The high publication rate of scholarly material makes searching and browsing an inconvenient way to keep oneself up-to-date. Instead of being the active part in information access, researchers want to be notified whenever a new paper in one's research area is published. While more and more publishing houses or portal sites offer notification services, this approach has several disadvantages. This paper introduces the Hermes altering service, a service that integrates a variety of different information providers making their heterogeneity transparent for the users. Hermes offers sophisticated filtering capabilities preventing the user from drowning in a flood of irrelevant information. From the user's point of view, it integrates the provides into a single source. Its simple provider interface makes it easy for publishers to join the service and thus reaching the potential readers directly. This paper presents the architecture of the Hermes service and discusses the issues of heterogeneity of information sources. Furthermore, it discusses the benefits and disadvantages of message-oriented middleware for implementing such a service for digital libraries. (Contains 18 references.) (Author/AEF)
Hermes: A Notification Service for Digital Libraries

By: D. Faensen; L. Faulstich; H. Schwappe; A. Hinze & A. Steidinger
Hermes – A Notification Service for Digital Libraries

D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, A. Steidinger
Institute for Computer Science
Freie Universität Berlin
hermes@inf.fu-berlin.de

ABSTRACT

The high publication rate of scholarly material makes searching and browsing an inconvenient way to keep oneself up-to-date. Instead of being the active part in information access, researchers want to be notified whenever a new paper in one's research area is published.

While more and more publishing houses or portal sites offer notification services this approach has several disadvantages. We introduce the Hermes alerting service, a service that integrates a variety of different information providers making their heterogeneity transparent for the users. Hermes offers sophisticated filtering capabilities preventing the user from drowning in a flood of irrelevant information. From the user’s point of view it integrates the providers into a single source. Its simple provider interface makes it easy for publishers to join the service and thus reaching the potential readers directly.

This paper presents the architecture of the Hermes service and discusses the issues of heterogeneity of information sources. Furthermore, we discuss the benefits and disadvantages of message-oriented middleware for implementing such a service for digital libraries.

1. INTRODUCTION

The traditional way of using electronic publications is searching and browsing. The user must become active to find information. A much more appropriate usage pattern for a digital library would be the notification of readers whenever new material of interest becomes available. A service that provides such a value is called notification or alerting service (AS). The increasing number of scholarly publications emphasizes the need for sophisticated filtering capabilities of such an alerting service to prevent the drowning of users in a flood of irrelevant publications.

Some information providers such as publishing houses do offer alerting on their publications. This is definitely beneficial for end users. However, this bilateral 'user-provider' approach has significant disadvantages. Users have to know all relevant providers. They have to deal with a variety of interfaces, and must maintain their profiles at many sites. For privacy reasons users might not want to disclose their profiles of interest to arbitrary information providers. Duplicate notifications (e.g., occurring in the case when user receives notifications from both a publishing house and an abstracting and citation service) cannot be avoided. The capabilities to express users' interests (profiles) are poor. Typically, the user can just select a set of journals and then receives the table of contents by E-mail whenever a new issue of one of these journals appears. This leads to low precision and recall. Notifications from different providers clutter the mailbox since one rarely has the possibility to specify a notification schedule, and notifications are not integrated. Finally, small information providers (small publishers, universities, etc.) usually do not offer an alerting service.

An integrative alerting system that integrates the variety of providers and publication types and hides their specifics from the users avoids most of these problems. It should offer a unified interface and sophisticated profile expression capabilities including filtering as well as user-defined notification schedules. It must be open and easy to join for other providers which can then feed their bibliographical data into the alerting service and advertise their materials directly to an interested target group. Finally, it must be scalable to support millions of user profiles and tens of thousands of publications daily.

Today, huge amounts of valuable scientific literature are available on the Web. While users can retrieve those data from the publishers' Web sites it is unlikely that each provider is capable and willing to install or support the interfaces of an integrative alerting service. Instead, appropriate
wrappers for such Web sites can be employed to make their material available for profile-filtered notification.

Despite its obvious usefulness, only a small number of integrative alerting services have been developed for digital libraries. Individual alerting services are offered by several publishing houses, such as Springer Link Alert\(^1\) and Elsevier Contents Direct\(^2\). However, these services suffer from serious restrictions: they are mostly based on the publications offered by the particular publishing house only. Profiles can only be defined in a basic way, their definition is restricted to the selection of certain journals, no full-text retrieval is possible. Services by secondary publishers as Swets (service Swets-Scan\(^3\)) naturally cover a wider but still restricted selection of materials.

Some abstracting and citation services also offer notification services, such as the ISI services\(^4\), Catchword\(^5\), or UnCover Reveal\(^6\). These services are also restricted to the material offered by the hosting service. Thematically focused portal sites such as Neurocon\(^7\), BioMedNet\(^8\) harbor similar limitations. Most of these are commercial sources. We are convinced, however, that all metadata, including abstracts, will be freely available to the scientific community in the near future.

There is also a number of services specialized in particular types of publications, such as Technical Report Servers (ArXiv\(^9\), REPEC\(^10\), NCSTRL\(^11\)) that offer notification about their documents. Here, the focus of notification is, by definition, restricted.

Some alerting services are offered by libraries (e.g., CISTI Source\(^12\)). Here, the material has a large spectrum covering several publishing houses and different types of publications. Nevertheless, these services are restricted to the material offered by the library.

When subscribing to more than one alerting service, the problem of duplicate notifications due to overlapping coverage arises. In particular, this applies to alerting services of different libraries. The problem of duplicate notifications can be addressed by an intermediate integrative alerting system.

In summary, there are currently a number of services with restricted material, accessible mostly by profiles with poor expressiveness. Even if single providers offer sophisticated profiles to their users they are still restricted to the provider's material.

The scientific research covering Internet-based alerting services that could be used for a digital library environment has a longer tradition. One of the earliest systems developed was SIFT\(^18\), a tool for wide-area information dissemination, that is now commercially operated as InReference. SIFT was a monolithic service that did not support distribution.

Alerting services may be implemented in many ways. Since notification about events is a useful paradigm in different kinds of applications, several distributed notification infrastructures have been developed in order to evaluate scalability, examples are JEDI\(^7\), Elvin\(^16\), Siena\(^4\), and NiagaraCQ\(^5\). The profile definition languages supported by JEDI, Elvin and Siena are too restricted and not appropriate to support sophisticated full-text retrieval. NiagaraCQ supports XML-QL queries that select subtrees in an XML document. In contrast to such tree-based queries, filters in the Hermes application domain typically focus on 'flat' structures like bibliographical references.

The Continual Queries Project\(^15\) investigates update monitoring problems. In this project, the Continual Queries (CQ) language was developed, which has been implemented in several prototypes. This language supports a sophisticated and detailed definition of profiles. CQ is a system that could be used as a basis for an alerting service for digital libraries, as well as other message-oriented middleware.

The academic projects on alerting services introduced above are not all fully implemented. None of these systems is actually used in a digital library context.

Many publishers offer free access to their bibliographic data, usually by sending them via E-mail or by making them available on their Web sites. Unfortunately, the format of this data is not standardized. The problem of extracting bibliographic data from publishers' Web sites can be addressed using methods from the field of semistructured data management\(^1\). Wrappers must be created that allow queries against the data offered by a Web site while hiding layout and structure of this site. Answering such queries means collecting data from multiple linked HTML documents and separating it from the HTML code in which it is embedded. Since HTML is a layout-oriented language, a-priori knowledge about the structure of a Web site and its documents must be employed in the construction of a wrapper. Several approaches such as\(^2, 3, 11\) use regular-expression matching on HTML documents. However, regular expressions are not very robust with respect to layout variations and structural changes that occur frequently in Web sites. Rule-based approaches such as YAT\(^6\) or HyperView\(^9\) that operate on syntax trees of HTML documents provide a higher robustness. The HyperView system that is used in the Hermes project supports the maintenance of wrappers by using a multi-layered approach to separate the concerns of data extraction and data conversion.

The main contribution of this paper is an architecture for an alerting service which overcomes the heterogeneity problem and - from the user point of view - integrates all kinds of providers into a single source.

The paper is structured as follows: We discuss the issues of implementing an integrative alerting system in the following section. Section 3 presents the architecture of the Hermes system. Section 4 discusses the problems we encountered during development and propose some solutions. The paper concludes with a short outlook.
2. ISSUES

The main problems that have to be solved when building an open integrative alerting system are

1. coping with the heterogeneity of information providers,
2. specifying the users' information needs (user profiles), and
3. efficiently matching the incoming notifications with the user profiles (filtering).

2.1 Heterogeneity

First we define the different types of information providers an integrative alerting system has to handle.

2.1.1 A Classification of Information Providers

Information providers are any suppliers of scholarly information that make metadata (e.g., bibliographical data) available to the alerting service (AS).

We distinguish different types of providers as introduced in [12]. Providers can be either active or passive. Active providers offer their own AS. For instance, users of the Darwin AS\(^{13}\) can subscribe to receive an E-mail notification whenever a new issue of a particular journal appears. Passive providers do not offer such a service and have to be queried for new material in a scheduled manner. An algorithm to optimize the query scheduling is introduced in [9].

Additionally, providers can be cooperative or non-cooperative. Cooperative providers provide their information in one of the standard formats that can be handled automatically by Hermes, and they implement at least one of the protocols supported by Hermes. Non-cooperative providers offer their information in a proprietary format. Specialized wrappers have to be written in that case. Possible combinations of provider types are shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>cooperative</th>
<th>non-cooperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>sends notification with well-defined metadata</td>
<td>sends human-readable email</td>
</tr>
<tr>
<td>passive</td>
<td>allows AS download of well-defined metadata</td>
<td>makes metadata available at its Web site</td>
</tr>
</tbody>
</table>

\(^{13}\)http://darwin.inf.fu-berlin.de

The first task of an integrative alerting system is to collect new metadata at its FTP server (pull). A similar case is a passive provider together with an active external alerting system such as Darwin that polls the provider on a regular basis and sends notifications containing the URLs of new issues at the provider's Web site.

Passive, non-cooperative providers are most critical for an alerting service. They basically offer an HTML interface. Active cooperative providers can join the Hermes system by registering and regularly submitting bibliographical metadata in a standardized format.

2.1.2 Heterogeneous Formats

Except for cooperative providers, the alerting system has to deal with various metadata formats. The degree of structure varies from mostly unstructured E-mail notifications in ASCII format over semistructured HTML pages on publisher Web sites to well-structured formats such as XML or the various formats used by citation management software.

2.2 User Profiles

Users express their information needs in profiles. A profile is an aggregate of a query or filter, and a notification policy. While the query part defines which information the user wants to receive, the notification policy specifies how it is to be delivered, for instance how often (e.g., daily or weekly), by which protocol (e.g., E-mail), and in which format (e.g., XML, HTML, plain text, BibTeX ...).

A query consists of a Boolean filtering expression and a ranking part. Both parts are optional. The Boolean query is an SQL-like simple attribute-value matching, e.g., "author = Smith" or "title LIKE '%alerting%'". The set of attributes are the bibliographical metadata fields delivered by the information provider.

Bibliographical data that match the Boolean query can further be ranked according to the ranking part of the query. Such a ranking query is a text-retrieval-like term list (including phrases, proximity operators, or term weights) and a relevance threshold. Documents that are scored by Hermes with a relevance above that threshold are delivered to the user. Alternatively, the user can request the delivery of the top n relevant documents published during the notification period. If the Boolean query part is missing any incoming document is scored according to the ranking query. In this paper we focus on Boolean queries.

Users can create and maintain their profiles using a Web interface. Software clients such as reference managing tools access the service using a dedicated API.

2.3 Filtering Scalability

Incoming bibliographical metadata have to be matched against the user profiles. Obviously, scalability is an issue. While the frequency of incoming notifications in the application domain of digital libraries is usually low, the number of profiles can be very high. Since several 10,000 profiles can be deposited at the alerting service, an efficient matching of profiles and notifications is a crucial task.

3. ARCHITECTURE

Hermes consists of three main components as shown in Figure 1: The Observer, the Filter, and the Notifier.

3.1 Observer

The first task of an integrative alerting system is to collect information from a number of information providers and to produce a combined stream of events that can be filtered against the users' profiles. In the Hermes architecture, the component responsible for this task is called the observer.
3.1.1 Observer Architecture

The architecture of the observer component (Fig. 2) treats the different types of information providers discussed above in a unified way. Each information provider is handled by a dedicated wrapper component. A wrapper consumes a stream of notifications in a provider-specific format and produces a stream of citations in the internal format used by Hermes.

In the case of a cooperative provider, the wrapper just forwards the incoming notifications since they are already in the internal format. For non-cooperative providers the wrapper has to translate the notification into the internal format.

For active providers, the information contained in a notification is sufficient to generate citations. In the case of mixed active/passive types of information providers the wrapper retrieves the material advertised in the notification from an external server of the information provider. For completely passive providers, a synthetic notification is generated by the scheduler component within the observer that causes the wrapper to retrieve new material from the provider.

Since notifications can be sent by the providers using different protocols, the observer contains a component called receiver for each protocol. For instance, there exists a receiver in the Hermes system that handles E-mail sent using the SMTP protocol and forwards the content of an E-mail message to the wrappers.

All incoming notifications including those generated by the scheduler form a single stream. Each wrapper subscribes to the notifications originating from the provider it is responsible for (not shown in Fig. 2). This can be easily implemented on top of a message-oriented middleware.

3.1.2 Wrappers

Bibliographical material that can be obtained from non-cooperative providers is typically in a form that resembles a journal's table of contents (TOC). For instance, some publishing houses allow users to browse the TOC of their journals on their Web sites. Others send E-mails containing the journal TOC in plain text. Since the format of the TOC varies between providers, dedicated wrappers are necessary to extract the metadata.

The Hermes system currently uses two types of wrappers: individually coded converters for E-mail notifications of several active providers, and a generic wrapper for the HyperView system [9] that in turn contains several rule-based wrappers for different publisher Web sites.

The first type of wrappers converts E-mails containing tables of contents into citations. Since most publisher's E-mail notifications are highly unstructured, every wrapper has to be implemented individually using a general purpose programming language.

Since HTML pages are more structured than typical E-mail notifications, a higher-level approach based on rules is used for extracting bibliographical data from publisher Web sites: The generic HyperView wrapper consumes XML notifications from the Darwin alerting system that contain references to new journal issues. Each reference contains a URL pointing to the table-of-contents (TOC) page of this journal issue at the publisher's Web site.

The HyperView wrapper responsible for the particular publisher Web site loads the TOC page from the given URL and applies a set of graph-transformation rules to the syntax graph of the page. If necessary, hyperlinks on the page are followed by loading additional pages. As a result, a graph is created that contains the pure data extracted from the analyzed pages. This graph has a source-specific structure.

At the second stage, another set of rules is applied to this graph to transform it into a source-independent representa-
tion of the extracted table of contents. Finally, a third set
of rules rewrites the bibliographical data of each article into
the syntax tree of an XML document that contains the ci-
tation in the internal format used by Hermes. This citation
is then returned by the HyperView system and posted by
the generic HyperView wrapper to the outgoing stream of
citations.
Compared to a hand-coded wrapper in a general-purpose
programming language, a HyperView wrapper is smaller and
easier to understand and maintain since HyperView rules are
on a much higher conceptual level.

3.2 Filter
The Filter's responsibility is the comparison of the bib-
liographical data with the query part of the user profiles
(see 2.2). For simple queries using only Boolean filtering
Hermes can use a message-oriented middleware (MOM).
For the first filtering step it is not necessary to respect
document structure. Therefore, the filterable attributes are
extracted from the XML representation using a SAX parser
and assigned to filterable message header fields. For fur-
ther processing the XML representation is included in the
message.

3.3 Notifier
The Notifier retrieves the messages buffered for a user
according to the user-defined schedule as specified in the
notification part of the user profile. The XML payload of
the retrieved messages is transformed to the format preferred
by the user. Transformation to various formats is performed
using XSL stylesheets.
The transformed notification is delivered to the client via
the client's preferred protocol. Currently, only E-mail deliv-
ery is implemented.

3.4 Message-Oriented Middleware
The communication between the components is performed
using a message-oriented middleware (MOM). This has the
advantage that components are relatively independent of
each other. Another benefit is that profile matching can
be performed by the MOM. The MOM is capable of filtering
messages according to a selector that is applied against
the message header fields. The query parts of the user pro-
files are stored as subscriptions at the MOM. The MOM
filters messages and buffers them until the next notification
is due.
The MOM is accessed by the Java Message Service (JMS)
API [14].

4. PROBLEMS AND SOLUTIONS
In this section we discuss some of the issues encountered
during the design and implementation of Hermes in more
detail, namely heterogeneity and scalability.

4.1 Wrappers vs. Cooperative Providers
Wrappers for information sources are based on a-priori
knowledge of the structure and formats of these sources.
This knowledge is typically incomplete because in most
cases it must be obtained by a reverse-engineering process.
Hence, there is no guarantee that a wrapper can handle all
data available from an information provider. Moreover, this
knowledge can rapidly become outdated since the informa-
tion provider is autonomous and can choose to change its
structure at every moment without notice.
E-mail notifications by publishers are intended for human
users rather than for machine input, so they are often un-
structured. This requires heuristics like counting the per-
centage of single letters in a line to distinguish the list of
authors from the title of an article. It is a matter of fact
that such heuristics are unsharp and can produce incorrect
results.
In the case of information extraction from Web sites, one
has to deal with semistructured HTML documents that typ-
ically provide more hints to find and separate different data
items. The HyperView system used in the Hermes system
allows to write rules that are robust to some extent with
respect to structural variations such as inserts, deletes, or
reorderings on a page. This holds as long as the navigation
path used to access the data on a page is not affected by the
changes. Unfortunately, major changes in the layout will
break a wrapper in most cases.
Since wrappers can break, they have to be monitored per-
manently. Heuristics can be used to detect, e.g., if a wrap-
per produces no citations for a new journal issue. An alert-
ing system must support recovery, i.e., after fixing a wrapper
it must be possible to feed a notification or parts of it to this
wrapper again.
Although our wrappers turned out to be quite stable over
several months, it is preferable to cooperate with informa-
tion providers. In fact, the Hermes project has an agreement
with a major scientific publisher to deliver bibliographical
data as a cooperative provider.

4.2 Bibliographical Formats and
Interoperability Protocols
Cooperative providers offer their metadata in a format
that can be automatically processed by Hermes. The del-
ivered data set should at least contain all the information
against which the queries can be defined, and a link to the
document's full-text. For journal papers this data format is
the Majour Header DTD [8].14
Active cooperative providers submit their data by sending
an E-mail or using the HTTP POST method. Data from
passive cooperative providers is loaded by FTP or HTTP
GET. In the case of passive providers scheduling of Ob-
server activation must be configured. Since in the domain
of electronic journals changes on the provider site occur in
relatively stable intervals the Observer activation intervals
can be precisely tuned. As mentioned above (3.1) the Ob-
server can easily be extended supporting additional proto-
cols (e.g., Z39.50 or CORBA). Currently, no error handling
in the data exchange protocol is implemented.
Different protocols have been proposed for delivery of bib-
liographical data. One of them is defined by the CrossRef
project15, an initiative to provide a centralized source to
obtain object identifiers of electronic publications. The idea
is to support publishers or authors to link their bibliography
entries directly to the reference's full-text - even if the full-
text is located at a different provider's site. CrossRef defines
14 The Majour Header is an SGML DTD. Hermes transforms
SGML documents to conform to XML. Some minor changes
are made to the Majour Header, e.g., the addition of a tag
<aoc> containing the location (URL) of the article's full-
text.
a protocol for submission of bibliographical data that can
be easily adopted by Hermes. Bibliographic data are for-
matted according to the dbbatch.dtd, an XML DTD for
batch submission. Transfer of the formatted data is done
via HTTP POST. An HTML-formatted diagnostic message
is returned. A detailed failure report is sent by E-mail. A
DTD for this diagnostic error message is available.

The CrossRef format allows to submit a minimal set of
bibliographical data that is sufficient to identify a document.
Unfortunately, this data is not sufficient to provide per-
sonalized filtering. For example, including an article title is op-
tional, and the DTD contains no elements for keywords and
abstract. However, many publishers deliver data to Cross-
Ref. Therefore, Hermes will support the CrossRef protocol
in the near future to provide an efficient way to let publish-
ers join the service. The only modifications that need to be
made are the addition of elements to carry the document’s
abstract and keywords.

Recently, the Open Archive Initiative (OAI)\(^\text{16}\) published
a protocol for metadata harvesting [17]. It allows data provid-
ers like technical report servers, publishing houses, libraries
e tc. to make their data accessible by service providers that
build value-added services for these data (e.g., alerting ser-
dices). The OAI protocol is a pull protocol that allows ser-
vice providers to request metadata records from the data
providers. It is based on HTTP and XML and is designed
to be so simple that an experienced developer can implement
it “within a day of work”. Metadata (e.g., bibliographical
data) are usually delivered in a Dublin Core format (domain-
specific schemata can be defined). Requests allow a simple
selection by set (semantics of sets are not defined in the
protocol), and/or by date.

It can be expected that the OAI protocol will be imple-
mented by a significant number of data providers. We will
therefore apply the protocol as a means to integrate passive
cooperative providers.

4.3 Filtering

There are two alternatives for matching document meta-
data against user profiles: (i) implement the matching algo-
rithms yourself, or (ii) make use of existing infrastructures.
We compared two implementations of filtering. The first one
uses a message-oriented middleware (MOM). The second is
based on tables in a relational database system.

A MOM has the capability not only to perform basic mes-
sage filtering according to a message selector but includes
transaction support as well as message buffering. There-
fore, Hermes is built on top of such a MOM. In addition to
the filtering capabilities the application of a MOM results
in a loose coupling of the components and increases the sta-
Bility, as failure of a single component does not affect the
whole system.

However, the application of a MOM has a number of dis-
advantages:

- Filtering is restricted to Boolean queries (message se-
 lectors). Ranking is not supported.
- The number of subscriptions (i.e., queries) is limited.

The latter is attributed to the fact that incoming messages
are assigned immediately to the subscribers that are inter-
ested in it to avoid a long delay. This approach does not

\(^{16}\text{http://www.openarchives.org/}\)}
4.4 Ranking

As mentioned above simple attribute-value matching as it is performed by the available message-oriented middleware products is far from satisfying the users' needs. Since most sources of bibliographical data provide document abstracts in addition to author, title, etc., one can achieve much higher precision by applying classical information retrieval methods.

In information retrieval document relevance is usually measured by two parameters. The term frequency t_f, an indicator of how often the query terms occur in the document, positively influences the relevance scores. The inverse document frequency idf indicates the relevance of the search terms with respect to the document collection (in how many documents of the collection does each search term occur?) and influences the score negatively. The problem is that in an alerting service documents are 'transient events' and therefore no document collection exists. To mimic such a collection a 'virtual' collection can be built: All incoming documents are inserted into that virtual collection. The idf is computed for that virtual collection. Since access to older documents is not required it is not necessary to keep the actual documents in that collection. Instead it is sufficient to store the term statistics. Topics covered by an alerting service can evolve over time. It may therefore improve the filtering effectiveness to let the term statistics of the virtual collection evolve as well.

5. CONCLUSIONS AND OUTLOOK

Alerting systems offer a necessary means to cope with the ever-increasing amount of scholarly literature. Existing alerting systems in this field are mostly proprietary and often of limited coverage and functionality. Scholars need an open integrative alerting system that (i) combines bibliographical metadata from various sources to maximize coverage and that (ii) offers sophisticated filtering and notification facilities to achieve high selectivity and usability.

In this paper we have introduced an open integrative alerting system, the Hermes alerting service for digital libraries. An instance of the service is available to the public at http://hermes.inf.fu-berlin.de. This instance is currently covering several hundred scientific journals from major publishers, including our project partners Springer and Nature, as well as the technical report servers NCSTRL and ArXiv. Typically, such an alerting system would be operated by a scientific library as a service for its users.

The main issues that are addressed by the Hermes project are the heterogeneity of the information providers, and information filtering according to the user's needs. For the provider integration Hermes follows two alternative approaches. For providers that disclose their bibliographic metadata but not in a well-defined format, Hermes provides appropriate wrappers. Since wrappers are subject to failure due to format changes, Hermes allows providers to join the alerting service with little effort by implementing a simple protocol for data delivery.

Filtering can be implemented with low effort on the basis of message-oriented middleware or relational database systems, but this is restricted to simple Boolean filtering.

In the future we will focus on the following issues: improvement of filtering quality, scalability by distributed execution, duplicate elimination, and relevance feedback.

Improving the filtering quality can be achieved by applying the methods of text retrieval to alerting.

Hermes is designed for scalability. Its loosely coupled components can each be deployed in multiple instances and thus share their work. Related projects [4] have shown that cooperating alerting services can improve scalability. Consider an instance of an alerting service that receives metadata from publishers and propagates it to topic-specific instances. Further research is necessary to find methods to compute the covering relations [4] of profiles in a digital libraries.

Duplicate elimination will become necessary once we add information providers with overlapping coverage. Due to different metadata formats, heuristics have to be used to identify different citations of the same publication.

Relevance feedback will allow users to achieve a higher selectivity by grading and returning notifications to the alerting systems. For this purpose we plan to adapt existing approaches in classical information retrieval to relevance feedback.

6. ACKNOWLEDGMENT

The Hermes Project is funded by the German Research Ministry (BMBF) within the Global Info initiative.

7. REFERENCES

This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").