Upgrades are Required? (Tech.)
- How Will the Teacher be Trained To Use The New Courseware and Hardware? (Staff Development)

© 1998 Meeks Technology Group
TECHNOLOGY IN EDUCATION

An Overview

© 1998 Meeks Technology Group

AREAS WHERE TECHNOLOGY IS USED IN EDUCATION

ADM INSTRATIVE
ADM IN.
INSTRUCTIONAL

© 1998 Meeks Technology Group
OUTSIDE LINES

VOICE NETWORK

PAGING SYSTEM

SPK

LEARNING ENVIRONMENT

VOICE MAIL

PHONE

Homework Hotline

Admin File Server

Library File Server

CD-ROM Tower

Comm. Server & Outside Lines

VIDEO NETWORK

External Video Sources

Interactive A/V Sources

Scheduling PC

Teacher Work Station PC

Instructional Fileserver

DATA PORT

DATA NETWORK

VIDEO NETWORK

EXTERNAL VIDEO SOURCES

A/V Video Server

Scheduling PC

Teacher Work Station PC

Instructional Fileserver

DATA NETWORK

LIBRARY FILE SERVER

CD-ROM TOWER

COMM. SERVER & OUTSIDE LINES

OUTSIDE LINES

© 1998 Meeks Technology Group

NEXT ADVANCE

PAGING SYSTEM

SPK

LEARNING ENVIRONMENT

TV & CONTROL

PHONE Classroom PC

DATA PORT

DATA NETWORK

VOICE NT FILE SERVER

Admin File Server

Library File Server

CD-ROM Tower

Comm. Server & Outside Lines

OUTSIDE LINES

© 1998 Meeks Technology Group
DOES TECHNOLOGY IMPROVE THE EDUCATIONAL PROCESS?

© 1998 Meeks Technology Group

THE "OLD DAYS"

Traditional Information

Teacher (Information Gatekeeper)

Learner/ Absorber

© 1998 Meeks Technology Group
Audio-Visual Information Traditional Information Computer Based Information

Teacher (Information Gatekeeper)

THE "NEW DAZE"

Learner/ Absorber

© 1998 Meeks Technology Group

Audio-Visual Information Traditional Information Computer Based Information

Teacher (Facilitator) Learner/ Absorber

FUTURE DAYS?

© 1998 Meeks Technology Group
TECHNOLOGY CAN IMPROVE THE DELIVERY OF EDUCATION

© 1998 Meeks Technology Group

INSTRUCTIONAL TECHNOLOGY RESEARCH

BY: IESD, Sivin-Kachala & Bialo, The “Effectiveness of Technology In Schools,” 1990-1996, Commissioned By SPA

© 1998 Meeks Technology Group
Learner Retention After Four Days

What They See

- 10%
- See 30%
- See & Hear 50%
- See, Hear, & Experience 70%
- They Teach 90%

© 1998 Meeks Technology Group
TECHNOLOGY COST CENTERS

What Does It Really Cost?

© 1998 Meeks Technology Group

PRIMARY CATEGORIES OF COSTS

- INFRASTRUCTURE ★
- SYSTEMS ★
- STAFF DEVELOPMENT
- STAFF SUPPORT
- COURSEWARE
- MAINTENANCE & UPGRADES

© 1998 Meeks Technology Group
INFRASTRUCTURE

- TYPICALLY FUNDED AS CAPITAL PROJECT
 - Electrical Power Requirements
 - Cable Trays & Raceway for Cabling
 - Special HVAC Requirements

© 1998 Meeks Technology Group

SYSTEMS & CABLING

- TYPICALLY FUNDED AS CAPITAL PROJECT
 - Voice Networks
 - Data Networks
 - Video Networks
 - Special Audio & Video Systems

© 1998 Meeks Technology Group
STAFF DEVELOPMENT

- FUNDED FROM OPERATING BUDGET
- In-Service Training on Technology
- Special Training Activities for Advanced Users (Release Time & Subs)
- Attendance of Regional & National Shows
- Time for Developing Applications
- Special Grant Funds for New Application Development / Experiments

© 1998 Meeks Technology Group

STAFF SUPPORT

- FUNDED FROM OPERATING BUDGET
- Technology Director Dedicated ONLY to Implement Plan - Instructional Focus
- Data Network Administrator
- Technology Technician(s) - Repair & Maintenance
- Building Level Technology Coordinator (Master Teacher?)

© 1998 Meeks Technology Group
COURSEWARE

- FUNDED THROUGH CAPITAL PROJECT
- Teacher Productivity Software
- Student Workstation Software
- Computer Lab Applications
- Library Automation Software
- Reference Resources (Computer & A/V)
- Curriculum Specific Software
- Curriculum Specific A/V Media

© 1998 Meeks Technology Group

MAINTENANCE & UPGRADES

- FUNDED AS LINE ITEM IN YEARLY DISTRICT BUDGET
- Expansion of Video Network Resources (Adding More VCR's, LD's, CD-ls, etc...)
- Expansion of Data Network Resources
- Upgrading Specific Computers for Specific Curriculum Tasks
- Replacing Obsolete Computers, Televisions, etc...

© 1998 Meeks Technology Group
MACRO BUDGET COSTS

- Basic Cost Estimate Numbers (Includes Voice, Video, Data Systems; Infrastructure; Computers/Printers; Courseware)
- Per Student Basis - $1500 to $2000
- Square Footage Basis
 - Basic Systems @ $3 to $5/sq. ft
 - Maximized Systems @ $7 to $10/sq. ft.
- Instructional Stations Basis - Voice, Video Data w/1 Computer/Printer $10,000/room.
 - With 6 Computers, $25,000 per space

© 1998 Meeks Technology Group

PUTTING IT IN PERSPECTIVE

- Minimum Costs To Implement Technology Throughout the US.
- 16,000 K-12 Districts
- Average Size = 2,750 Students
- Teacher / Student Ratio = 20:1
- One Teacher = One Instructional Space
- 137.5 Instructional Spaces Per District
- 2.065 Million Instruct. Spaces @ $25K ea.
- $51.6 Billion (Total Construction = $12 Bil.)
- Does not include: Offices, Media Centers, Computer Labs, Applied Tech. Areas, etc...

© 1998 Meeks Technology Group
TECHNOLOGY IMPLEMENTATION PROCESS

KEY ISSUES

- Relationship Between Construction and Technology
- Categories of Purchases Related to Technology Implementation
- Implementation Overview
RELATIONSHIP BETWEEN CONSTRUCTION PROCESS & TECHNOLOGY IMPLEMENTATION

New Construction & Renovations

NEW CONSTRUCTION

Site Work → Foundation → Shell → Frame

BOXES & CONDUIT IN SLAB / EXTERIOR ENTRANCES
THINGS OUT OF SEQUENCE

- Costs Much More
 - Costs Two To Three Times More
 - More Costs In the Walls (Not Seen)
 - Means Less Instructional Impact
- Susceptible To Damage By Later Construction Work
- Project Management Inefficiencies
PURCHASE CATEGORIES
FOR TECHNOLOGY IMPLEMENTATION

- Upgrade Components
- Replace Obsolete Components
- Special Lab Purchases
- Infrastructure
- Systems and Components
| UPGRADE COMPONENTS |
|-------------------|---|
| Types of Technology | Computer (RAM, Hard Drive, NIC) |
| Implementation | Direct By District |
| Construction | None |
| Impact Area | None |
| Time Restriction | None |

| REPLACE OBSOLETE COMPONENTS |
|-----------------------------|---|
| Types of Technology | Computer, Printer, Video Display |
| Implementation | Direct By District |
| Construction | None |
| Impact Area | None |
| Time Restriction | None |
SPECIAL LABS

<table>
<thead>
<tr>
<th>Types of Technology</th>
<th>Computer Lab, Science Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation</td>
<td>District w/Electrician</td>
</tr>
<tr>
<td>Construction</td>
<td>Electrical</td>
</tr>
<tr>
<td>Impact Area</td>
<td>Local Area</td>
</tr>
<tr>
<td>Time Restriction</td>
<td>Infrastructure First</td>
</tr>
</tbody>
</table>

INFRASTRUCTURE

<table>
<thead>
<tr>
<th>Types of Technology</th>
<th>AC Power, Cable Paths, HVAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation</td>
<td>Architect, Engineer Consultant</td>
</tr>
<tr>
<td>Construction</td>
<td>General Trades</td>
</tr>
<tr>
<td>Impact Area</td>
<td>Facility Wide</td>
</tr>
<tr>
<td>Time Restriction</td>
<td>Based on Construction Process</td>
</tr>
</tbody>
</table>
SYSTEMS & COMPONENTS

<table>
<thead>
<tr>
<th>Types of Technology</th>
<th>Voice, Video, Data Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation</td>
<td>Engineer, Consultant</td>
</tr>
<tr>
<td>Construction</td>
<td>Technology Trades</td>
</tr>
<tr>
<td>Impact Area</td>
<td>Facility Wide</td>
</tr>
<tr>
<td>Time Restriction</td>
<td>Follows Infrastructure</td>
</tr>
</tbody>
</table>

TECHNOLOGY IMPLEMENTATION PROCESS
STRATEGIC PLANNING
(Technology Frameworks & Macro-Budget)

Generate Courseware Standard

Generate Professional Development Standard

Generate Components & Systems Standard

Generate Infrastructure Standard

District Level

COURSEWARE STANDARD

District Level

Site Specific
TECHNOLOGY IMPLEMENTATION PROCESS

DISTRICT LEVEL

- Generate Courseware Standard
- Generate Professional Development Standard
- Generate Infrastructure Standard
- Needs Assessment
- Program Scope & Time Lines

SITE SPECIFIC (Reconcile To District Level)

- Site Implementation
- Site Implementation
- Site Implementation
- Site Implementation

STRATEGIC PLANNING

(Technology Frameworks & Macro-Budget)

- Generate Components & Systems Standard
- Generate Infrastructure Standard
- Needs Assessment & Site Mtgs
- Site Program Scope & Cost Estimate

Consultant

Interprets Program

Design Review

Bid & Award

Submittal Reviews

Site Reviews

Witness Proof Of Performance

Component Upgrades

Replace Obsolete Component

New Components For New Labs

Room Specific Infrastructure For Items Out Of Sequence With General Construction (Computer Labs, Science Lab, etc. ...)

© 1997 - Meek's Technology Group
<table>
<thead>
<tr>
<th>TECHNOLOGY IMPLEMENTATION CATEGORIES</th>
<th>TIME RESTRICTION</th>
<th>IMPACT AREA</th>
<th>CONSTRUCTION</th>
<th>IMPLEMENTATION</th>
<th>TYPES OF TECHNOLOGY</th>
<th>COMPLETION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORIES</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>COMPUTER (RAM, Hard Drive, Network Card)</td>
<td>DIRECT BY DISTRICT</td>
</tr>
<tr>
<td>G. UPGRADE COMPONENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COMPUTERS, PRINTERS, VIDEO DISPLAYS, AV SOURCES</td>
<td>DIRECT BY DISTRICT</td>
</tr>
<tr>
<td>O. REPLACE OBSOLETE COMPONENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COMPUTER LAB, APPLIED TECH LAB, SCIENCE LAB, PRODUCTION CTR</td>
<td>DIRECT BY DISTRICT</td>
</tr>
<tr>
<td>NEW COMPONENTS IN NEW AREA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC POWER CABLE PATH, HVAC</td>
<td>DISTRICT AGENTS (Architect, Engineer, Consultant)</td>
</tr>
<tr>
<td>NEW INFRASTRUCTURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOICE SYSTEMS, DATA SYSTEMS, VIDEO SYSTEMS</td>
<td>LOCAL TRADES</td>
</tr>
<tr>
<td>NEW SYSTEMS & NEW COMPONENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WIDE TRADES</td>
</tr>
</tbody>
</table>

©1997 - Meeks Technology Group
TECHNOLOGY PLANNING PARALLELS THE ARCHITECTURAL PROCESS

The Instructional Technology Program Requirements

© 1998 Meeks Technology Group

INSTRUCTIONAL PROGRAM REQUIREMENTS

Const. Program Bldg. Design (Interactive Basis) Technology Plan Is Developed (Interactive Basis) Merged In Schematics & DD Documents

© 1998 Meeks Technology Group
Merged In Schematics & DD Documents

General Trades

Educational Technology Systems (Bid on Separate Time Line)

Infrastructure (Power, HVAC, Conduits)

Implementation of Voice, Video, and Data

TWO LANGUAGES

The Language of the "Classroom"
The Language of the Engineer (Mfg. & Vendor)
Arch./Planner Understands the "Business" of the Classroom.

- Uses an Interactive Process to Determine Needs
- Direct Translation of User Needs
- Owner Buy In Occurs

Engineer Does Not Understand the "Business of the Classroom.

- Calculates an Outcome (Does Not Use An Interactive/People Process).
- Subject to Misunderstanding.
- No Buy-In

© 1998 Meeks Technology Group
CONCEPTUAL SYSTEMS DIAGRAM

© 1998 Meeks Technology Group
TECHNOLOGY MASTER PLANS

Building The Roadmap

Technology Changes the Business of the Classroom

The Majority of Teachers Have NOT Received Training Regarding How TO Use Instructional Technology In The Classroom (Presentation or Project Based)

©1996 Meeks Technology Group
IMPEDEMENTS TO CHANGE

- TIME
- SPACE
- MONEY
- ATTITUDES
- APPLICABLE TECHNOLOGY

The Primary Method to Assist People Embrace Change

Create a Sense of Ownership
OWNERSHIP

The Users Of Technology (or their representatives) Must Have Input Regarding The Issues Impacting Their Business (instruction in the classroom)

PLANNING PARTICIPANTS

COMMUNITY (Parents, Business)

STAFF (Technological and Non-Technological)

Students

Board
Effective Long Term Planning Focuses On Identity & Values/Belief

IDENTITY
WHO?

VALUES / BELIEFS
WHY?

CAPABILITIES
HOW?

BEHAVIOR
WHAT?

ENVIRONMENTS
Where? When? Whom? How Many?

©1996 Meeks Technology Group

PROCESS (Continued)

WHY PHONE?

WHY COMPUTER?

WHY VIDEO?

WHO ARE YOUR CLIENTS?

WHAT SKILLS/KNOW.
DO THEY NEED?

HOW TO USE TECH.?
WHEN A VISION DOES NOT EXIST

When People Act On Their Convictions

C = Convictions
A = Actions

VISION ALIGNS ALL ACTIONS
PROCESS (Continued)

DISTRICT ISSUES
(The Hindrances and Roadblocks, Political and Personnel.)

TECHNOLOGY FRAMEWORKS
(Technology Ed Specs of Every Space In Every Facility.)

© 1996 Meeks Technology Group
PROCESS (Continued)

IDEAL COST ESTIMATE
(Long-Term Funding Requirements)

DISTRICT GOAL
(Real Funds Available Placed Into A Timeline.)

Process Takes Two 2 Day Planning Labs and a Total of 90 Days From Initialization To Completion.

©1996 Meeks Technology Group

BUILDING SPECIFIC TECHNOLOGY PLAN

©1996 Meeks Technology Group
DISTRICT WIDE PLAN

TECHNOLOGY FRAMEWORK

BUILDING TECH COMMITTEE

ADMINISTRATIVE

INSTRUCTIONAL

VOICE VIDEO DATA

Building Specific Plan

PHASE ONE
INFRASTRUCTURE
ARCH / ENGR CONSULTANT
GENERAL TRADES
ELECTRICAL WORK

PHASE TWO
SYSTEMS
ARCH / ENGR CONSULTANT
SPECIAL TRADES
AS PART OF GENERAL CONST.
(10-6 Months Prior)

PHASE THREE
LOOSE EQUIPMENT
OWNER CONSULTANT
DIRECT TO OWNER
(4 Months Prior To First Use)

©1996 Meeks Technology Group
INFRASTRUCTURE
(Thirty or Forty Year Issues/Money)

- Locate All Potential Technology Points in Building
- Provide AC Power As Required
- Provide Cable Access As Required
- Meet HVAC Needs

©1996 Meeks Technology Group

TECHNOLOGY SYSTEMS
(Ten Year Issues/Money)

- Provide Bid Documents For System Which Support Goals (Voice, Video, and Data Systems)
- Provide Cabling With Systems
- Provide Training With Systems

©1996 Meeks Technology Group
LOOSE EQUIPMENT
(Three Year Issues/Money)

- Computers and Printers
- Courseware
- Library Systems
- Applied Technology Systems
- Special Applications

©1996 Meeks Technology Group
SUPPORT STAFF ORGANIZATION

EDUCATIONAL TECHNOLOGY SYSTEMS & SUPPORT

Technology Causes Overlap and Blurring of Traditional Support Categories

Duplicate Purchases - Incompatibility Issues
Who Is Responsible?

- Data Processing
- Computers
- Media Services
- Audio-Video Services
- Instructional Technology

Maximizing Technology Purchasing Power

Reorganize Support Structure to Eliminate Duplication and Incompatibility Issues
LARGE / SMALL DISTRICTS

- Larger Districts
 - Dedicated - Full Time Position
 - Multiple Specialists in Support of Leader

- Smaller Districts
 - One Person Wears Multiple Hats
 - Very Few Specialists

Regardless of size, all function areas require attention.

DIRECTOR OF TECHNOLOGY

- Responsibility and Authority for All Areas Related to Technology
- Instructional Orientation (Majority of Funds Are Spent In The Instructional Areas)
- Strong Management Skills
- Strong Communications and People Skills
RESPONSIBILITIES

- Articulate and Maintain Vision For Technology
- Oversee Tech. Systems and Support
 - Yearly Technology Budget Requests
 - Coordinate Tech. Support With Other Areas Within District
- Oversee Hardware and Software Purchases
- Facilitate Policy Definitions

REMAINING STAFF
OVERVIEW (2 CAMPS)

- Things People
 - Voice, Video, and Data Components & Networks
 - Computers
 - Cabling
 - Repair
- People People
 - Staff Development
 - Matching Curriculum and Content
 - Assessment and Evaluation
DIRECTOR OF SYSTEMS SUPPORT

- Working Knowledge of Voice, Video, and Data Systems
- Basic Knowledge of Education Environment
- Strong Management Skills
- Good Communications and People Skills

RESPONSIBILITIES

- Review Hardware and OS Software Purchases for Compatibility Issues
- Data Network Systems
 - Computer Repair and Maintenance
- Voice Systems
- Audio-Visual Systems
 - Phone & A/V Repair and Maintenance
- Co-Management of Help Desk
IS SPECIALIST

- Maintains Administrative Computing Servers and Software
 - Data Processing (Financials)
 - Student Services
 - Transportation
- Answers to Business Manager and Director of Technology Systems

NETWORK ADMINISTRATOR

- Maintains Instructional Servers and Related Software & Distribution
- Maintains Building Level LANs
 - Network Software (Directory Trees and IP Addressing - Internet Access)
 - Hubs, Switches, Router
 - Workstations Operating on LAN
- Maintains WAN
- Review Hardware Purchases
COMPUTER REPAIR/MAINT.

- Operates in Support of Network Administrators
- Responsible for Repair and Maintenance of All Computers, Monitors, Printers, and Related Peripherals

VOICE SYSTEMS

- Management of All Voice Systems
 - Phone Systems
 - Voice-Mail Systems
 - Intercom / Paging Systems
- Maintenance and Repair of Primary Systems
- Software Updates, Changes, Moves
VIDEO SYSTEMS

- Management of Video Systems
 - Video Distribution Systems
 - Media Retrieval
 - Distance Learning Systems
 - Video Production Systems
- Management of A/V Components
 - Displays - TVs, Projectors, etc..
 - A/V Sources - VCR, LD, DVD

A/V REPAIR & MAINTENANCE

- Operates in Support of Voice and Video Systems Personnel
- Repair and Maintenance for:
 - Phone System and Components
 - Intercom Systems
 - Video Systems
 - Displays
 - A/V Sources
SYSTEMS - HELP DESK

Real Time Help for Issues Related To:
- Desktop Operating System
- Desktop Hardware Issues
- Administrative Software
- E-Mail
- Data Network Functions
- Voice System Functions
- Video System Functions

DIRECTOR OF STAFF SUPPORT

Thorough Understanding of Curriculum and Instructional Program Functions
- Prior Experience of Integrating Technology Into Curriculum
- Prior Experience In Staff Development
- Strong Management Skills
- Good Communications and People Skills
RESPONSIBILITIES

- Review Courseware Purchases Matched to Curriculum/Instruction
- Manage Media Center and Services
 - Building Level Media Centers Services
- Manage Staff Development
 - District Level
 - Building Level
- Co-Management of Help Desk

DISTRICT MEDIA CENTER

- Setting Standards For All Media Centers
- Integration of Technology Into Media Centers and Related Services
 - Library Automation Systems
 - References - CD-ROM Tower, Etc...
 - Production Systems
CAMPUS MEDIA CENTERS

- Operates in Support of Information Delivery to Instructional Program
- Management of Campus Media Centers
 - Maintaining Records
 - Assist Users of Automation System
 - Operation of Productions Centers?
 - Maintain Reference Materials Which Are Not Paper Based
 - Copyright Policy

STAFF DEVELOPMENT and TECHNOLOGY INTEGRATION

- Areas of Training
 - Basic Technology Trouble Shooting
 - Standard Productivity Software (WP,DB,SS)
 - Internet Access and Use
 - Instructional Applications
 - Curriculum / Instructional Management
 - Assessment and Evaluation
CAMPUS LEVEL STAFF DEVELOPMENT PERSONNEL

- Operates as Campus Level Extension of District “SD and TI”.
- Available When Instructor Needs Help
- Total Focus On Integration of Technology, Via Any and All Methods, Into The Typical Classroom

STAFF SUPPORT - HELP DESK

- Real Time Help for Issues Related To:
 - **Standard Personal Productivity Software (WP, SS, DB, DTP)**
 - **Instructional Software**
 - **Curriculum / Instructional Management Software**
 - **Internet**
TECHNOLOGY
Infrastructure/Cabling

Preparing Your Building

AC POWER - AREAS OF CONCERN

- Major Voltage Drops
- Major Power Spikes and Surges
- Harmonic Feedback

© 1998 Meeks Technology Group
VOLTAGE DROPS & SURGES

- Voltage drops will cause computer to act like it has been turned off and back on.
 - Separate computer power from HVAC systems.
 - Install constant voltage transformer (expensive).
- Voltage spikes can damage power supply or components of the computer.
 - Use MOV (Metal Oxide Varistor) surge protectors.

© 1998 Meeks Technology Group

HARMONIC FEEDBACK

- Computer Power Supplies Generate Harmonic Feedback on Neutral Circuit.
 - One neutral conductor for every hot conductor or oversize neutral by 200%.
 - Electrical panel to transformer neutral must be oversized.
 - Provide transformers with correct "K" rating, minimum K-4. K rating means a larger secondary winding.

© 1998 Meeks Technology Group
TECHNOLOGY POWER IN THE CLASSROOM

- Therefore, Items Which Are No Longer A Concern.
 - Isolated ground outlets (special outlets).
 - Isolated ground circuits and transformers.
 - Separation of convenience power (general use power) and technology power within the classroom.

© 1998 Meeks Technology Group

TYPICAL POWER NEEDS

- Pentium Comp. - 1.25A
- 15"-17" Monitor - 1 A
- 21" Monitor - 1.5A
- Pentium Portable with CD-ROM - .5A
- Ink Jet Printer - .25A
- 5ppm Laser - 1.5A
- 12ppm Laser - 2.5A
- 31" TV - 3A
- Data Projector - 6A
- HP III Laser - 7.6A
- Apple IIe - 4.5A

© 1998 Meeks Technology Group
CLASSROOM POWER NEEDS

AC Power Requirements
1- 20 amp circuit handles six computers and one laser printer. Use power strips w/surge protection and noise filtering.

1- 20 amp circuit handles thirty-two pentium laptops w/CD-ROM and sound card.

Video Components
Provide four amps per room for video monitor, control system, and LCD panel w/overhead.

THEREFORE:

TYPICAL CLASSROOM (25 Students)
Two 20 amp circuits for general use and technology power - today and tomorrow. (Desk tops today, laptops tomorrow.)

TYPICAL COMPUTER LAB (25 Students)
Six 20 amp circuits for today's desk top computers and general power. However tomorrow's laptops need only two circuits per room.
HEADEND POWER NEEDS

- Fileservers and Network Components
 Provide 4 amps per fileserver, 1 amp per network component. All components are served by a UPS.

- Video Information System
 2 - 20 amp circuits for first two racks and one 20 amp circuit for every two racks thereafter.

- Telephone
 1 - 20 amp circuit. Provide surge protection for all trunks (telephone & data) entering building.

© 1998 Meeks Technology Group

HVAC REQUIREMENTS

- Classroom
 5 computers raise HVAC cooling needs by 25%. 20 computers will double HVAC cooling needs.

- Headend
 All headend rooms are cooled "YEAR ROUND". Small systems require 5,000 btu cooling capacity. Large headends require 12,000 btu capacity.

© 1998 Meeks Technology Group
CABLE TRAYS and CONDUIT

- Primary Cable Runs
 - Cable Trays (Mono Support Systems)
 - Wireways
 - Cable Supports (Bridle Rings) Typical for Renovations/Retrofits

- Classroom Cable Runs
 - Three sleeves (1.25") in hallway wall
 - In-wall conduit stubbed above ceiling
 (Stubs should have nylon bushings over ends)
 - Surface mounted wireway and wiremold

© 1998 Meeks Technology Group

CABLE ROUTE LAYOUTS

Methods For Connecting Devices

© 1998 Meeks Technology Group
POINT - TO - POINT
(Home Run Cabling)

SYSTEM TYPES
Video Networks
Modem Access Lines
Telephone Networks

© 1998 Meeks Technology Group

BUS WIRING (Traditional Ethernet)

Daisy Chain Type Systems

© 1998 Meeks Technology Group
LOGICAL STAR
(From Data Concentrator)

SYSTEM TYPES
Data Networks

Single Head End

Remote Port
Max 300 Ft
Remote Port
Remote Port
Remote Port

© 1998 Meeks Technology Group

LOGICAL RING

Data Network

Max Loop
400 to 900 Ft

© 1998 Meeks Technology Group
BUS and LOGICAL STAR
(Ethernet with remote concentrators/hubs)

RING and LOGICAL STAR
(Typical Token Ring with MAU or CAU Units)
COLLAPSSED BACKBONE

Fiber Cable
Max 2000 meters

Central Head End Equipment

Remote Hub in Classroom

Remote Hub in Classroom

Clrm. Port

Clrm. Port

Clrm. Port

Clrm. Port

Clrm. Port

Clrm. Port

© 1998 Meeks Technology Group

COST COMPARISON

- Distributed Ethernet (Wiring Closets)
 - 4 Cat 5 @ 200 Ft
 - 20% Wastage = 40 Ft
 - 960 Ft @ $.38/Ft ($365)
 - 8 hours/1000 Ft
 - $40/hr ($320)
 - Total Cost $685
 - Contractor Mark-up 1.4
 - $959

- Collapsed Backbone
 - 4 F.O. Strands @200 Ft.
 - 20% Wastage = 40 Ft
 - 240 Ft @ $.95/Ft ($228)
 - 8 Hours / 1000 Ft
 - 2.5 hrs @ $40/hr ($100)
 - Total Cost $328
 - Contractor Mark-up 1.4
 - $460

© 1998 Meeks Technology Group
PRIMARY INFLUENCE ON
NETWORK CAPACITY

HOW LARGE ARE THE FILES
WE SEND ACROSS THE
NETWORK?

© 1998 Meeks Technology Group

A REVIEW OF FILE SIZES

- E-Mail (1-2KB) 1986
- Single Page Spreadsheet (15-20KB) 1986
- Word Processor Document (5pg) (20-40KB)
- 60 Page Integrated Document (1 MB)
- MS Office "Binder" SS,WP (400KB)
- Multimedia documents (Audio, Video, Graphics, Text, Spreadsheets, Animation) (5-10MB)

© 1998 Meeks Technology Group
EXPECTED FILE SIZES

IF

- 1986 - 10KB
- 1996 - 1MB

THEN

- 1996 - 1MB
- 2006 - 10GB

© 1998 Meeks Technology Group

FILE SIZE AND DELIVERY SPEED

- 1MB Internet File At 28.8Kbps (10 Minutes)
 Throughput = 1.66 Kb/s
- 1 MB File on 10Mb/s Ethernet (10 Seconds)
 Throughput = 100Kb/s
- Keith Sweat MTV Video
 - 2.4 Kb/s Modem (46 hours 40 minutes)
 - 28.8 Kb/s Modem (4 hours 45 minutes)
 - ISDN - 128 Kb/s (1 hour 12 minutes)
 - T-1 - 1.54 Mb/s (5 minutes)
 - 6 Mb/s Cable Modem (85 seconds)

© 1998 Meeks Technology Group
THE ISSUE IS SPEED

How Do We Obtain That Speed?

© 1998 Meeks Technology Group

TYPES/SPEED OF DATA NETWORKS

- LocalTalk (Apple) (256Kbs)
- Baseband (1Mbps)
- Ethernet Thinnet (10Base2) (10Mbps)
- Ethernet Twisted Pair (10BaseT) (10Mbps)
- Token Ring (16Mbps)
- Fast Ethernet (100Mbps)
- Gigabit Ethernet (1Gbps)
- Asynchronous Transfer Mode (ATM) (25 Mbps, 50Mbps, 100Mbps, 155Mbps Up to 2.6 Mbps)

© 1998 Meeks Technology Group
EXPECTED NETWORK SPEED REQUIREMENTS

IF

- 1986 - 1.2Kb/s
- 1996 - 10Mb/s

THEN

- 1996 - 10Mb/s
- 2006 - 100Gb/s

© 1998 Meeks Technology Group

WIRELESS NETWORKS

How Do They Measure Up?

© 1998 Meeks Technology Group
THERE ARE TWO BIG PROBLEMS FOR WIRELESS SYSTEMS IN BUILDINGS.

- Law of Supply and Demand
 - Users Will Pay a Fee
- Speed
 - AT&T - PCS Digital Service - 2400 bps
 - Area Wide Radio Frequency Systems - 1 Mb/s
 - Fastest Infrared Dome - 1Mb/s
 - First 10Mb/s RF System was Recalled.
- Wireless Will Always Lag Behind Cable.

© 1998 Meeks Technology Group

BETWEEN BUILDINGS (WAN)

Wireless systems are available up to speeds of 10 Mb/s at reasonable prices and distances up to 20 miles. Therefore, wireless systems between buildings can provide excellent capacity at reasonable prices.

© 1998 Meeks Technology Group
CABLING

What To Do?

© 1998 Meeks Technology Group

PHILOSOPHY

- Curriculum drives the Technology, therefore it drives cable requirements. You should not choose your cable until you've chosen the technologies (and associated budget) you will utilize.

- The contractor responsible for making a technology operate should be responsible for installing that technology's cable.

© 1998 Meeks Technology Group
CABLE TYPES

<table>
<thead>
<tr>
<th>MHz</th>
<th>Mbps</th>
<th>Distance</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>.15</td>
<td>NA/Obsolete</td>
<td>NA</td>
</tr>
<tr>
<td>Category 2</td>
<td>1</td>
<td>100m</td>
<td>Baseband</td>
</tr>
<tr>
<td>Category 3</td>
<td>16</td>
<td>100m</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Category 4</td>
<td>20</td>
<td>100m</td>
<td>Token Ring</td>
</tr>
<tr>
<td>Category 5</td>
<td>100</td>
<td>100m</td>
<td>All</td>
</tr>
<tr>
<td>IBM Type 1</td>
<td>20</td>
<td>100m</td>
<td>Token Ring</td>
</tr>
<tr>
<td>RG-58 Coax</td>
<td>16</td>
<td>185m</td>
<td>Ethernet</td>
</tr>
<tr>
<td>RG-213</td>
<td>16</td>
<td>500m</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Cable TV</td>
<td>300</td>
<td>.056 to 10</td>
<td>400m</td>
</tr>
</tbody>
</table>

© 1998 Meeks Technology Group

FIBER OPTIC CABLE

<table>
<thead>
<tr>
<th>MHz</th>
<th>Mbps</th>
<th>Distance</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimode</td>
<td>600</td>
<td>1Gbs+?</td>
<td>5km</td>
</tr>
<tr>
<td>Singlemode</td>
<td>1400</td>
<td>3Gbs+?</td>
<td>50km</td>
</tr>
</tbody>
</table>

© 1998 Meeks Technology Group

87
CABLE FUTURES COMPARISONS

Cable TV
Category 4
IBM Type 1
RG-213
Singlemode

© 1998 Meeks Technology Group

FUTURE PROOFING YOUR BUILDING

- Category 5 UTP (copper) For Data
- Category 5 UTP (copper) For Voice
- RG-6 Coax for Cable TV Distribution
- Four Strands of Fiber (Tight Buffer)

© 1998 Meeks Technology Group
CABLE and CONDUIT
TYPICALS and LAYOUTS

Preparing Your Building

© 1998 Meeks Technology Group

CONCEPTUAL DIAGRAM - INFRASTRUCTURE CAPACITY
TYPICAL INSTRUCTIONAL SPACE
To POWER DIST. PANEL

1" Conduit w/ Nylon Bushing for Box Support & Stubbed

Located at Ceiling Level Directly Behind Rear of Projector

To Power Dist. Panel

(2) - 1" Conduit w/ Nylon Bushings Stubbed Above Ceiling

DUPLEX POWER OUTLET

2 GANG BOX

TYPICAL CEILING VIDEO PROJECTOR LOCATION
SYMBOL CVP

1" Conduit w/ Nylon Bushing Stubbed Above Ceiling

TO POWER DISTRIBUTION PANEL

CEILING LINE

2 Gang Box

2 DUPLEX AC OUTLETs

18" AFF

FLOOR LINE

TYPICAL DATA LOCATION
SYMBOL C2

3/4" Conduit from Floor Pocket to Power Distrib. Panel

1" Conduit from Floor Pocket & Stubbed Above Ceiling

Floor Pocket With Lift Top and Divider (Separate Data and Power Conduits Feed Each Divided Section) Provide Four Data and Four Power Outlets

FLOOR LINE

AMP (Access Floor Workstation Module)
557601 (5G), 558716 (3G), 558718 (2G)
Concrete Form Box - Barthelms #U13806

TYPICAL FLOOR POCKET DATA LOCATION
SYMBOL FP
To Power Distribution Panel

(2) - 1" Conduit w/ Nylon Bushings Stubbed Above Ceiling

CEILING LINE

Location of Power and 2 Gang Box is Behind Video Display

DUPLEX POWER OUTLET

2 Gang Box

BOXES LOCATED AT OPPOSITE END OF DEMO TABLE FROM GAS AND WATER

Floor Line

1" Conduit

TYPICAL VIDEO DISPLAY LOCATION
SCIENCE LAB

SLV-M

SLV-I

TYPICAL VIDEO LOCATION
COUNTERTOP

Symbol CIC

© Meeks Technology Group

PROJECT: MTG - Standards
DATE: 1/11/97
BY: GEM

94
To Power Distribution Panel

(2) - 1" Conduit w/ Nylon Bushings Stubbed Above Ceiling

CEILING LINE

QUAD POWER OUTLET

Flush Mounted 2 Gang Box

18" AFF

3" Deep Box with Lockable Cover & 3 Gang Plate 3/4" Behind Door

FLOOR LINE

TYPICAL PROTECTED VIDEO PORT LOCATION
Symbol PVP

FLOOR or ROOF DECK

Locate Exit of Conduit Near Junction of Wall and Deck.
Enable Communication Cable To Be Hidden on Roof Truss or Floor Deck Supports (Hide All Cables).

Conduit From Communication Box

Conduit to Power Distribution Panel

Wall

Wall Box(es)

FLOOR LINE

TYPICAL CONDITION - NO CEILING SYSTEM

© Meeks Technology Group
209 New Edition Ct. - Cary, NC 27511
919.468.9595
IMPLEMENTATION COSTS FOR EDUCATIONAL TECHNOLOGY SYSTEMS

MACRO BUDGET COSTS

- Per Student Basis - $1500 to $2000
- Square Footage Basis
 - Basic Systems @ $3 to $5/sq. ft.
 - Maximized Systems @ $7 to $10/sq. ft.
MACRO BUDGET COSTS

- Instructional Stations Basis
 - Voice, Video, Data w/1 Computer and Printer $10,000 per room
 - With 6 Computers, $25,000 per space

BASE LINE CATEGORIES

- Infrastructure Cost
- Systems
- Staff Development
- Staff Support
- Courseware
- Maintenance & Upgrades
BASE LINE CATEGORIES

✿ Infrastructure Cost
 - New Construction - $1500 per classroom equivalent
 - Renovation/Modernization - $1500 per classroom equivalent

✿ Data Systems Cost
 - Simple Ethernet Network - $350 per port
 - Distributed Ethernet Network - $450 per port
 - Collapsed Backbone Ethernet Network
 † $450 per primary port
 ‡ $225 per secondary port
BASE LINE CATEGORIES

- Computers
 - Teacher Workstations - $2500 each
 - Student Workstations - $1900 each
 - Multi-Media/Reference Stations - $2800
 - Fileservers - $10,000 each
 - Software - 10%
 - Production Systems

BASE LINE CATEGORIES

- Video System Cost
 - Video Display w/installation - $1000 per location
 - Video Distribution - $750 per location
 - Media Retrieval - $2750 per location
 - Video Content - 10%
BASE LINE CATEGORIES

 Voice System Cost
 - Public Address Systems - $150 per speaker
 - PBX Phone System - $500 per line
 - Voice Mail Systems - $8K, 12K, 16K

Determining Types and Quantities of Spaces
TYPES OF SPACES

- Instructional Space

TYPES OF SPACES

- Computer Lab
TYPES OF SPACES

» Flex Space

TYPES OF SPACES

» Media Center
TYPES OF SPACES

- Office

QUANTITY OF SPACES

- 1 Classroom = 1 Classroom
- 1 Computer Lab = 2 Classrooms
- 3 Flex Spaces = 1 Classroom
- 6 Offices = 1 Classroom
- 1 Media Center = 2 Classrooms
Personnel involved in planning or developing schools have cost estimating tools which enable them to determine construction macro-budgets from simplified data structures. Unfortunately, they do not have similar tools that enable them to determine educational technology costs for those same projects. The following is an overview of the process and general costs used in estimating educational technology systems on a macro-budget basis. Facility planners, architects, and school facility personnel can use this process to determine budgets during the bond planning, preliminary project planning and schematic stages of facility projects.

Based on data from more than thirty projects, we have developed simple cost estimates for technology systems based on a per-port system. Obviously, these costs will vary based on the region of the country you are in and the competency level and quantity of technology contractors available to you. Costs and components for each system listed below are based on facilities in the Midwest with an average of 35 instructional spaces. Please note – as buildings become smaller, the per port price increases.

BASE LINE COST CATEGORIES AND PRICES

Infrastructure

<table>
<thead>
<tr>
<th>Construction Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>$1,500 for each classroom equivalent</td>
</tr>
<tr>
<td>One additional 20-Amp 110VAC circuit—Six empty data box drops & six duplex outlets.</td>
<td></td>
</tr>
<tr>
<td>Renovation/Modernization</td>
<td>$3,000 for each classroom equivalent</td>
</tr>
<tr>
<td>One new 20-Amp 110VAC circuit—Six empty data box drops & six duplex outlets,surface mounted.</td>
<td></td>
</tr>
<tr>
<td>NOTE: For additional electrical service to building, add minimum $50,000.</td>
<td></td>
</tr>
</tbody>
</table>

Data Systems

Simple Ethernet Network

- (One head end) $350 per port. Includes head end port, patch cord and patch panel, Category 5 copper cable to user port including connectors and labor, jumper cable from wall to computer, and computer set-up.

Distributed Ethernet Network

- (Head end with remote closets) $450 per port. Includes head end equipment and fiber port, six strand fiber cable to remote cabinet locations including connectors and labor. Also includes remote data closest location with remote head end port, patch cord and patch panel, Category 5 copper cable to use port including connectors and labor, jumper cable from wall to computer or printer, and set up of printer or computer.

Collapsed Backbone Ethernet Network

- (Head end with hub in every classroom) $450 for first port (primary) in room; $225 per port (secondary) thereafter. Includes head end equipment and fiber port for each room, four strand fiber cable to each classroom, connectors and labor for installation, and a small (6 or 8 port) dumb hub in each room. Category 5 copper cable is run from the hub in the room to each data port location required.
<table>
<thead>
<tr>
<th>Computers</th>
<th>Medium high end computer (150 MHz), includes Network Interface Card @ $100 and printer allowance of $400.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Workstations
$2,500 each.</td>
<td>Lower end computers (100 MHz), includes Network Interface Card @ $100 and printer allowance of $200.</td>
</tr>
<tr>
<td>Student Workstations
$1,900 each.</td>
<td>High end performance computer with sound board, speakers (headsets), multi-speed CD-ROM drive.</td>
</tr>
<tr>
<td>Multi-Media/Reference Stations
$2,800 each</td>
<td>Includes Network Interface Card @ $100, printer allowance of $400.</td>
</tr>
<tr>
<td>Fileservers
$10,000 each</td>
<td>Provide one fileserver for every 50 computers.</td>
</tr>
<tr>
<td>Computer Content
10%</td>
<td>Determine total value of computer purchases and add 10% for software content purchases. (Special content—administrative and library software packages are additional costs.)</td>
</tr>
<tr>
<td>Production Systems</td>
<td>Video and computer components for students and staff to generate content. Minimum of: $15K/elementary school; $25K/middle school; $40K/high school.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Video System</th>
<th>Includes a 31" display installed with monitor mount and local inputs down low for use with movable video equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Display with Installation
$1,000 per location.</td>
<td>Includes a coaxial cable TV distribution system throughout facility and one steerable C/Ku satellite antenna with receiver/tuner.</td>
</tr>
<tr>
<td>Video Distribution
$750 per location.</td>
<td>Includes the head end equipment and source for a media retrieval system.</td>
</tr>
<tr>
<td>Media Retrieval
$2,750 per location.</td>
<td>Take 10% of the total video budget and set aside for purchase of video content which is intended for use on the video system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Video Content</th>
<th>Includes master clock, tone generator, zonal interface, PBX interface, and power amplifier at head end. Additionally, the cable running to the speaker and speaker with back box or surface mounted box are included.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Address Systems
$150 per speaker.</td>
<td>Includes PBX switch port, cabling to phone, connectors and labor, and phone instrument. Include four lines for voice mail and the lines coming to the building.</td>
</tr>
<tr>
<td>PBX Phone System
$500 per line.</td>
<td>Add as follows: $8K/elementary school; $12K/middle school; $16K/high school.</td>
</tr>
</tbody>
</table>

| Professional Development | Determine your total budget and set aside 5-10% of it for professional development costs associated with the installation of educational technology systems. |
DETERMINING QUANTITIES OF EACH TYPE OF TECHNOLOGY CATEGORY

A feel for the quantity and types of space required is determined during the preliminary stages of project design. These spaces can be divided into the following five types of spaces.

- **Instructional Space** — These spaces are defined as any location where student instruction will take place 80% of the school day. For example, classrooms and science labs would be considered instructional spaces. NOTE: Media centers, which contain instruction areas, are considered instructional spaces with extra computers and offices.

- **Computer Lab** — Defined as any space with a large concentration of computers where the primary instructional functions are delivered via one computer for every student. These may include smaller project labs (8-12 computers) and larger computer labs (20-35 computer stations).

- **Flex Space** — This is a location where instruction utilizes the space for less than 80% of the instructional day but still requires some type of technology support of the instruction program delivered. Typically, these areas include a cafeteria, gymnasium, conference room and/or auditorium.

- **Media Center** — Typically, media centers contain multiple implementations of technology. Where applicable, portions of a media center may be considered classrooms, computer labs, or offices. Additionally, these center will have computers related to a library automation system and multi-media stations available for research and remote data access functions.

- **Office** — An office is any smaller location which is not typically utilized for instructional functions yet the person occupying the space needs access to a phone and a data port for a computer. The space can be an office, a cubicle, or simply a desk. Personnel (and therefore their spaces) whom we categorize as requiring office space would be administrators, secretaries, counselors, nurses, teacher offices, and custodians.

Based on the instructional or administrative needs of the facility, a simple technology program description must be developed for each type of space. The program description should outline the specific technology planned for the space, [i.e., the Instruction Space will have one teacher computer with a printer, two student computers with one printer (yielding five data ports), a telephone, a video display and output from a video distribution system with media retrieval capacity, and a public address speaker.] Additionally, will you need to upgrade the infrastructure in an existing building or add infrastructure to the scope of a new building?

From the Types of Spaces count and the Technology Program Description of each space, you then can create a matrix which lists the number of ports or components in each space. A subsequent matrix should multiply the number of components times the quantity of each space and then total the ports and components of the same nature. Once you have determined the number of each type of port or component, add 10% spares to the quantity and sum.

DETERMINING EDUCATIONAL TECHNOLOGY BUDGET

- **Infrastructure**

 To arrive at a total cost of infrastructure, you must determine the number of classroom equivalents. Using a classroom as the base, the cost of all other types of space is calculated as a portion of, or as an increase to a typical classroom. The ratios used are as follows:

 Classroom: 1=1 Computer Lab: 1=2 Flex Space: 3=1 Office: 6=1 Media Center: 1=2

 Once your classroom equivalents have been determined, multiply them times the new construction or renovation cost to determine your infrastructure budget.

- **Systems**

 To determine your Educational Technology Systems costs, use the total sum of each type of technology port or component, then simply multiply the quantity times the port or component costs. For the computers and video, add in your content and production costs. For the phone, add in your voice-mail costs. Add 5-10% for professional development costs, and 5% of the total as a contingency budget.

By utilizing this macro-budgeting process, you should be able to arrive at an Educational Technology Systems budget that can be used throughout the planning process.
EDUCATIONAL TECHNOLOGY BUDGET WORKSHEET

PROJECT: New Construction or Renovation

ROOM TOTALS

<table>
<thead>
<tr>
<th>ROOM TYPE</th>
<th>Quantity</th>
<th>Video Display</th>
<th>Video Distribution</th>
<th>Media Retrieval</th>
<th>Phone</th>
<th>Primary Data port</th>
<th>Secondary Data port</th>
<th>Teacher Workstation</th>
<th>Student Workstation</th>
<th>MultiMedia Workstation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instr Spaces</td>
<td></td>
</tr>
<tr>
<td>Computer Lab</td>
<td></td>
</tr>
<tr>
<td>Flex Spaces</td>
<td></td>
</tr>
<tr>
<td>Media Center</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Infrastructure:

Total Rooms x Infra Cost = Total

Data Systems:

Total Ports x Per Port Cost = Total

Computers:

Total TWS x Per Unit Cost = Subtotal
Total SWS x Per Unit Cost = Subtotal
Total MMWS x Per Unit Cost = Subtotal

TOTAL

Video:

Total Displays x Per Unit Cost = Subtotal
Total Distrib x Per Unit Cost = Subtotal
Total Media Retrieval x Per Unit Cost = Subtotal

TOTAL

Voice:

Phones

Cost Per School
Public Address

Total Speakers x Per Unit Cost = Total

Totals:

Infrastructure =
Data =
Computers =
Video =
Phones =
TECHNOLOGY TOTAL =
Software (10%) =
Video Content (10%) =
Staff Development (5% - 10%) =
Contingency (5%) =
OTHER TOTAL =

PROJECT TOTAL =

ISSUETRAK is prepared by The Council of Educational Facility Planners, International as a service to its membership.

CEFPI wishes to thank Glenn E. Meeks REFP, Ricki Fisher and Warren Loveless of the Meeks Technology Group, headquartered in Cary, North Carolina, for their invaluable time and expertise in preparing this brief.
Personnel involved in planning or developing schools have cost estimating tools which enable them to determine construction macro-budgets from simplified data structures. Unfortunately, they do not have similar tools that enable them to determine educational technology costs for those same projects. The following is an overview of the process and general costs used in estimating educational technology systems on a macro-budget basis. Facility planners, architects, and school facility personnel can use this process to determine budgets during the bond planning, preliminary project planning and schematic stages of facility projects.

Based on data from more than thirty projects, we have developed simple cost estimates for technology systems based on a per-port system. Obviously, these costs will vary based on the region of the country you are in and the competency level and quantity of technology contractors available to you. Costs and components for each system listed below are based on facilities in the Midwest with an average of 35 instructional spaces. Please note — as buildings become smaller, the per port price increases.

BASE LINE COST CATEGORIES AND PRICES

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>$1,500 for each classroom equivalent</td>
</tr>
<tr>
<td>Additional 20-Amp 110VAC circuit— Six empty data box drops & six duplex outlets.</td>
<td></td>
</tr>
<tr>
<td>Renovation/Modernization</td>
<td>$3,000 for each classroom equivalent</td>
</tr>
<tr>
<td>One new 20-Amp 110VAC circuit— Six empty data box drops & six duplex outlets, surface mounted.</td>
<td></td>
</tr>
<tr>
<td>NOTE: For additional electrical service to building, add minimum $50,000.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Ethernet Network</td>
<td>(One head end) $350 per port.</td>
</tr>
<tr>
<td>Includes head end port, patch cord and patch panel, Category 5 copper cable to user port including connectors and labor, jumper cable from wall to computer, and computer set-up.</td>
<td></td>
</tr>
<tr>
<td>Distributed Ethernet Network</td>
<td>(Head end with remote closets) $450 per port.</td>
</tr>
<tr>
<td>Includes head end equipment and fiber port, six strand fiber cable to remote cabinet locations including connectors and labor. Also includes remote data closest location with remote head end port, patch cord and patch panel, Category 5 copper cable to use port including connectors and labor, jumper cable from wall to computer or printer, and set up of printer or computer.</td>
<td></td>
</tr>
<tr>
<td>Collapsed Backbone Ethernet Network</td>
<td>(Head end with hub in every classroom) $450 for first port (primary) in room; $225 per port (secondary) thereafter.</td>
</tr>
<tr>
<td>Includes head end equipment and fiber port for each room, four strand fiber cable to each classroom, connectors and labor for installation, and a small (6 or 8 port) dumb hub in each room. Category 5 copper cable is run from the hub in the room to each data port location required.</td>
<td></td>
</tr>
</tbody>
</table>
Computers

<table>
<thead>
<tr>
<th>Type</th>
<th>Description and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Workstations</td>
<td>Medium high end computer (150 MHz), includes Network Interface Card @ $100 and printer allowance of $400.</td>
</tr>
<tr>
<td>$2,500 each.</td>
<td></td>
</tr>
<tr>
<td>Student Workstations</td>
<td>Lower end computers (100 MHz), includes Network Interface Card @ $100 and printer allowance of $200.</td>
</tr>
<tr>
<td>$1,900 each.</td>
<td></td>
</tr>
<tr>
<td>Multi-Media/Reference Stations</td>
<td>High end performance computer with sound board, speakers (headsets), multi-speed CD-ROM drive.</td>
</tr>
<tr>
<td>$2,800 each</td>
<td></td>
</tr>
</tbody>
</table>

Fileservers

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fileservers</td>
<td>Provide one fileserver for every 50 computers.</td>
</tr>
<tr>
<td>$10,000 each</td>
<td></td>
</tr>
</tbody>
</table>

Computer Content

<table>
<thead>
<tr>
<th>Type</th>
<th>Description and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Content 10%</td>
<td>Determine total value of computer purchases and add 10% for software content purchases. (Special content—administrative and library software packages are additional costs.)</td>
</tr>
</tbody>
</table>

Production Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Systems</td>
<td>Video and computer components for students and staff to generate content. Minimum of: $15K/elementary school; $25K/middle school; $40K/high school.</td>
</tr>
</tbody>
</table>

Video System

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Display with Installation</td>
<td>Includes a 31" display installed with monitor mount and local inputs down low for use with movable video equipment</td>
</tr>
<tr>
<td>$1,000 per location.</td>
<td></td>
</tr>
<tr>
<td>Video Distribution</td>
<td>Includes a coaxial cable TV distribution system throughout facility and one steerable C/Ku satellite antenna with receiver/tuner.</td>
</tr>
<tr>
<td>$750 per location.</td>
<td></td>
</tr>
<tr>
<td>Media Retrieval</td>
<td>Includes the head end equipment and source for a media retrieval system.</td>
</tr>
<tr>
<td>$2,750 per location.</td>
<td></td>
</tr>
<tr>
<td>Video Content</td>
<td>Take 10% of the total video budget and set aside for purchase of video content which is intended for use on the video system.</td>
</tr>
</tbody>
</table>

Voice Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Address Systems</td>
<td>Includes master clock, tone generator, zonal interface, PBX interface, and power amplifier at head end. Additionally, the cable running to the speaker and speaker with back box or surface mounted box are included.</td>
</tr>
<tr>
<td>$150 per speaker.</td>
<td></td>
</tr>
<tr>
<td>PBX Phone System</td>
<td>Includes PBX switch port, cabling to phone, connectors and labor, and phone instrument. Include four lines for voice mail and the lines coming to the building.</td>
</tr>
<tr>
<td>$500 per line.</td>
<td></td>
</tr>
<tr>
<td>Voice Mail Systems</td>
<td>Add as follows: $8K/elementary school; $12K/middle school; $16K/high school.</td>
</tr>
</tbody>
</table>

Professional Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Development</td>
<td>Determine your total budget and set aside 5-10% of it for professional development costs associated with the installation of educational technology systems.</td>
</tr>
</tbody>
</table>

A CEFPI Brief on Educational Facility Issues
DETERMINING QUANTITIES OF EACH TYPE OF TECHNOLOGY CATEGORY

A feel for the quantity and types of space required is determined during the preliminary stages of project design. These spaces can be divided into the following five types of spaces.

- **Instructional Space** — These spaces are defined as any location where student instruction will take place 80% of the school day. For example, classrooms and science labs would be considered instructional spaces. NOTE: Media centers, which contain instructional areas, are considered instructional spaces with extra computers and offices.

- **Computer Lab** — Defined as any space with a large concentration of computers where the primary instructional functions are delivered via one computer for every student. These may include smaller project labs (8-12 computers) and larger computer labs (20-35 computer stations).

- **Flex Space** — This is a location where instruction utilizes the space for less than 80% of the instructional day but still requires some type of technology support of the instruction program delivered. Typically, these areas include a cafeteria, gymnasium, conference room and/or auditorium.

- **Media Center** — Typically, media centers contain multiple implementations of technology. Where applicable, portions of a media center may be considered classrooms, computer labs, or offices. Additionally, these centers will have computers related to a library automation system and multi-media stations available for research and remote data access functions.

- **Office** — An office is any smaller location which is not typically utilized for instructional functions yet the person occupying the space needs access to a phone and a data port for a computer. The space can be an office, a cubicle, or simply a desk. Personnel (and therefore their spaces) whom we categorize as requiring office space would be administrators, secretaries, counselors, nurses, teacher offices, and custodians.

Based on the instructional or administrative needs of the facility, a simple technology program description must be developed for each type of space. The program description should outline the specific technology planned for the space, [i.e., the Instruction Space will have one teacher computer with a printer, two student computers with one printer (yielding five data ports), a telephone, a video display and output from a video distribution system with media retrieval capacity, and a public address speaker.] Additionally, will you need to upgrade the infrastructure in an existing building or add infrastructure to the scope of a new building?

From the Types of Spaces count and the Technology Program Description of each space, you then can create a matrix which lists the number of ports or components in each space. A subsequent matrix should multiply the number of components times the quantity of each space and then total the ports and components of the same nature. Once you have determined the number of each type of port or component, add 10% spares to the quantity and sum.

DETERMINING EDUCATIONAL TECHNOLOGY BUDGET

- **Infrastructure**
 To arrive at a total cost of infrastructure, you must determine the number of classroom equivalents. Using a classroom as the base, the cost of all other types of space is calculated as a portion of, or as an increase to a typical classroom. The ratios used are as follows:
 - Classroom: 1:1
 - Computer Lab: 1:2
 - Flex Space: 3:1
 - Office: 6:1
 - Media Center: 1:2

 Once your classroom equivalents have been determined, multiply them times the new construction or renovation cost to determine your infrastructure budget.

- **Systems**
 To determine your Educational Technology Systems costs, use the total sum of each type of technology port or component, then simply multiply the quantity times the port or component costs. For the computers and video, add in your content and production costs. For the phone, add in your voice-mail costs. Add 5-10% for professional development costs, and 5% of the total as a contingency budget.

By utilizing this macro-budgeting process, you should be able to arrive at an Educational Technology Systems budget that can be used throughout the planning process.
EDUCATIONAL TECHNOLOGY BUDGET WORKSHEET

PROJECT: New Construction or Renovation

ROOM TOTALS

<table>
<thead>
<tr>
<th>ROOM TYPE</th>
<th>Quantity</th>
<th>Video Display</th>
<th>Video Distribution</th>
<th>Media Retrieval</th>
<th>Phone</th>
<th>Primary Data port</th>
<th>Secondary Data port</th>
<th>Teacher Workstation</th>
<th>Student Workstation</th>
<th>MultiMedia Workstation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instr Spaces</td>
<td></td>
</tr>
<tr>
<td>Computer Lab</td>
<td></td>
</tr>
<tr>
<td>Flex Spaces</td>
<td></td>
</tr>
<tr>
<td>Media Center</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Infrastructure:

\[
\text{Total Rooms} \times \text{Infra Cost} = \text{Total}
\]

Data Systems:

\[
\text{Total Ports} \times \text{Per Port Cost} = \text{Total}
\]

Computers:

\[
\begin{align*}
\text{Total TWS} \times \text{Per Unit Cost} &= \text{Subtotal} \\
\text{Total SWS} \times \text{Per Unit Cost} &= \text{Subtotal} \\
\text{Total MMWS} \times \text{Per Unit Cost} &= \text{Subtotal} \\
\text{TOTAL} &= \text{Total}
\end{align*}
\]

Video:

\[
\begin{align*}
\text{Total Displays} \times \text{Per Unit Cost} &= \text{Subtotal} \\
\text{Total Distrib} \times \text{Per Unit Cost} &= \text{Subtotal} \\
\text{Total Media Retrieval} \times \text{Per Unit Cost} &= \text{Subtotal} \\
\text{TOTAL} &= \text{Total}
\end{align*}
\]

Voice:

\[
\begin{align*}
\text{Total Phones} \times \text{Per Unit Cost} &= \text{Total} \\
\text{Cost Per School} &= \text{Total} \\
\text{Total Speakers} \times \text{Per Unit Cost} &= \text{Total}
\end{align*}
\]

Totals:

\[
\begin{align*}
\text{Infrastructure} &= \text{Total} \\
\text{Data} &= \text{Total} \\
\text{Computers} &= \text{Total} \\
\text{Video} &= \text{Total} \\
\text{Phones} &= \text{Total} \\
\text{TECHNOLOGY TOTAL} &= \text{Total}
\end{align*}
\]

\[
\begin{align*}
\text{Software (10\%)} &= \text{Total} \\
\text{Video Content (10\%)} &= \text{Total} \\
\text{Staff Development (5\% - 10\%)} &= \text{Total} \\
\text{Contingency (5\%)} &= \text{Total} \\
\text{OTHER TOTAL} &= \text{Total}
\end{align*}
\]

\[
\text{PROJECT TOTAL} = \text{Total}
\]

ISSUETRAK is prepared by The Council of Educational Facility Planners, International as a service to its membership.

CEFPI wishes to thank Glenn E. Meeks REFP, Ricki Fisher and Warren Loveless of the Meeks Technology Group, headquartered in Cary, North Carolina, for their invaluable time and expertise in preparing this brief.
VOICE NETWORKS

Basic Concepts and System Types

© 1998 Meeks Technology Group

Conceptual Overview

YOUR HOME PHONE

Local C.O. (Central Office or Exchange)

Distribution Method "TRUNK LINES"

Your Home Phone
My Home Phone
His Home Phone
Her Home Phone
Their Home Phone

A Couple of Miles

© 1998 Meeks Technology Group
Conceptual Overview
YOUR PHONE SYSTEM

Local Telco Service Responsibility

"TRUNK LINES"

Where the C.O. Trunk Lines Are Terminated in Your Building Is Called The "DeMarc" (demarcation point)

PBX "Private Branch Exchange"

Distribution Method "STATION LINES"

Extension Line

© 1998 Meeks Technology Group

Conceptual Overview
WITHIN YOUR BUILDING

"TRUNK LINES"

"MDF" Main Distribution Frame

"IDF" Intermediate Distribution Frame

Multi Pair Cable

Switch

Voice-Mail

Extension Line

Four Pair Cat3 Cable

© 1998 Meeks Technology Group
TYPES OF PHONE INSTRUMENTS

- Single Line Analog
- Multi-Line Analog
- Single Line Electronic
- Multi-Line Electronic
- Digital

* All Phone Types Are Available
 As Speakerphones

© 1998 Meeks Technology Group

TYPES OF SYSTEMS

- KEY Systems
- HYBRID
- PBX (Full Blown)

© 1998 Meeks Technology Group
Conceptual Overview
VOICE - MAIL

Switch

Line Adapter Card

Analog Station Lines

Standard IBM Clone Computer w/Monitor & Keyboard

Standard IDE Hard Drive

© 1998 Meeks Technology Group

VOICE-MAIL SYSTEMS

- All Systems Are Microprocessor/Software/ Hard Disk Based.
- Standalone (No Phone Switch - $8K)
- Simple Analog System - 400 Mailboxes / 6 Hours Of Recording Time ($12K to $15K).
- Medium Level Analog - 800 Mailboxes with 18 Hours of Record Time ($20K to $24K)
- "Dial Out" Software Costs More.
- Digital Voice-Mail ($25K and Up)
- If All Phone Switches Are The Same, A District Wide System Can Be Implemented
Conceptual Overview
FUTURE PHONE SYSTEM

Physical Node Interface

Demarc.

NT File Server w/ IP Addresses

PBX and Voice-Mail = Software On File Server

ATM or E-Net Network With RSVP

Computer w/USB

Phone

Computer w/USB

Phone

Computer w/USB

Phone

Computer w/USB

Phone

© 1998 Meeks Technology Group

DATA NETWORKS

Basic Concepts and System Types

© 1998 Meeks Technology Group
TYPES OF DATA DISTRIBUTION MODELS

- Host Computer
- Peer-To-Peer
- Fileserver
- Client / Server
- Fat Server / Thin Client
Host Computer

- Program Operates Only On Host Computer and All Data Files Reside At Host Computer
- Personal Computer Displays The Program and Acts As A Remote Terminal

Peer - To - Peer

- All Computers Are Physically Connected Together.
- Program(s) Reside And Operate On Each Personal Computer.
- Files Reside On Each Computer But Are Available To All Other Computers.
- All Computers Share A Group Printer.
Fileserver System

Program Files and Data
Files Reside At Fileserver
But Do Not Operate On
Fileserver. Fileserver
Connects Computers To
Group Printers

Program Resides At
Personal Computer (or
Fileserver) But CPU
Operating Software Lives
At Personal Computer.

Client / Server System

Program Files and Data
Files Reside At
Fileserver. A Part Of The
Program Operates On
The Fileserver And Talks
to The Program At The
Client.

Part Of The Program
Resides At The Personal
Computer And Talks To
The Program At The
Fileserver.
Fat Server / Thin Client System

Fat Server

Program Files and Data
Files Reside At Fileserver.
Only portion of program
needed by client moves to
Thin Client. (Winframe by
Citrix, Hydra by MS, Java)

Thin Client

Only CPU and RAM, no
hard drive, floppy or CD-
ROM. Operates specific
portions of a program at
one time.

(Therefore, Management and
Upgrades of System and software is
required only at File Server.)

ETHERNET RULES OF THUMB

- Thinnet Coax (One Coax = One Segment)
- 600 Feet (Including Cables to Computers)
- Maximum 29 Computers Per Segment
- Twisted Pair - Maximum 330 Feet Including Cable to
 Computer.
- Maximum Number of Segments Between Two
 Computers.
 - Three Segments With Other Computers
 Plus Two Segments Without Computers.
- Maximum of 1024 Computers.
- To Increase System Speed, Segment Network With
 E-Net Switch.

© 1998 Meeks Technology Group
TOKEN RING RULES OF THUMB

- IBM Type 1 Cable @ 16Mbps
 - 495' With 132 Stations
- Category 5 UTP @ 16Mbps (Note 1)
 - 594' With 132 Stations
- Category 5 STP @ 16Mbps
 - 990' With 132 Stations
- Star Topology (MAU, CAU, LAU) 330'
- Rings are Connected Through Fileserver
- Rings Operating At Different Speeds Require Use Of A Bridge
- Increase Network Speed, Segment Rings and Add Token Ring Switch.

Note 1: IBM Requires Media Filters

© 1998 Meeks Technology Group

DATA NETWORK CAPACITY

- Interactive Mode Maximum = 10%
- Batch Mode Maximum = 30%
- Transmits Data in Varying Sized "Packets"
 Each Packet Has It's Origination & Destination
 Address Packets Range From 64 bit to 4096 bit
 Impossible To Predict How Data Will Be "Packeted".
- Video With More Than 10fps (Frames Per Second), The Audio and Video Do Not Synchronize With Each Other
- Unless System has RSVP or Similar Protocol Capacity.
- Future Proofing = Each Device Is On Its Own Dedicated Switch Segment.

© 1998 Meeks Technology Group
Switched or Shared Ethernet Or Token Ring Networks Cannot Transmit "Full Motion" - "Full Screen" Video Without Special Equipment AND Limiting The Number of Users OR Use of RSVP Protocol.

However, "ATM" Networks (Asynchronous Transmission Method) Does Not Exhibit These Limitations But Are VERY EXPENSIVE.

MEDIA RETRIEVAL SYSTEMS

Basic Concepts and System Types

© 1998 Meeks Technology Group
TYPES OF SYSTEMS

- Cable TV
 (Also called RF "Radio Frequency " System or Broadband System)
- Shielded Twisted Pair
- Baseband Coax (Baseband Copper)
- Baseband Fiber
- Digital Source / RF Distribution
- Total Digital

© 1998 Meeks Technology Group

Cable TV (RF or Broadband)

- Non-Interactive Source
 - TV Channel
 - Video
 - Audio
- Interactive Source
 - VCR
 - Video
 - Audio
- Controller
 - New TCP/IP Control Over The Data Network
- Modulator
 - One Line With Multi Drops
 - Display
 - Control
 - In-Line Taps for Other Displays

Turnkey Costs - $3500 to $4500/rm

© 1998 Meeks Technology Group
New Digital / RF Distribution

Video Conversion Video Modulator
Audio

Video Server With Output Conversion.

Combining Network

One Line With Multi Drops

Display

In-Line Taps for Other Displays

Controller

New TCP/IP Control Over The Data Network

Turnkey Costs - $4500/ rm

© 1998 Meeks Technology Group

All Digital System

Video Conversion Video DSS
Audio

Video Server With Switched
Network Cards Data

Network (ATM or Switched
E-Net w/RSVP)

DSS Decoder Display

Class Room Computer (Control)

TCP/IP Control Over The Data Network

Turnkey Costs - $5000/ rm (Summer 1999)

© 1998 Meeks Technology Group
VIDEO STANDARDS

STANDARD VIDEO (CCIR-601) (What We Use At Home)

- Defined By the National Television Standards Committee (NTSC)
- Provides 30 Pictures (Frames) Per Second (Divided into odd and even lines - fields)
- Capable of 525 Lines of Resolution (LOR) (Cable TV and VCR's provide 220 LOR) (RF Tuner on TV sets is limited to 220 LOR)

© 1998 Meeks Technology Group
HIGH DEFINITION TELEVISION
(What We Will Be Using At Home)

- Grand Alliance Has Finalized Specification for TV Sets, Compression, On-Air, Cable (ATV)
- Digital Format - 30 Pictures per Second and 1125 Lines of Resolution.
- Full Signal Is Not Compatible With Current Cable TV systems, Requires Redesign and Component Replacement.
- Signal Is Compatible With New DSS Satellite

© 1998 Meeks Technology Group

VIDEO / DIGITAL TRANSMISSION
(Transmission Capacities)

- NTSC Video Requires: 140Mbps Or 6Mbps With Compression
- Acceptable Video w/Compression: 1.5Mbps MPEG - (DSS Satellite)
- HDTV Video Requires: 680Mbps With Compression MPEG2 - 8-22Mbps
- Therefore, What Capacity Do I Need To My Computer Desktop? 10Mb Duplex (20Mbps Dedicated)

© 1998 Meeks Technology Group
SCREEN SIZE ISSUES

- NTSC is "4 Wide by 3 High" - Typical of the box this text appears in.
- HDTV will change screen ratios to "16 Wide by 9 High" - A ratio similar to movie theater screens.
- "Quicktime" is 1/8 to 1/4 NTSC screen size and at fewer frames per second.

© 1998 Meeks Technology Group

VIEWING DISTANCE STANDARDS

- Standard Television
 1" of diagonal = 1' of viewing distance
- Projection Screens (Film & Video)
 Screen width = 1/6 of Max Viewing Distance
- Computer (Similar Resolution to Film)
 Screen = 1/6 of Max Viewing Distance

© 1998 Meeks Technology Group
WIDE AREA NETWORKS

Overview and Basic Services

© 1998 Meeks Technology Group

Conceptual Overview

How Can I Connect?

Local Telephone Co.
Local Cable TV Co.
Microwave System
By-Pass Networks
ITFS
Satellite

© 1998 Meeks Technology Group

129
Local Telephone Company

Services

- Video
- Voice
- Data

Telco CO #2

Telco CO #1

POP

LAN ↔ MODEM DSU CSU

Phone

Switch

Phone Switch

Inter C.O. Trunk Lines

Remote C.O.

POP

Local C.O.

1998 Meeks Technology Group
LOCAL TELCO SERVICES

DEDICATED CIRCUITS:
- 56KB Leased Lines
- T-1 Leased Lines (1.54Mbps)
- Frame Relay (56KBps - 2Mbps)
- Other Dedicated Tail Circuits (1.54 to 800Mbps)

SWITCHED CIRCUITS
- POTS (Plain Old Telephone Service) 28Kbps
- ISDN (Integrated Services Digital Network)
 Basic Rate (128Kbps), Primary Rate (1.54Mbps)
- ATM (Asynchronous Transfer Mode) 155Mbps

Traditional School Connection

© 1998 Meeks Technology Group
New Communication Servers
All In One Box

- Multi-Protocol Router for LAN-to-LAN Connections.
- Bandwidth On Demand Capacity.
- Interchangeable Async. or Sync Cards.
- Dial-In and Dial-Out Capability.
- Resource of Building LAN (Available To Any Computer On The LAN).
- Multi-Level Security.
- Log Of All External Access Activity.

New School Connections

© 1998 Meeks Technology Group
Local Cable TV Company

Services
- Video
- Voice
- Data

Typical Cable TV Connection

These Are "BROADBAND" Systems
CABLE TV ISSUES

- Limited Number Of Channels Available.
- Typical System 5 In by 50 or 60 Out.
- Maximum 28 In By 28 Out
- One Channel (One Pair In Each Direction)
 = One 10Mbps Ethernet
 = One Video Signal
- Not Economical For Voice Circuits
- As Franchise Requirement - Cable Company Provides A Dedicated School Broadband Network?

Microwave Systems

- Video
- Voice
- Data

Micro Wave Tower & Headend

© 1998 Meeks Technology Group
MICROWAVE ISSUES

- Limited Capacity - One Channel = 12MHz Each
 Channel Of Transmission Requires Another
 Radio.
- Expensive Equipment - Bi-Directional Radio,
 Antenna (Dish), Tower, and Installation for :
 - One Duplex Video Circuit
 - One 10Mbps Ethernet
 - 24 Channels of Voice
 $60,000 per Location.
- Requires FFC License and Path Analysis
- Daisy-Chain Links. Lose One Radio And All
 Other Locations Downstream Are Down.

© 1998 Meeks Technology Group

LOW POWER RADIO

- New Technology Which Provides 2.5 Mile
 Radio Frequency Based Connection
 (915MHz and 2.4GHz).
- Average Connection is 4 Mbps.
- Maximum Speed is 10 Mbps.
- Works Well for Data (i.e. Internet)
- Slow Connection For Full Motion
 Compressed Video Connections.
- Low Entry Costs (Less Than $5,000 / Unit)
 and No Long Term Circuit Charges.

© 1998 Meeks Technology Group
BY-PASS NETWORKS

- Duplicates Telco Capacities Without Going Through The Telco Facilities.
- Privately Owned and Operated.
- Few Locations Around Country And Those Are Only In Metropolitan Areas.
- Typically Less Expensive Than Telco Circuits.
- Equipment Required Is By Lease Only and Pay Monthly Circuit Charges.

© 1998 Meeks Technology Group

ITFS NETWORKS

- ITFS (Instructional Television Fixed System)
- On-Air (Using Standard TV Channels) Reception By Any TV Receiver.
- Typically Limited Number of Channels.
- One-Way Non-Interactive. Program Cannot Be Controlled By User And Occurs On A Pre-Scheduled Basis.

© 1998 Meeks Technology Group
SATELLITE NETWORKS

- No Distance Or Location Limitations.
- Extremely Expensive Technology:
 - Video Uplink/Downlink ($180K and Up)
 - Transponder Time $1000/Hour
- Prohibitive Costs Limit The Number of Active Channels.
- Channels Bouncing Off Of Different Satellites Require Separate Uplink/Downlink.
- Downlinks (TVRO - Television Reception Only) Are Relatively Inexpensive But Are One-Way / Non-Interactive.

© 1998 Meeks Technology Group
TECHNOLOGY BID PACKAGES

Controlling The Process

© 1998 Meeks Technology Group

TECHNOLOGY and BID ISSUES (Changes)

- Division of Work
- Project Timelines
- Actual Bid Process

© 1998 Meeks Technology Group
TRADITIONAL SCOPE OF WORK

OWNER
- GENERAL CONTRACTOR
 - ELECTRICAL
 - General Communications
 - Specialty Audio Systems
 - Life Safety System
 - Security Systems
- OWNER DIRECT
 - Individual Contractors
 - Phone Systems
 - Data Networks
 - Satellite Receivers & Dishes
 - Other Specialty Systems

© 1998 Meeks Technology Group

REVISED SCOPE OF WORK

OWNER
- GENERAL CONTRACTOR
 - ELECTRICAL
 - Life Safety System
 - Security Systems
 - TECH. CONTRACTORS
 - Voice Network
 - Video Network
 - Data Network
 - General Communications
 - Specialty Audio Systems

© 1998 Meeks Technology Group
WHY REVISE SCOPE OF WORK?

◆ COST SAVINGS
 Technology represents 5% to 10% of total building cost, therefore markups can be large dollar items.
◆ PRIMES CANNOT SUPPORT TECHNOLOGY
 Electrical prime does not understand the technology.
◆ DIRECT ACCESS TO TECH. CONTRACTOR
 Owner/CM/GC needs direct access to and interface with the contractor responsible for the technology.
◆ EQUAL FOOTING WITH OTHER PRIMES

ONE TECHNOLOGY PRIME?

◆ SINGLE POINT OF SITE COORDINATION
◆ SINGLE POINT OF SCHEDULE COORDINATION
◆ SINGLE POINT OF MAINTENANCE
 Negative
◆ SINGLE PRIME IS MORE EXPENSIVE THAN MULTIPLE TECHNOLOGY PRIMES
 (Prohibitive where contractors have no prior experience for combined bids.)
MULTIPLE TECHNOLOGY PRIMES?

- Creates greatest competition among bidders (Lowest Cost).
- Maintains contractor expertise in their respective area.

Negative
- Site and schedule coordination
- Maintenance / Warranty issues

PROJECT TIMELINES

Technology affects project timelines.
THREE DISTINCT BID PACKAGES

- INFRASTRUCTURE
- TECHNOLOGY SYSTEMS and CABLING
- COURSEWARE and LOOSE EQUIPMENT

© 1998 Meeks Technology Group

INFRASTRUCTURE

- AC Power
- HVAC Needs
- Raceways and Conduit

Part of the Architectural/Engineering Process
Bids as Part of The General Trades

© 1998 Meeks Technology Group
TECHNOLOGY SYSTEMS and CABLING

- Voice Network and Cabling
- Video Network and Cabling
- Data Network and Cabling
- Audio Systems and Cabling

Defined by an Owners' "Vision/Application" Process. Bids as a Distinct Package.

© 1998 Meeks Technology Group

TECHNOLOGY SYSTEMS and CABLING TIMELINE

- Should Bid No Earlier Than Twelve Months No Later Than Six Months Prior To Implementation Use.
 Provides As Close to Current Technology As Possible

Elementary Schools - Bid w/ General Trades
Middle Schools - Bid Separately and Later
High Schools - Bid Separately and Later

© 1998 Meeks Technology Group
COURSEWARE and LOOSE EQUIPMENT

- Computers and Printers
- Computer Software
- Audio/Visual Courseware
- Computer Reference Sources (CD-ROM)
- Library Automation System
- Applied Technology Labs

Bid as separate packages by owner. Bid four months prior to implementation.

BID PROCESS

Packaging The Bid Proposals

© 1998 Meeks Technology Group
BID PACKAGE ISSUES

- BID PROPOSAL FORMAT
- VENDOR and MANUFACTURER QUALIFICATIONS
- TOOLS FOR THE OWNER

© 1998 Meeks Technology Group

BID PROPOSAL FORMAT

- "REQUEST FOR PROPOSALS" Format
- "FUNCTIONAL" Specifications
- "PROPRIETARY" Specifications

© 1998 Meeks Technology Group
REQUEST FOR PROPOSAL

"Request for Proposals" describe a project in generic terms. It outlines basic system performance requirements and provides a listing of tasks the system must be capable of performing.

© 1998 Meeks Technology Group

POSITIVES

- Provides the Owner With Greatest Flexibility for Choosing Vendor.
- Provides for Greatest Vendor/Mfg Creativity for System Solutions
- Allows for More Voluntary Alternates and Value Engineering Proposals

NEGATIVES

- Apples and Oranges Comparisons
- May Not Be Legal in Your State

© 1998 Meeks Technology Group
FUNCTIONAL SPECIFICATIONS

- Functional Specifications describe a project in thorough and complete detail from a quantity of components and tasks those components will accomplish. Does not detail the specific methodology of how a system performs a task.

POSITIVES

- Provides "Apples to Apples" comparison.
- Provides Advance Knowledge of Specific System Configuration and Performance.
- Creates Competitive Bidding
- It Is Not Vendor/Manufacturer Specific
- Easy To Make Owner Driven Changes

NEGATIVES

- Owner Cannot Predetermine Vendor/Mfg
PROPRIETARY SPECIFICATIONS

Proprietary (or Performance) Specifications describe a project in thorough and complete detail. Operational methodology is rigidly described, the performance parameters and quantities of each component within that methodology are rigidly described.

POSITIVES

- Provides "Apples to Apples" comparison.
- Provides Advance Knowledge of Specific System Configuration and Performance.
- Allows Owner to Pre-Select Vendor/Mfg

NEGATIVES

- Typically Vendor/Manufacturer Specific
- Inflexible System Configuration - Hard to Implement Owner Driven Changes
- Does Not Enhance Competitive Bidding
LEVELING THE PLAYING FIELD

Qualifying Vendors and Manufacturers

© 1998 Meeks Technology Group

VENDOR QUALIFICATIONS
(Submitted With Bid Proposals)

- Three Years Prior Experience
- Three References for Similar Systems
 (Including Contacts You Can Call)
- Project Manager's Resume'
- Trainer's Resume'
- Itemized Materials List

© 1998 Meeks Technology Group
MANUFACTURER QUALIFICATIONS
(Submitted With Bid Proposals)

- Project List
- Special Features
 Require a project reference for each special feature required for the system. If manufacturer does not have reference but claims they can meet the special feature, add a $250/day penalty clause tied to a specific date.
- Normal Features
 $500/day penalty clause for claiming meeting specification requirements but actually fall short.

© 1998 Meeks Technology Group

TOOLS FOR THE OWNER

Issues Addressed Through The Specifications

© 1998 Meeks Technology Group
GENERAL

- Tie Contract To General Trades Requirements
 Contract Procedures, Project Procedures,
 Scheduling, Trades Coordination, Pay Request
 Procedures
- Require Technology Contractor To Review and
 Coordinate the Technology Raceways/Conduit
- Provide Two Years of Warranty With Bid
- Detail Training Requirements

VOICE NETWORK

- Vendor Loads System Database Information
- Vendor Programs Initial Switch Operation
- Vendor Programs Initial Voice Mail Operation
- Train Local Building "System Administrators"
 Who Implement Standard System Changes
- Have Vendor Fund "Dial Up Data Services"
 Through Their Contract

© 1998 Meeks Technology Group
VIDEO NETWORK

• Vendor Loads System Database Information
• Vendor Programs Initial Operation
• Train Operator and Users On Actual Instructional Usage, Not System Operation
• Modem Access to System By Manufacturer
• Have Vendor Fund Contests For Best Instructional Program By Teacher & Students

© 1998 Meeks Technology Group

DATA NETWORK

• Vendor Loads System Database Information
• Vendor Provides CNE (Certified Network Engineer) For System Start Up
• Vendor Sets Up Computers / Printers
• Vendor Programs Initial Operation
• Modem Access to System By CNE
• CNE Is Provided As Part of Two Year Warranty

© 1998 Meeks Technology Group
Meeks Technology Group clients are extremely interested and excited about the newly create technology funding mechanism available from the Federal Communication Commission (FCC). This report is being generated in an attempt to assist our clients understand the intent and status of the fund.

The US Congress created and passed the Telecommunications Act of 1996 that included Section 254, a tax on the local phone companies in the United States. Additionally, Section 254 stated that the FCC would generate a mechanism for distributing the revenue generated from that tax to eligible (eligibility defined by the FCC) schools and libraries. The FCC uses the phrase “Universal Service Report and Order” to describe the mechanism developed by the FCC to implement Section 254. The Order, adopted May 8, 1997, states schools and libraries would be eligible for $2.25 billion per year in discounts towards the purchase of telecommunication services and internal connections for Internet and Distance Learning access. The fund that the revenue generated by the tax is placed into is called the Universal Service Fund. The discounted rate is known as the Education Rate (E-Rate). Funds are available for discounts starting January 1, 1998. (Unfortunately, the process of application is not in place at this time, therefore, MTG seriously questions the ability to receive, judge, and award applications by this date.)

NOTE - The local phone companies filed suit against the FCC earlier regarding the tax. The gist of the suit is that most state governments and their agency that determines policy for Public Utilities have already required the local phone carrier to offer discounted circuits rates to schools. Therefore, if the FCC requires the same local phone companies to also pay taxes which in turn are used to subsidize local school circuits costs, the local phone company would be double taxed. An out of court settlement was reached last Thursday, December 19, 1997, which reduced the tax on the local phone carriers by $600 million. MTG is attempting to confirm this statement and whether the $600 million relief is a one-time or annual item.

The FCC released an erratum correcting the Order on June 4, 1997, and released an Order on Reconsideration on July 10, 1997. MTG desires to emphasize the point that this Order is a work-in progress and is subject to more interpretation and clarifications. Additional Orders have been released that provide additional definition to the program. There is a temporary Fund Administrator, The National Exchange Carrier Association until a permanent one is appointed.

DISCOUNT RATE
Individual schools, school districts, libraries, and consortia comprised of those organizations are eligible. The E-Rate discount for eligible schools or districts is based in the Economic Disadvantage and Geographic Location of the school or district. The discount rate can be applied on either a district-wide or individual school basis.
The number of students eligible for the national school lunch program determines the Economic Disadvantage. This number can be determined by actual count or Title 1 alternate mechanisms.

The Office of Rural Health Policy of the Department of Health and Human Services has categorized areas as either rural (high cost) or urban (low cost). Rural areas are allowed a greater discount.

The actual Discount Schedule is as follows:

<table>
<thead>
<tr>
<th>How Disadvantaged</th>
<th>Discount Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of students eligible for national school lunch program</td>
<td>Urban %</td>
</tr>
<tr>
<td><1%</td>
<td>20%</td>
</tr>
<tr>
<td>1-19%</td>
<td>40%</td>
</tr>
<tr>
<td>20-34%</td>
<td>50%</td>
</tr>
<tr>
<td>35-49%</td>
<td>60%</td>
</tr>
<tr>
<td>50-74%</td>
<td>80%</td>
</tr>
<tr>
<td>75-100%</td>
<td>90%</td>
</tr>
</tbody>
</table>

SERVICES ELIGIBLE FOR E-Rate

Telecommunication Services

All voice or data telecommunication services commercially available to schools. Examples include:
- Ordinary telephone lines for calls to teachers in classrooms.
- Integrated Digital Services
- Satellite delivery for distance learning.
- Coaxial cable.
- Network lines to connect to information services.
- Private lines between eligible acquirers (your own WAN)
- Pagers for security and officials

Internet Access

Services required to access the Internet are available for discounts. This includes:
- E-mail and Basic access to World Wide Web
- Includes data links and additional associated services needed for classroom access to the Internet (i.e. 56K Leased line, ISDN, fractional or full T-1, frame relay, ATM, etc...) This essentially covers the WAN connecting all of a district's facilities.

Paid subscriptions to Internet Service Providers and voice mail are not eligible.

Internal Connections

Basic installation and maintenance of a network are eligible for discounts. The internal connections must be necessary to transport information (Internet or Distance Learning information) within the school to individual classrooms. Example of eligible items:
- Cabling system.
- Hubs and switches.
- Routers
- Network File Servers
- Software needed for operation of file servers.
- Wireless Local Area Networks

Personal computers used solely as switches or file servers are eligible for discount.

Bundled Services

Internet Access bundled as part of a combined procurement. Eligible content categories:
- Content otherwise available free of charge.
- Content separately available (but supported at a difference between the bundled price and the price for the content alone.)
- Minimal content (if not offered separately and affirmatively shown that it is a more cost effective means of securing basic conduit access, but only non-content portion supported.)

It is Meeks Technology Group recommendation that clients pursue discounts for one time type of expenditures. Success in applying for discounts through the USF do not automatically transfer from one year to the next. Therefore, annual fee services secured under the discount in 1998 may not be funded in 1999. However, we suggest that should a District determine that they wish to pursue discounts on annual fee services, the Board of Education should be involved in the process. The Board should be made aware of their exposure to funding changes in subsequent years that will require accommodation within future yearly district budgets.

ELIGIBLE CONTRACTS

When the conditions of the fund were first announced earlier this year, projects involving eligible services and slated for implementation in 1998 but already under contract, were not eligible. Due to the tardiness of establishing the USF approval process, this issue has become a moving target. The review board acknowledges that there are a number of projects that may already be contracted for that would have been eligible if the Fund approval process had been in place. It appears that projects already under contract but bid in the latter months of 1997 can apply for funds. Those applicants will need to submit all of the required documentation but will skip the 28-day bid period and submit Form 471 along with Form 470. The specifics regarding approval for these projects have not been defined.

APPLICATION PROCESS

The application process is directly tied to the operation of a FCC Web Site where all application forms will reside and all applicants are to submit their documents to. That Web site was originally scheduled to be on-line in October 1997. That date has been moved to mid November, then to mid December, and is now slated to be on-line January 12, 1998.

NOTE: Considering the information required for application that is outlined in the following sections, MTG has serious doubts of the Web Site capacity to handle this application process. Therefore, MTG is scheduling a trip to Washington DC in December with a number of MTG client
application packages. It is MTG's intent to gain approval from the Fund Administrator for MTG's specific methodologies and processes in order to streamline our clients Fund applications.

The following items must be submitted to the Fund Administrator.

1. Certification signed by the institution's procurement officer as to the level of discount based on economic need using the discount matrix.

2. A Technology Plan approved by an independent agency (such as State education or agency or other reviewer). Personnel related to the overall program have suggested that approval of the Technology Plan by the local Board of Education will suffice for this requirement. MTG has not been able to obtain a definitive statement on this issue. The Technology Plan must include:
 A. Computer equipment currently available or budgeted for purchase.
 B. Internal connections, if any, a school already has or anticipates installing.
 C. Software for LAN and telecommunication connections currently available or budgeted.
 D. Experience and training of staff in the use of the equipment.
 E. Existing or budgeted maintenance contracts to maintain computers.
 F. Capacity of the school's electrical system to handle simultaneous uses.

 Additionally, schools must prepare a specific technology plan outlining the use of technologies, in the near term and future, and how the institution intends to integrate the use of technology with their curricula.

3. A Description of Service sought in sufficient detail so providers can bid on the services. We consider these to be the project specifications.

4. The Amount of Funds necessary to meet the financial obligations of the technology plans (including necessary hardware, software, and staff training) committed (budgeted and approved in time for use for this project) for the current funding year. The District must also certify that these funds are available.

5. Additional Certifications
 A. That the institution is eligible to receive discounted services.
 B. Those discounted services will not be resold and will be used only for educational purposes.
 C. The applicant has and will continue to comply with all applicable State and local procurement processes.
 D. Identification of all co-purchasers and allocations of services in aggregated purchases.

Due to the lateness of availability of the appropriate Web Site, the Fund Administrator and FCC has determined that for the first 75 days of application availability, all applications will be equally considered, not simply "first come-first serve." This is vitally important in that there are very large school systems (i.e. New York City Schools) standing by with very large applications that could pull most of the funding available into a few large districts.
6. Application Form
 All of the information above must be accompanied with Form 470, the actual application form available in draft form on the E-Rate information site.

NOTE 1: We have reached the first major problem point, there is no definition as to how the approval process works. Documents available imply that if the Fund Administrator posts an applicant application on the Web Site, that represents approval of that application but no guarantee of funding.

POSTING for BIDS
The Fund Administrator will post the application, including the description of services sought to attract bids. The actual discounts will be calculated by the Fund Administrator and posted with the application. There will be a four-week waiting period after posting (28 days) before the applicant can enter into a contract with the service provider.

NOTE 2: Please note that the posting of an applicant's request for services does not imply that the funding has been approved. Approval of amounts and actual encumbering of fund occurs after receipt of contract values. We would also like to state that we see the process of posting the request for services on the WEB as untenable. We believe that the E-Rate WEB site will only provide an abstract of the services requested. It would be impossible to post the specifications and project drawings to a WEB site due to the size of the storage requirements and interface problems for obtaining project drawings of the correct size. MTG does intend to post their client projects on the MTG file server, meeksgeeks.com.

COMMITTEMENT OF FUNDS
Funding requests based on actual contract values will be submitted to the Fund Administrator on Form 471 (also available in draft form at the E-Rate WEB Site) by schools after the contracts are made, but the contract may be contingent on receiving funding. If sufficient funds remain, the Fund Administrator commits them and notifies the service acquirer (the contractor), that funding has been committed. The Fund Administrator also posts the commitments on a weekly basis to their WEB server.

OVERVIEW OF APPLICATION PROCESS
Therefore, the sequence of application includes the submission of Form 470 and applicable documents, the advertisement for services on the WEB for 28 days, negotiation or determination of contract values, and the submission of Form 471. These four activities comprise the entire application process. Since then process includes contract value negotiation, it would typically also include approval of those same contracts by the Board of Education. (Note that approval of contracts by the Board of Education is not required in order to submit Form 471) Please keep these activities in mind when attempting to establish project timelines involving E-Rate funds.

NOTE 3: The original conditions of the USF stated that yearly funds would be allocated on a first-come first-served basis until $2 billion in funds were encumbered. At that point, applications
from economically disadvantaged (most needy) locations would be processed until the money runs out. Based on comments from users, an FCC Order was issued in October requiring the Fund Administrator to treat all 1998 applications occurring in the first 75 days of application as if they came in all at the same time. With the first date available for posting service requests to the WEB server on January 12, 1998, MTG estimates the latest date an application can be initialized yet considered within the first 75-day window should be considered as February 25, 1998. That provides the applicant 28 days of bid request advertisement and five days to process Form 471.

AVAILABILITY OF E-RATE FUNDS
QED, a marketing information provider who concentrates on the education market, estimates the technology based expenditures for K-12 School Districts to range between $4.5 and $6 billion per year. This includes computers and software for those computers. MTG finds that the typical fund allocations of K-12 School District to have a very high percentage of funds spent on computers. Therefore, we estimate that the actual funds spent on cabling system, network hardware, routers, Wide Area Network products, phone systems, and telecommunication services to be $1.5 to $2 billion per year. Our points is that the funds available from the USF essentially double the revenue available for these services and are tied directly to actual funds being available to school districts or libraries. We find it unlikely that all of the USF will be encumbered within the first 75-day window. Therefore, we recommend that all of our clients with projects occurring after March 1, 1998 to continue to apply for E-Rate funds.

CERTIFIED CONTRACTORS
Only those contractors who are certified as "E-Rate" contractors can participate in receipt of E-Rate funds. To the best of our understanding, the certification process is to simply sign a document that states the contractor is willing to be paid through the "E-Rate" funds and is willing to wait for those payments.

PAYMENT PROCESS
Schools will process E-Rate eligible payment applications in a format (yet to be determined), that separates the schools funding obligation and the discount applied to the payment request. The school will process their portion of the payment and forward a copy to the Fund Administrator. The Fund Administrator will then process payment for the E-Rate contractor. At this time, there is no definition on the duration of a pay period (monthly or quarterly).

AUDITING
Schools will be required to maintain appropriate records necessary for future audits and to produce them upon request to any auditor appointed by the Fund Administrator or any other State of Federal agency with jurisdiction.

This document has been generated with the intent of notifying MTG clients of additional funding sources available for their use and a general understanding of how to access those funds. The information contained herein is accurate to the best of the knowledge of Meeks Technology Group (MTG) up to the time that this document was generated. In view of
the evolving nature of the USF/E-Rate application process, the information contained herein may be rendered obsolete or inaccurate based on future FCC Orders and interpretations by the Fund Administrator. Additionally, the information contained herein has been obtained from multiple sources. Though MTG is attempting to verify all interpretations and process descriptions, MTG takes no responsibility for the accuracy of those sources.
This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").