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LAVE AND WENGER’'S SOCIAL PRACTICE THEORY AND TEACHING AND
LEARNING SCHOOL MATHEMATICS

Jill Adler, University of the Witwatersrand

In this paper | argue that Lave and Wenger s socidl practice theory offers a very powerful language
for understanding knowing and learning about and the practice of teaching. However, this theory
does not transfer unproblematically into knowing and learning about the practice of school
mathematics. This argument arises within a study on teachers’ knowledge of their practices in
multilingual mathematics classrooms, a study that requires theorising knowledgeablility of school
mathematics teaching, that is, of both “teaching’ and ‘school mathematics’. The implications of
this argument for research is that Lave and Wenger’s social practice theory needs elaboration if it
is to successfully illuminate learning and knowing school mathematics.

INTRODUCTION

Lave and Wenger’s theory of social practice (1991) has recently gained currency
in PME. It has been invoked to examine, describe and explain mathematics
learning in school (See, for example, Jaworsky, 1994; Meira, 1995). In this paper
I wiil elaborate Lave and Wenger's theory and argue why their notion of learning
through participation in communities of practice appropriately and powerfully
illuminates learning and knowledge about teaching. But a shift into school learning
raises questions about what constitutes a community of practice, and hence about
theorising the learning and knowing of mathematics in school within social practice
theory.

SITUATING LEARNING IN PARTICIPATION IN COMMUNITIES OF SOCIAL
PRACTICE

Lave (1991) and Lave and Wenger (1991) situate learning in communities of social
practice. Building on Lave’s earlier work on situated cognition (1985; 1988}, they
develop a theory of social practice - what they call ‘legitimate peripheral
participation in communities of practice’ (LPP). LPP can illuminate how teachers
learn about teaching, their knowledge about teaching and provides a theoretical
orientation to teachers’ knowledge that incorporates the personal, the practical and
the social.

Briefly, a theory of social practice emphasizes the relational interdependency
of agent and world, activity, meaning, cognition, learning and knowing. It
emphasises the inherently socially negotiated character of meaning and the
interested, concerned character of the thought and actions of persons-in-
activity...In a theory of practice, cognition and communication in, and with,
the social world are situated in the historical development of ongoing
activity. (pp.50-51)

For Lave and Wenger, becoming knowledgeable is a simultaneous and ongoing
fashioning of personal and professional identity within a community of social
practice. Learning is located in the process of co-participation, and not in the heads
of individuals. This is thus a social theory of mind where meaning production is
taken out of the heads of individual speakers and located in social arenas that are
at once situationally specific and in the broader society. In Lave and Wenger's
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terms, knowledge about teaching is thus fundamentally tied to the context of
teaching, and cannot be abstracted out. Knowledge about teaching is also dynamic
and simultaneodusly personal and social.

‘Legitimate peripheral participation’ (LPP} is the conceptual bridge between the
person and the community of practice. As people participate in communities of
practice so they become more knowledgeable in the practice, they move from a
position of ‘newcomers’ to becoming ‘old-timers’ with greater mastery of the
practice and with all the conflicts, contradictions, changes and stability that entails.
LPP is a means of explaining both the developing identity of persons in the world,
and the production and reproduction of the community of practice. Here is a
conceptual framework for integrating the personal and the social in describing and
explaining teaching.

For Lave and Wenger, social practice, and not learning, is their starting point.
Learning is rather a dimension of any social practice. It is at once subjective and
objective through a focus on whole person-in-the-world. Learning is increasing

‘participation in communities of practices and concerns the whole person acting in

the world. This is in sharp contrast to dominant learning theory which is
concerned with internalisation of knowledge forms and their transfer to and
application in a range of contexts. Knowing is thus an activity by specific people
in specific circumstances. Identity, knowing and social membership entail one
another. Thus ‘learning is not a condition for memberships, but is itself an evolving
form of membership’ (p.53). Knowing about teaching and becoming a teacher
evolve, and are deeply interwoven in ongoing activity in the practice of teaching.
Knowledge about teaching is not acquired in courses about teaching, but in
ongoing participation in the teaching community in which such courses might be
a part.

This view of knowledgeability opens another way of understanding teachers’ roles
in developing knowledge about teaching. Debates on the ‘teacher-as-researcher’
often polarise researchers and teacher-researchers, with arguments about what
constitutes research, and, moreover, what knowledge about teaching in fact
affects practice'. Lave and Wenger’s social practice theory clearly identifies
teachers as a crucial source of knowledge about teaching.?

Lave and Wenger distinguish between peripheral and full participation where both
are legitimate but different forms of participation in the practice and both are
constantly changing. Full participation signals mastery in the form of full
membership in the practice rather than an endpoint in learning/knowing all there
is to know about the practice. The process of moving from peripheral to full
participation thus requires a ‘decentering’ of mastery and pedagogy away from the
individual master or learner and into the structuring of resources in the community
of practice (p.94). Learning and mastery are a function of how resources are made
available. For Lave and Wenger understanding participation and learning requires
a focus on the learning curriculum, and not the teaching curriculum. It is neither
teaching intentions, nor planned pedagogy that can both enable and explain
learning. Rather, the social structure of the practice and conditions for legitimacy
define the practice and possibilities for learning.



Peripheral and full participation provide a means for distinguishing new and older
teachers, as well as for distinguishing within newer or older teachers in such a way
that those that remain more peripheral teachers are not so simply because they are
‘poor’. This might well be the case, but must be seen in relation to a teacher'’s
access to resources in the social structure of teaching. The concept of
transparency elaborates this point.

TRANSPARENCY

For Lave and Wenger, becoming more knowledgeable, entails having access to a
wide range of ongoing activity in the practice - access to old-timers, other
members, to information, resources and opportunities for participation. Such
access hinges on the concept of transparency (p.100).

*The significance of artifacts in the full complexity of their relations with the
practice can be more or less transparent to learners. Transparency in its
simplest form may imply that the inner workings of an artifact are available
for the learner’s inspection...transparency refers to the way in which using
artifacts and understanding their significance interact to become one
learning process. (p.102) '

Becoming a full participant means engaging with the technologies of everyday
practices in the community, as well as participating in its social relations. Thus,
access to and use of artifacts in the community is crucial. Often material tools,
artifacts -technologies - are treated as given. Yet, often they embody inner
workings tied with the history and development of the practice - these need to be
made available.

Lave and Wenger elaborate ‘transparency’ as involving the dual characteristics of
invisibility and visibility:

... invisibility in the form of unproblematic interpretation and integration {of
the artifact) into activity, and visibility in the form of extended access to
information. This is not a simple dichotomous distinction, since these two
crucial characteristics are in a complex interplay. (p.102)

In other words, the invisibility of mediatir.g technologies is necessary for focus on
and supporting the visibility of the subject matter. The notion of transparency
connects with the implicit and explicit in pedagogical relations. The implicit can
enable a focus of attention on the subject matter. But for effect, it must make the
subject matter visible. Often, again for cultural reasons, implicit pedagogical rules
can obstruct rather than enable the visibility of subject matter. It is the implicit
rules that become the object of attention, rather than the subject matter.

In short, practices that are more or less transparent can enable or deny access to
the practice - enable/legitimate or obstruct/prevent peripheral participation.
Through transparency, members can exercise control and selection into the
practice. Thus, the explanatory burden for learning - and here learning about
teaching - is placed in cultural practice, in the community of teaching, and not on

ERIC

2-5
133:



one kind of learning or another. Increasing participation and hence
knowledgeability is not about connecting theory and practice, or experience and
abstraction, but rather entails the organisation of activities in teaching that makes
their meaning visible.

LEARNING 70 TALK

In addition to transparency, legitimate peripheral participation also involves learning
how to talk (and be silent) in the manner of full participants. For newcomers then,
the purpose is not to learn from talk as a substitute for legitimate peripheral
participation, it is to learn to talk as a key to LPP. Unpacking these concepts
related to talk, Lave and Wenger distinguish between talking within and talking
about a practice. Full participation in a community of practice means learning to
talk, and this entails talking about and within the practice (p 109). Talking about
the practice from the outside is what often constitutes formal learning (eg. theory
of education in teacher education) where student teachers learn to talk about
teaching from outside the practice. For Lave and Wenger this is achieved through
a didactic use of language, not itself the discourse of teaching practice, and thus
creates a new linguistic practice all of its own.

Talking within and talking about practice thus need redefinition (p.109). Talking
within a practice itself includes both talking within (eg exchanging information
necessary to the progress of ongoing activities) and talking about (eg stories,
community lore). Inside the shared practice, both forms of talk fulfil specific
functions: engaging, focusing and shifting attentions, bringing about co-ordination
on the one hand; supporting communal forms of memory and reflection as well as
signalling memberships on the other.

Talking about a practice also usually involves both talking within and about - but
in Lave and Wenger’s terms, the effect of this talk is not full membership of the
practice - because it is happening from the outside - it is rather what they call
‘sequestration’ and an alienation from, or prevention of access to, the practice.

We know only too well from teacher education courses that a prospective
teacher’s ability to write a good essay on what is good teaching - where ‘good
essay’ is signalled in the practices of the academy - often bears little relation to
good teaching in practice.

Knowledge about teaching is thus not simply in individual teachers’ heads: it is
tied to their identities and evolves in and through co-participation in the practices
of the teaching community. Teachers, particularly if they have been in practice for
some time, are more or less knowledgeable about their practice {teaching)
depending on the community, their access to its resources - particularly to
activities related to talking within and about the practice, and to the transparency
in the practice.

It is this conception of teacher knowledgeablility that that has shaped my own
study of teachers’ knowledge of their practices in multilingual mathematics
classrooms.. Teachers have knowledge to share about teaching mathematics In
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multilingual mathematics classrooms. Moreover, a study that wishes to access
such knowiedge should then include teachers talking about and within their
practices. In short, Lave and Wenger provide a theoretical orientation, with design
implications, for a study entailing teachers’ knowledge.

However, a study of teachers’ knowiedge of the teaching and learning of
mathematics in schoo! needs also to theorise the learning and knowing of school
mathematics. Does Lave and Wenger’'s social practice theory transfer from
apprenticeships and other communities of practice like Aicoholics Anonymous and
teaching into schoo! mathematics learning?

SHIFTING INTO SCHOOL LEARNING

Lave and Wenger develop their understanding of learning as part of social practice
through contexts of successful learning - apprenticeships. They explicitly turn
away from the schoo! because learning as intended in schools has been not only
been unsuccessful for so many, lack of success has also been socially distributed.
In addition, the formal schooi has been the dominant and determining domain of
learning theory, yet it is not the only context of learning. :

Instead of teachers and learners we have old-timers - knowledgeable others in a
community of practice - and new-comers whose knowledge and identity evolve
through centripetal participation in the practice. They elaborate the importance of
transparency in the practice and access to resources for newcomers becoming
knowledgeable and fashioning a successful identity. | have argued that this
conceptualisation of learning within social practice assists the theorising of
knowledge about teaching - how teachers learn about teaching. How does Lave
and Wenger’s conceptualising transfer to theorising learning mathematics (for
example) in schooi? In Lave and Wenger's own terms this question is important:
schoot is a specific sociat context, involving different social practices to contexts
of apprenticeship.

A shift into schootl learning, raises a number of questions: What/who is the
community of practice in school mathematics? What is the community that
teachers are old-timers in? mathematicians? mathematics teachers? Or are older
students, or mathematically schooled adults the old-timers here? and where are
they in relation to the teachers? and pupils? What are pupils newcomers into?
What might constitute legitimate peripheral participation in the mathematics
classroom and towards what is the centripeta! process of participation? becoming
a mathematician? a8 mathematically schooled aduft®?

Lave and Wenger offer a general theory of social practice in which learning is
always a part. However, there are clear difficulties moving into the context of
schooling. In school, students remain students until they leave. No matter how
much mastery they might have achieved, only a few, after school, might become
their mathematics teachers and even fewer mathematicians. Moreover, their
teachers - however mathematical - are not, in the context of schooling, practising
mathematicians. There is also a labour intensity in an apprenticeship model that
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does not transfer easily to mass schooling conditions. Thus, while Lave and
Wenger’s intentions are for a general theorising, and they attend, at moments, to
the specificity of schooling {pp,39-41), they, in fact, sidestep difficulties in using
their conceptualisation to interpret and explain teaching and learning in school.

Difficulties in interpretation can be located in their privileging the structure of the
practice rather than the structure of pedagogy as the source of learning.
Motivation, identity, conflict, power relation all reside in the community of practice
and will work in different ways to enable centripetal movement to full participation
or constrain it. This is why for them, learning is only understood in relation to a
learning rather than a teaching curriculum. But in so doing, and despite their own
commitment to move away from dichotomies, they insert a new and equally
problematic dichotomy between teaching and learning.

It is useful to ponder for a moment that in Russian for example there is only one
word - obuchenie - that describes teaching/learning. In other words there is no
learning without teaching and vice versa. The teaching/learning relation is a hugely
complex one. It is as fundamental a problem in teacher education as it is in
school learning. Dominant teacher education practices are structured in both the
academy and in the school itself - a combination of a formal and an apprenticeship
context. The success of this combination and the relative merits, weightings,
contents and processes of the two parts remain the focus of ongoing research and
debate. Lave and Wenger's theory of social practice shifts the problematic away
from theory/practice dichotomies and questions of transfer and encourages us
rather to examine the resources made available in different contexts of teacher
education and their possible effects.

I have argued that while Lave and Wenger provide a framework for understanding
teachers knowledge and identity, their social practice theory is not
unproblematically transferable to school learning and teaching. They have,
nevertheless, constructed useful concepts that could provoke interesting insights
into learning and teaching mathematics in school. Specifically, access and
sequestration, the availability of learning resources, transparency, and their
distinction between talking within and about a practice are easily read into the
pedagogical relation in maths teaching in school, and are thus useful to explore
further.

In relation to transparency, and, for example, in a study on mathematics learning
in multilingual settings, language - and specifically speech - functions as a tool in
the classroom. A great deal of classroom communication occurs through speech.
Speech is thus a resource where, in Lave and Wenger’s terms, invisibility and
visibility are in constant interplay: speech should be invisible so that the subject
of inquiry - a mathematical problem, say - can be engaged i.e. become visible. But
language is a cultural tool and never unproblematic. In and of itself, it can mediate
the activity in the course of action. For example, a group of learners working on
a problem communicate through verbal speech, gestures and so on.- This
communication is supposed to make the problem more visible, more accessible.
But the social relations in the discussion and the discussion itself can become the
object and focus of attention, particularly if it occurs in a mix of languages. That
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language itself can become visible, mediate activity so as to obscure the task
rather than make it visible seems fairly obvious in a multilingual class. Thus, what
Lave and Wenger powerfully illuminate is that resources for learning, like language,
can enable or exclude. Depending on how they are used, resourées can enable
access to the practice or sequester participants.

For Lave and Wenger, becoming knowledgeable in a practice entails learning to talk
within and about the practice, and not learning from talk. Yet a great deal of
literature of language and learning is about both - learning to talk and learning from
talk. But Lave and Wenger's distinction between talking within and about is useful.
First, it links with distinctions between talk as exploratory/expressive vs talk for
exhibiting/displaying knowledge. What might this mean in a maths classroom? In
classrooms where there is a move to more exploratory problem-solving
mathematical practices, students often work together on tasks, and then report on
their working to others in the class and to the teachers. While on tasks, pupils
could be said to have opportunity for talking within their mathematical practice.

Then, and either to the teacher, or other pupils or both, they talk about their
mathematical ideas. Thus they are being provided opportunity to learn to talk but
a question begging is: given the distinct practice that is school mathematics - that
classroom talk has its own form and function (Mercer, 1995), how then are pupils
apprenticed into this talking? And what happens in classes where children have
a range of spoken languages? In short, what Lave and Wenger’s theorising of
learning does not explain, is the specific demands of apprenticeship into school
mathematics, and its necessary focus on the structure of pedagogy.

Within a social theory of mind, that is sharing some basic assumptions with Lave
and Wenger, there has been a great deal of research, theorising and debate on the
mediation of mathematical knowledge in school. It is way beyond the scope of
this paper to elaborate fully here. Briefly, however, more sociological arguments
draw on the work of Paul Dowling (See, for example, Davis and Coombe, 1995)
and the importance of the discursive elaboration of mathematical knowledge in the
classroom for access or apprenticeship into mathematics as opposed to widespread
alienation. Here, mediation of mathematical knowledge via the everyday and the
emphasis on procedural knowledge in the curriculum come under scrutiny. More
psychologically oriented research has focused on the question of meaning where
both children’s meanings and socially constructed mathematical knowledge are
important in the pedagogical situation. Alienation is a function of the suppressing
or ignoring of learner meanings. Informed by both neo-Piagetian and socio-cultural
theory, here, quality and effective mathematic learning and teaching in school
involves a blending of both self- and other-mediated activity, between scaffolding
a task and providing for creative responses to a task, between teaching and
learning (see, for example, Cobb, 1994; Confrey, 1994, 1995a, 1995b).

CONCLUSION

In short, explaining access to or sequestration/alienation from school mathematics
requires an understanding of the structure of pedagogy. Lave and Wenger's social
practice theory falls short here. My own study of teachers’ knowledge of their
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practices in multilingual mathematics classrooms combines social practice theory
with socio-cultural theory for a full and effective elaboration of knowing, learning
and teaching mathematics in school.
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NOTES

1. See, for example, Crawford and Adler, 1996; Cochrane-Smith and Lytle, 1993 and
Richardson, 1994.

2. 1 am not suggesting that only teachers can know about teaching. Rather, we can and must
learn about teaching from teachers themselves.

3. Dowiling’s (1990) analysis of mathematics in the distinct domains of the everyday, the
school and the academy is useful here.
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BEING A RESEARCHER AND BEING A TEACHER

Janet Ainley
Mathematics Education Research Centre
Institute of Education,
University of Warwick, Coventry, U.K.

This paper seeks 10 explore the tensions between the roles of teacher and
research, and between different styles of research activity, through the
deiailed study of accounts of a particular classroom incident. Personal
observations and reflections are used, following the style of the Discipline
of Noticing (Mason, 1994), to consider what may be learned from these
tensions to inform the activities of both teaching and researching.

Introduction

The subject of this paper arises from personal experiences of my involvement in a
long term school-based research project. I am concerned to try to explore the
tensions between the role of teacher and the role of researcher in ways which may
shed light on my effectiveness in both roles. The literature on educational research
abounds in texts on classroom observation, and on the teacher as researcher
(Hitchcock and Hughes (1995), Hopkins (1993) and Hammersley (1986) are typical
examples). What is less easy to find is any literature which deals with the researcher
as teacher, or with the boundaries between the two roles in the classroom. My
interest here is not in the macro level of research design, but in the micro level of
individual interactions in the classroom. The activity I am engaged in is very much
‘researching from the inside’ employing the Discipline of Noticing (Mason (1994)).

The research context

The research project I am working on is concerned with exploring the effects of
high levels of access to portable computers on children’s mathematical learning. It
is based in a primary school, involving children aged 6 to 11 years. Our research
takes place mainly in normal classroom settings with a whole class of children. The
activities used arise as far as possible from the normal work planned for the class,
but with input from the researchers (myself and Dave Pratt) to extend and enrich
the mathematical ideas involved through the use of appropriate software.

In the early stages of the project, we worked with three classteachers' over a period
of two years. It was an important part of the project design that this period would
be one of considerable professional development for the classteachers, in terms of

1 ‘The tenn ‘classteacher” is used throughout to denote the regular members of the school st involved in the
project. This is distinguished from ‘teacher’, which refers 1o the person taking the role of wacher at a particular time.
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both their confidence with computers, and their knowledge of mathematics, in -
which none of them were specialists. We also planned activities with them in school,
and visited their classrooms regularly to observe and collect data.

During this time we developed good professional relationships, and became familiar
with each other’s approaches to teaching. Without the friendship which built up
between the project team during this period, much of the classroom-based research
which we undertook would have been very difficult to carry out, particularly as the
classteachers were working in areas which were largely new to them. It was as
important that we had confidence in each other as teachers, as that the classteachers
trusted us as researchers. Although our main interest is in cognitive issues, studying
how children’s mathematical learning is affected by the use of the computer, our
data was collected largely through a more ethnographic approach, observing
lessons, collecting examples of children’s work, interviewing teachers and children.

During a later, more intensive, phase of the project, we were able to work full time
on the project for one year. Each of us attached to one class during a school term,
teaching mathematics and science for 3 half days per week. The timetable was
arranged so that the other lecturer was able to act as a researcher during these
lessons. The classteachers were generally present during the lessons, sometimes
working alongside the ‘teacher’, and sometimes acting as a second ‘researcher’.
Thus the roles of teacher and researcher were clearly defined for us within any
particular lesson, but the transitions between roles was frequent. It is this
experience of acting both as a teacher and as a researcher which has focused my
attention on tensions involved in the relationship between the two roles.

Conflicting perceptions of a classroom incident

I shall work mainly on a single incident which had a significant effect on my
awareness of the tensions arising from perceptions of classroom roles. Data has
been drawn partly from aspects of the data collected as part of the main project:
from field notes taken by researchers, and the journals kept by lecturers and
classteachers. The incident took place at an early stage in the project, before the
intensive period of work described above, and involved a classteacher, whom I shall
call Martha, and both lecturers.

Martha was using laptop computers with her class for the first time, working on a
data handling activity which had been planned jointly with other members of the
project team. The children had gained reasonable confidence with the machines, and
Martha had introduced the question ‘What affects how a toy car rolls down a slope?’
We have reported elsewhere on some of the children’s work on this activity, and on
the classteacher’s own insights about the approach to collecting and handling data
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(Ainley and Pratt (1994, 1995)). The following sections give three different views
of activity in the classroom during a particular week.

Janet’s story

Visiting the classroom, I tried to take a back-seat, allowing Martha to take the lead
in the lesson. I sat with groups of children, taking field notes ot my own laptop.
Extracts from my notes reflect my attempts to record my observations without
getting drawn into ‘teaching’ or solving technical problems.

I'm sitting at a table, bui because 1'm writing on the machine and looking at
the screen I feel more invisible than I would with pencil and paper. ... It’s
very hard not to get drawn into problem solving, so I have come away to
three pairs of girls working in the book corner. ... The girls with the
extended ramp 1 watched on Tuesday are busy testing, with a fine disregard
for accuracy. They are holding the ramp in place, but not noticing that they
keep moving it. They have so much information to collect about each car that
it is d very long process. ... Some of the ramps are so steep that they cannot
record information easily. (Janet’s notes 930114)

Both the style of the activity and the use of the technology were new to Martha and
to the children, and so it was understandable, and for me expected, that there would
be some time spent exploring less profitable approaches before much progress was
made. However, as time went on my notes reflect some anxiety about how the
activity was developing.

About 2.15. Some {groups)are still typing in their field names. Most have 4 or
5 records at most. Martha is stressing that they need lots of data, but in
practice this is going to take a long time. 1'm not sure how thuch data
handling is going to happen. (Janet’s notes 930114)

Re-reading my notes evokes a strong sense of the discomfort I felt at this point. As
a researcher, I felt frustrated that ime was passing and nothing very interesting
(mathematically) was happening. I was aware that I had other calls on my time
which might prevent me seeing later stages of the activity.

At the same time the part of me that is a teacher felt that | would have done things
differently, that the lesson was losing momentum and that the children needed some
clear direction in order to move on. However, I was very aware that it was not my
classroom: I was not the teacher, and had a strong sense of an etiquette which did
not allow me to intervene. I was not sure how clear Martha’s mathematical and
scientific understanding of the situation was. At this point in our relationship I often
found it hard to read her reactions, as a previous journal entry indicated.
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My heart sank a bit at Martha's introduction, which was very brief. ... 1
would have wanted to let them play with the cars first, and then spend more
time discussing possible variables, ... However, as things progressed I revised
my opinion. ... I must be careful not to underestimate Martha! (Janet’s journal
930112).

In the classroom, my tensions were soon resolved.

As usual, just as | was wondering if Martha has realised lhihgs are going a bit
awry, she came and talked about it. ... Martha feels a bit at sea, I'm going to
try talking to the whole group ... (Janet’s notes 930114). -

Stepping into the role of teacher made me feel much better. I was able to take
control of the direction of the children’s work and pull together ideas for their
future investigations, even though I was not going to be there the following day to
see the results. In a fairly short discussion 1 felt that they had made some progress.
Although I had had some worries about how things were progressing in Martha’s
classroom, I felt at this point that the situation had been partially retrieved. 1
discussed the situation with Dave, my colleague, who would be making the next visit
- to Martha’s classroom.

Dave’s story

Extracts from Dave’s journal and field notes indicate how the next lesson
progressed, but also give some insights into a different perspective on the roles of
researcher and teacher. Dave is prepared to intervene more explicitly to influence
Martha’s planning, though like me, he finds that he has possibly underestimated her
perceptiveness about the situation.

Yesterday Janet worried me by her report of the previous day. It seems that
Martha had found problems helping the children through the scientific process
involved in the experiments ... Janet and I decided that I would get in early
and try to talk 1o Martha about how the children might be focused more and
that this could result in them using the spreadsheet instead [of the
database)which they would find easier. In practice, Martha herself had come
10 much the same conclusions. (Dave’s journal 930115)

As the lesson progressed, with children now working with spreadsheets to
investigate the effects of just one variable, Dave seems to see his role as being a
teacher as much as being a researcher. His field notes are all written in the past
tense, describing incidents that have taken place, and in which he has been involved,
rather than trying to record events as they happen. Dave intervenes directly to show
children techniques on the computer, and also takes the initiative in suggesting to
Martha how the activity might proceed.
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Larger groups were formed by merging all those who wanted to do the same
thing. There were two weight groups, one surface group, and one ramp
height group. ... | had talked to Martha about the need to keep all other things
the same. In fact then they might as well use spreadsheets. Martha was unsure
about how to use the spreadsheet. However, after | had shown one group, she
was clearly much happier and was able 10 see how to teach the other groups.
(Dave’s notes 9301 15)

Despite the fact that Dave and [ regularly looked through and discussed each other’s
field notes, these differences in research style did not become apparent to us. Our
attention was generally focused on what the children had done, and issues to do with
the mathematics or the technology. It was only at a later stage, when we were both
acting in the roles of both teacher and researcher, that I began to reflect on and then
explicitly discuss the tensions raised. However, Martha herself was much more
perceptive about our approaches.

Martha’s story

For Martha, this incident was something of a turning point, at which she might
easily have rejected the project because of the pressures it was putting upon her. She
reflected her conflicting feelings openly in her journal, despite knowing that we
would eventually read it.

I'm not sure what to say about today. At the moment [ feel clearer again about
the situation but at 2.30 this afternoon I felt confused and very dissatisfied
about the whole thing, and wishing I had never heard of lap-tops. (Martha’s
joumal 9301 14)

With typically disarming honesty, she also commented on our behaviour.

1 do feel that this phase of the project is being approached differently by Dave
and Janet. Janet is really sitting back and taking on the role of the observer
rather than supporter, helping only when I am desperate. | wonder why?
(Martha’s journal 9301 14)

1 felt much clearer this morning about the task for today and the way ahead.
... I talked things through with Dave before we started and he seemed to think
my plan was workable, and that we, both the children and myself, needed to
go through that rather busy and confused stage. | realised that I definitely had
learned a great deal. ... | wonder if Janet allowed me to go down the wrong
path intentionally? ... | felt much more comfortable with Dave taking a more
active role with the children. With Janet, when she is just observing, I feel as
if I am us much the guinea pig as the children and the computers are- (I know
1 am really) but it feels as if I'm on teaching practice. (Martha’s journal
930115)




Reflections

At first, I found reading Martha’s journal hurtful. It presented an image of myself
which I did not recognise, and which I felt was unfair. Now that we know each
other much better, Martha and I have been able to discuss this incident several times
with good humour: it has become known as ‘that Thursday afternoon’.

Returning to her written comments now, I am struck again by their perceptiveness,
heightened perhaps by contrast to my lack of it. As a researcher, | made a
deliberate attempt nof to intervene or take any part in the teaching or organisation
of the lesson. I had, wrongly, assumed that she might feel threatened if I behaved
like another teacher in her classroom, ignoring other connotations of my behaviour.

Martha also comments on differences in the ways in which Dave and I acted in the
role of researcher in the classroom. These differences became more apparent to me
when I was being a teacher, with researchers in my classroom. In simplistic terms I
would characterise two research approaches, reflected in Martha’s comments, as
those of observer and experimenter, illustrated briefly in the table below.

Observer Experimenter
» passive - monitoring activities, but * active - intervening to make an
not intervening, using the teacher as input to the activity, to see what
an agent happens
* trying to record everything, = focusing on recording what is most
without too much filtering interesting
* holding back - not wanting to » pgetting involved - fitting into the
invade the teacher’s territory territory by behaving like a teacher
* minimising the effect of the » deliberately acting as a catalyst
researcher

These are not intended as clear-cut categories. Certainly neither Dave or I feel our
behaviours fitted entirely into one column or the other, but the polarisation serves
to expose the often subtle distinctions more clearly. The two styles are also seen
more clearly in the context of the reactions of teachers to the presence of the
researcher.

We saw earlier that Martha felt more comfortable with an experimenter in her
classroom than with an observer. One story I can tell for this, in retrospect, is that
an observer reminded her of being assessed (even though the observer’s attention
was on the children), while an experimenter felt like having another teacher
working alongside her - a familiar situation which had positive associations.

As a teacher, I sometimes felt resentful of an experimenter in my classroom: I felt
that my control of the overall direction of the lesson was being undermined. In
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discussion, Dave (as a teacher) has reported times of frustration at the presence of
an observer, feeling that without active intervention on the part of the researcher to
move children’s thinking on, opportunities were being missed.

As a researcher, my reactions to the styles of observer and experimenter are less
clear-cut. [ often feel uncomfortable as an observer. To watch children’s activity
and not join in feels false, unnatural. I have a sense that I am not doing anything.
(This feeling has resonances in the experience of standing back as a teacher to assess
what is happening in the classroom. There may be echoes here of Martha’s reaction
- why isn’t she helping?) However, at another level, I know that what I am doing is
important. The significance of children’s words and actions are not always
immediately apparent: it is only through detailed and uncritical observation that
they can be captured. Mason (1994) stresses the importance of ‘giving an account
of” before ‘accounting for’. As an observer I have this model in my head. I try -
often unsuccessfully - to record incidents without judgement.

There is an attempt here to eliminate the researcher from the research context: to
create an invisible, neutral monitor, keeping the subject of the research ‘clean’. This
image is appealing; clinical, efficient, ‘correct’. There is a sense in which we would
perhaps all like our research to be seen in this light. However, in our project the
researchers were not neutral observers, but active participants in shaping the
research context. Whatever we did or did not do in the classroom, we had been
involved in planning the activities that the children worked on, often giving quite
explicit models to the teacher as to how a new stage of the activity should be
introduced. In this sense, assuming the role of observer in the classroom was to
some extent a pretence. '

In contrast, I often find acting as a experimenter when I am in the classroom more
comfortable: I feel I am doing something, and getting some responses o my actions.
There is a great satisfaction in making a comment or asking a question, and
recording the effects on children’s activity. I find the role of experimenter
seductive: I use the word deliberately to convey both the pleasure and the lingering
sense of unease. It is this unease which I want to explore further. '

The rationale which Dave and I have discussed for acting as an experimenter is that
we have already set up the learning situation and want to see its effects. Specific
interventions in the classroom are made as a result of observing children’s progress
and judging that they are in need of further input to challenge or extend their
understanding. Having made the intervention, the researcher can then withdraw to
observe the effects of the intervention. The tension for me lies in the discipline
required to make this withdrawal. Once I begin to intervene, I find myself
becoming a teacher.
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Having begun by looking at the interactions between researchers and teachers, I end
by looking at the relationship between the researcher and the teacher in myself. My
mental image is of stepping across a line between two areas of activity. Sometimes
the step is deliberate; sometimes inattentive wandering. Once I step over that line
and begin to be a teacher, I find it hard to act effectively as a researcher. | have an
investment in the children’s success, and I am looking for evidence of this. I stop
seeing and hearing what they really do so clearly. Children generally don’t feel able
to say when they have had enough of my intervention: indeed they may be happy
for me to carry them along my line of thinking. The purpose of my intervention as
a researcher will probably be different. I want to have an effect, but to do as little
as possible, leaving space to listen to the children. I may ask for the children’s
assent to my intervention, and try to leave them the freedom to ignore it.

Far from leading me to feel that I must deny my identity as a teacher in order to be
an effective researcher, I see the skills that I have as a teacher as crucial in enabling
me to frame such interventions effectively. At many levels, I can not stop being a
teacher when I am in school. To be an effective researcher (and perhaps also an
effective teacher) I believe that I need to be aware of the attractions and constraints
of both roles.
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Procedural and Conceptual Aspects of Standard Algorithms in Calculus

Maselan bin Ali - David Tall
Deparunent of Mathematics Mathematics Education Research Centre
Universiti Teknologi Malaysia : University of Warwick
Locked Bag No 791, 80990 Johor Bahru Coventry CV4 7AL
Malaysia ) United Kingdom

This research studies the different methods students use to carry out
algorithms for differentiation and integration. Following Krutetskii, it might be
conjectured that the higher attainers produce curtailed solutions giving the
answer in a smaller number of steps. However, in the population studied
(Malaysian students in the 50th to 90th percentile), some higher attaining
students wrote out solutions in great detail, so little correlation was found
between the attainment of students and the number of steps taken. On the other
hand, the higher attainers had less fragile knowledge structures and were
significantly more likely to succeed. But with problems that can be simplified
by a non-algorithmic manipulation before using a standard algorithm, the
higher attainers were more likely to use some form of conceptual preparation.

Introduction

In his renowned study of the different problem-solving styles of children, Krutetskii
(1976) showed that, of four groups (gifted, capable, average, incapable), the gifted were
likely 1o curtail solutions to solve them in a small number of powerful steps, whilst the
capable and average were more likely to learn to curtail solutions only after considerable
practice. and the incapable were likely to fail. This may be related to the strength of the
conceptual links formed by the more successful students in their cognitive structure
(Hiebert and Lefevre, 1986) which helps the individual utilise knowledge in an efficient
and powerful way. :

The brain is a huge simultaneous processing system that must filter out most of its
activity to be able to focus attention on a small amount of data for decision making
(Crick, 1994, p. 61). Therefore the ability to code information efficiently—to make
appropriate links between concepts and to develop methods that economise on
processes—is likely to increase the brain’s capacity to perform mathematics.

Davis (1983) suggested that at least two kinds of procedures exist: a visually moderated
sequence (VMS) and an integrated sequence. In a VMS, the whole sequence is not yet
apparent and the student carries out a manipulation to produce new written information
which is then operated on in turn until the problem is solved. In an integrated sequence,
the student is aware of the whole algorithm built up from smaller component sequences.

Hiebert and Lefevre er al (1986) contrasted procedural and conceptual methods of
processing mathematical information. Following Dubinsky (1991) and Sfard (1991),
who focused on the way in which process becomes encapsulated (or reified) as mental
object, Gray & Tall (1991, 1994) introduced the notion of procept: the amalgam of
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process and concept represented by the same symbol. They hypothesised that less
fiexible thinkers see the symbol more as a process to be carried out using fairly inflexible
procedures. The more flexible thinkers are hypothesised to view a symbol both as a
process to do mathematics and a concept to think about. Evidence with young children
doing arithmetic showed that whilst the less successful clung to (often idiosyncratic and
inefficient) counting procedures, the more successful not only showed flexible ways of
thinking conceptually, but also often chose more efficient procedures to carry out
required processes.

In this study we consider a population of students solving problems involving standard
algorithms in differentiation and integration. Three groups, each of twelve students, were
selected attaining grades A, B, C respectively in recent examinations. Following
Krutetskii, one might hypothesise that the more successful make sophisticated links to
reduce the manipulation involved and curtail their algorithms to make them more
effective, whilst the less successful are likely to use more rigid procedural methods that
have longer and more fragile connections which may break down. However, the
population studied does not fully reflect these hypotheses. It consists of Malaysian
students following degrees involving mathematics taken from the 50th to the 90th
percentile of the total population (because the highest attaining 10% travel abroad to
study). It was found that in this population there was little correlation between
attainment and curtailment of solutions (because the higher attainers included those who
wrote out painstakingly detailed solutions). The major difference between higher and
lower attainers in standard questions was that the low attainers had more fragile
connections in their knowledge structure and were more likely to break down.

However, the higher attaining grade A students were more likely to show the capacity to
use subtle initial simplifications to simplify the overall manipulation required. Specially
2
designed problems, such as finding the derivative of l+; benefit from an initial
X
conceptual preparation to make the differentiation algorithm simpler to apply. Those.
who fail to carry out a conceptual preparation and tackle the problem using the standard
algorithm may not only be applying a more complex algorithm, but have to follow it up
with a more complex post-algorithmic simplification.

It was found that in certain questions, higher attainers were more likely to use conceptual
preparation than lower attainers. On other occasions where the preparation required was
more subtle or the gain was not so obvious, their confidence in symbolic manipulation
led some high attainers to use a standard method even when they were aware of a
possible alternative. Just as with the more successful children in arithmetic, who would
confidently use efficient procedures when they did not immediately recall the relevant
number facts, the more successful calculus students developed a powerful combination
of conceptual and procedural methods whilst the less successful were often faced with a
more difficult manipulation and therefore were more likely to fail.
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Curtailment of solutions

A crude method of determining the degree of curtailment of a solution process is to
count the number of steps carried out by the students. Some students may begin with the
given formula, others may write a simplification as their first line. The latter case needs
to include the implicit simplification in the first line in the line count. In addition, the
final form of the solution is often written in a conventional manner, and when a student
writes a solution which is not yet in this form, a note should be made that to attain the
canonical form to be comparable with other students may require one (or more) further
steps.

The following tables show typical solutions of the integration problem

j\/37m~.

for the number of steps given in each column. (Each column may represent slight
variants, but the most common solution is written out.) Some solutions do not end in the

: 243 , iy
conventional form TXA + ¢, so these could be considered as requiring one more step

to attain standard form for the sake of comparability.

Grade A students all responded correctly and their solutions vary in length from two to
six steps (the latter possibly being equivalent to seven steps if the last line were further
simplified to its conventional form). (Table 1.)

Typical solutions of grade A students
All responses correct (12)
1 student 2 students 5 students 2 students 2 students
[Vax' e [Varlax I\/Sx’dx
[V3r¥ax [ax") ! N
-w/j'r%(Z)-k(‘ : =jﬁ(.r Yelx =j(3x)dx
=3 ¥ _ ; %
5 £ SO ERET R =3[ | = [3) e
2B, > 12 S = 3 xtax
5 243 =3l +e =3 =
==x +c 5 X+l i
X
e oz |05
2 4
=3xZxt+c
= ﬂx” +c 5
=3 -2-x* +c
5
2 steps 3 steps 4 steps 5 steps 6 steps
tinctuding unwritten | (one solution Both in non
first line ) non -conventional) ~conventional form
Table I: Grade A student responses to an integration problem
Q
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Grade B students produced many errors, with five correct and seven incorrect solutions.
Amongst the correct responses, three used four steps and two used six steps. (Table 2.)

] Typical solutions of grade B students
Correct responses (5) Errors (7)
3 students 2 students 2 students 3 students 2 students
I 3x’dy I 3 dx I V3x’de I\Bx’dx
RN _ 34,
Jos ) de = e = [3)dr =Ja) e = [3x%ax
- 1 Let u=3x*
= ﬁjx dx = I}*xidx (3}(’)’S du _ g2 = 3I xdx
2 = e .
:Jj[xi_g]-f-c =3*Ixidx % dx du =3Xy’-2/5
23x)° de=gF 6/
Y FIPN FFA I B S R
=" =3 = |+c 3 b= [ 544
5 3 I(u) dx = Iu
i
=3’.%.xx+c =_2,[“”d“
1 ]2
2 = 2t
=gﬁxx+f ;7[3“ ]H
_2k . 23x)
27x° 27x
_6x 2
27x° 9
4 steps 6 steps Overgeneralisation | Mixture of substitution | Algebraic
of integration and direct integration Misconception

E
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Aruitoxt provided by Eic:

Table 2: Grade B student responses to an integration problem

Grade C students have only four correct solutions but one has only 2 steps, one has 3
steps and two have 4 steps. (Table 3.)

From these solutions of students in grades A, B, C we note that the higher attainers in
grade A are all successful but vary considerable in the number of steps taken. Grade B
students are less successful (5 out of 12) and the correct solutions vary from 4 to 6 steps.
The grade C students are even less successful (4 out of 12) and the four successful
students have solutions varying in length from 2 to 4 steps. It cannot be asserted that
there is any clear pattern between curtailment and attainment. However, there is a clear
diminution in lower attaining students successfully completing the problem. The
difference between the performance of Grade A and Grade B is statistically significant
using the x2-test with Yates correction (p<0.01), and between Grade A and Grade C even
more so (p<0.0025). The zero entry in the Grade A failures greatly biases these results,
nevertheless the differences are clearly striking.
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Typical solutions of grade C students
Correct responses (4) . Errors (8)
1 student I student 2 students 3 students 2 students 3 students
[V3x'ax [V3x’ax [V3rax [V3x'ur [V3dy
LI e
S [VBae | = [Vt Joa = [3xax IPNEN =[GV
L I = W
% =V3|+'d =9303x)" +¢ =3 =90 (xVodlr
= 3§x§+(' =J§.r tc \/_'[ ' A - “ 3"‘ '9.[(" Vidx
A =~/§[r*.2]+t' o (2 )
2 5 =Y —=Il+c
=Z3% 4 u* 7
5 243 =—+c
=——Xx +c ¥ (X’)”
5 2 =9 —— |+
=2t ¥
SO R0
=23 +c | -
36%)
=2x%+¢
2 steps 3 steps 4 steps Over- Mixture of Algebraic
Non- generalisation of [ substitution and | Misconception
conventional direct integration | direct integration
solution
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Table 3: Grade C student responses 1o an integration problem

Conceptual Preparation

When the manipulation involved in using an algorithm becomes more complex, it may
be possible to devise alternate methods to simplify the solution For example, the
2

. — 1+x . .
problem to determine the derivative of —— using the standard algorithm for the
X

derivative of a quotient involves the student needing to use the formula in a cumbersome
way and then simplifying the result:

l+x2
y=—=
X
2 2 3 3
dy _Q)T)-Qx)d+x")  2x" -2x-2x _ 2x 2
A 2.2 = 3 -TTT§T T3
(x7) x X X

However, if the expression is first simplified as x™° +1 then its derivative is straight
-3 . . . . . .

away seen to be —2x 7, affording a considerable reduction in processing. Students may

shorten their solutions in various ways, for instance, the initial simplification might be

conceived as a succession of formal manipulations:
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2 2

T+x” 1 x"

7 -7t 7 =X
x x

-2
+1.

X

However, often students compress this further to a single written step:

I+ -2
=x " +l.
X 1+x°
Some do this by reading the symbol —— as two fractions in this way:
x

2
| + X

2 3

X X

. | o ‘ X TP
translating — immediately as x-2, then writing —5 as +1, to perform the simplification
x

. . X .
in a single composite step. 2

Out of thirty six students, twenty of them simplified the expression I+2x before
carrying out the differentiation, for example by writing: X
-2
y=x " +1,
d - 2x73 = ——3 .
dx x

Fifteen students failed to conceptually prepare and so led to a more complex version of
the algorithm and the need to perform more simplification afterwards. All but one
student were successful in this task, the remaining student making a single slip by
writing a '+’ sign in the numerator of the quotient algorithm instead of a *~’ sign:

dy _2x(:)+2x(1+x7) 20+ 24420 _4x0+2x _4 2

3.

7.2 ] 3 -
dx (x7) x X X x

The students in the various grades performed as follows:

Students’ Conceptually | Post-algorithmic No further
grade prepared simplification simplification
A 10 2 0
B 6 6 0
C 4 7 1
Total 20 15 1

Table 4: Student responses to a differentiation problem

Here the number carrying out conceptual preparation reduces from 10 out of 12 in-grade
A to only 4 out of 12 in grade C. Using a x2 test with Yates correction, this is significant
at the 5% level (with p=0.038). The numbers involved are small and the differences
between groups A and B and between B and C are not statistically significant.
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The fragility of conceptual preparation

The conceptual preparation for a solution depends very much on the nature of the
problem. There is no obvious algorithm to cover all possible cases. For instance the
2
A P+x® . o . S
derivative of y = ——— is simplified by separating the expression into two parts, but the
x

derivative of

4
| Y

y= 2

2

1+x 1+x
is found more easily by adding the two expressions together and factorising the
numerator.

4 4

| X l-x (l—\ )(l+x ) 2
y= 5~ 2: 7 = =l-x N
l+x l+x l+x (l+1 )
Q:-—Z.\’.
dx

In this example, only six of the twelve Grade A students added the terms together and
factorised the numerator. Conceptual preparation therefore varies considerably from case
to case and is not given by a single algorithm, so students may use some form of
conceptual preparation in some problems, but not in others.

Sometimes it may not even be clear whether some form of conceptual preparation may
be advantageous. For instance, the problem '

Find dy . wheny:(x-trl)
dx x

is best solved by using the chain rule with u = x + — to obtain the derivative in the form

x
n-1 du
nu

[¢

. However the problem
2
Find b , wheny=(x +l)
dx x

happens to be easier by expanding the bracket to differentiate x2 +2+x72. In this case
there is a tension between using the generalisable chain rule method and the particular
method expanding the bracket, which happens to be marginally shorter. This is reflected
in the performance of the grade A students where six used the chain rule and six
expanded the bracket. In interview, four of the six using the chain rule could see a
possible advantage in the alternative method but preferred to use the more general
strategy and trust their facility in manipulation.
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Conclusion

In the group of students studied (between the 50th and 90th percentile in the whole
population) there is no obvious correlation between the number of steps taken in carrying
out a routine symbolic algorithm and the level of attainment of the student. Thus the
curtailment spoken of by Krutetskii in higher attaining children solving problems does
not occur here. The more successful Grade A students include those who write out
algorithms in greater detail as well as those who curtail the solution. The most obvious
difference between the Grade A and Grade C students is the ability of the former to
complete the procedure correctly.

However, when problems are designed which can be simplified by an initial conceptual
preparation, the more successful students are more likely to conceptually prepare than
the less successful students. With problems where the preparation involves using a more
specific method that is shorter or a generalisable method which happens to be longer, the
more successful students are likely to be aware of the alternatives, some using the shorter
method, some preferring the more general method and having confidence in their ability
to carry out the manipulation. This is in accord with the notion of proceptual thinking in
arithmetic (Gray & Tall, 1994) where the more successful select appropriate conceptual
methods or have the power to carry out the procedures correctly. It is also in accord with
the value of having both conceptual and procedural knowledge (Hiebert & Lefevre,
1986).
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USING SMALL GROUP DISCUSSIONS TO GATHER
EVIDENCE OF MATHEMATICAL POWER
) SITSOFE ENYONAM ANKU
NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE

Abstract

Four grade nine students discussed their solutions to seven mathematical problems.
The discussions were analysed 10 provide evidence of mathematical power which
was defined in terms of NCTM's student assessment standards (SAS) and their
integration. Results showed that students demonstrated mathematical power to the
extent that at leust one category of the mathematical activities associated with each
SAS was reflected by the students’ small group discussions. Combining students’
writien scripts with their talk provided a better insight into the things they were
talking about. Also, monitoring the students and sometimes providing them with
prompts helped them to accomplish their tasks. Finally, the students tended to shift
their viewpoints consensually or conceptually to align their viewpoints with
majority viewpoints.

Intreduction

A major reform in mathematics education throughout North America,
initiated by the National Council of Teachers of Mathematics (NCTM), involves the
provision of standards for curriculum and evaluation in K-12 mathematics (NCTM,
1989) and standards for teaching K-12 mathematics (NCTM, 1991). The standards
for curriculum and evaluation, and those for teaching, are the ones perceived by the
NCTM as important and needing implementation if students are to develop
mathematical power which refers to "all aspects of mathematical knowledge and
their integration” (NCTM, 1989, p. 205). Specifically for this study, mathematical
power was defined in terms of student-assessment standards (SAS), which comprise
mathematical communication, mathematical problem solving, mathematical
concepts, mathematical procedures, and mathematical disposition. Associated with
each SAS are defined categories of mathematical activities (NCTM, 1989).

One way to monitor the development of mathematical power is through the
talk that can result when students interact (as can occur in small groups) to make
sense of mathematical activities. There have been several investigations into the
contributions of student interactions (in small groups) to the learning of
mathematics (Artz & Newman, 1990; Davidson, 1990; Johnson, Johnson, & Stanne,
1990; Webb, 1991; Yackel et al., 1990), but none has been directed specifically at
examining the extent to which information from the small group is indicative of
students’ mathematical power. Furthermore, it was reported in the March 1994
issue of the Journal of Research in Mathematics Education (volume 25 number 2,
page 115) by the Research Advisory Committee of the NCTM that:

Perhaps the most obvious research-related response to the Standards is the
identification and clarification of the research base for the recommendations
contained in the document. The Standards document contains many
recommendations, but in general it does not provide a research context for
the recommendations, even when such a context is available.
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So, in line with the aspirations of the Research Advisory Committee, this
study sought to provide a research context for using the small group format to
gather information indicative of students’ mathematical power. The information
involved what a group of four students said or wrote down individually as they
engaged in student-student interactions to discuss their solutions to mathematical
problems.

Theoretical Framework

To initiate and sustain verbal interactions among students, some form of
discourse is necessary. This discourse includes the way ideas are exchanged and
what those ideas entail (NCTM, 1991). Throughout the discourse, the individual's
ways of making sense of things (Davis, Maher, & Noddings, 1990), are influenced
by the social interaction that helps the individual to make sense of those things
(Bishop, 1985; Yackel et al, 1990; Vygotsky, 1978). Accordingly, where
individual students interact to discuss their solutions to mathematical problems, I
believe it is important to consider the individual's ways of making sense of the
problems and the social interaction among the students, both of which contribute to
the generation of knowledge. Thus, the ideas of constructivism and knowledge
generation through social interaction, provided a useful theoretical framework for
gathering information on students’ demonstration of mathematical power in small
group contexts.

Method

Design

Four of the 18 grade 9 students of a class were selected to form the focus
group of the study. The remaining students were also grouped into fours or fives
and they participated in the study but data gathered from them were used only for
purposes of triangulation. ‘For each data gathering session, the students attempted to
solve the assigned problems individually within 20 minutes and then later discussed
the solutions they obtained with their group members for 40 minutes. I urged the
students to focus on explaining and giving justifications for the solutions they
obtained while they discussed their solutions. Occasionally, I gave students prompts
either when they asked for help, or when I found they were stuck in their
discussions.
Small group formation

As students' talk was very vital for gathering information for the study, it
was desirable to have group members who would communicate with each other,
feel comfortable sharing their ideas together, validate their conjectures while others
in the group tried to meaningfully criticize those conjectures. Also, according to
Webb (1991), for equal number of males and females, achievement does not differ
significantly when students work in groups. Accordingly, students for the study
were selected based on the following criteria: 1) mathematical ability, 2) ability to
talk in a group, and 3) balancing of males and females. ’
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The problems

Although what constitutes a problem varies for each student and that not all the
problems could provide information indicative of all of SAS, what was important
was that each problem must have the potential for students to engage in sound and
significant mathematics as a part of accomplishing the task (Van de Walle, 1994).

- Furthermore, the problem should provide the students the opportunity to have
something to talk about. In that regard, I tried to use problem types with .whlch the
students were familiar, and indeed, students had a 1ot to talk about.

el ni

To gather information from the participants' perspectives (Hammersley &
Atkinson, 1991; Patton, 1987), | video-recorded the group's discussions-of their
solutions to the problems. The remaining groups' discussions were audio recorded.
Also, 1 collected all students' written responses to the problems
C lysi

The focus group's discussions were transcribed from the video and then
analyzed. Information from students' small group discussions were organized
around SAS which served as key constructs (Fetterman, 1989; Guba & Lincoln,
1991; Hammersley & Atkinson, 1991; Merriam, 1991). The unit of analysis
(Merriam, 1991; Yin, 1989) was the information students generated in 40 minutes,
as they discussed in small groups, their solutions to each of the mathematical
problems. Any inferences or generalizations were not statistical, but rather
analytical (Yin, 1989), and they were to "guide but not predict one's actions”
(Merriam, 1991, p. 176). To provide "trustworthy” results, efforts were made to
ensure the “credibility” and "auditability” of the data and the results (Guba &
Lincoln, 1991). For example, after the transcription, each video recordlng and the
transcripts were re-examined together.

From the full transcript of each problem, portions were coded as C1, C2, ...;
MP1, MP2, ..; MCI, MC2, ...; PS1, PS2, ...; and MD1, MD2, ...; which represent
categories of mathematical activities associated with SAS. For example, in PS4,
'PS” refers to "problem solving” while "4" refers to an excerpt that reflects the
“fourth" category of students’ mathematical activities listed under problem solving,
that is, verify und interpret results. Then, from all portions of the discussions
coded PS4, 1 selected one excerpt that, in my judgment, best illustrates students’
ability to verify and interpret results, using the NCTM’s definition. Transcripts for
the other problems were treated similarly.

The extent to which students demonstrated mathematical power was then
provided in terms of the interpretations of the excerpts relating to SAS and the
union of those excerpts. What was important here was to provide a holistic picture
of students’ demonstration of mathematical power within problems and across
problems.

Results and Reflections

A category of mathematical activities associated with mathemaucal
commumcauon (an SAS) was the use of mathematical vocabulary, notation, and
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structure to represent ideas, describe relationships, and model situations. An
example of students’ use of mathematical notations to represent mathematical ideas
and to describe mathematical relationships is illustrated by the excerpt in figure 1.
Students were discussing their solutions to a problem requiring them to find the
ratio of the area to the perimeter of a given plane figure. Jane orally described
ratio correctly as **...This, two dots, and that.” Her script (see Figure 2) showed
that she could represent ratio also with a "slash” instead of a "double dot." When
Daniel responded to Jane's question "Does it matter if you write it this way or that
way?" by saying that "They are all the right answer”, apparently, he was assuring
Jane that both ways of representing ratio are correct. Quincy also was in
agreement. So. in addition to seeing how students represented notations, we
recognize that they also "debated” its appropriateness.

Jane: So then if it is ratio, it will be like....

Paulina Is this ratio? [Asking Daniel].

Daniel: Yes...

Jane: ... This, two dots, and that? Does it matter if you write it this way or

that way? What do you think?
Daniel: They are all the right answer. [Quincy nodding his head].

Eigure 1: An excerpt of students’ discussions involving mathematical
communication.

An examination of Jane's script (Figure 2) shows that “this” was referring to
one part of the ratio. “two dots” was referring to the symbol for ratio, and “that”
was referring to the other part of the ratio.
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Figure 2: Jane's script
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Mathematical power

Evidence of students’ demonstration of mathematical power was provided by
their: 1) ability to communicate mathematically, 2) ability to use mathematical
concepts, 3) ability to use mathematical procedures, 4) ability to use mathematics to
solve problems, and 5) disposition towards mathematics. In addition, students’
mathematical power was evidenced by the extent to which students integrated all
these aspects of what should constitute mathematical knowledge. Table | provides a
summary of the distribution of excerpts that were reflective of SAS. The table was
obtained after analysis similar to the ones in Figures | and 2.

Table 1
Categories of Student Assessment Standards (SAS)
Refl { by Di . f Probl

SAS Prob1 |Prob2 |Prob3 |Prob4 |ProbS |Prob 6 |Prob 7
C 2/3 33 33 33 2/3 3/3 373
MC 2/7 4717 n 471 37 377 271
MP 471 37 477 271 2/7 37 571

PS 2/5 2/5 2/5 2/5 2/5 4/5 2/5
MD 4717 37 477 471 37 37 671
Note:

C = Communication, MC = Mathematical concepts, MP = Mathematical
procedures, PS = Problem solving, MD = Mathematical disposition

For example, 2/3 in the row of "C" (communication) and in the column of
"Prob 1" (problem 1) mweans that there were excerpts from the discussions of
problem 1 that reflect two out of the three categories of mathematical activities
associated with mathematical communication. Notice that 2/3 was not used to mean
two out the three equal categories; it was only used to mean that two of the three
categories were reflected. So, evidence that the discussions reflected mathematical
activities associated with any two or more SAS (union of excerpts related to SAS)
was taken to constitute evidence for integration. (For further details, see Anku,
1994).

Other results

Two major types of shifts were perceived to have taken place as students
discussed their solutions to the problems given them. These were labeled - ,
consensual when the shift was to align an initial viewpoint with that of the majority,
and conceptual when an initial conception was abandoned by the students for a
different conception during the discussions. Most of the consensual shifts involved
majority viewpoints that were compatible with acceptable viewpoints within
mathematics. Apparently, students did not shift consensually if they had a solid
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-grasp of an initial viewpoint. Finally, concéptual shifts observed from the study
resulted in conceptions that were compatible with standard conceptions within
mathematics. .
Reflections

_ There were some difficulties associated with capturing students' mathematical
power through the SAS. The circular definition of students' mathematical power
made it problematic when deciding what constituted students’ mathematical power.
For example, the NCTM considers students’ mathematical power as one of the
student assessment standards and considers mathematical reasoning also as one of
the student assessment standards. However, a category of mathematical activity
associated with students’ mathematical power involves mathematical reasoning also.
Thus, conceptually, mathematical reasoning is presented as a subset of students’
mathematical power and at the same time presented as of equal importance to
students’ mathematical power, which is a student assessment standard. What
constitutes students’ mathematical power was therefore difficult to determine and
some conceptual clarification is needed.

. Talking about conceptual clarification brings to mind the difficulty I had
deciding whether the mathematical power demonstrated by the students in the small
group was for the group or for the individuals in the group. During the discussions
some particular, students séemed to talk frequently, but as responses to what other
“students, who seemed talk less frequently, said in the group. In either case, the talk
reflected a category of mathematical activity associated with one of the students
“assessment-standards. So, was it the student who talked more frequently that
demonstrated mathematical power or the one who talked less frequently but who
provoked the discussion? Or was it the whole group that demonstrated
mathematical power? It was a difficult decision for me to take and I found myself
"buying” into the idea that in the small group context, the individual demonstrated
mathematical power which was "mediated” by the group interaction. By that |
mean there was some “group effect” on the individual's demonstration of
mathematical power, and I am still grappling with how to-determine the extent of
that group effect.

Sometimes, deciding on which categories of mathematical activities particular
information reflected was difticult because of the overlap of some of the categories
associated with SAS. Evidence that was indicative of a student's ability "to apply a
variety of strategies to solve problems", for example, might also be indicative of
that student’s "flexibility in exploring mathematical ideas and trying alternative
methods in solving problems.” However, these two categories of mathematical
activities are associated with two different SAS. Rather, instead of creating
separate categories for such mathematical activities, efforts should be made to unify
such categories so as to provide a more holistic picture of students’ mathematical
power.

Loplicati | Conclusi

~ Even though the study could be considered a "best case scenerio,” the results
suggest several implications for classroom practice. Since the small group
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discussions provided information indicative of students’ mathematical power, the
results suggest that the small group context can be used to gather such information.
As such, mathematics teachers are encouraged to use it as a context for gathenng
information indicative of students’ mathematical power.. Also, mathematics
teachers are encouraged to consciously provide for all caiegories of mathematical
activities that are associated with SAS if students are to meet the expectations of the
reform. Limiting ‘the categories will limit the extent to which students develop -
mathematical power. Also, when teachers adopt the use of small groups to gather
information indicative of students’ mathematical power, they are encouraged not to
focus only on students’ talk, since sometimes, combining students’ talk with thelr
written scripts can provide better insights into the subject of discussion.

A classroom instructional process, which involves discussions of
mathematical activities, may help i improve students' proficiency in'mathematics
because as students shift their reasoning consensually or conceptually as a result of
group discussions, they tend to align themselves with viewpoints that are compatible
with acceptable viewpoints within mathematics. For students to confidently align
themselves with acceptable viewpoints, teachers need to encourage their students to
self-validate (Anku, in press) their solution. This was evidenced in the study by
students not changing their solution when they could self-validate it. Thus, the
ability to self-validate should provide the control element shaping the direction of
the shifts.

Finally, teachers are encouraged to monitor the group discussions so that
prompts can be given to challenge shifts not aligned with acceptable viewpoints
within mathematics. Giving the appropriate prompts at the appropriate time means
that the teachers are knowledgeable enough to detect students’ difficulties (and
strengths) and: know what prompts to give to help clarify students' thinking.
Monitoring is also necessary if teachers are to identify the "buds" or "flowers" that
are "in the course of maturing” (Vygotsky, 1978, p. 87) and provide appropriate
mathematical activities that will enhance the growth of thése buds or flowers. '

In conclusion, this study demonstrates in a small way that from small group
discussions, there can be observable events that reflect the categories of ;
mathematical activities associated with SAS. To continue with the currént reform
within mathematics education, teachers should be encouraged to take risks to
identify and assess classroom events that reflect the seemingly rhetoric parts of the
SAS. Teachers will need a lot of guidance and encouragement, and I hope this
study provides an additional source of encouragement that it can be done.
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SEVENTH GRADES STUDENTS' ALGORITHMIC. INTUITIVE AND
FORMAL KNOWLEDGE OF MULTIPLICATION AND DIVISION OF NON
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Abstract

This paper applies a theoretical framework for analvzing seventh grade
students’ knowledge of rational numbers. A study was designed o exuntine the
possible interrelations among different dimensions of knowledge. Sixty-six Israeli
students answered a written questionnaire and were intensively interviewed about
their mathematical content knowledge of rational numbers.

A comprehensive picture of the algorithmic, intdtive and formal
dimensions of knowledge and the interactions among them is provided. This
framework is seen as being potentially extended to other domains of study and
other populations.

The non-negative rational numbers constitute a formal extension of the
natural numbers. This extension is a major part of the curricula of both upper
elementary and middle schools and requires substantial restructuring of the
meaning of and operations with numbers. Studies have consistently shown that
non-negative rational numbers have long been a stumbling block for many
students (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Carpenter,
Lindquist, Brown, Kouba, Silver, & Swafford, 1988; Greer, 1994). Each of these
studies provided information related to a specific aspect of students' mathematical
content knowledge of rational numbers.

Fischbein (1983) has suggested that mathematical knowledge is embedded in
a set of connections among algorithmic, intuitive and formal dimensions of
knowledge. Usually, the assessment of students’ mathematical knowledge considers
only the algorithmic dimension. In our opinion, in order to get a comprehensive
picture of knowledge and thinking abilities of students, one has to take into
account the formal and the intuitive knowledge as well. Proficiency in procedures
does not necessarily ensure understanding. Ideally, the dimensions of knowledge
should cooperate in the processes of concept acquisition, understanding and
problem solving. In reality, though, this is not always the case - often there are
serious inconsistencies between students’ algorithmic, intuitive and formal
knowledge. Such inconsistencies could be the source of common difficulties that

‘This study is a part of a project supported by the Umited States - [srael Binational Science Foundation (BSE) Grant
# 88-00213/1). All opinions expressed here are those of the authors and do not necessanly retlect the views of the
funder. We wish 1o acknowledge the principal and co-principal investigators of the project - Prof. Eiraim Fischben.
Prof. Dina Tirosh, Prof. James Wilson, and Dr. Anna Gracber - for therr helpful comments an earlies drafls of this
paper. We thank Nurith Snir and Boaz Shani tor collecting the data,
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learners encounter in their mathematical activities, including misconceptions,
cognitive obstacles and inadequate usage of algorithms (Fischbein, 1983; Tall &
Vinner, 1981; Tirosh, 1990).

The absence of a conceptual framework for analyzing learners'
mathematical content:knowledge, hiis made a global understanding impossible.
This study therefore assesses seventh graders' mathematical content knowledge of
ratignal numbers in respect to the three dimensions and the interactions among
them. We assume that these interactions may better explain students' reasoning
when solving a problem, correctly or incorrectly.

Method
Subjects
Sixty-six seventh graders participated in the study. All of them had had
formal instruction about operations with non-negative rational numbers (fractions
and decimals) during the sixth grade.

Instruments

1. Diagnostic test: The students were asked to complete a diagnostic test which
examined their formal; algorithmic and intuitive understanding of rational
numbers. The diagnostic test examined the following aspects:

a) The algorithmic dimension: Ability to compute with fractions and
" with decimal numbers, and the capability to explain the rationale
behind the various algorithmic aspects.

b)  The formal dunension: Ability to identify and give examples of
natural numbers, integers and rational numbers. Knowledge related
to the hierarchy of subsets of rational numbers and familiarity with
the density of rational numbers and with the commutative, associative
and distributive laws.

c) The intuitive dimension: Ability to identify the adequate operations
for solving multiplication and division word-problems, capability to
produce adequate intuitive models for representing number concepts
and operations with them, and competency in evaluating the results of
arithmetical operations with rational numbers.

2

nterviews: A.sample of 23 students was chosen for extensive interviewing.

Eleven students were those who showed poor algorithmic, formal and
intuitive knowledge, while 12 students had relatively good algorithmic but
low formal and intuitive performance. Each subject was interviewed at least
three times for 20-40 minutes. The interviews were semi-structured, that is,
an interview program was outlined for each subject and additional probes
were made during interviews to better understand their conceptions.

O
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Results

A. Algorithmic knowledge.

The students were asked to solve five multiplication problems and nine
division problems. Half of the students were asked to solve problems with
fractions, the others solved the same problems given in decimal form. Poorest
performance was observed on items involving mixed numerical notation in
decimals. About 40% of the students did not supply any answer to those items.

Interestingly, dividing 6:11 and 11:6 was problematic. About 20% of the students
responded to neither of these items. Twenty percent of the students claimed that it
was tmpossible to divide 6 by 11.

Students' performance on division tasks was poorer than on the multiplication
tasks, and their performance with decimals was poorer than with integers and.
fractions (see Table 1).

Table 1: Seventh Graders' Performance in Algorithmic Tasks (in %)

Correct Answers Correct Answers
Fractions Decimals Fractions Decimals

0.39 - 97 78 25:4 55 34
3.755 64 67 4:0.25 67 55
9-0.3 88 78 0.2:0.8 64 51
0.75-0.5 88 70 0.8:0.2 79 67
6.25-4.8 64 51 0.2:3 73 42
T 0.25:06 76 34
8.25:4.5 ) 52 27

6.11 53

1.6 55

The students were generally unable to justify the successive steps of the
algorithms (their understanding of the algorithms seems instrumental and not
relational). During interviews, when asked to explain why a certain algorithm led
to its solution, most of the subjects kept repeating the steps in the algorithm. They
were surprised that a question such as "Why do you multiply both the divisor and
the dividend in 4.5:0.5 by the same number?" could be asked.  When asked if it
was possible, in a problem like 5.8:2, not to multiply the divisor and the dividend
by 10 but to’ perform the division directly, most of the interviewers argucd that
“It is impossible, you must first get rid of the decimal point”.

El{lC 2-37
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B. Intuitive knowledge.

1. Beliefs about multiplication and division:

The students were asked to respond to statements related to multiplication
and division.

a) In a multiplication problem, the product is always bigger than one.

b)  In a multiplication problem, the product is always equal or bigger
than both factors.

c) In a division problem, the dividend is always bigger than the divisor.

d) In a division problem, the dividend is always bigger than the
’ quotient.

€) In a division problem, the quotient must be an integer. .
f) In a division problem, the divisor can be a fraction.

The vast majority of the students held primitive beliefs concerning the
results of multiplication and division. High levels of correct answers occurred
only to two items: e (82%), and f (91%). Both were division items which
reterred to only one magnitude (the quotient or the divisor). Performance on
multiplication items referring to only one magnitude (the product) was poor
a (53%). Low percentages of correct reactions appeared on the other items, all of
which dealt with the relative magnitudes of at least two of the quantities involved
in arithmetical expressions ¢ (42%), d (27%), b(29% correct, 26% of whom
justified it by multiplication by 0). Students hold common beliefs that
“multiplication always makes bigger” and "division always makes smaller”

2. Representations:

Most students lacked the ability to construct appropriate representations of
operations with rational numbers. About half drew appropriate graphical
representations of 1/3, and of 6:2 using mostly either disks or rectangular-region
models for 1/3, and set models for 6:2.

The representations of improper fractions and of operations involving
fractions were a much more difficult task for the students. Only few (10%)
constructed appropriate representations of 3/2, 13% represented 1/3 x 5 in a
meaningful way, and about 27% gave appropriate representations of the division
expressions (i.e., 4 : 1/4 and 1/4 : 4).

3. Performance on Word Problems:

The students were asked to write an appropriate expression for each word
problem without performing the computation. They were given four
multiplication and seven division word problems.

O
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High levels of correct answers (75% correct) occurred in the multiplication
problem involving a natural operator ("A motorcycle needs 0.3 liters of fuel per
k.m. How many liters does it need for passing 9 k.m.”"). In this case the operator
is a natural number and thus the numerical data in the problem are in accordance
with the constraints of the intuitive repeated addition model of multiplication. In a
similar problem, albeit with a noninteger operator, the percentage of correct
answers was low (35%). In this case 40% of the students chose division instead of
multiplication as the suitable expression. This shows that when the numerical data
in the problem violate the constraints of the intuitive repeated addition model, this
model operates behind the scenes and prevents the right solution ( Fischbein,
1993).

Table 2: Performance on Division Problems (in %)

Quotative Model Partitive Model
Problem Correct % m.i.d.* No Problem Comect % m.i.d No
No. Answer  Comect Answer No. Answer Correct Answer
1 0.25:0.6 6 20 23 5 6:11 59 - 15
2 0.8:0.2 65 12 I 6 0.25:4 63 9 15
3 4:0.25 58 15 15 7 11:6 58 - 18
4 0.2:3 14 20 24

* m.i.d- multiplication instead of division

Sixty percent gave correct answers to the partitive division problems and to
two out of four _quotative division problems (see Table 2). The students had
great difficulties on the other two quotative division problems. We believe that in
these problems the difficulty of the context exceeded the difficulty caused by the
constraints imposed by the division model.

C. Formal knowledge.

Serious deficiencies were identified on the following aspects of formal
knowledge:

I Subsets of rational numbers and their hierarchical structure: Only 33%
identified {1,2,3,...} as the set of natural numbers, 13% identified
{..-3,-2,-1,0,1,2,3...} as the set of integers, and no more than 28% of the
students provided an adequate example of a non-integer, rational number.
Only 18% knew that -3/4 is a rational number, and even less (11%)
correctly identified 0.251 as a rational number. Students' performance on
items which examined their knowledge of the hierarchical structure of the
numerical system was also poor. When asked to determine which of the
two given sets was a proper subset of the other, 23% correctly agreed that
the set of the rational numbers includes the integers, and 48% agreed that

O
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the latter set includes the set of natural numbers. Yet, 39% of the subjects '
incorrectly agreed that the set of the natural numbers includes the set of
integers. ‘

2. The density property of rational numbers: Most students were familiar with
the density property of rational numbers. The majority of them (about
60%) provided adequate examples of numbers between two given rational
numbers. Likewise, most students could correctly determine whether two
given rational numbers were equivalent or not. The only problematic pairs
were 4/8 and 35/70 (25% argued that 35/70 was bigger than 4/8 because
both the numerator and the denominator in the former were greater than in
the latter), and 1/7 and 1.7 (15% argued for equivalency).

3. The commutative, assqciative and distributive laws: Students were asked to
write examples for the use of these laws. About 60% provided adequate
examples for the commutative law. Less students (44%) provided adequate
examples for the distributive law. Only 20% of the students provided
adequate examples of the associative law-the most prominent inadequate
examples consisted of two uses of the commutative law, namely,
3x4x5=5x4x3.

Other items in this category dealt with arguments that were presented as if
they were offered by a student, and a subject was asked to comment on it, e.g.:
"Roni wrote: 7:(4 + 2) = 7:4 + 7:2 . Is his solution correct? Why?". Forty-three
percent correctly argued that 7:(4 + 2) is not equal to 7:4 + 7:2.

D.  The interaction between algorithmic and intuitive knowledge.

Students tunction on different levels in algorithmic and intuitive tasks.
Sixty percent of the students who showed adequate algorithmic knowledge,
obtaining products smaller than both factors, still claimed that " multiplication
makes bigger”. Half of the 58% of the students who solved 0.2 : 0.8 correctly,
still argued that "the dividend is always bigger than the divisor" and 71% of them
claimed that "division always makes smaller". It was obvious that when
functioning on the algorithmic level, intuitive knowledge was not considered.

E. The interaction between word problem solving and intuitive knowledge.

a) The repeated addition model for multiplication demands a nayural operator
and thus imposes the belief that "multiplication makes bigger". The two
multiplication problems on which high levels of performance occurred included
natural operators. The other two multiplication problems involved non-integer
operators and caused many incorrect answers. For example, the problem:

"There were 9 kg. apples in a store, Yael bought 0.3 of this amount. How many
kg. of apples did she buy?” forty percent of the students chose division instead of
multiplication as the suitable expression.

El{llC 48 240
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We assume that students who know that the answer should be smaller than
9, and hold the intuitive belief that "multiplication makes bigger and division
makes smaller”, choose division instead of multiplication for solving this problem.

I

(3]

The partitive model for division imposes three constraints:

i) the dividend is always bigger than the divisor 1) the divisor must
be a natural number, and iii) the dividend is always bigger than the
quotient ("division makes smaller").

Only in problems 5 and 6, the numerical data were not in accordance
with one constraint of the model (i). Half of the subjects who gave a
correct expression for solving these problems, hold the intuitive
misbelief "the dividend is always bigger than the divisor". The same
percentage of correct expressions was given to problems 5, 7 (6:11,
11:6), although in one the dividend is bigger than the divisor and in
the other it is not.

One of our hypotheses was that intuitive beliefs support the
performance on solving word problems. Accordingly we expected
students who believed that "the dividend is always bigger than the
divisor” to change the roles of dividend and divisor in the expression
solving these problems. Only few did so.

The quotative model imposes only one constraint, namely: "“The
dividend is always bigger than the divisor". The percentage of
correct answers given to the two problems in which the numbers
followed the constraints of the quotative model (problems 2, 3) was
relatively high (58%, 65%). Low performance percentages (6%,
14%) occurred on the problems in which the dividend was smaller
than the divisor. Twenty-five percent of the students did not give any
answer to these problems, 25% changed the order of the divisor and
dividend (as expected) and almost the same percentage incorrectly
chose multiplication (instead of division) as the appropriate operation
for solving these problems.

Final Comments

Conceptual understanding of rational numbers is foundational for many
vital components of mathematical and scientific reasoning, notably ratio and
proportion, algebra and calculus (Greer, 1994). In this paper a new conceptual
framework was suggested for analyzing learners’ mathematical knowledge of
specific mathematical content domains, which takes account of algorithmic,
intuitive and formal dimensions and their connections. With this framework, we
were able to provide a systematic, comprehensive picture of students’ mathematics
content knowledge of rational numbers, and the interactions among the different
aspects of this knowledge.



It became apparent that students’ knowledge of rational numbers is
inconsistent. We therefore concluded that, during instruction each component of
knowledge should be addressed separately and attention should be paid to
integrating the three aspects.

Although we used this framework for analyzing students’ knowledge
of rational numbers, expansion to other domains seems reasonable. We suggest
that the framework be adapted to other populations: students in different grades,
to preservice teachers or novice teachers. It can also be extended to other
domains of knowledge.

Students' performance on algorithmic tasks indicated a difference between
skills on fractions and decimals. The students’ performance on fractions was
higher than on decimals. They tended to use fractions even when the tasks were

given as decimals ( e.g., substitute {-% for 0.25 : 0.6). A possible explanation is

that students in Israel learn fractions before decimals, so that their experience
with fractions is richer. More research is needed in order to verify this
assumption and its educational implications should be considered.

References

Carpenter, T.C., Corbitt, M.K., Kepner, H.S., Lindquist, M.N., & Reys,
R.E. (1981). Results and implication from national assessment. Arithmetic
Teucher, 28, 34-37.

Carpenter, T.C., Lindquist, M.M., Brown, C.A.,.Kouba, V.L., Silver,
E.A., & Swafford, J.O. (1988). Results of the fourth NAEP Assessment of
mathematics: Trends and conclusions. Arithmetic Teachers, 36, 38-41.

Fischbein, E. (1983). Role of implicit models in solving elementary
arithmetical problems. Proceedings of the Seventh International Conference for
the Psychology of Mathematics Education, (pp. 2-18). Rehovot, Israel: Weizman
Institute of Science.

Fischbein, E. (1993). The interaction between the formal and the
algorithmic and the intuitive components in a mathematical activity. In R. Biehler,
R. W. Scholz, R. Straser, B. Winkelmann (Eds.), Didactics of mathematics as a
scientific discipline, (pp. 231-245). Netherlands, Dordrecht: Kluwer.

Greer, B. (1994). Rational numbers. In T. Husen, & N. Postlethwaite
(Eds.), International encyclopedia of education (Second edition). London:
Pergamon

Tall, D., & Vinner, S. (1981). Concept image and concept definition in
mathematics with particular reference to limits and continuity. Educational
Studies in Mathematics, 12, 151-169.

Tirosh, D. (1990). Inconsistencies in students' mathematical constructs.
Focus on Learning Problems in Mathematics, 12, 111-129.

ERIC L m

50



THEORY AND PRACTICE IN UNDERGRADUATE MATHEMATICS TEACHING:
A CASE STUDY

and Candia Morgan
Department of Mathematics Institute of Education
King's College, London University of London

This paper presents a case study of the beliefs and practices of a university teacher of mathematics.
Working in a tradition of practitioner research, the practitioner and an observer have recursively
and critically reflected on the practitioner’s expressed aims and on the text of a lecture to first year
undergraduates. While it was possible to identify ways in which the practitioner attempted t0
operationalise his aims in structuring the content of the lecture and in his interactions with the
students, aspects of his practice were also identified which may have been in conflict with his aims
and which suggest tensions between his aims, both for the practitioner himself and for his stdents.
In spite of increased attention paid by the mathematics education community in recent years to the
beliefs and practices of teachers at primary and secondary level (Hoyles, 1992), relatively few
researchers have addressed the practices of teachers in higher education. With few exceplions (e.g.
Vinner, 1994; Mohammed Yusof & Tall, 1995) PME papers concerned with undergraduate
education have focused on students’ individual mathematical conceptions rather than on
classrooms, teachers or teacher-student interaction. At the same time, however, there is interest in
the UK in the quality of university mathematics teaching and, in particular, its response to the needs
of undergraduate students with relatively low entry qualifications and to the disjuncture in students’
experiences at the interface between school and university mathematics. This interest has been
reflected in the establishment in 1992, under the auspices of the Mathematical Association, of a
working group on Teaching and Learmning Undergraduate Mathematics, bringing together teacher-
academics from both Mathematics and Mathematics Education. Arising from the work of this
group, we (the authors of the present paper) have undertaken a collaborative project to examine the
practice of one mathematics lecturer, the practitioner (TB), through an articulation of his own
critical reflection on his aims, beliefs and practice with the alternative perspective provided by the
observer (CM). In this paper, we present a case study of a single lecture, considering the
relationships between the lecturer’s consciously expressed intentions and his practice, addressing, in
particular, the following questions:

* How were the practitioner’s aims and beliefs about teaching and learning retlected in

teaching method? )
* How were his aims communicated to students?
*  What areas of possible mismatch were there between the lecturer’s and the students’ aims
and expectations?

Methodology

The study described here is in the tradition of practitioner research concerned with professional
*self-knowledge’ and development (Weiner, 1989; Morgan, 1993), examining the lecturer’s practice
through his own theoretical framework and through the eyes of an informed observer. The
interaction between the two participants has been vital in forming the subsequent analysis. It is
anticipated that this collaborative enterprise will result in changes in practice (although we do not
yet know what these changes will be) and generate further research questions.
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We have initially considered a single one hour lecture, towards the end of an introductory first year
course in ‘Basic Pure Mathematics’ taken by a small group of students starting a four year course
leading to a degree in Mathematics with Education (preparing them to be mathematics teachers in
secondary schools). These students on the whole have somewhat lower initial qualifications in
mathematics than those starting a single honours mathematics degree course at the same university.
They are thus perceived within the university mathematics department to be likely to find this
‘abstract’ course difficult. The observer attended this lecture, which consisted of periods of
‘question and answer’ and of extended exposition by the lecturer, taking notes of what was said by
the lecturer and by students and transcribing what was written on the blackboard, relating this to the
oral interactions. These notes form the basis of the analysis offered here.

The analysis has been a recursive process, encompassing the interests and perceptions of both
participants. Thus each read and wrote a commentary on a section of the notes of the lecture; this
text and commentary was then commented upon by the other participant. There were also a number
of meetings in which issues arising from the analysis were clarified and points of conflict were
discussed and, if not resolved, at least acknowledged and appreciated by both parties. Inevitably,
because of our different experiences and perspectives we brought different resources to bear on the
analysis, asking slightly different questions and focusing on different aspects. From the
practitioner’s perspective, the primary focus was on identifying and describing the beliefs and
intentions underlying his practice and reflecting on the ways in which these were represented in his’
own behaviour. The observer’s interest lay in a focus on the interaction between lecturer and
student, reflecting on the match between the practitioner’s expectations, his actions and the ways in
which these might be perceived by the students.

Practitioner’s theoretical framework and teaching aims

Before looking at some examples from the lecture itself and considering the analysis of these
examples, it is necessary to consider the aims and theoretical framework employed by the
practitioner. These are expressed in general terms in the statement included in the information
sheet given to students at the beginning of the course: ’

A general aim of the course is to help students in the transitions from concrete to
abstract mathematical thinking and from a purely descriptive view of mathematics to
one of definition and deduction.

This statement relates to a model of progression in mathematical development from
‘computational’, through ‘descriptive’ to ‘deductive’ modes of reasoning. This progression is
reflected in mathematics curricula and in the performance of students at different stages of an
undergraduate course (Barnard, 1995) although it is unlikely to be constant across different topics
and contexts. We exemplify it here in the contexts of simultaneous equations and of polynomials:

Computational - Numerical and symbolic computations and procedures with a focus on specific
objects, e.g.

Simultuneous equations: Solving 2x+3y =7, 4x—-y=35.
Polynomials: Differentiating or sketching the graph of x> +5x +6.

This is characteristic of most pre-university mathematics.
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scriptive Manipulations of more general objects and descriptions of general behaviours, ¢.g.
Simultaneous equations: Describing the various possibilities for the solutions of the
system of equations:
ax+bhy+qz=d,
axtby+cz=d,
mx+bhytoz=d;
Polynomials: Relating the degrees of the sum and product of the polynomials
. 2 m, 2 n .
dg+ax +ayx° + . +a,x" and by +bx+byx* +...+b.x" tomand n.

Although the mathematics is largely descriptive, the objects and procedures being described are
more general than at the purely computational level. Whereas in computational situations solutions
are validated by the computation itself, the increase in generality means that proof now plays a
greater role in validating conclusions.

Deductive Thinking in a more theoretical domain of definitions and deductions, in which
symbols and words are the predominant features. The behaviour of a system of linear equations is
now a theorem about a vector space and the dimensions of certain subspaces. There is also a focus
on connections between mathematical structures, such as the fact that the set of integers and the set
of polynomials (over a field) both have a unique factorisation property.

The majority of students’ mathematical experience before university is of a ‘computational’ type
with the focus on what has to be ‘done’ in order to achieve a correct outcome. It might be expected,
therefore, that these first year undergraduates would experience some difficulty in their transition to
descriptive and deductive ways of thinking.

Aims of the case study lecture
The lecture discussed here started with a discussion of the irrationality of V2, teading into
consideration of polynomials and the theorem:

If f(x) is a monic polynomial with integer coefficients and f(x)=u(x)v(x), where
u(x) and v(x) are monic polynomials with rational coefficients, then u(x) and v(x)
must in fact have integer coefficients.

Included as a crucial step in the mathematics was Gauss's Lemma:

Let f(x) and g(x) be polynomials with integer coefficients. If each of f(x) and g(x)

has the property that there is no integer (apan from 1) that divides all of its
coefficients, then the polynomial f(x)g(x) also has this property.

In discussion with the observer, the practitioner classified his ‘content-related’ aims in four layers:
Knowledge of the above facts;
Justification, defined as a step by step understanding of the proofs of the results;
Understanding, further subdivided into:

(a) Holistic understanding of what the theorem is saying and how it fits into a wider picture.
For example the theorem carries with it, as a sitnple special case, the deduction “V2 is not an
integer implies V2 is irrationat”.

O



(b) A feeling for why the theorem is true and what makes the proof ‘tick’, for example, the
place of the statement “If f(x) and g(x) are polynomials with integer coefficients and p is a
prime which divides all the coefficients of f(x)g(x), then either p divides all the coefficients
of f(x)or p divides all the coefficients of g(x)”; and

Culture, looking beyond the particular theorem to a consideration of how the proof reflected
centain characteristics of this general area of mathematics. Such characteristics include:
* the feature that although polynomials have lots of ‘bits’, the bits can often be used like
steps in a ladder in order to achieve a proof;
* the closeness of Z (the integers) to Q (the rationals) in that (a) every element of Q is of the
form a/b with a,b € Z and (b) one can clear denominators of a finite number of fractions;
* the theme that one can often reduce to primes because every positive integer is a product
of primes;
* the basic property of primes that if p is a prime and a, b are positive integers such that p
divides ab, then p must divide either a or b.
It was considered to be useful for the students’ future thinking in this area to have these features
built into their networks of mental associations.

In the rest of this paper we consider the ways in which the practitioner’s aims were manifested in
his practice, drawing on extracts from the lecture and the subsequent reflections and discussion
between practitioner and observer.

Proof and the move towards deductive modes of reasoning

Exainination of the ways in which proof was addressed during the course of the lecture causes us to
question the extent to which the practitioner’s aim of moving away from the computational towards
the descriptive and deductive was reflected in the actuality of the lecture. In building up towards
addressing the theorem, the irrationality of roots of prime numbers was revisited. The students had
come across the proof of the irrationality of v2 in an earlier lecture. The first interaction related to
proof was at a general level reflecting the practitioner’s ‘Culture’ aim in relation to mathematics as
a whole rather than the specific topic area:
TB /2 is irrational; x? =2 for no rational x. This is one of my favourite theorems:

jump from no integer x to imply no rational x. What’s the point of proofs if you
believe the theorem already?

S1 It keeps us in our place.

S§2  There might be people who don’t believe.
8§3  You can believe in something that's false.
TB To understand what’s going on.

This interaction was not, however, central to the content of the lecture and it must be considered
whether the subsequent proof activities during the lecture addressed the stated aim of
‘Understanding’ or the overall course aim of moving the students towards deductive thinking.
Having refreshed the students’ memory of the result (but not the proof) for V2:

TB Is V3 rational or irrational?
S Irrational’
TB Why?
O :
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S Sameasyouput x* =3
V3=2 (ab)=1
b
(written on the board) = %2-

a? =3}

TB Now what?

TB We haven’t got the even-odd dichotomy to help us so what do we do?

The student’s apparently computational orientation in “putting” 1% =3 as the next step in the proof
(i.e. performing the next step in an algorithmic process) is echoed by the lecturer’s “Now what?”
and “what do we do?”. At this stage there is a contrast between the mode of lunguage used by the
practitioner and the mode of thinking he intended his students to adopt. While to the practitioner
these phrases are seen to be equivalent to descriptive questions such as “what is suggested by this?”
or “what can we relate this to?”, the students appéar 1o take them as a cue to continue in a
computational mode, following a set of procedures that had been previously established in proving
the irrationality of V2. Even the question “Why?", which might have related to the aim of
*Understanding’ established earlier, prompts a response which appears merely to echo the form of
the previous proof.

At a later point, however, the lecturer’s language changes from this computational mode to ask
questions which seem not only to address the aim of *Understanding’ but also to prompt responses
that appear to be in a descriptive or deductive mode:

TB 4’ is even. What does it tell us about a?

S u is even

TB ... we have proved that 32 is irrational. In terms of polynomials, £* =2, what
does that tell us?

S It might have complex factors.
Here, the suggestion that a mathematical statement can “tell us” something approaches a deductive
mode of thinking in which the next step of the proof arises from the meaning of the previous
statement rather than from manipulation of its symbolic form.
In spite of the clarity of the practitioner’s aims in refation to deductive thinking, the differences in
the language he uses in constructing proofs during the lecture suggest a mismatch or at least a lack
of clarity in his practice.
Tensions between aims’ _
The practitioner felt that Gauss’s Lemma was a result of a kind that would be fairly new to the
students, as it is a “descriptive’ result, saying that if two polynomials each have a certain property,
then so does their product. It was also felt that the property in question, the coefficients having no

common factor, might have had few links with the students’ previous mathematical experience. A
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numerical example was provided to help the students engage with the meaning of the result. In
order to move away from a computational orientation, however, it was necessary to address a proof
of the general result. There was a choice here between giving the details of the proof in full
(Justification) or giving the underlying ideas (Understanding and Culture). With most theorems in
this course the practitioner would do both, believing there to be a link between the two. However,
he also believed that, when synthesising a number of components of a proof, there is often a
delicate balance between trying to help the students to keep all the components in their mind and
trying to help them to consolidate their understanding of each individual component. On this
occasion he decided that there was more to gain by trying to cover the essential ideas of the proof
rather than all its details, deliberately suppressing ‘Justification’ in favour of ‘Understanding’ and
*Culture’. -
TB Gauss's Lemma. See if we can understand what it's saying. f(x) is something
like 3x+4 and g(x) is 2x2 - x+5. There's an additional assumption that no
integer divides all the coefficients. . . .
(3x+4)(2x - x+5)
=6x* +5x% +11x+20
You know how to do this. [You can see that there’s no integer which divides all

the coefficients of the product polynomial.]' But it doesn’t prove the general
result. You're all dying to know why [the result is true in general].

(on the board) {

S Yeah
TB  And you'll be relieved to know I’m not going to prove it.
S  Awh

TB Why is it true? This property [that no integer divides all the coefficients] implies
that if it is true then no prime number [divides all the coefficients] and conversely

if no prime number [divides all the coefficients] then it is true. So we can reduce
it to
(on the board) { “There is no prime number which divides all the coefficients”

Take a particular prime number
(on the board) { p plab = plaor plp

We can show using the essence of this:

plall coeffs of f(x)g(x
(on the board) l (e)e(x)
plall coeffs of f(x) or plall coeffs of g(x)

With polynomials, the bad news is there are lots of bits. The good news is you
can use the bits as steps. With a bit of induction thrown in, this is the essence of a
proof of Gauss’s Lemma. :
‘The main points contained in this “essence” of a proof coincide with the practitioner’s content-
related aims of ‘Understanding’ and ‘Culture’ elaborated above, including the possibility of

IThe recording of this section of the lecture was incomplete. The phrases in square brackets have
been inserted to indicate the sense of the original utterances.
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reducing a statement about all integers to one about primes and the linking of the property of primes
that “'p divides ab implies p divides a or p divides b” with the idea that it is possible to use the
“bits” of a polynomial as slep's. )

As may be seen in the extract, the lecturer characteristically makes use of a number of informal
‘asides’ (e.g. “You're all dying to know why.”} which not uniy contribute towards establishing his
relationship with the students but simultaneously serve to induct them into mathematical value
systems. Thus asking the question “why?” is seen to be important; a numerical example is not
enough to prove a result; an exposition of the “essence™ of a proof may answer the question “why””
but does not prove in itseif.

Similarly, at a number of points throughout the lecture, references were made to aesthetic and
affective responses to mathematics. For example:

If you can’t split it up with integer coefficients then you can’t with rationals. Do you
see how beautiful that is? ’

(Murmur - a litlle response from students)

Sce the power, even with ali those rationals the theorem says you still can’t factorise it.

The practitioner is clearly attempling to communicate ‘Cultural’ aims at a very general level us well
as in relation to the specific content of the lecture. Nevertheless, in reflection after the lecture, he
was sceplical about the extent to which these aims could be achieved within the context of the
course, writing:
The students would have been mainly focusing on the first two content-related aims
[Knowledge and Justification), perhaps partly due to time sequential ordering (you can't
understand what you don’t know) and partly for survival type reasons such as the need
to understand subsequent parts of the course and to succeed in the examination.

However they would have been aware that there was something more that the lecturer
was (rying (o convey.

Thus the practitioner himself perceives a mismatch not only between his aims and those of the
students but also between his aims and the institutional restrictions of syllabus and examination
system. Indeed, this tension is manifested within his own practice. Not only did his introduction to
the lecture include the statement “The aim today is to do enough so you can get on with the sheet”,
but the homework sheet itself consisted entirely of specific examples of polynomials on which the
students were expected to operate largely computationally (either to decide whether or not they
were irreducible or-to factorise them into irreducible polynomials). For the practitioner, the aim to
“get on with the sheet” was clearly secondary, merely providing an indication of the amount of
material he planned to cover during the lecture. Nevertheless, the degree of success in answering
the questions on the sheet was likely to be the main means by which both lecturer and students
could evaluate their performance. Of course, the evaluation of ‘Understanding’ or *Culture’ would
be considerably more problemalic.

Conclusions

In studying this lecture, we can see that the practitioner’s aims were stated explicitly in course
documentation and were reflected in a number of general statements (i.¢. ‘asides’ without reference

O
ERIC _
2-49

5¢



E

to the specific content of the lecture) made in oral interactions with the students. In his planning of
the approach to the proving of Gauss's Lemima the practitioner had made conscious choices
between his various content-related aims.

There were, however, some areas in which his practice appeared not to match closely with his
overall aim to move from reliance on computational reasoning towards descriptive and deductive
reasoning. The language used to guide students through proofs has been identified as one such
area; in particular, the use of the phrase “what next?” would seem to encourage a computational
approach. Another, perhaps more powerful, area of mismatch lies in the evaluation structure of the
course: the homework sheets and examinations. Many of the questions set appear designed to focus
students’ attention on the more computational aspects of the course and the first two layers
(Knowledge and Justification) of the practitioner’s content-related aims. It appears likely that the
‘higher’ layers of content-related aims (Understanding and Culture) may best be achieved if the
students spend additional time outside the lecture not only working on the problem sheets but also
in reflection on the content of their lecture notes and handouts, in further reading, and in discussion
of the topic -with their colleagues. These ‘higher’ aims were clearly ascribed value within the
lecture; it is, however, unclear how they could be valued by the assessment system and thus become
important primary aims for the students. While the students were advised at the start of the course
that attending the lectures and completing the problem sheets would not suffice, it may be that such
relatively context free advice requires further reinforcement throughout the course and that the
practitioner’s aims at all levels need to be made more explicit to the students at all stages of the
course.
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HEURISTICS AND BIASES IN SECONDARY SCHOOL STUDENTS
REASONING ABOUT PROBABILITY '

C. Batanero °, L. Serrano? & Joan B. Garfield’
2 University of Granada; * University of Minnesota

ABSTRACT

In this paper the responses of 247 secondary students to 8 test items used in
classical studies of probabilistic reasoning (representativeness, equiprobability bias and
outcome approach) are analyzed. The study was designed to assess the qudlity of
probabilistic reasoning of two levels of secondary ‘students (14 and 18 year-old
students). These groups are compared revealing few differences in their responses.

STUDENTS' INTUITIONS AND TEACHING PROBABILITY

New mathematics curricula for elementary and secondary school are being
introduced in Spain as well as in other countries around the world. These curricula
reflect a change in beliefs about how probability should be taught. While probability
has been included in a limited scope in the secondary schools, typically as part of
a mathematics course emphasing computation such as combinatorics, current curricula
being implemented introduce probability in earlier grades. Newer approaches suggest
an active leaming format where students first inake predictions about the chance of
occurance for different outcomes, then do experiments with random devices such as
spinners, dice and coins, record their results, and compare the experimental
probabilities generated to their original predictions.

Indeed, several researchers have recommended this method as a way to
encourage students to confront and correct their misconceptions about chance events
(e.g., Godino et al, 1987, delMas and Bart, 1989, Shaughnessy, 1992). Because
students often hold incorrect views about probability and randomness, Garfield (1995)
suggests that effective teaching be based on knowledge of students' preconceptions,

and that when learming something new, students construct their own meaning by

'Acknowledgement: This feporl has been founded by the Direccion General de
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connecting the new information to what they already believe to be true.

Konold's research on probabilistic reasoning (1995) suggests that merely having
students make predictions and compare these to experimental data is not sufficient to
make students to change their conceptions, because enough data are rarely collected
to reveal the correct pattems of outcomes, students' attention are limited, and data
vanability is typically ignored.

Background

According to Kahneman et al. (1982), statistically naive people estimate the
likelihood of events by using judgmental heuristics such as representativeness and
availability. People using the representativeness heuristic tend to estimate the
likelihood for an event based on how well it represents some aspects of the parent
population. They tend to believe that even small samples should reflect the population
distnibution or the process by which random outcomes are generated.

More recent research suggests other possible explanations for people's poor or
inconsistant performance on probabilistic tasks. Lecoutre (1992) described an
equiprobability bias as a tendency for individuals to think of random events as
"equiprobable” by nature, and to judge as equally likely outcomes that occur with
different probabilities.

Konold (1989) identified an "outcome approach” to interpreting probablities.
People using this approach, when confronted with an uncertain situation, do not see
their goal as specifying probabilities that reflect the distribution of occurrences in a
series of events, but as predicting the result of a single trial. Research by Fischbein
et al. (1991) identified errors in solving probability problems as due to students’
difficulties detaching the mathematical structure from the context of a stochastic
situation.

This is a brief summary of a wide variety of research studies that document
errors in probabilistic reasoning from young children to adults. This research suggests
that an approach to teaching probablity based on predictions and experiments may
not be enough to help students form correct ideas about probablity and strategies for
solving stochastic problems.

Therefore, our study was desighed to assess the quality of probabilistic
reasoning of two levels of secondary students, those who had not studied probability

Gand those who had studied probability in a traditional, mathematical way. We were
ERIC
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interested in the extent to which these students demonstrated normative reasoning or
appeared 1o be solving problems based on use of isconceptions or faulty heunstics,
and if differences in responses would be revealed for the two groups of students.

DESCRIPTION OF THE STUDY

Methodology

A questionnaire was adininistered to 277 Spanish secondary school students in
the spring of 1995. About half of the students (n= 147) were in their first year of
secondary school (14 years-old) and had not studied probability. The rest of the
students (n=130) were in their last year of secondary education (18 years-old, pre-
university level) and had studied probability with a formal, mathematical approach for
about a month the previous school year.

Questionnaire

The questionnaire (presented in the Appendix) included 8 items that have been
used with slight variations in previous research (e.g., Green, 1982, Lecoutre and
Durand 1988, Garfield and Delmas 1991, Fischbein et al. 1991, lLecoutre 1992,
Konold et al. 1993 and Madsen, 1995). Items were selected to assess whether students
had some particular misconceptions or used incorrect heuristics. These types of
incorrect reasoning and the corresponding items are described below.

Representativeness

The first two items assess if students were using the representativeness heuristic
to judge the likelihood of different sequences of coin tosses. Although, from a
normative point of view, all such sequences are equally likely to occur, sequence b
may appear more representative than the others. Item 4 tests students' intuitions about
binomial probabilities. We expected that students who reason with the
representativeness heuristic would choose the correct answer ¢ (although for the
incorrect reason).

Outcome Approach
Konold et al. (1993) suggest that some students could obtain the correct answer
to item | by reasoning according to the outcome approach. Students who understand
Q
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the idea of independence and equally likely outcomes would select the correct
response to both items 1 and 2. Therefore, it is important to contrast the responses to
items | and 2 together.

Neglect of sample size: law of small numbers

ltem 3 is adapted from Kahneman et al. (1982) to assess whether students
appear to be neglecting the sample size in judging probabilities. This is a special case
of the representativeness heuristic, referred to as the "law of small numbers,” because
people tend to judge small samples as equally representive of a population as large
samples.

Eyuiprobability Bias

Some of Lecoutre's (1992) items were used to assess whether students tended
to reason using the equiprobability bias. For Item 4, response d is more likely to be
chosen by students with equiprobability bias. In items 5 through 8 combinatorial
understanding is needed to choose the most likely result. The incorrect responses a
in item 5, d in item 6 and 7 and e in item 8 may be obtained by the equiprobability
bias.

DISCUSSION

In Table 1 we present the percentages of the students' responses to each
individual item. Chi-square tests were used to compare the distribution of responses
for each item for the two groups of student. The p-values for the Chi-square tests are
shown in the table. It is apparent that, in general, students did very poorly on the test,
with always fewer than half of the students getting any item comrect. The most
difficult item for students appears to be item 5, and the next most difficult item was

number 3.

Difference in age groups

The older students had a greater percentage of correct answers for items 1, 2,
4 and 5. Nevertheless, there were no significant differences in responses for the two
groups of students for items 3, 6 and 7. The younger students had a higher percentage
of correct responses for item 8. Probabilistic reasoning appears to increase slightly for
older students, which is not surprising given that these students have had some
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formal study of probability.

Table 1: Percentages of comect answer, main distracter and other responses
in the two groups of students

Item % _correct main _distracter other p-value

agel4 age 18 age 14 age 18 age 14 age 18
(n=147) (n=130) (n=147) (n=130) (n=147) (n=130)

1 463 654 b 354 b 231 18.3 1S 005
394 538 d 238 d 200 36.8 262 003

~

3 238 269 ¢ 633 ¢ 600 12.9 13.1 ns.
4 354 438 d 456 d 415 19.0 147 003
5 156 192 d 626 d 523 21.8 285 1 0.04

224 23.1 e 466 e 43.1 320 338 ns.

40.1 508 d 367 d 362 23.2 130  ns.
8 367 300 e 395 e 562 238 138 001

Types of Misconceptions revedled

Allhough 55.2% of students gave the correct answer to item |, the percentage
of students who gave correct answers 1o items 1, 2 and 4 was only 9%, which
suggests that very few students in either age group use normative reasoning 1o
answer these probability problems. '

A larger percentage (42%) gave correct answers to both of the first items
which involved coin toses, while 24% of those who gave the correct answer to item
| gave an incorrect response to item 2, possibly indicating an outcome orientation,
a result also noted by Konold et al. (1993) in their pre\)ious study. However, the
percentage of students who changed their response was higher in Konold et al.
research than in our study.

The percentage of students who selected as the response b to items | and 2,
and gave a correct answer 1o item 4 was 22%, possibly suggesting their reasoning
according to representativeness heuristics.

Based on response to item 3, most students (62,7% ) appeared to judge the
large samiple to be just as representative as the small sample, and that both hospitals
were equally likely to have 80% or more boys on a particular day. This suggests the
"law of small numbers" aspect of the represenmativeness heuristics.

Q
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Students' difficulty with items 5 and 6 did not necessarily represent the
équiprobability bias, because a large group of students { 57% in item 5 and 44% in
item 6 selected the response: "it is impossible to give an answer”, possibly
indicating an outcome orientation, while only 18.1% in item 5 and 26% in item 6
chose answer a which could reveal the equiprobability bias.

However a large number of students appeared to use the equiprobability bias
responses in items 5 (18.1%), 6 ( 26%), 7 ( 36.5%) and 8 (47.6%). Only 13 students

(5%) gave correct response to all four of these items.

CONCLUSIONS

All the items in our study asked students to compare the likelihood of different
events associated with random experiments consisting of more than one trial. These
items have been taken from different studies in which students' incorrect responses
have been used to develop theories about patterns in probabilistic reasoning.

Our results support previous research, suggesting that students have great
difficulty in using probabilistic reasoning and appear to use othes types of heuristics
to solve basic probability problems, even after formal mathematical instruction on
the subject. While our data support some of the previous studies on misconceptions,
they raise new questions about the role of students’ prior knowledge and reasoning
as they receive instruction in probability. )

As pointed out by Godino and Batanero (in press) some leaming
misconceptions and difficulties cannot be just explained by mental processes, but by
recognizing the complexity of mathematical objects and the necessarily incomplete
teaching processes in schools. Consequently, we recommend further research into
students’ probabilistic reasoning, as an essential step for selecting teaching and

assessment situations. We hope to address these issues in future studies.
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APPENDIX: QUESTIONNAIRE
Item 1
Which of the following sequences is more likely to result from flipping a fair
coin 5 times? a) HHHTT; b) HTTHT; ¢) THTTT; d) HTHTH; e) All four
sequences are equally likely.
Item 2
Which of the above sequences would be least likely to occur?
Item 3
In a certain town hospital a record of the number of boys and girls newborns is
kept. Which of these cases is more likely:
a) There will be 8 or more boys in the following 10 newboms.
b) There will be 80 or more boys in the 100 following newborns.
¢) Both a) and b) are equally likely.
Item 4
If we observe the following 10 newborns, which of these things is more likely
to you?
a) the fraction of boys will be greater or equal to 7/10.
b) the fraction of boys will be less or equal to 3/10.
¢) the fraction of boys will be included between 4/10 and 6/10.
d) All these are equally likely.
Item §
When two dice are simultaneously thrown it is possible that one of the
following results occurs: Result 1: 5 and 6 are obtained; Result 2: 5 is obtained
twice. Select the response that you agree the most:
a) The chances of obtaining each of these results is equal.
b) There is more chance of obtaining result 1.
¢) There is more chance of obtaining result 2.
d) It is impossible to give an answer.
ltem 6
When three dice are simultaneously thrown, which of the following results is
most likely to be obtained?
a) Result I: A 5,a 3, and a 6. b) Result 2: A 5 three times.
¢) Result 3: A 5twice and a 3. d) All three results are equally likely.
¢) It is impossible to give an answer.
Item 7
Is some of the previous events in item 6 least likely to be obtained?
Item 8
A spinner is divided in 5 equal sized areas numbered from | to 5. Which of the
following results is more likely to result from the spinner 3 times?
a) 2,1,5 in this exact order. b) 2,1,5 in every order.
¢) 1,1,5 in every order. d) a) and b) are equally likely.
¢) a), b) and c) are equally likely.

O
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CHANGES IN STUDENT TEACHER VIEWS OF THE MATHEMATICS
TEACHING/LEARNING PROCESS AT THE SECONDARY SCHOOL
LEVEL

N. Bednarz. L. Gattuso, and C. Mary, Université du Québec & Montréal (UQAM)

Within the framework of a mathematics teacher-training program, a variety of
teaching strategies are used with the student teachers with the objective of changing
their views of mathematics teaching. A study was conducted on one group of
students entering the training program and on another group graduating from the
same program in order to identify how their views evolve during the program. The
changes identified indicate a shift in their perception of the mathematics teacher
from that of a skillful communicator seeking to transmit his or her passion and
knowledge to others to that of a teacher concerned primarily with initiating a
learner-centered interactive thought process that actively engages both teacher and
student and whose starting point is the students' knowledge and errors.

Introduction

Studies of teacher-training programs indicate that student teachers are generally
'offered little opportunity to change the views they formed of mathematics and how
it is taught and learned during their years of pre-university schooling (Kagan
1992). These studies also reveal that in their own classroom practices and teaching
strategies, student teachers consistently adhere to their previously acquired views.
When faced with a problem in the classroom, they tend to resort very quickly to a
certain "habitus” (Bourdieu 1980) that stem automatically from their own 13-odd
years of experience as students.

The winner in the young teacher’'s conflicting situations then is the reliably
rooted habitus from one's own experiences as a student. Through these
typical regressions, the functioning of this kind of habitus readily supports
the old "solutions" and the reproduction of the old school (Bauersfeld 1994,
p. 179).

As studies have shown—particularly those of classroom culture (Bauersfeld 1980;
Voigt 1985, 1989) and of the “contrat didactique” (Schubauer Leoni 1986, 1988)
—certain views underlie student teachers’ approaches to specific knowledge. By
examining student/teacher interactions, these studies in fact help shed light on the
system of reciprocal expectations at work in the specific situations studied. They
show the strong influence of teachers’ prior experiences with the given problem and
their own gradually acquired ideas of the teaching/learning process on the strategies
they adopt for use with their own students in similar problem situations.

If teacher-training programs are to effectively counterbalance student teachers'
socialization experiences during their 12 to 13 years of prior schooling, they cannot
overlook the fact that these students bring with them their own previously formed
views of mathematics and how it is taught and learned. This raises the question of
how to bring about the necessary changes in the way student teachers view
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mathematics teaching which will be fundamental in their future practice. It is with
this in mind that we developed our secondary-level mathematics teacher-training
program, the principles and content of which will be discussed in a later section of
this paper. )

An initial analysis conducted of the student cohort entering the teacher-training
program at the Université du Québec 3 Montréal (UQAM) was part of a broader
study whose goal was to delineate more clearly the changes that take place in
student-teacher views at key stages in the training. The analysis conducted at this
stage focused on the students’ entry profiles prior to training, and included a
comparison of their profiles with those of a group of students graduating from the
same program.

The objectives of this stage of the research project were as follows:

* to identify the views held by students entering the teacher-training program with
regard to mathematics and how it is taught and learned;

* to develop a clearer understanding of how the initial views held by student
teachers evolve during the program. :

The Teacher-Training Program: Principles and Content

The approach used in our teacher-training program, which is based on a socio-
constructivist perspective, was developed around the reasoning processes and ideas
of student teachers, and was designed to encourage them to evolve in their ways of
thinking. The initiatives taken to achieve this end are varied, and involve aspects
such as mathematical training within the program (workshop for exploring
mathematical activity, and courses focused on mathematical activity that involve
areas such as numerical structures, geometry, probability, and statistics). An
epistemological thought process is promoted in all courses, particularly in the
course on the history of mathematics. In an interrelated way, the initiatives also
involve teaching training by means of courses of didactic (didactic and labs that
focus on the content of the first cycle of secondary school, proportional reasoning
and related concepts, algebra, variables and functions, measurement, etc.) and
teaching practicums.

All aspects of the program give priority to student participation in activities in
which asking questions, explaining different points of view, and teacher/student
interaction play an important role. The training itself is organized as a culture that
implements the strategies being taught so as to encourage participants to develop
" mathematical habits” different from those acquired during their own years as students.

To understand the mathematics teaching/learning process, the culture-
participation model would appear to be more pertinent than the knowledge-
transmission model, or one that introduces students to a body of objective
knowledge. Participating in the mathematical process in the classroom also
means participating in a culture that uses mathematics or, better still, in a




culture of "mathematization”(Bauersfeld 1994, p. 177). [translation ours)

One of the main objectives of the initial mathematics course, that student teachers in
the program are required to take, is therefore to expose them to an approach to
mathematics that is different from the one they have experienced previously, and to
introduce them, in a problem-solving context, to another mathematics-teaching
culture by instituting a true process of explanation, discussion, and negotiation
within the classroom. A number of problems that differ in form and content are
used to initiate the process. Working in teams, the students identify each problem
and endeavour to solve it. They present a variety of possible solutions to the class
immediately after completion of the teamwork. At this stage, they are encouraged
to verbalize their strategies and their reasoning. Different solutions are compared
and supporting arguments provided. The student teachers’ personal views regarding
mathematics and how it is taught and learned are indirectly called into question
through these discussions.

Other activities in the training program are geared more specifically to the teaching
of mathematics. The concerns of the teacher in the classroom setting are a focal
point of the didactic courses, and are therefore approached in the following ways:
(1) To develop insight into students and their difficulties, reasoning processes,
viewpoints, etc., actual student work is used, together with a bank of student errors,
and videos of their oral participation and actions in both interview and classroom
situations; the student teachers are also given the opportunity to question and
observe students. (2) The student teachers are prepared to diagnose students'
procedures in real situations. They are asked to analyze students' errors and
reasoning processes and to develop strategies for dealing with these errors. (3)
Situations are proposed, implemented, analyzed, and queried in such a way that the
student teachers learn to choose those scenarios that are pertinent to conceptual
learning. (4) The student teachers are continually called upon to verbalize their
mathematical reasoning or ideas. (5) Each student teacher is repeatedly called upon
to plan lessons and teaching sequences on the basis of his own conceptual analysis of
the notion(s) to be covered. This includes trying to anticipate student difficulties and
reasoning, and to develop classroom strategies that they will later try out and
reconsider. Thus these future teachers are gradually trained to "reflect in and on
action” (Schon 1983, 1987). The different activities offered in the context of this
three-year training program, as outlined in this paper, give the student teachers the
knowledge they require to teach in a way that will enable their students to
participate actively in the process of developing their own knowledge.

The aim of the study described in this paper was twofold: first, to develop a better
global understanding of the potential impact of this training program and its
limitations; and second, to lay the groundwork for a subsequent, more in-depth
study of the particular aspects of this training that help catalyze changes in the views
and practices of future teachers. The second study will be a developmental study to
be conducted on a student cohort that will be followed for a three-year period. It
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will be combined with an analysis of different training situations.
Methodology

A questionnaire was administered to two groups of students enrolled in the
secondary-level mathematics teacher-training program. The first group included 71
beginning students, while the second group included 51 students who were in the
third year of the program and had completed their didactic courses and their
practicums. The questionnaire had five main parts, which included statements that
the students were asked either to rate on a scale of 1 to 5 (total disagreement to total
agreement) or to put in order of priority. The first part of the questionnaire dealt
with mathematics and was designed to pinpoint the students' underlying views on
the subject itself (mathematics as a human construct that is, or is not, part of a social
context, versus mathematics as a pre-existing, independent body of knowledge). A
number of specific items were designed to assess the value that the students place on

. reasoning, proof, validation, definitions, subject-specific language and vocabulary,
the use of symbols, representations, and concrete material in mathematical
activities. The second part of the questionnaire had to do with the learning of
mathematics and was designed to elicit the students' views on the topic (learning as a
construct of the student, whether or not it fits into a social context, versus learning
as the process of imitating given models). Certain items were designed specifically
to elicit the respondents’ views on the role of manipulation and error in this
learning process. The third part of the questionnaire dealt with the teaching of
mathematics (teaching that fosters an interactive thought process and takes the
student into account, versus teaching as the passing on of pre-determined
knowledge). Even more specific, the fourth part of the questionnaire sought to
identify the objectives that the student teachers consider relatively important in the
mathematics teaching process, and the fifth part, the pedagogical practices which, a
priori, they deem valuable. The final part of the questionnaire consisted of an open-
ended question in which the students were asked to express their views on the
following question: What do you consider to be the characteristics of a good
mathematics teacher?

A few individual or focus-group interviews were also conducted with students from
both groups (beginners and graduating students) as a means of gleaning additional
information and furthering analysis of the questionnaire results.

Profile of Students Entering the Program

Our analysis of the students’ answers to the questionnaire (cf. Table 1) reveals a
somewhat mechanistic view of the problem-solving process in mathematics: in fact,
even though respondents agree that there are always several ways of solving a
mathematical problem (# 4), that students must be encouraged to think along these
lines (# 25), that problem solving involves much more than simply finding a
solution to the problem (# 6) and in fact implies creativity (# 10), they nonetheless
perceive the problem-solving process as a matter of applying computational rules
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(#9) and as a highly procedural activity (# 15), to which the school system often
limits it. The importance that student teachers place on exercises (# 30) and on the
learning of mathematical formulas and algorithms (# 36) is very revealing in this
regard. The student teachers entering the program atiribute considerable
importance to definitions in mathematics, which they deem essential to know (# 3),
to the use of symbols (# 8), and to the language and vocabulary specific to
mathematics (# 12). This firmly engrained perception may well have major
repercussions on the way they teach, as can be seen by the practices they favour in
their comments on this topic (# 63). A certain open-mindedness was nevertheless
noted in the new students which could be built upon during training when dealing
with the role of manipulation, materials (# 5, 20), and representations (# 11 and 62)
in learning mathematics, and the importance of helping the learner develop
reasoning skills (# 32). The view that these beginning student teachers have of the
way students learn mathematics totally disregards the key role played by the learner
in the process: from the student teachers’ point of view, the student learns by
imitating a certain model (# 21). Few of them think that students come to school
with any knowledge on which new learning can be built (# 19), nor do they see the
majority of learner errors as having any logic behind them; rather, they attribute
these errors mainly to carelessness (# 18).

Our analysis of the objectives and practices automatically favoured by these student
teachers further indicates a factor that is confirmed in their answers to the open-
ended question, namely, a concern with showing the usefulness of mathematics
(# 33), motivating their students to like the subject, fostering inquisitiveness about
the subject (# 35, 44), and bringing mathematics within reach of their students
(# 55, 61). Obviously in this sense they are concerned about the student per se, and
they are generally in agreement with the questions concerning the student.
However, given their view of the learning process, we are still left wondering what
they actually perceive the student’s role to be in this process. They seem to focus on
the teacher's qualities and on his or her manner of presentation, which they feel
must be stimulating, clear, well organized, logical and accurate if it is to be within
the students' reach and pique their curiosity.

Table 1 — Average ratings given by each student group for specific
items on the questionnaire (B: beginners, (Lgradualin{sludems)
Questionnaire Items B G

About mathematics
3 Mathematics is based on a set of definitions that must be learned. | 3.44 2.27
4 There are always several ways to solve mathematical problems. 3.89 {4.31

5 Exploring situations by means of concrete materials is not doing | 2.23 |1.31
mathematics.

6 _Solving mathematical problems means finding the right answers. | 2.54 | 2.03
8 Without symbols, there is no mathematics. 3.46 |1.76
9

Solving mathematical problems means applying computational rules} 3.31 |1.98




11 Exploring a situation by means of drawings or diagrams in 1.54 | 1.27
order to find a solution is not doing mathematics.

12 Without a specific language and vocabulary, there is no 3.07 |2.09
mathematics.

15 There is always a rule to follow when solving problems in 3.52|2.21
mathematics.

About learning

18 Most student errors in mathematics are due to carelessness. 3.47 |2.68

19 When children begin school, they have everything to learn. 2.72 [1.84

21 Students learn mathematics by following a model presented by | 3.72 | 2.5
the teacher.

23 Students cannot discover mathematical concepts and principles 2.22 11.58
on their own.
20 Exploration and manipulation are relevant only for early 1.8 | 1.47
leaming activities !numbers, oErau'ons) and young children.
About teaching
25 Students should be encouraged to find more than one way of 4.68 [4.54
solving a problem.
30 Exercises develop skills. Students should therefore be given a lot | 4.23 | 3.23
of exercises.
31 Teachers should assume that students do not have enough 206 |]1.72
knowledge to discuss mathematical concepts in an exploration
activity.
32 Teachers should provide the students with the basic knowledge 475 | 4.49
that will allow them to reason.
33 Teachers should make sure that the students acquire the basic 437 | 4.21
skills needed in everyday life.
35 It is important to foster inquisitiveness in the students. 4.72 1 4.56
36 It is important that the students be taught mathematical formulas | 3.52 {2.31
and algorithms.

44 Students should be taught in such a way that they enjoy 472 | 4.6
mathematics. .

35 Teachers should avoid using symbols too soon. 3.57 {4.31

61 Teachers should use mathematical language that is within the 4.85 | 4.68
students' grasp.

62 A variety of representations should be used to present a topic. 4.43 14.35
63 Symbols should be used at each stage of the teaching process. 3.87 |2.56

Lastly, our analysis of the respondents’ answers to the open-ended question
confirms and clarifies the views that the new student teachers have of what makes a
good mathematics teacher. Whether they speak primarily of arousing curiosity,
interest or motivation, of accessibility of teaching style, of making the subject
matter intelligible to the students or developing reasoning skills, one overriding
idea prevails—that of transmission: "transmitting in the most appropriate language,
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getting the subject matter across..., knowing how to transmit..., transmitting their
passion for mathematics...,. transmitting mathematical reasoning skills...,
transmitting the skill of comprehension..., transmitting the desire to learn
mathematics..., communicating and transmitting their interest...," and the list goes
on. If the student is mentioned in their initial concerns, it is often in terms of the
teacher's availability to the student. They state that the teacher must be "patient,
available to answer questions outside of class hours, be prepared to repeat the same
problem twenty times until the students understand, repeat explanations unul
everything is clear for the students, encourage them and give them confidence, etc".
These comments focus on the way in which the subject matter is communicated; the
teacher must be “clear, well organized, accurate, understandable; he must
communicate in a way that is easily understood; and he must be articulated, know
how to communicate in a dynamic manner, have a thorough knowledge of the
subject”. A few respondents, however, express diverging views at this stage,
highlighting potentially opposing points of view that could be exploited during the
training program. These views include placing value on student initiatives and
errors (this idea was expressed in two excerpts), concern with taking students’
difficulties into account (expressed in five excerpts), and concern with showing the
relevance of mathematics (seven excerpts), with adapting one's teaching (11
excerpts), and with einphasizing comprehension over finding the right answer
(three excerpts).

Changes in the Views Held by Student Teachers

An analysis of the answers given by the graduating student teachers (cf. Table 1)
reveals major changes in their views of problem-solving activities. They no longer
regard such activities as the simple application of computational rules, or as simply
following a procedure (# 9 and 15). Also evident are significant changes in the
importance they place on definitions (# 3), the use of symbols (# 8), and the
language of mathematics (# 12)—factors that they no longer regard as representing
the limits of mathematical activity. Consequently, they no longer place emphasis on
learning formulas and algorithms (# 36) or on the use of symbols in all stages of
teaching (# 55 and 63). Instead, greater emphasis is placed on materials, and on
exploration and representational activities. Lastly, their view of the process of
learning mathematics has also evolved. It is no longer regarded as mere imitation
(# 21); children are perceived as coming to school with knowledge in hand (# 19),
and errors are no longer viewed as the result of carelessness (# 18); the learning
process is now regarded as a more complex activity in which the student plays a key
role (# 23, 31) This new way of regarding the student is also evident in their
answers o the open-ended question. The following types of statements are found:
"Encourage the students to participate; create opportunities for them to succeed; the
students must be at the centre of the discovery and learning process; challenge the
students and provide a framework in which they are free to express their ideas;
listen to the students, get them to participate so that you can see where they are
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having difficulty; involve them actively in the learning process; let the students
discuss, think, reason with and challenge each other; to do so, create situations that
are sufficiently enriched and likely to be of interest to the students. A good teacher
must foresee and understand his or her students' errors in order to help them
progress.” ‘

Conclusion

The few examples cited above are indicative of the changes that occur in the student
teachers' views on mathematics teaching. The view of the teacher as a skillful
communicator seeking to pass on his or her passion and knowledge gives way to
that of a teacher who is more centred on his or her students, their reasoning
processes and their errors, and who is seeking to initiate an interactive thought
process involving activities carried out with the students. Further analysis is
required to identify more precisely (beginning with the different entry profiles) the
changes that take place in student teachers' views at the different stages of the
training process and the aspects of the training strategies used that actually
contribute to these changes.
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A STUDY OF PROPORTIONAL REASONING
AMONG SEVENTH GRADE STUDENTS

David Ben-Chaim, Oranim, The University of Haita
James 1. Fey, University of Maryland
William M. Iitzgerald, Michigan State University

Contextual problems mvolving rational numbers and proportional reasonmg m three
hroud categories -- rate, ratio and scaling -- were presented (o seventh grade students
with different currnicular experiences. There is strong evidence that "new” curricula
students who are encouraged to construct their own procedares for solving proportions
and applying those skills colluboratvely 1o applied problem solving, perform beter
than traditional curriculum students. In any case, seventh grade students are capable to
recognize suaations in which ratio or proportional comparisons are appropriate and do
have the abdity 1o represent ratio and proportion flexibiduy and m some cuses cven
acenrately.

Introduction

Recently new curriculum, new strategies and new emphases have been developed
concerning many of the topics of middle school mathematics. This is especially true
regarding the treatment of rational numbers, including fractions, decimals, percents,
ratio, and proportional reasoning. In traditional middle school curricula, cach
arithmetic operation with cach type of rational number is taught with a focus on
developing student proficiency in well-defined computational algorithms that are then
practiced 1o ensure speed and accuracy of execution. Only when that computational
proficiency is attained will students be challenged to apply their computational skill to
practical or fanciful "word problems”.

On the other hand, in the Connected Mathematics Project (CMP is a new
curriculum for grades six, seven and eight; created at Michigan State University) the
approach 1o rational numbers and proportional reasoning is 10 encourage students 1o
construct their own procedures for doing rational number computations, solving
proportions, and applying those skills to applied problem solving. The CMP
curriculum supports that construction of rational number knowledge by presenting
students with a series of contextual problems requiring proporntional reasoning and
computation. Students collaborate in work on the problems, sharing their diverse
insights and approaches with partners and then with the whole class through
Mathematical Reflections discussions and journal writing. At no point in the CMP
curriculum maiterials are students shown any standard algonthms for addition,
subtraction, multiplication, or division of fractions or decimals. They are not shown
standard procedures for solving problems involving percents (e.g. the “three cases off
percent), nor any routine method for solving proportions or testing ratios for
equivalence (e.g. "cross-multiplication”). '
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The striking difference between iraditional and CMP approaches 1o rational number
and proportional computation and problem solving raises a very natural and
fundamental question by parents, and others, who are concerned aboul the
pertormance of students at this level. The question is: How do the computational and
problem solving strategies and success of CMP and traditional curriculum students
compare?

In particular, it is natural 10 wonder whether the new CMP approach does
successfully lead studems 10 construct effective (accurate and/or efficient) stralegics
for fraction, decimal, percent and proportional computation and whether CMP
students develop fiexible and/or effective sirategies for solving contexiual problems
involving rational numbers and proportions.

Purpose of Study

The basic goal of our proposed study is 10 describe the characier and effectiveness
of proportional reasoning by seventh grade swudents with different curricular
experiences as they face problems in the following three broad categories (lollowmg
ideas of Freudenthal, 1978; 1983):

o Comparing magnitudes of different quantities with an interesting connection, as
n “miles per gallon”, or "people per square kilometer”, or "kilograms per cubic
meter”, or "unit price”. These computations are not generally called ratios, but
rales or densities.

o Comparing two parts of a single whole, as in the "ratio of girls to boys in a class
15 15 10 10", or "a segment is divided in the golden ratio”.

e Comparing magnitudes of two quantities that are conceptually related, but not
naturally thought of as parts of a common whole, as in "the ratio of sides of two
irigngles is 2 10 1". These comparisons are sometimes referred 10 as scaling and
they include questions of siretching and shrinking in similarity transformations.

The main purpose is 10 compare the two populations. However, we are also

interesied in learning more about how seventh grade students leam and what they
know about proportional reasoning. For an exiensive review of the literature on
proportional reasoning see Tourniaire and Pulos (1985) and Behr, Harel, Post and
Lesh (1992).

Methodology

CMP sites for 1esting were selected based on the criteria that students had studied
two full years of CMP: the sixth grade and seventh grade. Five different sites were
identified: Portland, Stwurgis and Shepherd, MI, San-Diego, CA, Pittsburgh, PA.
Control sites were selecied from the overall population of control sites for the CMP
assessment. Based on matching with the CMP sample sites, and on lowa Test of Basic
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Skills (ITBS) results, control classes were obtained from Parma, MI, Toledo, Ol
San-Diego, CA, and Pittsburgh, PA. The CMP sample consists of eight seventh grade
classes and the control sample consists of six seventh grade classes. In total, 187
students were in the CMP sample, and 128 students were in the control sample.

The instruments designed for this study consist of students written tasks, students
structured interviews and teacher written questionnaire. Three major types of
proportional reasoning problems were chosen 1o be included in the writlen
Proportional Reasoning Test: rate problems, ratio probleins, and scaling problems.
Three forms were created. The rate problems were included in forms 1 and 3, the ratio
problems in forms | and 2, and the scaling problems in forms 2 and 3. In each class
cach form was distributed evenly among the students as much as possible. The 4 rate
problems were attempted by 124 CMP students and 91 control students. The S ratio
problems were attempted by 124 CMP students and 85 control students. The 5 scaling
problems were attempted by 126 CMP students and 80 control students. The tests
were administered in May, 1995,

For example, the rate problems were grouped around a story about "A Trip To The
700" Max, Eliza, Alex, and Cosima planned a bicycle trip to the zoo as a year-end
outing for their class. Students gathered at the school parking lot and rode together on
the bicycle path to the zoo. Afier looking at the animals for a few hours, they met at
the picnic tables near the duck pond for a snack and cold drink before riding back to
school. [The first problem was:]

I. Max and Fliza bought supplies for snacks and reported the following expenses:
Gatorade cost $2.00 for 16 ounces. Cran-raspberry juice cost $1.60 for 12 ounces.
They bought Cran-raspberry juice. Did they make the most economical choice? Show
the calculations that lead you to that answer. ’

The ratio problems were grouped around a story about "On The Road To School™
and dealt with: different ways of comparing the numbers of groups of students;
equivalent and inequivalent ratios/fractions; and missing value problems.

The scaling problems dealt with photos, enlargements, and shadow images. The
students were asked 1o identify enlargement factors, deal with equivalent and
inequivalent ratios and find area relationships.

A special rating form was created to analyze the data. Three major categories were
identitied: Correct Answer, Incorrect Answer, and Blank. Correct Answer has three
sub-categories: "Only the correct answer”, "Correct answer with correct support
work", and "Correct answer with incorrect support work”. These sub-categories were
created because in each problem the students were asked to provide support work by
providing reasons for their answers. The incorrect answer has also three sub-
categories: "Only incorrect answer”, "Correct thinking but wrong conclusion”, and
"Incorrect thinking". The analysis of the data included determining the percentages in
the cells on the basis of the total number of students multiplied by the number of
problems ol that form. For example, the Rate tform included 4 problems which were
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attempted by 124 students, so the total N of the distribution is 496. In this case, edach
entry is a percentage of that total.

Results

The overall results are presented in Table 1. 1t can be scen , that most of the students
responded to most of the problems with support work. If we exclude the "Only correct
answer”, "Only incorrect answer”, and the "Blank”, 75% of the CMP students and
66% of the control students provided support work. Nevertheless, the quality of
writing is important. Our impressions are that the CMP students demonstrated more
proficiency in this regard than did the traditional students.

Table 1: Proportional Reasoning — Overall Results
CMP Students vs. Control Students (All numbers in this tahle are percents)

RATE RATIO SCALING OVERALL
CMP CNT CMP CNT CMP CNT CMP CNT
N=496 N=364 N=372 N=25§ N=630 N=400 | N=1498 N=1019
C Only the ;
o | correct answer 2 5 5 N 4 4 3 4
R
R Correct st 28 | 43| 21| 36| 16| 43 21
support work
E
C Incorrect
1 | support work 7 14 9 20 1 4 S 12
1 Only the
N incorrect 2 6 4 5 17 17 9 10
answer
C
0 Correct
R [ thinking,bur |3 f 45 | 5 2 2 7 6
wrong
R | conclusion
F
¢ | Incorreat 18 | 28 [ 19| 20| 23| 30| 20 | 27
'hinking
-
BLANK 7 9 14 25 17 27 13 20
O
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Obviously, the correct answer with correct support work is the most desired
response from students. The overati results show that the CMP students outperformed
the control students (43% vs. 21%). Looking separately tor cach type of problem, both
samples were better in rate problems and worst in scaling problenis. In the Blank
category, the percentages increase from rate, 10 ratio, to scaling. Overall, the CMP
students’ responses were blank 13% of the time, while 20% of the control students’
responses were blank. Obviously, as the topic is more instructional-related, the
percentage is higher. The analysis of the data includes many additional comparisons
between specific items for both samples. For example, a special focus was on the
application of additive vs. multiplicative principles. Another attempt was to identify
students' strategies and methods in dealing with a certain type of proportional
reasoning as required in the first "Rate” problem (given in the Methodology section).
Ten difterent strategies (correct and-erroneous) were idenufied, for the majority, we
could identify students work o demonstrate the application of the strategies. For one
or two stralegies which might be 100 sophisticated for seventh grade students, we
complete the picture by providing our own analysis.

The followings are the ten identified strategies with some students’ examples for the
first problem in the "Rate" form;

(1) Comparing the ratios of two different variables using "extemnal ratios" or a
"functional method”" as mentioned by Tourniaire and Pulos (1985). Actually, it is the
"unit rate" strategy dealing with "price per unit" or "unit per price”. For example -
student's work:

2.00+16 12.5 Gatorade 125 unit price.
1.60+12 13.3 Cran-raspberry 13.3@ unit price.
No, they dudn't make the best economical choiee.

This answer was classitied as Correct with "correct support work".

Another example ~ 15 py-16 125

L6012 133
Yes. they made the best economical choiee,

This answer was classified as Incorrect within the sub-category of "correct thinking
but wrong conclusion”. -

Another example of Student's work © [ 4552 7 132 128060 15.14

No, they didn't muke the best choice.

This is an example of directly comparing ratios of two different variables.

Another example of using "umit per price™: [;o5> & 128760 7.5

No, they did not;  because  with
Ciatorade vou get more for vour money

and with C. juice you get less.
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(2) Comparing ratios of the same variable using "internal ratios” or a "scalar
methods” (Tourniaire and Pulos, 1985).

I'or example — incorrect answer of a student:

1612 = | R4
200°1.60--1 R0
Yes, they muade the right choice.

This answer was classified as "Correct thinking but wrong conclusion”. We could
not find many students who used this strategy.

Our completion is:

16 ounces/12 ounces = 1.333... =4/3

= the quantity on the
numerator is a better buy.-
2.00%/1.60% =1.250=5/4

(3) Comparing the cost of the same quantity by finding common factor or common
multiple quantities — "price per unit" is a specific example for this strategy.

For example — student’s work:  [57 403~ 533

A3

2.13  Gatorude  $2.00 for 16 ounces
Crun-ruspberry  $2.13 for 16 vunces.
No, they didn't muke the best choice.

Another example is: No, . . . for 48 ounces Gatorade is $6 and C.R.B. is $6.40.

(4) Comparing amounts for the same cost by finding common factor or common
multiple costs — "unit per price" is a specific example for this strategy.

For example, one student used the "building up" strategy (the next one) and found
that he/she can buy 60 oz of Cran-raspberry for $8 and 64 oz of Gatorade for $8.

Of course, one could compare for 40z:  $2.00/5= 40z = 16/5 = 3.2 oz Gatorade

$1.60/4= 40z = 12/4 =3 0z C.R.

or find the amount per $1:  16/2 = 8 oz per $ Gatorade

12/1.60 = 7.5 oz per $ C.R.

(5) "Building up" strategy by using a list or a table.

For example — student's work:

G C
$ ounces $ ounces  No, they didn't because at 48 ounces of juice
2.00 16 1.60 12 Gatorade costs $6.00 even and Cran-
32 3.20 24 raspberry cost = $6.40.
6.00 48 36
6.40 48
S 2-72
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(6) Looking at the ratio of the differences between the same vanable.
For example — students' work: | 2.00 16

16 2.00
160 22 NO |12 -L60  YES
40 4 : 4 40z

Many others used more or less the same strategy, but we could not find an
acceplable explanation.

The following is our mathematical explanation for the "ditference method".

Price per unit Quantity Cost

type 1 5 x nof type | nx

type2 oy m of type 2 my
Assume x>y > X =y +7z Assume n > m

Using the difference method:
(nx-my)/(n-m) = [n(y+z)-my}/(n-m) =
(ny+nz-my)/(n-m) = [y(n-m)+nz}/(n-m) = y + nz/(n-m)

This is the "price” of one additional item of type 1. Obviously, it is more expensive
than type 2.

(7) A strategy of relating to only one vaniable by ignoring part of the data in the
problent. Obviously, this is erroneous strategy.

For example — students' work: |Yes, hecause each drink you
buy is Ha cheaper, so you
ure saving lots of money.

No, because Gatorade is
cheaper, because it hus
maore ounces Lo it.

(8) A strategy of responding just to the numbers.

For example ~ students' work :

Yes 2.00x12 2+ Gatorade

1.60x12 192 1.60x16 25.60 Cran-raspberry
2.00x16 32

(9) A strategy named by us as "affective responses”. We identified two kinds: by
the value of money (under or over) and by 1aste (like or dislike).

For example — students' work :

No, Guatorade | [No, because what if some of the kidy
Yes, they did because of really tastes hetter don't like Cran-raspherry.
idn't cost that much money.

Yes, it was a good choee, they
saved 40z,

(10) The last strategy includes: method used is not clear, answers are given but no
method is given, no response.

O .
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As mentioned before, we interviewed students from both samples and administered
teacher's questionnaire. This was done in order to gain an additional insight to the
writlen tasks, especially when students were also asked questions without stories such
as "is the ratio 4/7 equal to 10/13?" or "is 7/8 = 8/97".

Conclusion

While the CMP students outperformed the control students throughout the study,
we can sce that we are dealing with some very difticult ideas to master. The authors of
Street Mathematics and School Mathematics, Nunes et al. (1993), say that they have
found no linear path of lcarning through this complicated maze of proportional
reasoning. Our findings confirm those thoughts. The variety of ways students find to
solve problems is always amazing. Our task is to keep the doors 10 clever solutions
open to those students who will produce them.
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Children’s Word Meanings and the Development of Division Concepts

Sarah B. Berenson and Draga Vidakovic
Center for Research In Mathematics and Science Education

North Carolina State University
Introduction
Focus

Many researchers agree that division concepts begin developing in students
as early as age seven but are not clearly understood by most students until age 18.
Work has been done to examine students’ responses at various ages to a variety of
division problem types, different division contexts, and rational number division
(Kouba, 1989; Tirosh & Graeber, 1989; Harel, Behr, Post, & Lesh, 1994).
Division strategies and division models have been studied by Fischbein, Deri, Nell
and Marino (1985), Kouba (1989), Greer (1992), Confrey (1994) and others.
For this study, we wanted to extend the investigation of children’s division
concepts beyond their processes, strategies, and models. More specifically, we
were interested in children’s meanings of words that are commonly used in

division instruction.

Theoretical Framework

Discourse and negotiated meaning are current areas of pedagogical interest
in the reform agenda. They emerged with the constructivist perspective of the
mathematics classroom where teacher and students mediate the meanings of
words, symbols, and situations (Vygotsky, 1986; Voight, 1994). For Vygotsky
(1986) word meanings were essential links between language and thought.
Evidence suggests that students use language differently to express their thoughts
and before adolescence have very ditferent meanings for words than adults
(Vygotsky, 1986). For mathematics educators who ascribe to constructivism and
promote the role of classroom discourse, it becomes important to examine the
range of meanings that students have for words commonly associated with

division.
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Luria (1981), a student of Vygotsky’s, used card sorts as a method of
eliciting responses from children. The children’s considerations of each word
while sorting and classifying become an opportunity for them to verbalize their

thoughts about the words and other word associations.

Voight (1994), and Lo (1994), among others, used case studies to examine
the mathematical meaning of elementary children. From these studies, negotiating
meaning within the social context of the classroom and the role of the teacher in
sense making emerged as notable conditions for learning mathematics. These
findings suggest that it is important for teachers to realize that even though
students use the teachers’ words, the students’ meanings may be very different
from those of their teachers. Berenson and Vidakovic (1995) observed that
students in grades 3-8 have many different meanings for division words such as
“sharing” or “fair share”, reflecting the diversity of cultures represented in

schools today.
Method

The 38 students in this study were in grades 5-8 in a large, rural county in
Southeastern United States. They were selected based on the results of earlier
structured interviews given by their teachers, which we thought were
representative of the range and diversity of division ideas found among middle
grades students. The interviews for this study were conducted by the researchers.
Sources of data included individual interview transcripts, video tapes, field notes,

and students’ paper work.

We chose to adapt the methodologies of Luria (1981); the first method is
concept definition and the second method is free classification. The basic idea of
concept definition is to study students’ definitions of division; it is accomplished
by analyzing the associations of the word division that students make when
defining the word. According to Luria (1981) there are several ways that the
students may verbalize their definitions. In concrete associations, a student

identifies some characteristic of the word division or relates the word to a

‘ o 2-76
"84



E

concrete situation. In the second type, a student relates the word division to a
category or system of concepts which Luna refers to as verbal-logical
associations. For this study, students were asked to give their definitions of

division after they had done the free ciassifications.

The method of free classification involved giving the students a number of
cards, each with one word on them. The words used in this study were associated
with division and were obtained from the students’ teachers (See Table 1). The
students were asked 1o group the words, name each group, and explain the
reasons_for placing the words in a particular group. We asked the students to
perform three card sorts. Afier the first sort, the interviewer inquired if the
student could decrease the number of groups by merging or regrouping the first

word sort. These directions were repeated for a third sort.

Analysis and Results

Concept Definitions

The analysis of these data are incomplete at this time. A preliminary
analysis found evidence that some students at this level do give concrete examples
of division situations. For example, one sixth grade student described division as
dividing candy among friends and another as putting an equal number of balis in
boxes. Some students demonstrated difficulty in verbalizing their division
definitions, picking out only one or two concept features such as “parts” or
“groups.” Whenever vou divide two numbers and it’s like the people, like vou
have a party and vou get a number for something for evervbody. and vou would
divide i1 into - 10 be how many people you could get for ir. Still others were
able to make verbal-logical associations with division. Division is to take away
from one big group ... just divide the big group into separate parts that are fair to
each other. What is less clear at this point in the analysis are the links
between the students’ concept definitions and their free associations.
Free Associations

Early in the interviews it became apparent that many students perceived

O
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two categories of words among the 16 they had been asked to sort. Students
described some of the words as “*math” words and others were described as used
outside of the mathematics classroom or “non-math” words. For example, one
eighth grader said that she had “never heard of split, halve, and fuir used in
mathematics.” A student in seventh grade described fair and share as things you
have to do in life, whereas all the other words were math group words. Another
student grouped split, scparate, evenly, and equal as words associated with
“marriage.” There were some interesting examples of contradiction among the
students. For example, one student claimed that she could not sort “split” into any
group but then proceeded later in the interview to repeatedly use “split” in her
descriptions of division. The dichotomy of terms perceived by the students
prompted us to classify the card sort words as 1) division labels and 2) division

descriptors. These are also shown in Table 1.

Table 1. Division Words and Researchers’ Classifications for Card Sort Analysis.

Division Labels Division Descriptors
remainder split share equal
dividend separate total same
divisor share fair group
divide parts evenly
quotient

First sort The analyses of the word classifications began with an
examination of the students’ first set of word groups to determine which of the 16
words were associated with division. Nearly two-thirds of the students (n=24)
named one of their groups “division, divide,” or “dividing” in the first sort. Of
these, there appeared to be three distinct types of word group associations. By far
the most common division association (n = 18) was one that included only the
labels of division: divide, dividend, divisor, guotient, and remainder. Two

students associated several division descriptors such as halve, parts, group, and
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split with division, but did not include the division labels such as dividend and
quotient. Four students demonstrated that they associated both division labels and
descriptors with division within the first set of word groupings. For example, an
eighth grader grouped divide, divisor, dividend, quotient, remainder, split, equal,
group, separate, halve, evenly, total, and guotient and named the group

“division.”

S_u_bagqu;n[_mﬂs. Fourteen students were able to associate all 16 words
with division in the second or third sorts. Among these students were 3 who did
not associate any of the words in their first sort with division. The remaining 11
students who were able to group all 16 words as “division” words had either used
division labels or both division labels and descriptors in their first grouping. The
logical progression of most students’ associations seemed to begin with division
labels in the first grouping, the addition of some division descriptors with the
labels in the second grouping, and finally the inclusion of all the words as
division words in the third grouping. When we considered the ages of these 14
students, there is little evidence that older students associated more words with
division than younger students. For example, 3 fifth graders, 3 sixth graders, 6
seventh graders and 2 eighth graders were among these 14 students with multiple
meanings for the concept of division.

Discussion

Further analysis and results will be reported at the PME meeting this
summer. We will determine if students tended to associate each word with the
name of the group or the group words with one another. Additionally, the many

different names created by the students 1o name their groups are of interest.

There appeared 1o be a logical progression of word associations among
these middle grade students. The first series of associations began with the
associations of division labels, then the inclusion of words such as separate and
split , termed division descriptors. Several possible avenues are open for future

investigations including teaching experiments and classroom observations. These
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settings can provide students with opportunities to negotiate the meanings of

words commonly used in division instruction.
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THE USE OF EXAMPLES IN THE TEACHING AND LEARNING OF
MATHEMATICS

L.iz Bills
Crewe and Alsager Faculty
Manchester Metropolitan University

In this paper | make a brief survey. of literature on the use of examples in concept formation and
compare abstraction from examples with concept formation from single or generic examples. 1
apply these theoretical ideas 10 a number of classroom incidents and conclude that there is a role for
multiple examples even where the generalisation is generic.

Classical theories of the psychology of learning take as one of their foundations
the human ability to distinguish, to identify sameness and difference, like and
unlike, and thereby to group, separate and classify. The notion of classification
allows us to conceive of members of a class and hence of representatives of
classes. or examples.

The issue of classification is also a route into consideration of particular and
general. “Particular” describes features of an individual member of a class,
whilst "general” describes features common to all members. A statement
describing an attribute of a particular member of a class might be adapted to
describe an analogous “"general” feature of every member of the class.

Many writers have considered the issue of particular and general in mathematics.
Traditional theonies of concept formation by abstraction are one attempt to
characterise the relationship between particular and general in the learning of
mathematics. Several major theorists have queried classical ideas about the nature
of the relationship between general and particular in the learning process.

Classical theory has us forming concepts by abstraction of the commonalties from
numerous encounters with the particular. Skemp (1971) uses the example of a
child developing the schema of "chair” through numerous encounters with
examples and non-examples of chairs. Dienes (1960) bases his principles for the
teaching of mathematics on the notion of abstraction from examples.

Borasi (1984) expresses disquiet at this interpretation of learning new concepts in
the context of mathematics education. She points to psychological evidence
produced by Tall and Vinner (1981) which contradicts the notion that "irrelevant”
attributes of the examples from which a concept has been abstracted will be
forgotten once the concept is established. They found, on the contrary, that some
features of the examples which were presented in the teaching of the concept were
not attributes of the concept. Nevertheless they were retained as part of the '
students' "concepl image”, that is the students’ mental picture of the meaning of
the concept. Borasi also expounds the shortcomings of the abstraction model in
the case of the concept of an infinite set.
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Freudenthal (1978) argues that learning of mathematical concepts at school does
not take place by the process of abstraction:

“the origin of general ideas, concepts, judgements and attitudes in the learning
process, whether they are attained in a continuous process, by comprehension,
that is by generalising from numerous examples, as is the common opinion, or
by aupprehension, that is by grasping directly the general situation, which is my
thesis.” (p170)

He describes methods of promoting "apprehension” in the classroom by the use of
"paradigms”, that is single examples which give access to the general situation.

Lakoft (1987) argues a similar case concerning the classical view of
categorisation. He opposes to it a new theory of categorisation called "prototype
theory” and claims that "...prototype theory....suggests that human categorisation
is essentially a matter of both human experience and imagination - of perception,
motor activity, and culture on the one hand, and of metaphor, metonymy, and
mental imagery on the other” (p8). Further, prototype theory suggests that there
are good and bad examples of members of a category. This contradicts the
classical view that no example of a category is any better than any other example
and, says the author, fits better with our experience.

Other writers have expanded on traditional understandings of abstraction without
stressing their limitations. Dreyfus, for example (1991) speaks of abstraction as
focusing on relationships between objects rather than on the objects themselves.
This description includes the traditional idea of shifting attention to the
similarities and differences between objects, but also expands on it.

Harel (1991) treats abstraction as part of the process of generalisation and concept
building. This part of the approach seems problematic in the case of the function,
where there is evidence of students using all kinds of erroneous schema which
they have abstracted from the examples that have been presented to them. He
suggests use of generic examples as a means of assisting students in making
abstractions and building concepts around formal definitions. I will refer to this
work again in my discussion of generic examples.

In rejecting the classical abstraction model of concept formation, Freudenthal (op
cit.) states his preference for a teaching method which employs "paradigms”. A
paradigm he describes as "one example, which evokes the general idea” (p170) or
the one necessary example. In the context of learning Latin "amo” as an example

- of a first conjugation verb is a paradigm. 11 acts as a paradigm even though the
transposing to other first conjugation verbs may be unconscious.

The notion of an example which is seen in some way as representing a generality
has been taken on by a number of authors, often using the term "generic
example”.

ERIC

Aruitoxt provided by Eic:

P

.
82

9N

2o



Mason and Pimm (1984} discuss generic examples in a varicty of contexts,
suggesting f(x) = |x| as a generic example of a continuous but non-differentiable
function, 2/3 as generic example of the set {2t/3t 1 t € Z}, and Kleenex as a
generic example of a tissue. They point out that the role of example is to help
students to see the generality which is represented by the particular. In other
words students need to see the examples as "examples of” some more general
statement.

In Mason (1993) Mason again points out that the teacher's experience of
“examplehood” when presenting an example to students may be quite different
. from the students’ experience.

Hazzan (1994) and MacHale (1980) draw attention to some of the dangers of
over-reliance on canonical or generic examples. Hazzan made a study of students’
understanding of group theory and in particular their ability to solve the equation
x = x-1in the context of a group. Many of the students claimed that the only
possible solution to this equation was x = e. One of the author's suggested
explanations for this is that the students are relying on multiplication on the real
numbers as their canonical example of a group operation, so that they assume that
the only element which is self-inverse is the identity element. Features of the
example which are not a part of the generality it represents, have been imputed 1o
that generality. Hazzan links this over-use of the canonical example with the role
of metaphor in understanding abstract concepts. The students see the group
operation ay multiplication, rather than like multiplication, so that one student
says "Suddenly, everything (in Abstract Algebra) looks so strange. 1 mean why
isn't a*h equal to h*a?" (p53). These findings illusirate some of the points made
by Tall and Vinner (op cit.) in their work on "concept image".

MacHale regrets the fact that text book authors are so consistent in their counter-
examples, so that, for instance, f(x) = |x| is almost the only example to be found

of a continuous but non-differentiable function. The use of a single counter-
example supports "monster-barring” (Lakatos 1976), that is it allows students to
dismiss the counter-example and maintain their belief that, for example, all
continuous functions are differentiable. In addition it does not encourage students
to locate what it is that is similar about these examples and that makes them
representative of the general. This amounts to an argument against the use of
generic examples.

Harel (op. cit.) emphasises the generic example as a means of generalisation for
students. He speaks of "generic abstraction” as the process of forming a new
concept by consideration of one paradigmatic or canonical example and suggests
three principles for selecting effective generic examples:

The entification principle says that the context from which the new object's

properties are to be abstracted must be familiar. The necessity principle states

that students must be able to see the reason for the abstraction they are being
Q
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asked to make. The parallel principle says that the generic example must be
treated in a way which can be paralleled later in the general case.

His last principle perhaps misses the point that it is the student's treatment of the
example which is crucial. "lrrelevant” properties of the example may continue to
form part of the student's concept image.

Balacheft (1988) uses the notion of generic example in the context of students
writing proofs. Of his four categories of proof, generic example is the third and
is characterised as follows: "The generic example involves making explicit the
reasons for the truth of an assertion by means of operation or transformations on -
an object that is not there in its own right, but as a characteristic representative of
the class” (p219) He suggests that such a "proof™ is a step on the way to the

formal "thought experiment”.

The generic example then is seen as a stage between particular and general. It has
been advocated as a teaching approach and observed as a stage in understanding.
To see generic understanding as a stepping stone between particular and general is
to deny the universality of the "abstraction from particulars” model of concept
formation.

This discussion of the role of examples in the formation of concepts alerted me to
look for the teachers’ and students' use of examples in mathematics. Are there
instances of the use of generic examples, and if so in what context? s there
evidence of students using examples as a basis for abstraction? These, and many
other questions were in my mind as | undertook a period of teaching in a local
school and also a series of meetings with a group of teachers. The classes | taught
and observed were of seventeen year old students. During this time | made notes
on incidents which struck me as relevant to my interests and also tape recorded
some lessons and conversations.

During one of my meetings with the group of teachers we discussed a recording |
had made of my conversation with a student. He was working on finding the
equation of a straight line. Towards the end of this discussion, one of the
teachers, Kate said: :

"This has actually just shed some light on a conversation | had with my son.
He was finding equations of straight lines through a point and 1 was saying to
him "use y-y; = m(x—x,;)"and he said "I've never heard of that before” and he
wrote down for me y = mx + mx; — y;and | said "where did you get that?”
sorry "— mx; + y," I'm getting it the wrong way round myself, and I said |
had never seen it in that form before and he said "Well I did a lot of examples
and 1 found that this pattern was working out” and it's the first time I've ever
heard - I hadn't realised what | was hearing at the time - it's the first time I've
ever heard of somebody coming up with their own generalisation from doing a

lot of numerical examples - and | now think my son's quite clever actually”
O
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Although Kate expresses surprise at her son's generalisation 1 can recall similar
occasions from my own teaching experience. For example, two boys, Paul and
Kwok, working on the Cartesian equations of circles arrived at a general
condition that the equation x2 + v2 + ax + by + ¢ = 0 should represent a
circle. They did this whilst working through an exercise which contained a large
number of particular questions of the same type.

It is important to note that Kate's son apparently came to his generalisation by
spotting patterns in numbers. He saw a relationship between the coefficients in
the equations he derived and the gradients and co-ordinates of points that were
given in the questions. Paul and Kwok did not do this but worked through, in the
general case. the procedure they had been practising in several particular cases.
They performed on the general equation x2 + ¥2 + ax + by + ¢ = 0 the
process which they had routinized on numerical examples.

What the two incidents have in common is that the students came to an algebraic
expression of their own generalisation in the course of working on a lot of
particular cases. There is however a subtle difference between the ways in which
they arrived at these generalisations. | might describe the former as an empirical
or inductive generalisation and the latter as a generic generalisation. 1 find the
labels "abstraction from examples” and “generic abstraction”, as | have
understood them in the work of others and described them in the earlier part of
this paper, useful in making this distinction.

Having made this distinction | want to consider two further incidents in which |
found these labels useful. The first is a conversation between me and one student,
Ewan.

I ask Ewan to work on the question

"Find the equation of a straight line which has gradient M and passes
through the point (p, q)". )

He says "Let's try it with y = mx + ¢" and writes this down but then doesn't have
a strategy for starting. He claims that he could do the question if he had values
for M, p and q so 1 ask him 1o work with M =4, p=2and q= 3.

He draws a sketch of the line in this case but then says he has forgotten the method
for finding the equation. 1 take him through the steps of substituting known
values into ¥ = mx + ¢. We don't write anything more down but Ewan works -
out a value for ¢ in his head, saying

"Yes. It's 8 plus something equals 3. ... 8, it would be 8 minus 5. Yes.
So that's got to be -5. Soit’s got to be y=4x-5.".

Next I ask him to work on the original question:

(In this transcript a series of full stops indicates a pause of half a second for each
full stop)

‘@ "izi___Uhmbhm. Right, now the job that you've been given
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Ewan: Uhmhm.

Liz:  is to find the equation of a line

Ewan: yes

Liz:  which doesn’t have them specified as numbers.
Ewan: Yes. So that, g=mp—c. (writes g=mq-c)

Lizz  No do you mean p there?

Ewan: I do mean p, not g. .. p. 1 can’t write either.

Liz: What did you use that equation for when
you were doing the other one?

10 Ewan: That?

11 Lizz  Hmm.

i2 Ewan: [ used :. p is x because it's the x -co-ordinate

13 Lizz Uhmhm. _

14 Ewan: g is y, because il's the v co-ordinate. (writes g=mp+c)
IS liz:  Hmm.

TN R W N

16 Ewan: m is the gradient and ¢ is the constant. And because I didn’t know the
constant but because I knew the other ones

17 Liz:  right
18 Ewan: I knew that mp+c had to equal ¢, so 1 could just work out what ¢ was.
19 Liz:  Right. Well the same is true for this case.

20 Ewan: Yes. ...... So it would be ... g=mp. (writes g=(mp)) ..............
................ a bit of a shot in the dark ... 5 is what the two co-ordinates
were when added together.

My intention in this interchange was that my example of the equation of a straight
line going through (2, 3) and with gradient 4 should be a generic example for
Ewan. 1 expected him to grasp the method and be able to apply it in the general
case. His speeches in lines 12 to 18 indicate that he had grasped the method at
some level. However, he does not go on, as expected, to manipulate the equation
g=mp+¢ to give an expression for ¢. Rather he goes back to the numerical
example we had done to look for a number pattern. Perhaps his hesitation over
doing this ("a bit of a shot in the dark") was because he had only one example
from which to generalise.

I could speculate on the reasons for Ewan's failure to do the algebraic
manipulation, but that is not my purpose here. | want merely to suggest that
empirical and generic generalisation are confusingly (1o both teacher and student)
mixed together in this incident.

A common reaction from teachers with whom | have discussed this account is 1o
suggest that I should have done more numerical examples of a similar kind with
l:wan before asking him to work on the general case. This suggestion runs
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counter to the idea of my numerical example as a generic example. The essence
of the generic example is that only one is required.

The second incident is from my meetings with teachers:

Three wachers were working on the following problem:

In how many ways can n | by 2 rectangles be arranged to form a
2 by n rectangle?

Two teachers working together and one working on his own had independently
come to the conclusion that the sequence of numbers of arrangements for
increasing values of # was a sequence of Fibonacei numbers. Prompted to try to
justify this conclusion, David. who was working alone, showed me how to obtain
all the arrangements of four rectangles by adding two more rectangles to the each
of the arrangements of two, and one more rectangle to cach of the arrangements
of three. | asked him to show his demonstration to the other two.

David: If it's Fibonacci, for number four you add the two combinations and three
combinations together

Valerie: Right
David: There are my two combinations, three combinations so | just need to add

one to each of those and 1 need 1o add two to these which if 1 add that way round |
end up with all five combinations. ............ hmm? So ..

Katherine: Why does - ?

David: They're the twos

Katherine: What happens if you add to the other side? s it not possible to get any
difterent ones?

David: I think that's going to be-exactly the same results as if I'd added them on
top. As long as | put these ones across and these ones down

Katherine: Because those two are the other way round - yes

David: Now - | haven't tried, but I guess three and four - I'm just assuming at the
moment that it's just adding on - so that's four - and threes were - one, two, three
Uaughter as David "secretly” takes some more rods from the two women's work)
su | should be able to get all the combinations just going like that, that, that

| had asked David to give his demonstration because | thought it would serve as a
generic proof that each term was the sum of the previous two. In fact both David
and the two women seemed to want to look at another case, that of n=5, in order

to be convinced.

1 suggest that these teachers were not looking for empirical evidence that their
conjecture was correct. They had already seen that the sequence of numbers was
a Fibonacci sequence. They were looking for confirmation of an argument, not
O

2-817 . 95

b N
3
Logy

37



of aresult. In other words, they were looking through the particular to the
general, rather than seeking statistical evidence.

On the basis of my brief review of literature on examples 1 might distinguish
between empirical and generic generalisation on the basis of the number of
examples needed. That is, empirical generalisation requires a number of
examples whereas generic generalisation requires only one example. However,
Paul and Kwok made what | would identify as a generic generalisation on the
basis of a large number of examples (it is possible that they could have done as
much after only one example) whilst Ewan attempted an empirical generalisation
on the basis of only one example. The three teachers felt the need to look at a
second example even though they were using a generic argument. The number of
examples used is not a reliable indicator of the type of generalisation.

My study of examples in use suggests that a multiplicity of examples may be
useful even in cases where their interpretation is generic. The distinction between
the two kinds of generalisation may not be so easily made in practice as in theory.
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THE INFLUENCES OF SIGNIFICANT OTHERS ON STUDENT
ATTITUDES TO MATHEMATICS LEARNING.

Alan Bishop, Christine Brew,

Faculty of Education, Monash University, Melbourne, Australia
Gilah Leder, Catherine Pearn,

Faculty of Education, La Trobe University, Melbourne, Australia

Abstract

In the first part of a three year study in Australian secondary schools, Year 7
and 9 students were surveyed and interviewed about their attitudes towards
mathematics learning. Factors investigated were their perceived performance
at mathematics and the influence of peers, teacher, parental aspirations and
experience of mathematics. Teachers and the students’ parents views were
also sought, and in this way apparent conflicts could be explored. In this
paper we present certain quantitative findings and extracts from an interview
which provide insight into the apparent influences of significant others
described in the questionnaire data.

1. Background and research procedure

This study is generally concerned with understanding the reasons for the
underdevelopment of the mathematical potential of many young Australians. Its
focus is on students who may be experiencing cultural conflicts in terms of gender,
ethnicity or class, and who may not be able to achieve their full potential in
mathematics. The conceptual context for the research is student attitudes and in this
paper we report on the first part of the study, which was carried out in 1994 with
students in four predominantly Anglo-cultural background secondary schools, and
which looks predominantly at gender differences. '

Explanations and interpretations of under achievement in mathematics have
tended in recent years to move away from the cognitive domain and to focus more on
student attitudes (McLeod, 1992). Moreover as the social dimension (Bishop, 1985)
has come to be recognised as a highly significant factor in mathematics education, so
the need has arisen to carry out studies which examine the roles of particular
individuals and groups in influencing young people’s attitudes towards mathematics
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and mathematics leaming. There is therefore the need, as Leder (1992) affirms, to
adopt ‘research paradigms that allow a greater attention to individual differences and
context-specific problems.” In this study we are exploring the network of perceptions
and relationships involving the individual students, their peers, their mathematics
teacher and their parents. These are assumed to be the most ‘significant others’
(Sullivan, 1955) likely to influence the individuals’ attitudes.

The four state co-educational schools were selected on their low non-English-
speaking-background student numbers (less than 30%) , and on the socio-economic
status level in the school’s catchment area, with two schools having medium to high
levels and two medium to low. In each school a Year 7 and a Year 9 class were
chosen through consultation with the mathematics coordinators and the teachers
concerned. Each teacher was asked to identify four low and four high achieving
mathematics students. Four sources of data were collected: questionnaires
administered to all the students in each of the classes studied, video tapes of three of
their mathematics lessons, interviews with the selected students, and interviews with
their parents (wherever possible). Full ethical procedures were followed.

2. Questionnaires.
2 (a) Questionnaire development

To determine the students' attitudes towards various aspects of mathematics
learning, a multi-dimensional questionnaire was developed, using items from the
FFennema-Sherman Attitude Scales (1976), the Mathematics Attribution Scale
(Fennema, Wolleat & Pedro, 1979), the Individualised Classroom Environment
Questionnaire (Fraser, 1990) and items developed by the researchers based on
statements from The National Statement on Mathematics (Australian Education
Council, 1991).

There were four sections to the questionnaire. Your Views about Mathematics
included #ems to ascertain each student's attitudes to mathematics and to learning it.
More Views about Mathematics assessed the students’ attributions for their success
or failure in mathematics in terms of ability, effort, task and environment.. The
Individualised Classroom Environment questionnaire was used to ascertain each
student's own perception of the leaming environment within their mathematics
classroom. How Good Are You? (Forgasz & Leder 1995) aimed to determine the
students’ perceptions of their own ability and how they thought their parents, teacher,
and peers would rate them as learners of mathematics.

Q
ERIC 3es 2-90

. s e

Qe



2 (b) Questionnaire Results

Our general results are consistent with earlier findings of students’ perceptions
about mathematics. Girls indicated they were more anxious about mathematics
and felt more strongly than boys that mathematics was not a male domain.
Furthermore, low achievers perceived they obtained less support from their teacher
and during interviews they said it was hard to get attention, or felt ignored by their
teacher, or even avoided the teacher. The reasons students gave for avoiding the
teacher included being confused by their explanations, they were shy, they thought
they would be bothering the teacher, or were afraid of revealing a lack of
understanding.

In the selected questionnaire results to which we refer here, students were
asked to rate their own achievement level in mathematics on a scale from 1 (low)
1o 5 (high), which we discuss below as High Achievers (ratings 4 and 5) Middle
Achievers (rating 3) and Low Achievers (1 and 2). Each student also gave their
‘wished for’ rating, their perceived teacher’s, classmates’, mother’s and father’s
ratings of their achievement, as well as their perceived mother’s and father’s
‘wished for’ ratings for them.

Students’ self-rating compared with their ‘wished for’ rating

Students overwhelmingly indicated they wanted to do better at mathematics
(84%). Fifteen percent of students were happy with their level of performance.
There appears to be a gender difference in this latter result as 21% of boys stated
they were satisfied with their performance while only 6% of the girls did so.

Students’ self-rating compared with teacher rating

Perhaps the most ‘significant other’ which should first be considered is the
student’s own teacher. When the students’ self-ratings were compared with their
teachers’ ratings, based on end-of year results, over half of the students
overestimated their performance. Boys were also more likely to overestimate and
girls more likely to underestimate their performance (p<0.01, Table 1).

Willis (1990) reported that boys over-rated and girls under-rated their
performance in mathematical achievement in relation to written assignments.
Under-rating of performance has been assumed to be associated with girls having
lower self-esteem than boys. Yet it is not clear from the literature whether over-
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rating of performance is more productive, that is whether it contributes to higher
achievement levels, than under-rating of performance. Our data indicate that this is
not necessarily the case since the teachers gave the girls a higher rating than the
boys, although the difference was not significant (one-third of a mean grade point
difference out of 5 grades).

Table 1: Students' self rating of performance By gender.

Over-rating of Self rating and Under-rating of
achievement achievement level achievement
same
Girls (n = 79) 44% ' 29% 26%
Boys (n = 96) 67% 23% 10%
Total (n=175) 56% 26% 18%

Moreover, when the same data were analysed in terms of the year of school
attended, Year 9 students also over-rated their performance to a greater extent than
the Year 7 students (p<.01), while the teachers rated the Year 7 students
significantly higher than the Year 9 students (p<.001). Perhaps under-rating of
one’s performance is related to factors other than self-esteem? We now turn to our
data on the influence of other ‘significant others’.

—_

Students’ self-rating compared with perceived class-mate rating

Table 2: Peer influence in the over-rating and under-rating of performance in
mathematics.

'Peers over-rate my Peer and self rating  ‘Peers under-rate

performance’ the same my performance'
Girls (n = 80) . 28% 62% 10%
Boys (n = 99) 15% 58% 27%

Total (n=179) 21% 60% 19%
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Within the classroom the students’ classmates are likely to be a highly
significant influence. In relation to their perceived rating from their peers, the boys
were more likely to believe that their peers under-rated their achievement (p<.01)
while the girls were more likely to believe that their peers over-rated their
performance (Table 2). It is important to note, however, that the majority of both
girls and boys perceived no difference between self and peer rating,

A question on the attribution scale in the questionnaire More views about
mathematics, also made reference to the impact of distracting peers as a factor
determining failure. A highly significant interaction was detected between gender
and student perceived achievement for this question (p<.01, Table 3). An
examination of the means showed that while distracting peers diminished as a
factor in perceived failure for higher achieving boys, for the higher achieving girls
it increased.

Table 3:  The influence of distracting peers as a factor in failure

“Imagine you have not been able to keep up with the rest of the class in maths this
term: Students sitting near you wouldn't work.”

Scale | - 5. 1= strongly disagree up to 5 = strongly agree (mean and sd in

parenthesis)

perceived rating boys (98) girls (81)
5. excellent 24 (1.2) 38 (1.0)
4. very good 28 (1.1) 33 (1.1
3.average 34 (1.2) 2.7 (1.1)
2. below average 26 (0.9 30 (1.3)
1. weak 35 (1.4) 34 (1.3)

Similarly, in relation to year levels, the influence of distracting peers in general
was greater in Year 9 (mean 3.2; sd 1.1) compared to Year 7 (mean 2.8;sd 1.1;
p<.01). This result suggests peers are a more significant factor atfecting
performance in the mathematics classroom in Year 9.

Student self-rating compared with perceived parental ratings

The third group of significant others whom we considered were the students’
parents. In relation to their perceived parental ratings, students overwhelmingly
¢ .
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perceived that their parents wished them to do better than their current
performance (78%). Only nineteen percent of students perceived their parents were
satisfied or at least did not wish for a better performance in mathematics.

More interesting, although more difficult to interpret, are the findings related to
the student’s mothers and fathers seperately. For example, boys perceived that
their mothers would rate them higher than did the girls (p<.05) and the same
pattern was observed for the perceived father rating although the difference was not
significant. In addition, students who rated themselves as low achievers believed
that their mothers would rate them higher at mathematics than their fathers would.
This suggests that mothers and fathers exert rather different influences on their
children’s performance. However, when the teachers’ rating of the students’ actual
performance was used as the independent variable, this finding was not replicated.

Our conclusion is that students’ perceptions of others’ ratings of their
mathematical performance interact with their own in different ways, and exert
complex but important influences on their attitudes, and therefore on their
behaviours in the classroom.

3. Student Interviews

Fifty-students were selected for interview but space limits prevent reporting
these in detail here. (Further reports on the interview data will be provided at the
conference.) We include below selections from one interview with a female Year 9
student, Kerry, to illustrate some of the effects of the influences of significant
others on her behaviour in the classroom.

Kerry was designated as a very successful student in mathematics by her
teacher; in fact in her view she topped the class. Kerry, however, under-rated her
own performance level, saying she was “a bit above average”. She predominantly
works in the class with a middle achiever, Beth:

Interviewer: Is it important who you sit next to in class?
Kerry: Doesn't affect me at all, except when friends ask for help all the time.
Interviewer: Who would they be?
Kerry: Like Steven and Beth.
Interviewer: They want to look at your work?
Kerry: Yes.
Interviewer: Is it hard to not respond to that?
O
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Kerry: Yes, sometimes, because if | don't help Beth she gets annoyed with me.
Like they ask vou in the middle of a question when you are trying to finish. your
question and it is really hard.

Interviewer: If vou really wanted to excel in class, who would you sit next to?
Kerry: Not like to sit next to, but probably if fairly good people sat together it
would be better.

Interviewer: Do vou sit with people who are good at mathematics?

Kerry: No, not really, sometimes I try and sit with people who are fairly good.

While Kerry was aware that she might be more comfortable working with
someone equal to herself in mathematics, she felt unable to alter the social
dynamics of the classroom.

Kerry: | enjoy doing maths, though not something you tell people, you get
looked at funny. In primary school 1 used to say it was my favourite subject!
Interviewer: What sort of people would look at you _funny? Boih boys and girls?
Kerry. Both but mainly the boys. Mainly boys who don't do so well. | can tell
vou the girl, Beth, she gave me a hard time about a lot of things.

Kerry is clearly aware of the conflict that Beth creates for her by
simultaneously asking for help while denying Kerry the opportunity to develop her
own abilities. Kerry revealed further the damaging influence of peers when asked
to identify a good and bad learming expenence in mathematics.

Kerry: You could look at this one both ways. Getting 100% on a lest, everyone
lays it on you. (They) call you a square. That is really hard. I try and ignore i,
keep it to myself but it wears on vou, sometimes | go off at people.

Interviewer: Is the same pressure on boys who achieve well?

Kerrv: Not as bad. Normally it is the opposite sex and girls wouldn't go off so

much as boys.

In the literature, girls are portrayed as more supportive of each other and less
competitive than boys. For example, girls are reported to place a greater priority on
friendships, which signifies “an expression of a cultural emphasis on solidarity”
(Wyn, 1990, p.125). Yel what strongly emerges from Kerry's comments and from
her actions in the mathematics classroom is evidence of enormous peer pressure,
particularly from her female work partner, for Kerry to camouflage her positive
attitude to mathematics. Under-rating her performance serves to be functional for
her in order to remain socially acceptable while still managing to succeed.
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The influence of girls upon other girls’ attitudes towards mathematics is clearly
one area in need of further exploration as the questionnaire results did provide
evidence of less peer pressure on high achieving boys compared to girls. More
generally, the impact of peers within the social arena of the classroom undoubtedly
contributes to student anxiety in mathematics and points to the need for teaching .
which focusses upon the development of functional group dynamics in the
mathematics classroom.
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STUDENT TEACHERS’ APPROACHES TO INVESTIGATIVE MATHEMATICS:
ITERATIVE ENGAGEMENT OR DISJOINTED MECHANISMS?
Paul Blanc, Rosamund Sutherland
King Alfred’s College (Winchester), University of Bristol.
This paper reports on the first phase of a project which aims to characterise student teachers’
approaches to a range of problems of an investigative nature with the aim of identifying and
analysing the different influences that affect these strategies. Results are discussed for a group of
14 first year primary school trainee teachers, with more detailed analysis being presented for 5
case study students. The study has been influenced by research on problem solving and didactique
of mathematics. The main findings suggest that more successful students interact with their written
text in an iterative as oppased to a linear way. Tabular representations are sometimes used
mechanistically and unproductively as separators of activity. Interviews with students played a
crucial role in identifying their strategies, which were not always evident from the written script
alone.
Introduction and Background
In the 1980s problem solving became one of the major themes in Mathematics
Education. As Schoenfeld (1992) points out, despite the statement from the National
Council of Teachers of Mathematics that “problem solving must be the focus of
school mathematics” (NCTM, 1980 pl), there i1s a very broad view as to what
problems and problem solving actually involves. This ranges from applying standard
techniques in routine exercises, to thinking creatively about some situation {often not
explicitly mathematical). Exploring any patterns involved, posing problems and
seeking solutions using formulation, testing and proof of conjectures are also aspects
of problem solving. This type of mathematical activity finds its roots in Polya’s
problem-solving strategies (Polya, 1957) and has been developed in work on
mathematical thinking by, for example Mason et al (1982). In various parts of the
world official or national publications promoted changes to the curriculum, suggesting
a move towards “mathematics as an exploratory, dynamic, evolving discipline” in the
US (National Research Council, 1989) and open problem-solving and investigations in
the UK (Cockcroft Report 1982). The subsequent changes in the UK led to problem-
solving and investigations becoming part of the official mathematics curriculum. The
inclusion of such activities as assessed coursework for GCSE (examination at age 16)
has ensured their being common occurrences in UK schools. Similar emphasis on the
study of mathematics as a science of patterns has influenced Australian curricula
(McGregor and Stacey 1993, Australian Educational Council 1991).

There has recently been a debate about the effectiveness of such mathematical
investigations in the UK. Hewitt (1992) has questioned whether the diversity and
richness of such open ended problems s being reduced to spotting patterns from
tables. Wells (1993) in a contentious pamphlet introduces the notion of Data-Pattern-
Generalisation (DPG) as a general mechanistic method of solving problems said to
have little or very limited mathematical value. Relating this to Teacher Education he
suggests that in some courses “students are expected to do investigations...thus, being
inducted into false and very limited ideas of mathematics™ (p48). The overall thrust of
these arguments 1s that the potential positive advance of pupils exploring mathematics
O
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at their own level has been seriously undermined by the algorithmic and mechanical
nature of the approaches adopted by pupils in schools. Barnard & Saunders (1994)
also maintain that an instrumental understanding of content is being replaced by an
instrumental understanding of process.

Much of this research has not considered the dynamics of the teacher-student
relationships within an institutionalised educational setting. Some of the more negative
effects of the use of open problem solving could be explained by Brousseau's (1986)
notion of the metacognitive shift in which perceived failure on the part of students can
lead to the teacher imposing heuristics as objects of study instead of the mathematics.
intended. Brousseau suggests that this phenomenon is more likely when heurnistics,
advice and models are given the status of cultural objects and he uses Venn diagrams
in the “modern mathematics” movement as an example of this effect (Brousseau
1986). This phenomenon is not due to inadequacies on the part of teachers and pupils,
but is in fact an inevitable (or at least potential) consequence of any teaching situation.
The institutionalisation of meta-level guidance on how to approach open problem-
solving can readily be seen in UK curriculum materials. For example in materials
produced by the Shell Centre (1984, p.46) the following key strategies are
recommended: Try some simple cases; Find a helpful diagram;, Organise
systematically; Make a table; Spot patterns; Use the patterns; Find a General Rule,
Explain why it works; Check regularly.

Cox and Brna (1995) maintain that external representations are used by those students
who are successful within a problem solving situation to monitor their performance and
provide a source of explanation. It is also suggested that graphical representations are
more limited in terms of expressing abstractions than sentential representations
(Stenning and Oberlander, in Press) and that because of this they may provide more
vivid self-explanation feedback than a more linguistic modality such as language and
algebra. Cox and Bma also report that students who were successful in solving
problems testing analytical and verbal reasoning were more likely to have used
multiple representations. They also found large differences in the types.of external
representations used by these students and they attribute one source of this variation to
cognitive style.

Given this background it was decided to camry out a research study to characterise
student teachers' approaches to a range of problems of an investigative nature, with the
aim of identifying and analysing the different influences that affect these strategies
(Blanc 1995). This paper presents the results from the first phase of this research.

The study

The setting for this phase of the study was an initial teacher education course at King
Alfred’s College, Winchester, working with first year students. These students, who
are training to become primary teachers with a specialism in mathematics (14 in the
group, 11 females, 3 males), follow a four year programme leading to an educational
degree with qualified teacher status. This cohort included mature students and recent
school leavers with a variety of both educational and social background. Students who
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have recently left school are likely to have very .'

different experiences of pre-18  school | How mauy diagonals does a polygon have?
. - Investigate.

mathematics than mature students because of

recent changes in UK curricula. Produce a written solution to this problem

The students worked on a range of | Make sure that you explain your solution

. . . bl h th Ensure you don’t erase any work

!nvesngauve pro ems l' roughout € year, ‘you reject. I'm interested in all your work

incorporated into their normal teacher

education programme. In this paper we report

their work on the diagonals of a polygon problem (Fig 1). The rationale behind the

choice of this problem was that, whilst straightforward, it can be solved by a variety of

strategies, it was suitable for the group as a starting problem and was related to the

field of graphs and networks which was the content area for this session. There is also

previously reported research (Balacheff 1988) of younger students’ attempts at this

problem, where some analysis of their problem solving is given. .

Fig 1

Data were collected by: analysis of student scripts (photocopied); taping of the session
(dictaphone); notes made by the observer during the session and immediately
afterwards. All students completed a questionnaire on their educational and
mathematical background. Five students (offering a range of background and
experience) were selected for more detailed micro-analysis of their scripts and
interviewed in depth (taped and transcribed) to further probe their solution strategies.
For readers unfamiliar with this problem, one way of expressing the solution is that for
a polygon of n sides there are: n(n-3)/2 diagonals.

Two possible routes to this solution are:

Method 1:  Let n be the number of vertices of the polygon (n > 3). There is no
diagonal from the vertex to itself or to its two neighbours so
the number of diagonals leaving each vertex is n -3. The total
number of diagonals is therefore equal to the number of
vertices multiplied by the number of diagonals leaving each
vertex. This must be divided by two since each diagonal gets
counted twice.

Method 2 A table of numbers of vertices and diagonals is as follows:
T a) We notice that the differences between the nurgber of
Venices ] Diagonals diagonals go up as follows 2,3,4,5. The next case will be a
3 0 difference of 6. So for 8 vertices there are 14+6=20 diagonals.
b) For 7 sides there are 5+4+3+2 diagonals. This can be
recognised as the sum of the natural numbers up to 5 with |
subtracted. So for n sides the number of diagonals is the sum of
the natural numbers up to n-2, subtract 1. This is ((n-1)(n-2)/2)-1.

olw]
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Analysis of students’ strategies
Table 1 presents an overview of the charactenistics of the students’ approaches to the
“Diagonals of a Polygon” problem. Space does not permit inclusion of the full micro-
analysis of each student’s approach, this wili be covered more fully in future articles.
Students’ strategies were characterised according to three main criteria:
« types of external representation used (annotated diagrams, tabular representations

between

and algebra and natural language); reflecting the distinction
graphical/diagrammatic and propositional/sentential representations, discussed in
Cox & Bma (1995), tables being an intermediate representation.

the nature of students’ solutions; this includes whether students used their method
of counting, visual cues, or the table directly in their development of a rule,
characterised as recursive or universal, expressed in algebra and/or in words. We

also indicate whether a satisfactory general solution of any kind is generated.
e ways of working with text; some students’ moved around the script going
backwards and forwards (itcrative) whereas others used a linear approach. Evidence

of switching backwards and torwards

between specific representations is also noted.

Table 1
"_Anne ﬁeth Len ] Wendy I Sue

(D) Many, with Many with Many no repeats. § Many no repeats. | Many no repeats
Annotated repeats. repeats. Multiple Originals
Diagrams Used annotations. enhanced later.

(T) Minimal Minimat Two tables. Two tables. First | Three columns.
Tabuiar information. information. First has numbers. Second { Includes
Representations || Differences’. Differences. Differences. with algebraic diagonals per
Used Divides activity Divides activity. | Divides activity. | ratios of vertices | point.

Second similar. to diagonals. Differences.

(A) Use of Minimal algebra. | Extensive. with Extensive with Rules expressed
Algebra and Arithmetic Prog. | Different manipulation. manipulation in various forms.
Natural (AP). Variables meanings in Only after tables. | and use of Algebra as end
{anguage used and constants different summing AP. product.

confused. contexts.

Development of

Recursive from

Recursive from

1) Recursive

Recursive from

Universal from

a rule. AP formula. table. from table. counting/ visual cues in
2) From algebra. | drawing strategy. | diagrams/table
Representation || No final solution. | Partial solution 1) Words. Algebra Words /Algebra

H Linear

and form of only, algebraic. (Universal Rule) | (Universal Rule) | (Universal Rute)

final sotution. (Recursive Rule)

Satisfactory No No Yes Yes Yes

general solution

Switching Minimal. Minimat. Switching Extensive. Extensive.

between None after use of | None after use of | between Flexible between | Enhancement of

representations || table table. Tand A. D, T, and A. D and T leads to
° refined A.

Working: Linear Mixed Iterative Iterative

We now present an overview of one student’s work, Sve. Superficially her script reads
as work donc in a strict linear way, perhaps following mechanistic recipes, but when

' This indicates students calculated the differences between the numbers of diagonals and wrote this on their script.
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interviewed it was clear that she jumped about on her script, in an iterative way
adapting her representations to suit her needs. When Sue reached an impasse she
enriches her representations, adding information to diagrams and the table. She
developed her first general rule from the table and the diagrams. This solution was then
further refined using a relationship derived from the tabulated information. Whilst the
table is used to find patterns this student’s work is more than just mechanistic pattern
spotting. The table is used as organisation and as a focus for activity going both
forwards, turther into the problem as well as back re-examining work done before.

Sue draws examples for the triangle, An example diagram
quadrilateral (a squarc), pentagon,
hexagon, heptagon and octagon writing
the number of diagonals on the right.
Written on the left of each shape is the
number of lines from each point. This
was not done when drawing out the
shapes and diagonals originally but
considerably later, after she had f
constructed her table

Sue’s table
. J | . )
ro o odgy E{ 07 & diggoadls . nl gh_Fe diggomals fro 6 gord
2 l o > 7 ' ©
& | Z i
>3
s ! 9 < 2z
} LA H
6 ! i q ! X
| »s
1 ; oo 4
L 20, j s

The list of (first) differences (2,3,4,5,6) added to the second column appears to lead to
a hypothesis which predicts the next case from the previous cases. In the interview Sue
said that she drew the table because she wanted to look at the numbers, to see the
results together. The third column of the table comes directly from the diagrams but
was added later. Sue simply counted up how many lines came from each point, that is
made use of the visual image. Sue said she thought about how she drew the shapes in
order to get to the solution. “1 was drawing all the diagonals from one point to go to

the next one...” so her generation of the rule comes, at lcast in part, from drawing in
the diagonals.

(r\“ & Vnes from eacn {x-inf 10 sae) - n® & lings.
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It is important to note that both the table and the ‘diagrams underwent several
transformations. Sue stated that she still needed to draw the shape out to find the
number of diagonals from each point. She then wrote that by subtracting three from the
number of points you get the number of lines from each point and provided a refined
formula in words. She wrote ** you don’t have to draw it out”.

N of sides x (ne ot sdcs—"}b = n &k ﬁn&dajav\al.s
z

When questioned where this insight came from she said “that would have been from
the table™. Swe appears to negotiate with herself by going back over work correcting,
refining and enhancing previous representations.

External Representations :

The main external representational devices used by the students were annotated
diagrams, tabular collection of information, algebra and natural language. We found
that it was not whether a particular device was employed that mattered but how this
device fitted in to the overall solution which differentiated the outcomes.

Cox and Brna (1995) say that in impasse situations students frequently switch
representations arguing that time spent in constructing new representations is a heavy
burden. We would add that exactly how this switchung (routinary, self-directed or
‘thrashing’) takes place is important. . They also suggest that graphical
representations can serve to illustrate structure. The way students make use of these
graphical representations from the point of view of mathematics appears to be related
to how they have constructed them (and whether they have attended to this in their
solution). For example Wendy’s recursive solution comes directly from her own
constructions (see Table 1). She states: “Count all diagonals from one vertex then
move on to the next vertex...each time we changed vertex the number of lines to be
drawn decreased, this made us think of a series formula.” The counting/drawing
method here is a crucial element of solution. This suggests that constructing diagrams
for yourself as opposed to being presented with a static constructed diagram could
make a difference to the problem solving process. Of the students in this small sample
(Table 1) one saw a visual solution (2 out of the cohort of 14). This seems to be in
contrast with the results of Balacheff (1988) in which more students seemed to make
use of the visual structure. Learning geometry could promote a visual awareness. Docs
the UK students’ lack of geometry explain their not paying more attention to the visual
figurative image? :

The most striking phenomenon of tabular representations was confirmed at
interview. A tabular representation was used in an inflexible way by 3 of the 5 students
studied in depth. Two of these stated that they had received strong advice about doing
tables and the third said she had been strongly influenced by her partner to draw a
table. In these three cases the table seems to act as a separator so that work after the
table uses only the table itself as a potential source of information. This supports the
contention of decontextualised pattern spotting (Wells 1993). However tables were
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used in a highly flexible, dynamic way by Sue (as illustrated above) and as a means of
organisation by Hendy (she was adamant that the tables were to sort out “the muddle”
not to spot patterns, her rules are derived from counting/drawing methods). There 1s
weak evidence that once students begin to use algebra they do not switch from this
external representation and this issue is one focus in the ongoing research.

We have evidence that some students do use different representations as strict
divisions of activity and that this may be due to inflexible use of some taught process
model of problem solving. Identifying such behaviour is far from straightforward as we
have shown in the case of Sue. If students did see the work as separate sections with
their own beginnings and ends this may interrupt their solution process. We are
particularly interested in whether this separates the generation of the rule from the
generation of the data they use-to derive the rule. We note that of the students who
were most successful in solving the. problem, their engagement was the overriding
concern, External representations were only useful to them in so far as they helped
them continue to solve the problem, less successful students seemed to use the
representations as mechanisms.

Linear and Iterative working

Individual interviews with the students, after they had completed the problem highlight
the very different ways of working with the written text. Some students work in a
linear fashion down the page with littlé féworking or looking back. This led in some
cases to discontinuities in solution and failure to exploit potentially crucial information.
Beth (see Table 1) recognises similarity to the handshakes problem and uses this
method to demonstrate a recursive counting strategy (counting down from (n-1) to
1).Yet after drawing the table, she does not exploit this solution in her work. Beth and
Anne both stated (categorically) that they did not look back after the table in contrast
to Wendy and Sue whose attention moves all over the work, that is, they use their
written text in a non-linear way using a varied range of representations in an iterative
manner adjusting, correcting and enhancing. This is not usually evident from an
analysis of the written script. In fact it is likely that mechanistic approaches may be
inferred from a surface analysis alone.

Some Concluding Remarks

Open ended problem solving has been introduced into schools as a reaction against the
teaching of routinary, algorithmic methods. Almost inevitably, new mechanistic (DPG)
methods are being incorporated into the institutionalised practice of such investigative
work as Brousseau's research indicates would be the case. This is why Brousseau
suggests that it is more important to emphasise the devolution of a problem as opposed
1o the type of problem being solved.

This study has shown that there are considerable ditferences between the ways in
which students interact with paper-based external representations when solving open
mathematical problems. In agreement with the work of others (Lesh et al. 1987) the
most successful students, from the point of view of solving the “Diagonals of a
Polygon” problem (cf. Table 1), interacied with extemal representations in an iterative

Q
: 2-103.1‘4-

Y

7

»



way, often using several extemal representations in parallel (switching), returning
within the process of solving the problem to modify or extend an external
representation as Sue did.

Is it possible to teach students to pay attention to mathematical structure when
constructing diagrams? If so it will be inevitable, as shown by Brousseau, that any
form of teaching could institutionalise this practice as a new heuristic which could
replace the mathematics being taught. This didactical phenomenon does not imply that
we should stop teaching but that all forms of teaching bring with them potentially
negative effects. It also suggests that teacher training should emphasise such
phenomena.

Subsequent phases of this project have involved analysing students’ work in computer-
rich situations, for example using spreadsheets or Cabri to solve open problems. We
conjecture that these environments are likely to structure the students approaches in
particular ways, for example spreadsheets could provoke students to construct tables
and graphs. Work with Cabri may provoke students to focus on more graphical
information. The nature and extent of the ways in which students make use of external
representations developed- within computer-based activity when working away from
the computer will also be the focus of ongoing research.
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THE ANALGEBRAIC MODE OF THINKING AND OTHER ERRORS
IN WORD PROBLEM SOLVING
Hava Bloedy-Vinner
The Hebrew University of Jerusalem, Israel

Abstract: A conceprual framework is given for examining students” solutions
1o complex algebraic word problems. A characterization of errors is given,
distinguishing crrors related to analgebraic mode of thinking from: errors
“related to problem analysis and 1o management difficulties. new forms of
analgebraic errors are revealed.

1. Introduction

Many studies have been concerned with issues of general problem sotving as they
apply to algebraic word problems. One of these issues is to what extent problem
solvers use semantic knowledge and other domain related knowledge in their solutions.
Another issue i1s solvers’ ability to recognize the structure of a problem and to apply a
relevant solution schema. Studies concerning these issues are surveyed by Chaiklin
(1989).

An issue which is particular to algebraic word problem solving is that of translation
processes. Most studies which investigate this issue deal with simple problems of the
“students and professors™ type, and with the reversal error.  An extensive survey of
these studies, as well as an account of their own contribution was given by MacGregor
and Stacey (1993). Cortes (1995) classifies errors in the translation of word problems.

in this paper [ would like to focus again on both general and particular. As to the
general, | will use Schoenfeld’s characterization of mathematical problem solving
performance (1985). As to the particutar process of translation, | will focus on the
analgebraic mode of thinking introduced in Bloedy-Vinner (1995), and bring new
instances of it as well.

2. The study

Contrary to most studies which deal with the translation process, this study
examines students’ solutions to complex algebraic word problems, namely, problems
which state several relations of varied types. The problems chosen for the study were
standard text book type problemns. Although the mathematics education community
does not always approve of this type of problems, these are the problems which are
currently being used by the system for teaching translation skills, and can thercfore
reveal translation difficulties.

The purpose of this study was: 1. To charactenize errors caused by algebraic
language difficulties. 2. To distinguish those from errors caused by other factors. As
will be shown, the mvestigation of complex problems gives us the opportunity to
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examine the factor of algebraic language versus the other factors, and to reveal new
misconceptions of algebraic language, which are not revealed in simple problems.

The problems were given to Israeli students who had taken matriculation examns
before, and were studying at a umversity preparatory course. By a rough estunate,
more than half of high school graduates are on their mathematics level or below. Some
of the students were interviewed after solving the problems.

3. Theoretical framework

Schoenfeld (1985) suggests four categories of knowledge and behavior which
serve to explain mathematical problem solving. These categories are: Resources,
heuristics, control, and belief systems. Two of these, resources (knowledge possessed
by the individual that can be brought to bear on the problem at hand), and control
(global decisions regarding the selection and implementation of resources) are relevant
to my analysis of skill components needed for solving standard algebraic word
problems. These components are:

1. Ability to understand and analyze the relations stated in the problem.

2. Knowledge of algebraic language.

3. Management of unknowns and equations.
The first two components are resources, the third is control.

Understanding and analyzing the relations depend on semantic knowledge of words
in the statement of the problem, on knowledge of mathematical concepts and facts
(like geometric shapes and formulae, for example), and on pragmatic knowledge
related 10 problem domain. Some of the relations are not stated explicitly, and must be
gathered by pragmatic knowledge. Illustrations will be given in the following sections.

As 1o the second component, 1 am going to use the analysis of algebraic language
and of analgebraic mode of thinking introduced in Bloedy-Vinner (1995). It was
argued there, that algebraic language is poorer than natural language in noun types
(numbers only) and in predicates (= and < only). This leads to difliculties in
translating natural language predicates or relations which do not exist in algebraic
language. Students may resolve these difficulties by erroneously enriching “their”
algebraic language. This behavior is the analgebraic mode of thinking, namely, usage
of algebraic language which does not comply with its standard mathematical meaning.
Various forins of analgebraic thinking which were revealed in this study will be
described later.

Management of unknowns and equations is the control needed when complex word
problems are translated. 1t is the act of deciding how to manage the translation: which
unknown numbers in the problem statement will be designated a letter, and which will-
be expressed by an expression constructed to translate a relation; whether to translate
a relation by an equation or by an expression which is going to be used in the
transfation of subsequent relations. As a result of this management we end up with a
number of equations and a number of unknowns which are determined by the problem.
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The nuinber of relations stated by standard word problems is usually such that we end
up with an equal number of equations and unknowns.

Errars in word problem solving can be caused by failure in any of the components
described here. In the following sections 1 will analyze students’ errors and classify
them according to these commponents.

4. Analysis of student’s solutions

The students were asked to write equations which translate the problems, but not to
. solve them. Let me start with the following problem:

Problem 1. Before the game Tal had 3 nmes as many marbles as Gadi. During the
game Tal lost half of his marbles (o Gadh, and then the number of marbles Gadi had
was 12 more than the number of marbles Tal had.

The relations stated (explicitly or implicitly) by the problem are:
(a) At the beginning Tal had 3 times as many marbles as Gadi.
(b) Tal lost half of s marbles.

(¢) Gadi won half of Tal’s marbles.
(d) At the end Gadi had 12 marbles more than Tal.

The variety of the 269 solutions analyzed was enormous, and this made the analysis
very difficult. 1t was decided, therefore, to analyze the solutions relation by relation,
classifying errors in the translation of each relation according to the first two
components: understanding and analysis of the relation, and knowledge of algebraic
language. In addition, the management of the solution was classified. The same
method will be used here to describe the classification of selutions:

‘Translations of relations (a) and (d): _

Starting the translation with relation (a), it could be translated by writing a two-
variable equation, e.g. X=3Y, or by wrting a one-variable expression, e.g. 3Y for
Tal’s nuber of marbles. On the other hand, ending the translation with relation (d), it

could only be translated by writing an equation, equating expressions constructed
(correctly or incorrectly) for the numbers after the game, adding 12 to Tal’s number.

Let us first look at errors of analysis. Understanding and analysis of these retations
require semantic knowledge of ©__times as many as” and **__more than™ and the
distinction between theny. Confusing addition with multiplication in these relations
was considered an analysis error. 7 students did that in relation (d) and none in relation
(a) (see Table 1). :

All other errors were classified as analgebraic. 31 out of the 32 analgebraic errors

in (a) and 97 out of 115 in (d) involved reversals. The reversal error was dealt with in

"T'he Hebrew statements of these two relations have the same symtax and the same words except for
their prepositions,
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many studies, usually in two-variable equations translating simple one-relation
problems. Most explanations, excluding MacGregor and Stacey (1993), were based on
the interpretation of letters as objects, word abbreviations or labels. An additional
explanation was proposed by Bloedy-Vinner (1995). According to that explanation,
the origin and the image of an algebraic expression (which we understand to be a
function) are vaguely conceived as one entity, being changed by the function, but
remaining the same entity. For example, X and 3X are the same entity (e.g. number of
Tal’s marbles), becoming 3 times larger by the action of the function. This leads to the
interpretation of 3X as the predicate “X 1s 3 times as large”, a vague one-place
predicate, not paying attention to the question larger than what. Interpreting
expressions in the sense of predicates instead of functions, is an error which helps
students translate predicates which do not exist in algebraic language, thus enriching
“their” algebraic language. Algebraic expressions can, thus, tell stories, not just
construct numbers.

Table 1: Distribution of translations for each relation in Problem 1.
(Analysis errors and analgebraic translations are not mutually exclusive.)

Correct Analysis | Analgebraic | Relation No

n=269 translation error translation | missing | answer
Relation 231 0 32 | 5
(a) 85.9% 0.0% 11.9% 0.4% 1.9%
Relation 225 7 22 10 5
(b) 83.6% 2.6% 8.2% 3.7% 1.9%
Relation 106 18 19 27 5
(¢) 394%| 43.9% 7 1% 10.0% 1.9%
Relation 138 7 s 6 5
) 51.3% 2.6% 42.8% 2.2% 1.9%

Since we are dealing with a complex problem, the students had to use whatever
they had constructed for relation (a) in their translations of the subsequent relations (b)
and (¢). This enables us to get evidence which supports the claim about analgebraic
translation which was made above. Let us look at some examples (see Figure 1):

In Example | the student starts with declaring who is who, and writes a reversed
equation for (a). Later, in the division 3Y/2, we can see that he considers 3Y to be
Tal’s number (he lost half his marbles). Thus, as his solution evolves, he identifies the
origin Y and the image 3Y, both to be the same entity of Tal’s number of marbles.
This may be related to his interpreting his first equation as a table with two unequal
numbers on both sides: 3Y - Tal’s namber, and X - Gadi’s number of marbles, so that
3Y tells the story “Tal has 3 times as many marbles.”

In Example 2 the student uses the clildren’s initials, so we know who is who. He
starts with a nonreversed equation, but then, in 2'1/3 (probably a fraction error, instead
of (173)/2) we can sece that he considers /3 to be Tal’s number. Here, though the first

EI{IIC 1 16 2-108

Aruitoxt provided by Eic:



and second equations are correct, the student may have read his second equation in a
table-like manner, namely, Tal's and Gadi’s unequal number of marbles on both sides,
and thus T/3 became Tal’s number of marbles. So again, the origin T and the image
T/3 are the same entity.

Figure 1. Examples of solutions of Problem 1.

L= Gadi, Y- Tdl, 0. TalX 3XGudi, 12:X2 3X

Y X 3r2 X2 7. Tul 3X, Gadi X,
2.7 3G, 13 (,12:21T3 (. Tul afier gamel” T 12Gadi after game
3 Tul-3X, Gadi- Y, 3X 2+ 12 X3 1T 12
4.31- G 151G 12 8 Tal X, Gudi 3Y,
5. Before  dfier Before the game: 3Y X _

Tal 3Y  3Y2 After the game: 3Y-12° X

Gadi X X-12 3Y2 X-12|9. Tal 3X, Gadir X

10.3Y2 3X2:12

In Example 3 the student chose to denote Tal’s number by 3X, where X does not
denote Gadi’s number. In fact, X does not denote anything, and 3X is chosen just to
tell the story “Tal's number is 3 times as large”, interpreted as a vague one-place
predicate. Example 4 is even stronger evidence for this: the use of the letter T implies
that both T and 3T denote Tal’s number, and 3T is used in the equation in the sense of
“Tal’s number which is 3 times as large™.

21 out of the 32 analgebraic translations of (a) included direct evidence of the kind
shown in Examples [-4.

In translations of (d), 20 out of the 97 reversals included direct evidence that both
X and X-+12 are conceived as the same entity, Gadi’s number, which is “12 more” (the
question 12 more than what?” remains obscure). Example 4 is one illustration of that:
The student writes a table-like equation, with total number of marbles before and after
the game on both sides. we can see that both G on the left and G+12 on the right
denote Gadi’s number. Solution 5 is another example of that: X and X+12 are Gadi’s
number before and afier the game. The table-like equation has Tal’s and Gadi’s
numbers on both sides. In the interviews these students were asked whether they
thought that Gadi had won 12 marbles, and they all said that they didn’t think so, but
rather that as a result of the game, his number became 12 more than Tal’s.

We have seen that the analgebraic translation we are dealing with 15 related to the
problem of “who is who™. This difliculty is less likely to arise when translating (a) to
the one-variable expression: There it is obvious that X is Gadi’s number, 3X 1s Tal’s
number, and 3X translates correctly the relation between them. In this study students
were not told to write a two-variable equation. 205 students chose to translate (a) into
a one-variable expression, only 2.9% of which were reversed. 58 students wrote
equations, 43.1% of which were reversed. This explains why in (a) there were few
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reversals as compared to (d) and to other studies reported in literature, where students
had to write equations.

The examples we have discussed involved table-like equations with unequal
entities of the children on both sides, like 3Y=X or 3X/2=X+12. In addition 1o these,
there was another type of table-like equations translating (a) and (d): The equality sign
was used as a separator between an origin and its constructed image, like X=3X,
Y=Y+12, or 3X/2=3X/2+12 (see Examples 6, 7, 10.) 3 answers in (a) and 16 in (d)
included this fonn of analgebraic translation.

Translations of relations (b) and (c):

Understanding and analysis of these relations require pragmatic knowledge of
games where marbles pass from one player to the other, entailing that whatever Tal
lost was won by Gadi (this was hinted but not stated explicitly). Also, mathematical
knowledge of fractions is needed. Since relation (c) is not stated explicitly, many
students weren’t aware of i, and didn’t translate Gadi’s winning. Examples 1-7
illustrate this error, made by 109 students. As mentioned before, when asked about it
in the interviews, they said that Gadi did win. Still, they weren’t aware of it while they
were writing their translations. 3 students thought that since Tal’s number was divided
by 2, Gadi’s number should be multiplied by 2. The analysis errors in (b) included
confusion about who had lost and what he had lost (5 students), and fraction errors like
the one mentioned in Example 2 (2 students).

A new form of analgebraic error was revealed in 19 solutions: a letter or an
expression denote the number of marbles of a child, and is considered to change as the
story evolves, without performing any algebraic operations on them. The same letters
and expressions are used to translate both (a) and (d), while (b) and (c¢) are considered
to “happen automatically”, maybe by writing the words “before” and “after” besides
the equations. Example 8 illustrates this. In an interview about an age problem not
reported here a student said about similar equations he had written: “7he first equation
is true now, and the second equation will be true in 10 years”. As if the expressions
have a life of their own and they change with time. [ will call this phenomenon
expressions or variables with evolving meaning .

Each of the relations was classified as missing (see Table 1) when the student
either gave an uncompleted solution as in Example 9, or when he introduced a new
letter without writing another equation to translate that relation, as in Example 7
(where (b) 1s missing).

As to the management, it was considered incorrect when there were 100 many
equations (Example 6) or too few equations (Examples 3, 4, 9). It may be said that
managemnent errors are the result of analysis errors and analgebraic errors we have
discussed.

O



The summary of solutions for Problem | is given wm Table 2. It shows the

contribution which each skill component made to errors.

Table 2: Distribution of Problem | solutions by error types they inchide (n=269).

Correct | Analysis |Analgebraic{ nussing Incorrect No
answer errors errors relations | management | answer
76 123 46 37 37 5
28.3% 45.7% 54.3% 13.8% 13.8% 1.9%

1 would like, now, 1o present the second problem. Because of lack of space, T will
descenibe only aspects which are different from what we have seen in Problem 1. These
aspects are characteristic of the geometric domain.

Problem 2: When cach side of a square was increased by 2 cm., it's area became
12 em’ larger. :

Figure L. Examples of solutions of Problem.2.
L2V Y 22 Y-12 |5.(4X)2 12 9 (ui2)h-2) 512
220X 12 6.(N:2)4 512 0. 2)b S: 12, ub S
34N Y AN Y d2 (T 2a02b [2:ab I.x? S [2:x(x:2) 8
4.8 2\ (2y2 12 8 (u-2)h-2) 12 12.8, o-12

Understanding and analysis of this problem requires knowledge of the geometric
domain. There were two types of errors related to this. First, 28 students used
erroncous area formulae (see Examples 1-7). Second, 18 students misunderstood the
problem, and thought it was about a rectangle (Examples 7-10), or about a square
where only two sides were increased (Example 1), Other errors, which were made by
17 studems and were also classified as analysis (knowledge) errors, included wrong
order of operations (like writing (X +12)? instead of X? +12, or X? +2% instead of
(X+2)).

The missing relation category includes 19 (13.6%) solutions which introduced a
new letter for the area withowt writing a corresponding equation (e.g. A=X?). In
Problem | this only occurred in 1.1% of the solutions. 16 of these students had used
the mitial S of the Hebrew word for *areca’. They probably thought that using this
letter, which was normally used in area formulae, already 10ld the story of the area
relation, and fel free, therefore, 10 use it without adding an equation. Examples 6, 9,
12 demonstrate this management error.

Some solutions may be interpreted as story hke translations, where symbols are
used like words. For example, (4X)2=12 may be telling the story: “4 sides were
increased by 2 and the result is an increase by 127 This is another instance of
erroneous enrichment of  algebraic language mentioned carher. These are not
necessarily word by word translations, and may be telling the contents of the problem
as understood after its analysis.
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The swmmary of solutions for Problem 2 is given in Table 3. It shows the

contribution which each skill component made to errors.

Table 3: Distribution of Problem 2 solutions by error types they include (n=140).

E

RIC
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Correct | Analysis |Analgebraic| missing Incorrect No
answer errors errors relations | management | answer
46 59 1 49 44 10
32.9% 42.1% 7.9% 35.0% 31.4% 1.1%

5. Conclusion

We have seen an analysis and a classification of the solutions of two complex word
problems. A method of analyzing each relation separately, and then integrating the
results was used. This method made it possible to classify hundreds of different
solutions of a problem. The complexity of the problems enabled us to get evidence of
several forms of analgebraic errors: vague conception of an origin and an image as one
entity, an expression interpreted as a predicate, table-like equations, variables or
expressions with evolving meaning, and story like translations.

The errors were attributed to failure in 3 skill components: 1. Analysis of the
problem and domain related knowledge, 2. Knowledge of algebraic language,
3. Management of the solution. The extent to which each component contributed to
errors was investigated.

The problems which were presented belonged to different domains and included
explicit and implicit relations. Because of that, they could illustrate the influence of the
mathematical knowledge (geometry, fractions, order of operations), and the pragmatic
knowledge needed to understand and analyze the relations in a problem.
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CHALLENGING THE TRADITIONAL
SCHOOL APPROACH TO THEOREMS:A HYPOTHESIS
ABOUT THE COGNITIVE UNITY OF THEOREMS

Paolo Boero Rossella Garuti, Enrica Lemut M.Alessandra Mariotti
Dipartimento di Matematica  Istituto Matematica Applicata  Dipartimento di Matematica
Universita di Genova CN.R. Genova Universita di Pisa

The purpose of this report is that of highlighting the possibility that in an adequate
educational context the majority of grade VI students successfully implement a process
of theorem (conjecture and proof) production, characterised by a strong cognitive link
between canjecture production and proof construction. A detailed description is given of
this process and of how it surfaced in a teaching experiment organized by us.The
conditions are discussed that may have allowed the extensive implementation of the
process in the classroom Some educational implications are sketched

1. Introduction

The purpose of this report is the introduction and justification (on an experimental
basis) of a hypothesis concerning mental processes underlying the production of statements
and proofs by VI grade students.

The hypothesis stems from previous research on the feasibility of a constructive
approach to theorems by students. In particular, during a teaching experiment conceming
arithmetic theorems students were engaged in the production and proof of conjectures. It was
observed that students kept a keen coherence between the text of the statement produced by
them and the proof constructed to justify it (see Garuti & al., 1995). This textual coherence
brought forward the problem of a possible cognitive continuity between the statement
production process and the proving process.

The hypothesis forming the subject matter of this report is that the majority of grade
VIII students can produce theorems (conjectures and proofs) if they are placed in a condition
50 as lo implement a process with the following characteristics:

- during the production of the conjecture, the student progressively works out his/her
statement through an intense argumentative activity functionally intermingling with the
Justification of the plausibility of his/her choices;

- during the subsequent statement proving stage, the student links up with this process in a
coherent way, organising some of the justifications ("arguments”) produced during the
construction of the statement according to a logical chain.

Despite the undeniable differences between "deductive organization of thinking” and
"argumentative organization of thinking” (Duval, 1991), we want to stress some aspects of
continuity, conceming the production, during the construction of the conjecture, of the
elements ("arguments”) that are used later during the construction of the proof.

The hypothesis featuring as subject matter of this report, which concerns the holistic
character of the theorem production, if validated and thoroughly investigated by other studies,
might have important didactic consequences as to the school approach to theorems, radically
calling into question the teaching traditions (see Discussion).

2. References 1o history and research in mathematics education
The history of mathematics shows remarkable similarities between the holistic way of
producing theorems by the student, described in our hypothesis and the way of producing
theorems by mathematicians: despite important differences (as to reasoning, cultural
ex;l)en'ence, institutional bonds, etc. - see Hanna & Jahnke, 1993), we can detect the existence
<
ERIC

2-113 ¢ .4
e . 18121



of common features, in particular as to the intermingling between the progressive focusing of
the statement and the argumentative activity aimed at justifying its plausibility. At times, in
the case of the history of mathematics, this is a long process, that involves many people for
many years (cf Lakatos, 1976); at times it is a personal process, traces of which are found in
the notes or memories of one mathematician (cf Alibert & Thomas, 1991).

With reference to the theoretical approach to "hypotheses” proposed in Boero & al.
(1995), the production of a conjecture as described by us in the Introduction can be considered
as a "hypothesis” production act: that is 1o say, it can consist of the argumented selection
(prompted by a given question made by the student himself or by others) among possible
alternatives, with a margin of uncertainty, as 1o its validity, that can be solved through the
systematically organised reasoning or a counterexample ("verification™ of the “hypothesis”).

In the research produced in Maher (1995), in a problem solving situation implying the
necessity of formulating and justifying conjectures, a behaviour similar to the one described in
this report is observed in very young students (grade IV).

All these elements prompted us to examine all over again the studies on the
mathematical proof within the mathematics education research, which, on the contrary, above
all point out the elements of difference between argumentative reasoning and deductive
reasoning (BalachefT, 1988; De Villiers, 1991; Duval,1991; Hanna & Jahnke, 1993; Moore,
1993; Tall, 1995). It seems to us that the existence of differences, epistemological obstacles,
etc. is not incompatible with the fact that students can construct the proof using elements
come up during the argumentation that accompained the conjecture construction process. But
every element of continuity implies the risk for students to identify processes of different
nature (cf Duval, 1991). These reflections were helpful 1o us for the planning of our teaching
experiment and for the analysis of students’ behaviours: in particular:

- at the stage of construction of the teaching experiment we tried to create favourable
conditions for the appearance of the cognitive unity assumed by us, but also for the spacing
out by students of the conjecture production stage from the proving stage, insisting in
particular on the reasons for the necessity of proof as "proof of the statement truth™;

- in the analysis of protocols we tried to catch the signs of attained change in students between
the perspective of the argumentation to construct the conjecture and the persuasion of its
plausibility, and the perspective of its proof.

3. Description of the teaching experiment

The main difficulty which we had to face was that of finding experimental confirmation for
our hypothesis. It was necessary, in particular, to create an experimentation and obsecrvation
context suitable to "reveal” the nature of processes of statements and proofs production and
verify the potentiality conjectured by us. Undcﬂining indicates some crucial points.

The teaching experiment was carried out in two grade VIII classes of 20 and 16
students, at the begmmng of the thud school year with the same teacher. Students had already
interiorized the hab rodicing an ed hypotheses in different domains (mathematical
and non-mathematical), wmmg_dm_ﬂ]ﬂ:_mgmng Students had already experienced
situations of statements production in arithmetic and geometry; they had approached proof
production in the arithmetic field (see Boero & Garuti, 1994; Garuti & al., 1995).

The task concemmg the production and proof of a conjecture was contextualized in the
“field of experience™(Boero & al, 1995) of sunshadows. Students had already performed about
80 hours of classroom work in this field of experience. They had observed and carefully
recorded the sunshadows phenomenon over the year (in different days) and over the moming
of some days. They had approached geometrical modeling of sunshadows and solved
nmblems conceming the height of inaccessible objects through their sunshadows.
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The field of experience of sunshadows was chosen because it offers the possibility of
producing, in open problem solving situations, conjectures which are meaningful from a space
geometry point of view, not easy to be proved and without the possibility of substituting
proof with the realization of drawings.

In the two classes the activities were organised according 10 the following stages (whole
amount of time for classroom work: about 10 hours):

a) Setting the problem :

“In the past years we observed that the shadows of two vertical sticks on the horizontal
ground are always parallel. What can be said of the parallelism of shadows in the case ofa
vertical stick and an oblique stick? Can shadows be pardllel” Al times? When? Always?
Never? Formulate your conjecture as a general statement.”

(Individual work or work in pairs, as chosen by the students)

Some thin, long sticks and three polystyrene platforms were handed, in order to support the
dynamic exploration process of the problem situation.

b) Producing conjectures: many students started to work with the thin sticks or with
pencils. They started to move the sticks or to move themselves to see what happened. Other
students closed their eyes. The absence of sunlight or spotlight in the classroom hindered the
experimental verification of conjectures they were formulating: it was the mind's eyes that
were "looking”. Students individually wrote down their conjectures.

¢) Discussing conjectures: the conjectures were discussed, with the help of the teacher,
until statements of correct conjectures were collectively obtained which reflected the different
approaches to the problem by the students.

d) Armranging statements: through different discussions, under the guidance of the
teacher, the following statements, cleaned” from metaphors and more precise from a linguistic
point of view than those produced by students at the beginning, were collectively attained:
-"If sun rays belong to the vertical plane of the oblique stick, shadows are parallel.”

- "If the oblique stick moves along a vertical plane containing sun rays, then shadows are
parallel.”

- "The shadows of the two sticks will be parallel only if the vertical plane of the oblique stick
contains sun rdys.”

The first two statements stand for two different ways of approaching the problem on the part
of the students: the movement of the Sun and the movement of the sticks; the third statement
makes explicit the uniqueness of the situation in which shadows are parallel.

After further discussion the collective construction of the two statements below was attained:

- "If sun rays belong to the vertical plane of the oblique stick, shadows are parallel. Shadows
are parallel only if sun rays belong to the vertical plane of the oblique stick

- "If the obliquc stick is on a vertical plane containing sun rays, shadows are parallcl.
Shadows are parallel only if the oblique stick is on a vertical plane containing sun rays”

In order to help the students in the proving stage it was preferred not 1o express the statement
in its standard, compact mathematical form "ifand only if..” (its meaning in common ltalian
cannot be distinguished from the meaning of “only if.."”).

¢) Preparing proof; the following activities were performed:

- individual search for analogies and differences between one’s own initial conjecture and the
three "cleaned” statements considered during the stage d);

- individual task: "What do you think about the possibility of testing our conjectures by
experiment?”’

- discussion conceming students’ answers to the preceding question. During the discussion,
gmdually students realize that an experimental testing is “very ditlicult”, because one should
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check what happens "in all the infinite positions of the sun and in all the infinite positions of
the sticks”.
This long stage of activity (about 3 hours) was planned in order to enhance students’ critical
detachment from_slalements. motivate them to provmg and make clear that since then
classroom work would have concemed

f) Proving that the condition is sufficient (actlvny in pairs, followed by the individual
wording of the proof text);

g) Proving that the condition is necessary (short discussion guided by the teacher,
followed by the individual wording of the proof text).

h) Final discussion, followed by an individual report about the whole activity (at home).

The following materials were collected: videotapes of the initial stages (a and b); tape-records
of discussions and teacher-students interactions; all the students’ individual written texts. The
data which we are about to consider mainly concem stages b) and f).

4. Students’ behaviour
All students actively took part in the production of the initial conjecture. 29 students (over 36)
were able to follow the following activities (from c to h) in a productive way.

For each type of students’ behaviour one example of written texts individually produced
by students during the stages b) and f) will be reported entirely. At this stage of the research
we deem important to dwell on typical behaviour that can justify the plausibility of our
hypothesis and to examine it more deeply (in view of its subsequent and more extensive
confirmation).

It is possible to see how at the conjecture formulation stage there is much inaccuracy
from the point of view of language, conceming in particular the expressions used to indicate a
vertical plane containing sunrays. Through gestures with the hands or the movement of sticks
it is clear that the students intend to indicate a vertical plane, but often they call it "direction of
rays”. During the experiment this inaccuracy is gradually overcome: “concepts in act”

-(Vergnaud) receive appropriate names. Another aspect concems the terms "it can be seen”,
"looking ' (referred to shadows): it is worthwhile to remember that no sunlight or spotlight was
available in the class, therefore the students looked and saw with their imagination.

4.1. Carrect conjecture with justification (21 students)
Underlining indicates traces of connections between conjecture production and proof
construction.
Formulation of the conjecture with shifting of the stick:
(Beatrice) "1 tried to put one stick straight and the other in many positions (right, lefl, back,
front) and with a ruler I tried to create the parallel rays. I sketched the shadows on a sheet of
paper and I saw that: if the stick moves nght or left shadows are not parallel; if the stick is
h Shifting the stick along the vertical plane,
forward and back, the two sticks are alwa ys m the same direction, that is to say they meet the
rays in the same way, therefore shadows are parallel. Whereas shifting the stick right and Ief
the two sticks are not on the same direction anymore and therefore do not meet the sun rays in
the same way and shadows in this case are not parallel. Shadows are parallel if the oblique
stick is moved forward and back in the direction of sunrays.”
Proof: "Shadows are parallel because, as we already said, sun rays belong to the vertical
plane of the oblique stick
But all this does not explain to us why this is true. First of all, though the sticks stand one in
C - oblique and the other in a vertical position, they are aligned in the same way and if the
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obligue stick is moved along its vertical plane and is left in the point in which it becomes

vertical itself we see that they are parallel and, as a consequence, their shadows must
naturally be also parallel, and also parallel with the shadow of the oblique stick, which has
the same direction of that produced by the imaginary, vertical stick”
In this case the justification produced at the beginning("meet the sun rays in the same way”)
is the one that in the following proof makes Beatrice imagine the oblique stick moving along
the vertical plane containing sun rays.

Formulation of the conjecture with the movement of the Sun

(Sara) "They could be parallel if I imagin vees and I must pl, Ifin
the position so as to see two parallel sticks. In this way the sun sends its parallel rays to

enlighten the sticks. But if the sun changes its position it will not see the parallel sticks and,
therefore, their shadows will not be parallel either. Shadows can be parallel if the oblique
stick is on the same vertical plane as the sun rays.”

Proof: "If the sun sees the straight stick and the obligue stick parallel it is as if there were
another vertical stick at the base of the oblique stick Ifthis stick is in front of the oblique stick
its shadow covers the shadow of the oblique stick. These shadows are on the same line,
therefore, the oblique and vertical sticks shadows are parallel.”

In this case the initial idea "I imagine to be the sun” seems to suggest the main
argument of the proof (the shadow of the imaginary, vertical stick covers the shadow of the
oblique stick).

Conceming production of the statement, Beatrice’s and Sara’s texts give evidence of
complex mental processes correspondig to our hypothesis.

Conceming proof, both texts show interesting traces of the detachement from the
problem situation (e.g.: "I imagine to be...” becomes "If the sun sees”) and the original
statement. Students seem to be aware that it is necessary to validate the statement by a
reasoning process ("But all this does not explain to us why this is true.” ). Many other texts
show similar aspects.

We notice that in both cases above, just as for the majority of students, the dynamic
process that brought to the production of the statement (movement of the sun or movement of
the stick) is found again in the proving process. Yet the dynamic exploration implemented
during the construction of the proof, though it shows remarkable similarities with the one
implemented during the production of the conjecture as to the type of movement, differs
deeply as to the function assumed in the thinking process: from a support to the selection and
the specification of the conjecture, to a support for the implementation of a logical connection
between the property assumed as true ( "vertical sticks produce parallel shadows™) and the
property to be validated.

4.2. Correct conjecture without justification (6 students)

6 students out of 36, be their level high or low, formulated the conjecture correctly, but during
the formulation did not manage to produce arguments backing up their hypothesis. This fact
seems somehow to affect the subsequent proof that tums out to be lacking in "arguments” and
rather confused.

(Elisabetta) Conjecture: "In some cases, although the oblique stick is in a position different
from that of the vertical stick, the parallelism is kept, whereas in other cases the parallelism
in shadows is not kept. Therefore, shadows can be parallel only if the obligue stick [meaning
with a gesture the vertical plane] is parallel to the direction of the straight stick shadow, that
is to the sun rays.” : _

Proof: "Our statement is true because if the vertical plane of the oblique stick gathers the sun
rays as that of the vertical stick, then the two shadows will be projected on the same line.”
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4.3. Wrong conjecture (9 students)

9 students, be their level high or low, produce wrong conjectures probably suggested by the

principle "sun rays are parallel, then ...” or by drawings that owing to their bidimensional

nature may be misleading, and are also static and so they may stick the attention on particular

situations.

(Vincenzo) Conjecture: "In my opinion shadows cannot be parallel if the two sticks are one

vertical and the other not vertical. I took the two sticks, I put them in a vertical position and
shadows were parallel, then slowly I moved the right-hand side stick and noticed that its
shadow moved. In my opinion they do not remain parallel, because if | have two vertical
sticks, their shadows are parallel because rays are parallel, that is to say they come across
the obstacle and form the shadow. But if I move slowly, rays that were hindered before now
pass by, though they are hindered from another point, that is to say the shadow moves and,

therefore, it is not parallel anymore.”

At the proving stage, after classroom discussions, 6 of these students "make up for” the lost

grounds and it can be noticed how thieir proof is full of constructions and argumentations, as if
these students had to reconstruct the conjecture to be proved:

(Vincenzo) Proof: "The statement is true because: let us imagine to have an oblique stick and
a vertical stick. Let us imagine to draw an imaginary line, perpendicular to the horizontal
plane, starting from the point of the oblique stick. Let us do the same thing with the vertical
stick but the other way round, meaning that I draw an imaginary oblique line parallel to the
oblique stick

It happens that I get two vertical lines with parallel shadows and two oblique lines with
parallel shadows. The imaginary stick casts a shadow into the direction of the oblique stick,

as a consequence the shadows between the oblique stick and the vertical stick are parallel”.

5. Conclusions
It appears 1o us that the data just illustrated are consistent and make our hypothesis plausible.

Actually, as concems the production of the statement, argumentative reasoning fulfils a
crucial function: it allows students to consciously explore different alternatives, to
progressively specify the statement and to justify the plausibility of the produced conjecture
(see 4.1.). On the other hand, students that produced wrong conjectures later show the need of
reconstructing the valid conjecture in order to produce the proof (see 4.3).

The fact that poor argumentation during the production of the statement always
corresponds to lack of arguments during the construction of the proof seem to confirm the
close connection that exists between production of the conjecture and construction of the
proof (see 4.2.). .

Moreover, the consistency among personal arguments provided during the production
of statements and the ways of reasoning developed during the proof secems to be confirmed:

- by the fact that the type of argumentative reasoning made during the production of the
statemnent by one student is resumed by himvher (often also with similar linguistic expressions)
in the justification of the statement subject to proof;

- by the fact that the kind of dynamic process (movement of the sun or the stick) recorded at
the conjecture stage is almost always the same as the one used at the proof stage.

A further element surfaces during the teaching experiment: it can be observed that at
the statement formulation stage the exploration by students almost always concems both the
parallelism and the non-parallelism, even if this process is not "abridged” (obviously, owing 10
the lack of experience in standard mathematical formulation) in a statement such as "if and
only if". ’
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6. Discussion
As mentioned in the introduction, the hypothesis on which we worked seems to have
impontant didactic implications, since it calls into question the traditional school approach to
theorems.In fact, usually in ltaly and in other Countries the teacher asks the students to
understand and repeat proofs of statements supplied by him, which appears one of the most
difficult and selective tasks for grade 1X-X students. Only as possible last stage (often
reserved to the top level students or students choosing an advanced mathematical curriculum)
the teacher asks the students to prove statements, generally not produced by students but
suggested by the teacher. Even more seldom students are asked to produce conjectures
themselves. If our hypothesis is valid, during this traditional path students’ difficulties can at
least partly depend on the fact that they should reconstruct the cognitive complexity of a
process in which mental acts of different nature functionally intermingle starting from tasks
that by their nature bring them to partial activities that are difficult to reassemble in a single
whole. Our teaching experiment suggests an altemative didactic path.

Just for the importance of such didactic implications we deem opportune to critically
analyse some possible limits of the study made so far and to sketch further developments of it.

6.1. Critical analysis of findings and further research

First of ali, we must consider in what sense students have performed a mathematical activity
conceming theorems.

The object of the experiment is a hypothesis conceming the physical phenomenon of
sunshadows; it has as a geometric counterpart, at the level of model, a statement of parallel
projection geometry. Students produce their conjecture as a hypothesis conceming the
phenomenon of sunshadows; when they verify their conjecture most of them seem to be aware
of the fact that they must get the truth of the statement by reasoning, starting from true facts.
Most of them produce a validation realized through a deductive reasoriing. Actually their
reasoning starts from properties considered as true ("two vertical sticks produce parallel
shadows")and gets the truth of the statement in the "scenary” determined by the hypothesis.

In this way, students produce neither a statement of geometry “strictu sensu”, nor a formal
proof: objects are not yet geometric entities, deduction is not yet formal derivation. But their
deductive reasoning shares some crucial aspects with the construction of a mathematical
proof. Moreover, the whole activity performed by students shares many aspects with
mathematicians’ work when they produce conjectures and proofs in some mathematics fields
(e. g.: differential geometry): mental images of concrete models are frequently used during
those activities. As to proof, mathematicians frequently come near to realize the ideal of the
formal proof only during the final stage of proof writing. During the stage of proof
construction, the search for “arguments” to be "set in chain” in a deductive way is frequently
performed through heuristics, the reference to analogical models and keeping into account the
semantics of considered propositions (cf Alibert & Thomas, 1991).

For these reasons we think that the activity performed during our teaching experiment may
represent an approach to mathematics theorems which is correct and meaningful from the
cultural point of view.

In our opinion, the continuity aspects hihglighted by us represent a huge potentiality for
the development of the students’ ability to prove conjectures; nevertheless, this potentiality
needs an adequate educational context in order to surface successfully. In planning our
teaching experiment we singled out some conditions that are probably necessary to this end;
they concem:

- the didactic contract set up in the classroom (the production of a conjecture to solve an open
problem, the value of an hypothesis as an "argumented choice”);
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- the didactic path in which the task is inserted (particularly, in our case, the choice of the
field of experience of sunshadows as a long term leaming environment);

- the management of classroom work after the task (individual activities altemating with
activities in pairs and discussions; activities to prepare the proof stage - see €).

We are not as yet able to establish whether all the conditions that we singled out are
actually necessary and sufficient for the extensive implementation of the process that we
recorded in our teaching experiment.

It is necessary to ascertain what the actual weight of the didactic contract is, through
comparisons with classes having a different history behind.

It is necessary to find out how much, and how, the cognitive unity of theorems appears also in
mathematical fields other than geometry (and, in particular, that of "shadows geometry”).

It appears also important to ascertain the consequences of “theorems cognitive unity”
experiences on the activity of standard theorems proving, proposed through their statements.

Finally, it seems opportune to investigate the connections, the analogies and the
differences between the procedures for the dynamic exploration of the problem solving
situation during the production of the conjecture and, during the process of proof construction,
the procedures for the dynamic exploration of the situation determined by the hypothesis.

Acknowledgements. Carlo Dapueto and Pier Luigi Ferrari helped us to clarify and develop
some ideas of this paper. We thank them very much.
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The purpose of this report is the introduction and justification, on the basis of a
teaching experiment, of a hypothesis concerning the crucial role that can be
played by the dynamic exploration of the problem situation in the production and
proof of the canjecture required to solve the problem. We will show how studertts
can generate the conditionality of the statenent and the functional connection with
the subsequent proof through the dynamic exploration of the problem situation.

1. Introduction

Two previous reports had tried to focalize (through historic and epistemological analyses) the
main cultural aspects of theorems in geometry (Boero & Garuti, 1994) and arithmetic (Garuti
& al., 1995) in order to plan and analyse teaching experiments aimed at:

- verifying the possibility of productively involving students in the approach to theorems;

- identifying the difficulties found by students during that approach, the necessary mediating
interventions on the part of teacher, etc.

The teaching experiments carried out showed how the students consciously took over
the conditionality and generality of the statements (under the proper guide and mediation of
the teacher) and then tried to prove them. However, the activity of most of the students
greatly depended on teacher’s interventions and their acquisitions were mainly based on the
constructive proposals of a small number of their schoolmates,

This research project went on analysing mental processes underlying the production
and proof of conjectures in mathematics. We believed that such analysis could give us some
hints on suitable problem situations and the best class-work management modality for an

xtensive invol f students in th i conj .

In particular, we took into consideration the conditionality of the statements, to which
the logical structure of the proving process is connected. We have tried to formulate some
hypotheses conceming the production of conditional statements and related proving
developments. In order to do this, reference has been made to preceding studies, which
suggested: the importance of the exploratory activity during the production of conjectures
(cf. Polya's "variational strategies" see also Schoenfeld, 1985); the relevance of mental
images (as "z pictorial anticipation of an action not yet performed”, Piaget & Inhelder, 1967
- sée Harel, 1995) in the anticipatory processes in geometry; the possibility of deriving the
hypothetical structure "if...then...” from the dynamic exploration of a problem situation (cf
Caron, 1979). )

We therefore came to the following hypothesis referred to a didactic situation where
students are requested to solve an open problem through the formulation and proof of a
conjecture. The hypothesis concems the crucial role that can be taken on by the dynamic
exploration of the problem situation both at the stage of conjecture production and during the
proof. The hypothesis is organised as follows:

- as to the conjecture production,

A) the conditionality of the statement can be the product of a dynamic exploration of the
problem situation during which the identification of a special regularity leads to a temporal
section of the exploration process, that will be subsequently detached from it and then
“crystalliz” from a logic point of view ("if....., then.... ™),
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- as 1o the proof construction,

B) for a statement expressing a sufficient condition ("if...then..." ), proof can be the product
of the dynamiic exploration of the particular situation identified by the hypothesis;

C) for a statement expressing a sufficient and necessary condition (”...if and only if...” ),
proving that the condition is necessary can be achieved by resurming the dynamic exploration
of the problem situation beyond the conditions fixed by the hypothesis.

At this point we had to work out, put into practice and analyse a teaching experiment
which let us explore the plausibility of the hypothesis, supplied the relative supporting
elements and paved the way for further in-depth studies. In order to do this, reference has
been made to: ]

- our previous observations made about the behaviour of students struggling with the
formulation of hypotheses and conjectures in both mathematical and non-mathematical fields
(cf Boero & al., 1995). Those observations stressed the importance of the choice of the
context ("field of experience”) as a crucial factor in order to acuva!e mental processes of
dynamic exploration of the problem situation;

- studies performed by Balacheff (1988), De Villiers (1991), Duval (1991), Hanna & Jahnke
(1993), Mesquita (1989), Moore (1994), Tall (1995) and conceming approach to proof and
epistemological, cognitive, pragmatic differences between argumentative reasoning and
deductive reasoning. Our planning of the teaching experiment and the subsequent analysis
were influenced by those studies: in particular, see 2.3. (stage e of the teaching experiment),
32 and 4.

The teaching experiment is described in § 2. The analysis and conclusions of the
teaching experiment are shown in § 3. The discussion (§4) contains some reflections on our
findings and indicates some of the developments suggested by our research.

2. Teaching Experiment

We tried to identify a suitable leaming environment and proper tasks for the development of
a production process of meaningful conjectures in classes with a suitable background. In
addition, we tried to construct a teaching experiment which favoured (through the teaching
activity succession and the observation system) the emergence and recording of the
processes which our hypothesis refers to.

2.1. Learning environment

We have chosen the field of experience of "Sunshadows” as leaming environment for our
teaching experiment. The field of experience of sunshadows is a context in which students
can naturally explore problem situations in different dynamical ways. In order to study the
relationships between sun, shadow and the object which produces the shadow, one can
imagine (and, if necessary, perform a concrete simulation of) the movement of the sun, of the
observer and of the objects which produce the shadows.

The field of experience of sunshadows was chosen because it offers the possibility of
producing, in open problem solving situations, conjectures which are meaningful from a
space geometry point of view, not easy to be proved and without the possibility of
substituting proof with the realization of drawings.

2.2.Classes and students’ background

The teaching experiment was carried out in two grade VIII classes of 20 and 16
students, at the beginning of the third school year with the same teacher. Students had already
interiorized the habit of producing argumented hypotheses in different domains (mathematical
and non-mathematical), writing down their reasoning. Students had already experienced
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situations of statements production in arithmetic and geometry; they had approached proof
production in the arithmetic field (see Boero & Garuti, 1994 and Ganuti & al, 1995).

Concerning "Sunshadows”, students had already performied about 80 hours of
classroom work in this field of expericnce. They had observed and carcfully recorded the
sunshadows phenomenon over the year (in different days) and over the moming of some
days. They had approached gecometrical modeling of sunshadows and solved problems
concerning the height of inaccessible objects through their sunshadows. In particular,
students had alrcady realized some activities which needed the imagination of different
position of the sun and of the observer in order to produce hypotheses conceming the shape
and the length of the shadows.

2.3. Classroom activitics
In the two classes the activitics were organised according to the following stages (whole
amount of time for classroom work: about 10 hours):

a) Sctting the problem :

“In the past years we observed that the shadows of two vertical sticks on the horizontal
ground are always parallel. What can be said of the parallelism of shadows in the case of a
vertical stick and an oblique stick? Can shadows be parallel? At times? When? Always?
Never? Formulate your conjecture as a general staterment.”

(Individual work or work in pairs, as chosen by the students) .
Some thin, fong sticks and three polystyrene platforms were handed, in order to support the
dynamic exploration process of the problem situation.

b) Producing conjectures: many students started to work with the thin sticks or with
pencils. They started to move the sticks or to move themselves 10 see what happened. Other
students closed their eyes. The absence of sunlight or spotlight in the classroom hindered the
experimental verification of conjectures they were formulating: it was the mind’s eyes that
were "looking”. Students individually wrote down their conjectures.

¢) Discussing conjectures: the conjectures were discussed, with the help of the teacher,
until statements of correct conjectures were collectively obtained which reflected the different
approaches to the problem by the students.

d) Arranging statements: through different discussions, under the guidance of the
teacher, the following statements, cleaned” from metaphors and more precise from a linguistic
point of view than those produced by students at the beginning, were collectively attained:
-"If the sun rays belong to the vertical plane of the oblique stick, shadows are parallel.”

- "Il'the oblique stick moves along a vertical plane containing sun rays, then shadows are
parallel.”

- "The shadows of the two sticks will be parallel only if the vertical plane of the oblique stick
comains sun rays.” .

The first two statements stand for two different ways of approaching the problem on the part
of the students: the movement of the Sun and the movement of the sticks; the third statement
mukes explicit the uniqueness of the situation in which shadows are parallel.

Alter further discussion the collective construction of the two statements below was attained:

- "If sun rays belong (o the vertical plane of the oblique stick, shadows are parallel. Shadows
are parallel only if sun rays belong to the vertical plane of the oblique stick

- "If the oblique stick is on a vertical plane containing sun rays, shadows are parallel.
Shadows are parallel only if the oblique stick is on a vertical plane containing sun rays”

In vider to help the students in the proving stage it was preferred not to express the statement
in its standard, compact mathematicat form “ifand only if..” (its meaning in common Italian
cannot be distinguished from the meaning of “only if..") .
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€) Preparing proof; the following activities were performed:
- individual search for analogies and differences between one’s own initial conjecture and the
three “cleaned” statements considered during the stage d);
- individual task: "What do you think about the possibility of testing eur conjectures by
experiment?”
- discussion conceming students’ answers to the preceding question. During the discussion,
gradually students realize that an experimental testing is "very difficult”, because one should
check what happens ”in all the infinite positions of sun and in all the infinite positions of the
sticks™.
This long stage of activity (about 3 hours) was planned in order to enhance students’ critical
detachment from statements, motivate them to proving and make clear that since then
classroom work would have concemed the validity of the statement "in general”

f) Proving that the condition is sufficient (activity in pairs, followed by the individual
wording of the proof text);

g) Proving that the condition is necessary (short discussion guided by the teacher,
followed by the individual wording of the proof text). _

h) Final discussion, followed by an individual report about the whole activity (at home).

24 Callected materials

The following materials were collected: videotapes of the initial stages (a and b); tape-records
of discussions and teacher-students interactions; all the students’ individual, written texts.The
data which we are about to consider mainly concem stages b), f) and g).

3. Some findings

The teaching experiment analysis seems to confirm the validity of our hypothesis, as proved
by the behaviour of the great majority of the students of the two classes. All students actively
took part in the production of the initial conjecture. 29 students (over 36) were able to follow
the activities (from ¢ to h )in a productive way.

The elements found which confirm our hypothesis can be summarized up as follows:

3.1. As regards A)(relevance of the dynamic exploration on the problem situation during the
conjecture production stage), the analysis of the videotape shows that at least one half of
students (in the reality, probably more) performs the dynamic exploration of the problem
situation in different ways: indicating with their hands the imagined movement of the sun, or
moving themselves, or moving the oblique stick, or moving the platform supporting the
sticks, etc. )

On the other hand, in 14 individual texts (out of 36) there is explicit evidence of the
passage from the imagined (and/or simulated) dynamic exploration of the problem situation
1o focusing on a temporal section, with successive transition 1o the formulation of a
statement "crystallized” from a logic point of view:

(Simone)"If we took into consideration two sticks, of which one vertical, the shadows shall
be parallel when the two sticks are viewed parallel by the sun. If we suppose that the person
is looking in the position of the Sun, by going round the sticks we can observe that the sticks
are parallel in a certain position and the shadows are also parallel since the difference in
position of the two sticks cannot be seen fram that position. Thinking about the shadow space
we can sdy that the non-vertical stick seems to be within the shadow space. Ler’s imagine an
imaginary vertical stick representing the oblique ane, in line with the sun rays and the same
stick, the oblique one cannot be seen so it seems to be vertical, forming parallel shadows.
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The shadows can be parallel if the sun is situated along the direction of the oblique stick
[with a gesture he indicates the vertical plane of the oblique stick]”
During the subsequent discussion, Simone explains how he produced this conjecture.
Simone’s gestures show that he moves the polystyrene plane supporting the sticks "at
random” ?nolice should also be paid to the generality of his reasoning) after identifying
himself with the sun. Then, he places a new stick (which he calls “imaginary stick”) in the
same position he described in the written text, making the polystyrene plane rotate until the
non-vertical stick is completely hidden by the “imaginary” vertical one. At this point he says
"well, now in this position the shadows are parallel because...”. ‘
Finally, it is interesting to analyse the way in which certain initially wrong conjectures
are overcome: at the beginning of stage b) some students hypothesize that shadows are
always parallel, on the basis of a kind of "principle” (according to their previous school
experience): "the sun rays are parallel, so they give parallel shadows™. This conjecture is
overcome by imagining and/or simulating the movements of the sticks or the sun. Those
movements allow students to explore new alternatives. Here follows an example:
(Lucia) "I think shadows are parallel because the oblique stick functions like a normal object
perpendicular to the ground, so if the rays are equal for all the objects, the shadows will be
parallel.
(I've changed my mind)
By making a small model [they had fixed sticks 1o the desks with adhesive tape} we found
out that the parallelism of shadows depends on the position of the sun, that is, if we put the
sun behind (or in front of) the sticks, the shadows are parallel but if the sun is placed an the
side of the sticks then the shadows form an angle, spread apart and are no longer parallel”.

3.2. As regards B) (relevance of the dynamic exploration of the situation determined by the
hypothesis during the construction of the proof that the condition is sufficient) , the following
texts well represent the individual texts produced by most students:

(Giovanni) "The sun "moves”. At a given moment it "sees” the two parallel sticks and relative
shadows. As the sun is fir away it "sees” the two shadows parallel, so it imagines the
oblique stick to be vertical (imaginary stick)[introduced by Simone during the discussion
phase]. But if the imaginary stick were real its shadow would cover that of the oblique stick,
that is they are on the same line. Well, now we know that the shadow of the two vertical sticks
are parallel and at this moment it is as if we saw two parallel shadows because that of the
oblique stick is "under” that of the imaginary one. Now, if we removed the imaginary stick,
the shadow of the oblique stick would appear again since it was "under” the parallel shadow
of the imaginary stick, so the shadow of the oblique stick is also parallel to that of the
vertical one”.

(Fabio) "If we take two vertical sticks we know that their shadows are, of course, parallel. If
we noved, that is inclined one of the two sticks along the vertical plane of the rays, the
situation will not vary since the oblique stick along this plane seers to be another vertical
stick, lower than the first. Consequently, their shadows are parallel”.

(Daniele) “Elisa and I have followed this line of reasoning: we have set two sticks straight
knowing and seeing that the shadows were naturally parallel and we have tried o incline
both sticks in the same direction {they refer to the parallel vertical planes] and found out that
the shadows remained parallel even if the sticks were oblique. Then, we arrived to the
conclusion that, since the sticks inclined along a vertical plane of sun rays are like two
straight sticks but lower, so their shadows are parallel because they are like two vertical -
sticks. We concluded that the shadows of two sticks, one vertical and one obligue, are
pa{allcl ifthe sun rays are projected along the vertical plane of the obligue stick™.
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I seems to us that from these texts clearly comes out the fact that the dynamic
exploration of the situation singled out by the hypothesis fulfils an important function in
order to promotc the logical connection between the property accepted as true (parallel sticks
produce parallel shadows) and the property 1o be confirmed (shadows are parallel): the
movement of the stick keeps the direction of its shadow (since it happens in the vertical plane
containing sun rays) and, therefore, opens the possibility to reason in a transitive way (e.g.:
the real, vertical stick produces a shadow parallel to the onc of the imaginary, vertical stick;
the oblique stick produces a shadow aligned with that of the imaginary, vertical stick;
therefore the oblique stick produces a shadow paralicl to that of the real, ventical stick). It
also seems interesting to underline the fact that the hypothesis fixes the vertical plane on
which the movement takes place that allows to relate logically the property to be proved with
the property assumed as known. In this sense the dynamic exploration implemented during
the construction of the proof, though it shows remarkable similarities with the onc
implemented during the production of the conjeclure, differs deeply as to the function
assumed during the thinking process: from a support to the selcction and the specification of
the conjecture, to a support for the implementation of a logical connection.

3.3. Asregards C) (the dynamical exploration of the problem situation is resumed during
the construction of the proof that the condition is necessary), we observe that:

- in some cases the sun or its rays are moved:

(Stefania): "If the sun rays do not longer belong 1o the vertical plane of the oblique stick, the
sun would “sce” three sticks: one vertical, one oblique and an imaginary vertical onc that
casts shadow. Taking for granted that the shadows of the two vertical sticks are alwa ys
parallel independently from the position of the sun or its ra ys, then, the sun would cast three
shadows, of which two parallel and one oblique with respect to the other two. Aad if this
shadow of the oblique stick were not aligned with that of the imaginary stick, it will be
neither parallel with the shadow of the vertical stick, so the shadows would 1ot be parallel
and the hypothesis would not be true”

- in other cases students moved the stick (beyond the vertical plane identified by the
hypothesis):

(Sandra)”In order to prove the sccond part of the statement [the shadows are parallel only if
the stick moves along a vertical plane containing sun rayslwe can move and place the obligue
stick in another vertical plane so as to obtain two vertical planes, that of the oblique stick
and that of the imaginary vertical stick With this operation the two shadows are no longer
situated in the same line so the shadow of the oblique stick and that of the vertical stick are
no longer parallel. In this way, I've denied the previous statemient so the shadows will be
parallel only if the oblique stick is placed again along the vertical plane of the sun rays”.

4. Discussion

What relationship does it exist between our teaching experiment and producing and proving
mathematical conjectures? ,

The object of the experiment is a hypothesis conceming the physical phenomenon of -
sunshadows; it hus as a geometric counterpart, at the level of model, a statement of parallel
projection geometry. Students produce their conjecture as a hypothesis conceming the
phenomenon of sunshadows; when they verif; y their conjecture most of them seem to be aware
of the fuct that they mwist get the tuth of the statement by reasoning, starting from true facts.
Most of them produce a validation realized through a deductive reasoning. Actually their
reasoning starts from properties considered as true ("two vertical sticks produce parallel
shadows”)and gets the truth of the statement in the "scenary” determined by the hypothesis.
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In this way, students produce neither a statement of geometry “strictu sensu”, nor a formal
proof: objects are not yet geomelric entities, deduction is not yet formal derivation. But their
deductive reasoning shares many aspects with the construction of a mathematical proof.
Moreover, the whole activity performed by students shares many aspects with
mathematicians’ work when they produce conjectures and proofs in some mathematics fields
(e. g differential geometry): mental images of concrete models are frequently used during
those activities. As to proof, mathematicians frequently come near to realize the ideal of the
formal proof only during the final stage of proof writing. During the stage of proof
construction, the search for “arguments” to be "set in chain” in a deductive way is frequently
performed through heuristics, the reference to analogical models and keeping into account the
semantics of considered propositions (cf Alibert & Thomas, 1991).

In our teaching experiment, the ™ ic” leaming environment of sun shadows was
chosen in order to enhance the dynamic exploration of the problem situation on the part of
students (keeping into account their background related to the same field of experience: see
2.2)). The great majority of the students (29 out of 36) has productively taken part in the
statement construction and subsequent proof. This fact raises the problem of searching for
leaming environments similar or even more effective than that of the sun shadows as well as
the problem of the transfert to "static” mathematics situations.

As regards the problem of finding suitable leaming environments to develop the conjectures

processes (dynamic exploration of problem situations), there are many leaming environments

which can be usefully compared with that of sun shadows (in particular, in the perspective of
the "dynamic geometry” indicated by Goldenberg & Cuoco, 1995): Cabri or Geometric
Supposer or Geometer's Sketchpad, even the “mathematical machines” and the
"representation of the visible space” (Bartolini Bussi, 1995). Comparisons like these could
pror- 2se different potentials and limits for the different leaming environments.

"Vith regard to the problem of the transfert from strongly contextualized theorems in a
dynamic environment as that of the sun shadows geometry to the theorems of “context-free”
mathematics, a number of confirmations derive from the observations that followed the
teaching experiment in the two classes during activities with traditional geometry theorems.
In particular, many students (of both high and average levels) could imagine the dynamic
exploration of the geometric figures proposed for the formulation of conjectures and proofs.

In the future, it will be necessary to make more systematic observations and establish
comparisons with classes which have not carried out the activity described in this report (but

have performed all previous activities).

A delicate matter concems the variety of possible approaches to the conditionality of
statements (and related connections with proving process). In fact, in Boero & Garuti
(1994), a report dealing with the “Thales Theorem” and conceming the same leamning
environment of "Sunshadows”, the following type of reasoning was identified in 3 students
out of 34: "The length of the shadows is proportional to the height of the sticks due to the
parallelism of the sun shadows .... Ifthe lines are parallel, the lengths of the segments cut on
another two lines shall be proportional” The process appears to be very different from that
considered in our hypothesis, since in this case the student passes from a recognition of
causal dependency between parallelism and proportionality in the physical phenomenon, to
the conditional statement that takes into account the possibility that lines cannot be parallel.
This process asks therefore detaching from the physical phenomenon (that on the contrary
can be deferred in the case of the approach to conditionality studied in this report). It is for
this reason that we have formulated our hypothesis A) by emphasizing the possibility ('can”
) that the conditionality of statements were originated in the dynamic exploration of the
problem situation without excluding other possibilities. Further research will certainly
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supply interesting indications in this field, especially with respect to conjecture production
processes more accessible to students in the approach to theorems.

Finally, we deem it important o examine deeply the implications of what surfaced
during the teaching experiment as to the continuity that seems 10 exist between the way in
which the dynamic exploration of the problem situation is attained and expressed and the
way in which, during the proof construction, the dynamic exploration of the situation singled
out by the hypothesis is in its tumn attained and expressed. This continuity prompts the
reflection on the holistic character that in an opportune educational context can be taken on
by the process of theorems (statement and proof) production, apparently contrasting with the
deep difference that exists between the argumentative reasoning needed to construct and
make plausible the conjecture and the deductive reasoning to validate it (see Duval, 1991).

Acknowledgements. Carlo Dapueto, Pier Luigi Ferrari and Enrica Lemut helped us to clarify
and develop some ideas of this paper. We thank them very much.
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ABSTRACT

In this work we investigate, by means of interviews carried out with a sample of upper secondary
school mathematics teachers, the behaviours of teachers when using educational software tools in
their classrooms. In particular, we examine the different choices teachers have autonomously
developed at this regard. We briefly autline the methodology of our work and we identify a number
of issues we consider significant to investigate how teachers’ behaviours in the use of computers
influenced and was influenced by teachers' general behaviour and beliefs in teaching mathematics.
Some findings resulting from the analysis of the interviews are presented according 10 the identified
issues.

INTRODUCTION

In the recent literature in mathematics education a number of works is centred on
teachers; different aspects are considered: education and training, behaviours in school
practice, beliefs and conceptions, attitudes towards changes, etc..

Some contributions enlighten the fact that the teachers’ role, although sometimes
underestimated, is crucial in the implementation of curriculum reforms since they act
as a filter between the curriculum developers and the students (Moreira & Noss, 1995;
Torner, 1995). This is true both as regard changes in contents and in methods. A
significant example in this context is that of the use of the computer in education, in
particular the use of software tools in mathematics teaching. With the metaphore
software tools we mean here not only educational packages but also other kind of
software, such as, for example, spreadsheets, used for educational purposes. See
(Love, 1995) for a discussion on software tools for mathematics education.

Initially computer based educational packages were developed mainly with the aim
of an individualized course delivery for the student and they were often based on
behaviourism (see, for example, the first CAl (Computer Assisted Learning) packages
but also, in more recent times, some ecxamples of ITS (Intelligent Tutoring Systems)).
Two main aspects characterized this approach: the marginal role assigned to the
teacher and the lack of initiative and autonomy left to the student in the interaction
with the computer.

The substantial failure of the results obtained with these kind of systems, the
consideration of different cognitive theories and their evolution, the technological and
theoretical achievements in computer science had brought to the development of
different kinds of computer based educational environments and to a radical re-
evaluation of the role of the teacher. A different scenario in educational computing
had prevailed. In this scenario both the student and the teacher play an active role.
Educational software environments are considered as tools in the educational setting,
tools which support both the student's learning process and the teaching process and
'C,?k which foster the interaction in classroom, 1 _
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In this paper we examine the behaviours of mathematics teachers when using
educational software tools in their classrooms. .In particular, here, we are interested in
the choices and behaviours teachers have autonomously developed at this regard.

Studies exist considering the teachers’ reactions to the use of educational software
for mathematics. These studies are mainly focused on analysing the use of specific
software by mathematics teachers and refer to experiences which are usually inspired
and planned, also as regard teachers' training, by the researchers who perform the
analysis. These studies are very important to acquire a deep knowledge on the
possibilities offered by the software tools considered, but, in order to more widely
explore teachers’ behaviours, we think that it is interesting also to assume a different
approach. We have considered situations in which software tools are used
autonomously by the teachers in their classroom work independently from guided and
controlled experimentations.

To perform our analysis we have considered teachers of upper secondary school
(students’ age from 14 to 18) who are carrying out the new mathematics curricula
proposed by the Italian Ministry of Education. These curricula contemplate activities in
computer laboratories and the use of software tools, but there are not precise
suggestions on how to carry out these activities and on which tools to use. Teachers
expressed, in general, personal preferences: for this reason we consider this context
suitable for our investigation.

We note that this work originates from our previous studies on the way in which
mathematics teaching has been affected by the introduction of informatics and on the
conceptions mathematics teachers have developed about informatics and its teaching,
See respectively (Bottino & Furinghetti, 1990; 1995).

RESEARCH METHOD

Sample

‘The sample consisted of 9 upper secondary school teachers using software tools while
developing their mathematics programmes. The sample was chosen on the basis of the
following parameters:

1) teachers working in the different categories in which upper secondary school is
organised in ltaly: lycei (scientific, humanistic, artistic), technical institutes (engineering,
commercial, ..) and vocational schools; ii) teachers who have a certain degree: of
experience in the use of software tools; iii} teachers who use different kind of software
tools. These parameters were identified in order to have a rather wide variety of
teaching contexts, experiences and tools.

Procedure

‘The analysis on the teachers' behaviour in teaching with computers was performed by
means of oral interviews. The interviews took place during the spring of 1995 in the
afternoons when teachers were free from lessons. They were carried out without time
linutation so that teachers could answer the questions without undue pressure. In each
case the interviews lasted about three hours. The interviews were conducted by both
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authors together: one transcribed teachers’ answers verbatim while the other took
notes concerning impressions, observations, etc. The interviews were carried out on
the basis of a written outline which was the same for all the teachers. This outline is
intended as a preparatory and structuring tool to obtain a quite homogeneous set of
data. In the preparation of this outline we refer not only to our but also to other
previously developed researches (see for example Hoyles et Al, 1991). During the
interviews, the different aspects related to the use of software tools in mathematics
teaching were afforded in-depth considering the following elements: teacher’
background; mathematics contents; software tools used; time dedjcated to the use of
software and its allocation throughout the year; organization of classroom and
computer laboratory activities; contents afforded by means of software and aims
pursued; methodology; teacher's role; teacher's estimation of the use of software;
students’ assessment performed (both qualitative and quantitative); teacher’s attitude in
mathematics teaching.

Analysis
In the analysis of the interviews our aim was to investigate how teachers’ behaviours
in the use of computers influenced and was influenced by teachers’ general behaviour
and beliefs in mathematics teaching. We based our analysis on the transcribed texts of
the interviews and on the notes taken during their development. First of all we
identified a number of issues we considered significant to perform the analysis
according with the considered goal. The analysis was then carried out qualitatively
considering these issues. Different approaches were used: individuation of information
pertinent to each issue, cross-check, identification of analogies and pattern of
behaviour; deduction of mutual influencing factors and so on. We note that the
investigation on teachers’ behaviours cannot be carried out by considering single
factors in a cause and effect relationship; it is necessary to adopt a systemic approach
in the analysis of the various factors and of their relationships.

The issues we identify as significant in performing the analysis are reported

hereunder:

* 1) Why the teacher has decided to use software tools (motivations in the use of
software).

e 2) Intentions that the teacher has in the use of software (both disciplinar and
pedagogical).

* 3) Methodology.

* 4) Kind of interaction which has been established among the teacher, the student,
the other students both in computer laboratory and in classroom.

¢ 5) Teacher's attitude and beliefs in mathematics teaching.

* 6) Influence of the context.

« 7) Evaluation given by the teacher about the use of software.

« B) The relationship (if any) the teacher has established with colleagues, the research
in mathematics education, the specialized press, etc.

In the following we present some findings from the interviews which give a first level

anlalysis of the classroom scenarios established by the use of sofiware.

¢ ~ O
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SOME RESULTS

Results are presented according with the previously identified issues. Moreover, in
table 1, we have summarized some information about the interviewed teachers which
can be useful to better understand them.

)

2

-

3

-

O
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Motivations in the use of software

Different are the motives expressed (directly or indirectly) by the teachers for the
use of software tools. There are superficial indications, such as: “because it is
requested by the new mathematics programmes™; “because it is supplied by the
maths textbook I used”; “because I followed a training course in which we were
taught to use some software tools”; “because computers are attractive for
students”. There are indications related to teaching practice: “software is useful to
speed the way in which some topics are afforded”; “software is useful 1o develop
interesting exercises”; “drill & practice software are useful for students with
relevant learning problems”; “software has a professional valour”. There are
indications which seem to be more strictly connected with teacher's views of
mathematics teaching and its problems: “it is helpful to support conjecture
activities”; “the use of software meets my renewal need”; “software can be
considered as a sort of super blackboard: for example, it is possible to previously
prepare graphs, tables, etc. so that students can be shown good level materials and
it is not necessary to improvise at the blackboard”; “software is useful to enrich
students’ experience with mathematics concepts, especially students’ capacity of
visualization”.

Intentions in the use of software

The visualization of concepts, the introduction of topics, the possibility to carry out
reinforcement exercise are the objectives of the majority of teachers. Some
teachers indicate also the evaluation of students’ learning, the application of maths
concepts and a first approach to computers as objectives in the use of software;
moreover the opportunity software gives of developing exercises which it is not
possible to develop with paper and pencil is also indicated.

Methodology

Difterent elements contribute to outline the methodology followed by the teachers
in the use of software. All the teachers but one use software systematically (usually
an hour per week). Software is used in laboratories usually equipped with 10-14
personal computers. Two teachers sometimes use the computer also in classroom
with a data display. The majority of teachers follows a pre-planned didactic
itinerary. Few teachers use reference materials (such as books or manuals); usually
they prepare worksheets to be used by the students during computer laboratory
activities. The work in the computer laboratory is organized in groups of two or
three students. In general, the autonomy left to students is greater in laboratory
than in classroom. We feel that sometimes this autonomy is only apparent:
exercises to be developed with the computer are previously prepared in classroom;
the teacher strictly co-ordinates groups work; etc. An interesting thing noted by
one of the teacher is that his students are encouraged to divide among them the
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assigned task (e.g. for finding an arca some students use the computer; some other
use paper and pencil as a control; etc.).

Social interactions

In general teachers observe that during computer laboratory activities their
interaction with the students is increased. Some of them perceive they role as
changed: 1 have to put myself under discussion”; *1 think that for my students |
can make errors using software while at the blackboard | have to be infallible”;
“The teacher is no more the only reference point for the students, knowledge is
shared, even if results obtained from the computer have to be considered in a
critical way”; “For me the ideal would be to develop all my teaching in the
computer laboratory”. Few teachers assign importance 1o the interaction among
students. One observe that, according to his experience, working with the
computer does not foster students’ interaction: the computer is seen as a substitute
of the teacher. Moreover in some cases all the information seem to converge to the
teacher. The use of software is seen by some teachers as less discriminative than
other mathematics activities: “all students can do something™; “the one to one
relation with the computer can be helpful for weak students and contemporary it
offers to the teacher more ways to intervene”. Some teachers compare their
reactions to the computer with that of the students and judge this last one more
positively.

Teacher's attitude and beliefs in mathematics teaching

Some teachers indicate as their general objective in mathematics teaching the
fostering of students’ mathematical thinking and the creative solution of problems.
Some others have the objective that mathematics can be seen by students to be
useful and applicable to the real world. The functions ascribed to mathematics vary
from the buiding of real world models to the solution of problems and to the
definition of an unambiguous language. Different are the motivations teachers
convey to explain why students usually find mathematics difficult. There are
motivations linked with their ideas about mathematics itself: “*Mathematics requires
fantasy and rigour”; “Mathematics needs a continuos control and the
establishment of links between concepts”. There are motivations linked with the
way in which mathematics is taught: “Mathematics is often taught as a set of rules
which have no meanings for the students”; “It is far from students experience”.
An interesting element for the issue under discussion are the characteristics
teachers ascribe to ‘good’ and ‘weak’ students. Some teachers indicate general
characteristics such as intuition, autonomous re-elaboration and flexibility for
‘good’ students and rigidity and repetitivity for ‘weak’ students. Other teachers
indicate characteristics which seem more linked with their actual teaching. For
‘good’ students: the capacity to exploit all the resources available; the capacity of
visualization; the capacity of communicating with the others; the capacity of
producing conjectures and the capacity of using computers. For ‘weak’ students:
the difficulty of using the mathematics language and the difficulty in solving
problems.
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6) Influence of the context
The context (type of school, training followed, etc.) seems to influence teachers'
behaviours as regard both contents and software used, especially the behaviuor of
teachers of technical and vocational Institutes. In some cases, it seems to influence
also teachers' expectations to students. Moreover the context seems to influence
teaching orientations and aims: for example, humanistic lycei teachers show more
attention towards conjecture and proof activities.

7) Evaluation given by the teacher about the use of software
All the teachers give a positive evaluation of the use of software tools. Some
teachers state to have adapted their teaching objectives to the software used. A
teacher observe that the use of software is amusing for the students and also for
herself. General observations made are as follows: “software requires a great deal
of work to the teacher to learn it”; “it can be useful to attract students”; “its use in
classroom needs a lot of time”; “what is required by the computer is usually better
accepted by the students than that asked by the teacher”; “software favours the
communication between the students and the teacher”; “software can create
experience in the use of mathematics concepts”; “it can induce a sort of laziness in
some students”. A teacher observes that there are reasoning methods which are
proper of a person (e.g. abstract reasoning or intuitive approach by means of
visualization) and the more or less success of a work methodology, such as, for
example, the use of software, depends on these personal inclinations.

8) Relationships established by the teacher
The majority of the teachers have few relations with their colleagues. Only three
teachers state to work in collaboration with another teacher and to periodically
confront the results. Two teachers prepare the software exercises together with the
laboratory technician (which is present only in some situation). Some teachers
belong to groups which work in the field of mathematics education. Few teachers
read specialized press. .

* CONCLUSION

The investigation performed outlines a scenario which can give a useful contribution
to the investigation on teachers’ conceptions about mathematics teaching and related
changes. Questions for which it is possible to infer some answer could be, for
example: Is software perceived as a real methodological change in mathematics
teaching? Does its use contribute to create in the teacher a different image of the
educational setting? Does the integration of the use of software in the mathematics
curriculum contribute to the establishment of a different social interaction inside the
classroom? Is the use of software guided by.a previous and well established
conception of mathematics teaching which is not changed by this use or the use of
software put into discussion previous conceptions? How much is heard the necessity
of change and how much it is supported by the use of software? Can the use of
software in some cases hide a reluctance to change? and so on.

‘The development of our research will try to answer to these questions in order to
study the conditions and the methodologies which affect teaching changes.

‘ R P
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Maths subjects in ]
Teachers | Type of school SOI[;Z::’; ll)unls which ::l- :jwau is Examples of cxercises
Commercial Derive Algebra Caleulus| Approximation of curves
) Technical Lotus Statistic (Taylor); computation of
Institute Pascal Financial maths arcas: simplex method
N Engincering Lotus Geomeiry Algebra| Geometrical transformation;
- Technical MathCad Calculus matrices; lincar systems;
Institute Denive visualization of the
Graphic Caloulus convergence ol a serics
3 Humanistic Lotus Geometry Definition of gcometrical
Lyceum Denive Algebra propertics; formulas o
Cabn generate prime numbers;
graphs of functions
1 Professional Lotus Algebra Graphs of functions;
Institute Educational solution of cquations;
programs for simple lincar systcms
dnll & practoe
5 Scicntific Microcalc Geomelry Geometrical ransformation;
- Lyceum Lam Algebra truth Lables; cquivalence
Calculus (few) relations
6 Artistic Lotus Algebra Algebraic transformations;
Lyccum QBasic L study of functions;
Derive Statstics programming of algebraic
Gra-Fun Probability formulas
Calculus
7 Expenmental Lotus Geometry Geometrical transformation;
Humanistic Turbo Pascal Algebra vanables; parameters;
Lyccum numbers propertics
8 Scienufic Microcale Geometry Discquations;
Lyccum Lam Algebra transformations;
Calculus wruth tables
9 Humanistic Cabn Calculus Geometnic conjectures and
Lyccum Derive Geometry definitions; computation ol
Microcale Probability arcas: algebraic
Pascal Algebra manipulation; simulation of
Pocket caloubators probability trequencics;
visual definition of
trigonometric functions

O

() Lotus is a spreadsheet; Pascal, Turbo Pascal, QBasic are gencral purpose programming languages;
Derive and MathCad are symbolic manipulation system; MicroCale is a system for graphing functions
in two or three dimensions; Cabri is a system for planc gecometry: Lam is a system for geometrical
transtormations and for graphing functions; GraFun is a system for graphing functions; Graphic
Calculus is a system for calculus. For turther information see References.

Table 1: Some information about the interviewed teachers
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A DECIMAL NUMBER IS A PAIR OF WHOLE NUMBERS
Gard Brekke
Telemarksforsking-Notodden, Norway

The purpose of this paper is to report some results of a larger project designed to
develop a collection of diagnostic test instruments. The tests, together with an in-
service training package are meant to be used to as a starting point for the teaching
of key concepts throughout the curriculum. The paper explore the beliefs held by
pupils of 11, 13, and 15 years related to the misconception that a decimal number
consists of a pair of whole numbers separated by a decimal point. Mention will
also be made of how some pupils conceive the decimal point as having the same
role as the fraction bar.

Introduction

We regard the assumption that a decimal number is composed of two whole numbers

1o be the most important underlying misconception linked to the conceptual knowledge

of decimal numbers. In Norway a decimal comma is used in the notation. Referring to

Sackur-Grisvard & Leonard (1985), Resnick et al. (1989) analysed how children in

different countries applied different rules when comparing decimal numbers. Resnick

et al. argue that there are two main sources of the errors observed, named whole
numbererrors and fraction errors. In addition to addressing Resnick’s whole number
error with regard to a wider set of items, this paper will describe how the children
perceive the decimal point as a separator between two whole numbers. The discussion
is based mainly on data from the KIM project, initiated and funded by the Norwegian

Ministry of Education. The objectives of the project are to:

- develop a collection of test-instruments of a diagnostic nature which can be used
as a starting point for teaching practice within various areas of school
mathematics

- develop an integrated test and in-service training package that can be used by
teachers as part of their assessment practice

- survey attitudes and conceptions that students have with regard to mathematics
and the teaching of mathematics

- report the whole spectrum of student performance within the various areas of
school mathematics, not only minimal competence

- survey student performance in relation to a broad spectrum of objectives
specified in the current curriculum.

The project concerns mathematics from grades 1-9 7 to 15 years), and is intended to
be extended also to grade 12, and is expected to run for several years.

Background
One of the difficulties of operating with decimal numbers is that they have several
different meanings. The natural numbers are used mainly for counting objects or

ERIC

] 2137 4
2 X4
1435



measuring units, while decimal nuimbers can be interpreted concretely in many ways,
all of which occur in everyday life applications, for example as a result of a division, a
part of a unit, a comparison of size or a point on the number line.

For each extension of the number system many children encounter a critical phase in
their leaming of mathematics. They have to become competent with a new symbol
system in the context of the ideas of the previous systems. In addition, this extended
knowledge of the symbol system is accompanied by an extension of the meaning of the
numerical operations. It is therefore a significant advance in pupils’ knowledge of
mathematics to become competent in the concept of decimal numbers. Hiebert and
Weame (1986) claim that many pupils have trouble selecting features of whole
numbers that can be generalised to decimal numbers, they often overgenerallse
procedural features which do not apply to decimal numbers.

Pupils have experienced decimal numbers in connection with measurement of different
kind, long before such numbers become part of instruction in school; they have some
syntactic knowledge of decimal numbers which can become an obstacle to conceptual
understanding. In almost all such applications of measurement, the decimal point can
be regarded as a separator between different units of measure (m and cm, kg and g,
pounds and pence etc.), and it is a whole number of pounds to the left of the decimal
point and a whole number of pence to the right. It seems that the teaching of decimal
numbers as one number which can contain tenths, hundredths, thousandths etc. of an
unit, does not replace this first decimal experience with money and measurement.
Often children learn decimal position values only as verbal labels for isolated digits.
Teachers regularly claim that their pupils manage to solve arithmetic problems
involving decimals correctly if money is introduced as a context to such problems.
Thus they fail to see that the children do not understand decimal numbers in such
cases, but rather that such understanding is not needed, it is possible to continue to
work as if the numbers are whole, and change one hundred pence into one pound if
necessary. It is doubtful whether a continued reference to money will be helpful, when
it comes to developing understanding of decimal numbers; on the contrary, this can be
a hindrance to the development of a robust decimal concept. Employing a comma in
the decimal notation in Norway may induce pupils to look upon the decimal comma in
a similar way as it is used to list items in a written text, which may strengthen the idea
of the decimal comma (point) as a separator.

Several studies of the teaching of decimal numbers have been carried out. Bell, Swan
& Taylor (1981) and Swan (1983) conducted teaching experiments which focused on
intensive work with basic misconceptions linked to the decimal numbers. Wearne &
Hiebert (1988) and Weame (1990) tried in their teaching to get children to connect
meaningful referents with decimals numbers. Streefland (1991) used the number line
extensively in the teaching of fractions and decimal nunibers, as did Mahrer, Martino
& Davis (1994). Lachance & Confrey (1995) claims that many teaching experiments
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have treated the teaching of decimals as distinct and separate instructional units, and
reports on results from an experiment involving instruction of decimal fractions
embedded in a unique curriculum. The in-service part of the KIM project offers
activities with the intention to focus intensively on the most common misconceptions.

Method

National data related to conceptual understanding of, and operations with, decimal
numbers was collected by two written diagnostic tests, each taking one 45 minute
teaching period. In total 104, 107 and 92 classes in grades four, six and eight (average
age 10 years 7 months, 12 years 7 months and 14 years 7 months while tested) took
part in this national standardisation. From these classes the papers from pupils with
specific dates of birth in each month were analysed. This produced the sample size of
512, 510 and 519 pupils for the three year groups respectively. In total the children
were asked to respond to 72, 95, and 99 questions respectively for the three grades.
Several items were given to the all year groups.

Main findings and discussion

The following response pattern (Table 1) emerged from three items, asking children to
choose the largest from three given numbers. In item 20 the pupils were asked to
explain why they thought that the chosen number was the largest.

Correct Longest is largest  Shortest is largest
13 Which of the following 375 3.521 36
numbers has the largest value? 20 64 88 74 30 6 5 6 S
14 Which of the following 4.7 4.008 4.09
numbers has the largest value? 31 72 94 35 9 2 32 18 4
20a Which of the following 0.87 0.649 0.7
numbers has the largest value? 22 62 83 66 26 7 8 10 9

Table 1 Selected items comparing the value of given decimal numbers. Distribution in
percentages per grade.

In their reasons for choosing the number with the longest decimal fraction (item 20b),
children in most cases refer to the number to the left of the decimal point as a whole
number. APU named this misconception “decimal point ignored”; from my point of
view it is not ignoring the decimal point that is crucial but rather the idea of “pair of
whole numbers” (pwn). ltems 13 and 20a shows a similar pattem of responses,
indicating that there is no differences in the children’s strategies used in comparing
decimal numbers to those used in comparing decimal fractions. For the three year
groups, respectively 96, 86, and 65% of the pupils who chose 0.649 in item 20a also
answered 3.521 to item 13, and similarly 93, 89 and 78% of these chose 0.5 as the
smallest of the numbers in item 19a (see below), which confirms the stability of this
idea. We notice an extensive amount of answers related to pwn for the younger
children, and that this error gradually di'minishes. Swan (1983) and Greer (1987) asked
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11-12 and 12-13 year old pupils respectively to choose the largest of 0.62, 0.236 and
0.4, with the following response pattern, Swan: 17%, 50%, 28%, Greer: 45%, 12%,
43%. The proportion of “pwn-answers” is similar to our study. A similar response
pattern as in the previous data was found when pupils were asked to ning the smallest
of the numbers: 0.625; 0.25; 0.3753; 0.125 and 0.5.

19a Which of Correct: 0./25  Shortest is smallest: 0.5  Longest is smallest: 0.3753

the following 16 S5 79 64 26 17 8 13 10

numbers has the 0.25 (Other) 0.625 (Other)

smallest value? 8 13 10 1 1 1

Table 2 Item 19a comparing the value of given decimal numbers. Distribution in percentages per
grade :

This item was used in APU, Foxman (1985) for 15 year old pupils, with the
distribution: 43%, 13%, 36%, 2%, 4%. There is a substantial difference between APU
and the Norwegian responses with respect to the proportion of correct answers as for
the pwn error. Item 14 function differently, since the whole number error will have
different effect on the choice of answers. Comparing the whole numbers 7, 09 and 008
most children will know that 09 is the largest. Another item required the children to
write down the next two numbers in the sequence 0.3; 0.6; 0.9. 52, 40 and 26%
respectively of the children in each year group gave the answer 0.12; 0.15.

Resnick labelled sources for the errors like 3.6 (item 13), 0.7 (item 20) and 0.3753
(item 19) “fraction errors”, APU used the expression “longest is smallest” (Is) for this
misconception. Norwegian pupils explain their (Is) choices by writing “0.7 is larger
than 0.87 because in 0.7 we have tenths and in 0.87 hundredths, and hundredths are
smaller than tenths” or “when it is hundredths the numbers are more split up”. Notice
the much higher occurrence of fraction errors in the British responses. One reason for
this could be the different emphasis on fractions in the two curricula. Contrary to pwn
the percentage of the Is error is about the same for all year groups in the Norwegian
sample, which indicates that this misconception is not focused on in the teaching of
decimal numbers.

The two following items also require the pupils to compare the value of decimal
numbers, but this time in different situations to the previous ones. To the item, given to

grade 4: )
21. Olav got the answer 4,9 and Lise 4,90, solving a math problem.
a. Is there any distinction between these answers. b. How did you arnive at your answer in a.?

21% answered that there is a distinction, because “90 is more than 97, or similar. The
responses 7 and 0.43 or 43 (Table 3) to problem 18 below also indicate a conception
of decimal numbers as a pair of whole numbers.

18. Write the missing number ~ 547=5+ 0.4+ [ |
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To a larger extent than the previous items, this item reveals difficulties n
understanding decimal notation, and also a higher proportion of pwn responses than in
the previous problems which are more familiar to the pupils .

0.07 7 0.43 or 43
Grade 4 (11y) 1 30 13
Grade 6 (13y) 39 22 10
Grade 8 (15) 66 9 8

Table 3 Response pattern to item 18. Distribution of correct and two common types of
incorrect answers, in percentages per grade

The responses to the items below (Table 4) show that the pwn misconception 1S
employed by children when adding decimal numbers. The numbers involved are
chosen so that an algorithmic procedure should be unnecessary, and are presented
in different ways for the same reason.

38 Add 0.1 and write the answer. a 4,256 639 c 6,98 ds4 e 703
32 Write the answer to 5.1 + 0.46 = ......
42 Wnrite the number which is 0.01 greater than 53.724
Grade 4 (11y) Grade 6 (13y) Grade 8 (15y)
38a 4.257 41 20 5
38b  3.10 24 12 3
38c 6.99 47 27 12
38e 7.04 40 24 9
32 547 39 18 6
42 53.725 38 15 10

Table 4 Percentage of pwn errors in percentages per grade for selected addition items

The analysis above has focused on some difficulties pupils have in understanding the
symbolisation of decimal numbers. It is important to know that the number 0.437 has
the value of 4 tenths plus 3 hundredths plus 7 thousandths, and that this is the same
value as 437 thousands. In Table S the responses to two items related to the
understanding of the decimal position system are given.

5. What does the digit 7 mean in 0.573? 70 7 0.7 0.07
6. Which digit is in the hundredths place in 6.4237 6 4 2 3
Item S Grade4 Grade6 Grade8 Item 5 Grade4 Grade6 Grade8
70 26 54 73 2 10 31 47
7 40 23 9 6 15 8 4
0.7 11 10 4 4 65 55 39
0.07 13 10 10 3 4 5 8

Table 5 Distribution in percentages per grade

It is reasonable to believe that this unexpectedly high proportion of incorrect answers
can be explained by the way children normally read decimal numbers. 0.573 is in
Norway usually read as “nought point five hundred and seventy three”, and accounts
for the answer 70 in item 5, those who answer 4 to item 6, do this because they read
four Aundred and twenty three.
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When children first experience decimal numbers, usually in connection with money
and measurement, they may be led to believe that the decimal point is introduced to
separate two units of measurement. From the teaching of fractions they know that the
fraction bar is used to split for example a part from a whole. They are also told that
there is a relationship between fractions and decimal numbers. It is therefore not a
great step further for them to conceive the decimal point as a separator also. A few
children in grade 4 and 6 (6% and 4%) answered 5,10 or 10,5 to item |5a; indicating
that the decimal comma is used as an separator between nominator and denominator of
the given fraction. Table 6 shows the distribution of this error for the other questions in
item 15 together with the most common incorrect responses in each case.

15 Wnite the fractions as decimal numbers: a) Five tenths  b) Three hundredths
¢) Eleven thousandths d) Eleven tenths ¢) Two fifths  f} One third.

b) 0.030.3 Sep ¢)0.0110.0011Sep d)1.1 0.11Sep €) 0.4 0.2 Sep £ 0.33.0.3 Sep
Grade 4 22 26 15 15 6 1 19 43 7

Grade6| S5 16 6 37 18 4 35 43 4 12 18 11 15 20 14
Grade8] 75 12 3 47 30 2 41 S0 1 27 14 13 38 14 12

Table 6 Correct, most common wrong response and reponses which indicates that the
decimal point (comma) is regarded as a separator

It is interesting to notice that this error becomes more frequent as the familiarity of the
equivalence between a given common fraction and its decimal representation
decreases. Several children with a vague decimal number concept regress in such
cases to more primitive ways of representing the concept.

We also observe the high proportions of the most common wrong responses to item 15
b, ¢ and d and how permanent these are for all grades. It is especially interesting to
notice that the answer 0.0011 becomes more widespread for older pupils. Interviews
indicate that these pupils believe that since thousandths are involved, they first have to
write two ceros to the left of the decimal point and then the value of the nominator.
Even though older pupils perform better than younger it is interesting to notice that
many of those giving an incorrect response tend to converge towards certain errors.

Three items 8, 16, and 31 require pupils to represent a shaded area (volume) of a
figure by a decimal number. Reponses to these items show an extensive use of the
decimal comma as a separator. In item 8, 16 out of 100 squares, arranged as a ten by
ten square, are shaded. No altemnatives answers are given. Item 16 show a five by four
rectangle with eight out of the twenty squares shaded (a column of four squares and a
two by two square). Four alternative choices for the response are listed: 8.12; 0.4; 8.20
and 0.8. In item 31, a picture of a graduated cylinder is shown. Two out of five parts of
the cylinder is filled, indicated with a shading. This item have the choices 2.5; 0.4; 2.3;
0.2 for the correct response. Item 8 were used only in grade 4, and 12% gave one of
the following answers 16,100; 16,84 or 84,16, representing the shaded part of the
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square by a decimal number, which is, in their mind, a pair of whole numbers made up
by the shaded part, and either the whole square or the nonshaded part of the square.
Table 7 shows the distribution of the responses to the two other items.

Item 16 Grade 6 Grade 8 Item 31 Grade 6 Grade 8
04 16 39 04 Il 31
8.12 19 13 2.3 24 21
8.20 3S 25 2S5 21 15
08 28 22 0.2 36 © 26

Table 7 Distribution of responses to items 16 and 31 in percentages per grade

In a an analogue way as explained for item 8, also older pupils use the decimal comma
as a separator between the shaded and either the whole figure or the remaining
nonshaded part of it, and believe that this is the appropriate decimal number.

The main purpose of the KIM project is to help teachers to put more emphasis on
conceptual development, by highlighting common misconceptions and conceptual
obstacles for key concepts in mathematics through diagnostic test and teaching
material connected to the tests. Following a quote from Ausubel: /f/ had to reduce all
of educational psychology to just one principle, | would say this: The most single
factor influencing learning is what the leamner already knows. Ascertain this and teach
him accordingly. As educators we will have to help teachers decide ifthe pupils
know, and what they know if they do not know what they ought to know. This paper
have tried to shed light on one portion of what pupils ought to know about decunal
numbers.
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THE STORY OF SH.ENCE:
TEACHER AS RESEARCHER - RESEARCHER AS TEACHER
LAURINDA BROWN AND ALFRED COLES
UNIVERSITY OF BRISTOL, SCHOOL OF EDUCATION, UK

In Brown (1993a) a theoretical perspective of “levels of strategies’ was introduced to interpret
how “effective’ mathematics teachers work. This case study illustrates the application of this
theoretical perspective with one teacher in his second year of teaching 1o consider how the
researcher and teacher work together (1) w identify purposes to be wsed as organising principles
(filters, Brown, Hewitt, Mason 1994) 1o focus observations and actions - in this case “using
teacher silence in the mathematics classroom’ and (2) 1o uncover implicig beliefs (Claxton.

1984, 1989) both underpinning and inhibiting (Brown 1995b) their development . The use is
made of stories (Bateson, 1979, Bruner, 1990) in the writing of this paper 1o allow new insighty
to coemerge (Edwards and Nirez, 1995, Reid, 1995, emergent, Varela, Thompson, Rosch
1995) and to give a sense of the merging frames of reference of teacher and researcher.

Theoretical background

In Brown (1995a) an adaptation of work on a hierarchy of learning strategies (Nisbet and
Schucksmith, 1986) was introduced to interpret how ‘effective” mathematics teachers operate.
This hierarchy was used as a tool in the training of prospective teachers:

‘... the central strategy (refers) 1o teachers’ images of mathematics and
mathematics teaching, giving an overall sense of direction 1o their work. Such
philosophical and auitudinal perspectives (implicit learning theories and theories
of self, Claxton, 1984, 1989) build up over time and are certainly not easily
wransferable, but do infonm the decision-making necessary to apply lower order
strategies. Next | associate macro-strategies with the teacher’s purposes. For a
particular purpose (eg gaining access to pupils’ thinking) the teacher often has o
range of behaviours which can be used at differing times and in ditfering
circumstances. Micro-strategies are identified with these specific behaviours.”
(Brown, 1995b)

The micro-strategies might be easily transferable as behaviours to trainee teachers who would
still need to work at the level of purpose to begin 1o integrate the behaviours into a range of
strategies. They will only recognise the micro-strategy as being usctul if it conforms to their
developing central strategy. For an illustration see Brown (1995a).

In the work of Rosch on basic-leve! effects in Lakoff (1985) basic-level categories are “the
generally most useful distinctions to make in the world (p49)" and have a middle position in that
hierarchical model similar to purposes. The ‘interactional propenies’ (pSt), the lowest point in
the hierarchy, which form “clusters’ are ‘the result of our interactions as part of our physical and
cultural environments given our bodies and our cognitive apparatus’. The obvious paralicl here
would seem to be with the particular behaviours, or micro-strategies, which an experienced
teacher uses to achieve their purposes. These behaviours seem clustered in that there exist more
than one micro-strategy available o be used for any given purpose. *Superordinate categories”,
in the Rosch hierarchy, are not so embodied, however, and “seem not 1o be characterised by
images or motor actions’ (pS1). This fits with the way in which the central strutegics ol the
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teachers are tied to their implicit beliefs and are more difficult to work with since often they are
unconscious. The intention became to develop ways of working with traince teachers so that
they could find their basic-level categorisations, or purposes in my model, which they might be
able to use as filters (Brown, Hewitt, Mason 1994) 10 develop a range of effective (for them)
micro-strategies with a consequent adaptation of central strategy where appropriate.

When working with teachers who wish to develop their practice there is a power in the use of
story. This is both in the sense offered by Bateson (1979):

* A story is a little knot or complex of that species of connectedness which we
call relevance... we face connectedness at more than one level: first,
connection between A and B by virtue of their being components in the same
story and then connectedness between people in that all think in terms of
stories. Context and relevance must be characteristic not only of all so-called
behaviour (those stories which are projected out into ‘action’), but also of all
those internal stories... 1 offer you the notion of coniext of pattern through
time.’ (p13-14)

and of Bruner (1990) who talks of matters which interest him particularly in the “organisation of
experience’ and ‘the role of narrativised folk psychology’:

‘One of them is usually called framing or schematising ... Framing provides a

means of ‘constructing’ a world, of characterising its flow, ... what does not

get structured narratively suffers loss in memory. (This is not) merely a maiter

of the laying down of traces and schemata within each individual brain ...

Shotter insists very strongly that framing is social, designed for the sharing of

memory within a culture.” (p56)
One strategy used 1o try to encourage pattemning in the identification of macro-strategies or
purposes with rainee teachers is 10 encourage them to tell anecdotes or “brief-but- vivid’
descriptions (Mason, 1994) of details of their practice in written or spoken form and to sce what
arises in terms of what is the same or different about them.

There follows a case study of work with a teacher in his second year of teaching to illustrate
both the use of the model of hierarchy of strategies as a theoretical perspective and of the
professional development technique of “staying with the story’. The case study is written as a
story, a sequence of ‘vignettes, snapshots or perhaps a mini-movie, of a professional at work
(Miles, 1990) on which we reflect in a commentary after each vignetie in the sequence. In this
case, however, there is insight into two professionals at work as their frames merge over time.

’

The Case Study

1) Beginnings - separate frames - teacher (Alf) - rescarcher (Laurinda)

Alf: Reflecting back on the first year of teaching had produced a feeling of inadequicy akin to
despair - looking back over all that time, looking for the lessons which had been *good’ from
which 1o start to build next year they had seemed rare. No lesson really seemed 10 match up to

‘ 154 2-146



my ideal image of what seemed possible and there was a strong sense of a gap between where
my phiiosophy lay and the day to day practice of what was actually happening in the classroom.

Laurinda: Listening 1o these expressed thoughts, especially “the gap’ had oftered the opportunity
to work with dissonance (Brown, 19935b) a strong sense of teeling uncomtortable, using the
theoretical perspective of central, macro- and micro-strategies. Working with experienced and
‘effective’ teachers over many years 1o get them anticulating the detail of their practice wha
would it be like working with someone (not trained by me) so carly in their career 1o see whether
any of this was transferable as a model for professional development?

Alf and Laurinda: There was a discussion of the possibility of working together in the
classroom. Alf said: what do you want to do? and the only answer was that it the work were 10
take place the agenda would emerge from conversations.

Commentary 1
Laurinda: What seemed crucial was that the agenda for the work was Alf’s. My investigation
would be subordinate to this agenda.

Alf: The question: what do you want to do? was asked trom concern that there was not enough
of interest in my classroom to warrant such time and attention. 1 was checking out thut Laurinda
didn’t have unrealistic expectations of what might be going on.

Laurinda: This was unlikely because from my previous work | was aware that the way teachers
talk about and describe their work within groups outside their own classrooms rarely gives
instght into their current practice. Itis as if they talk in terms of vectors with a direction of
movement given by what they ‘re working on which gives no sense of a relative position. { had
few expectations of what Alf’s classroom would be like.

2) The emergence of the ‘it’

Travelling in a car, with Alf's auention partly taken up by driving, Laurinda asked whether he
could bring 10 mind panticular moments or times during a pant or parts of lessons which had felt
closest to his ideal.

This provoked two ‘brief-but-vivid’ (Mason, 1994) anecdotes:

Anecdote I: During an A-Level lesson on panial fractions | was going through an example on
the board, trying to prompt suggestions for what I should write. Some discussion ensued
amongst the students, which ended in disagreement about what the next line should be. 1 said |
would not write anything until there was a unanimous opinion. This started further talk and a
resolution amongst themselves of the disagreement. | then continued with the rule of waiting for
agreement before writing the next line on the board.

Anecdote 2: Doing significant figures with a year 9, 1 wrote up a list of numbers and got the
class to round them 10 the nearest hundred or tenth, ... Keeping sitent, | wrote, next 1o their
answers, how many significant figures they had used in their rounding. Different explanations
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for what | was doing were quickly formed and a discussion followed about what significant
figures were.

Without any prompting from Laurinda there was suddenly an energetic statement of "Ity silence,
isn’tit? I's silence.’

Commentary 2 - frames and looking through them

Although we went on to identify-more labels we had found our agenda - we could work on
silence. The question remains how did we recognise “silence’ as something we could both work
on? The trames begin to merge. Laurinda recognises the labelling of silence by Al as the
identification of a macro-strategy or purpose within her theoretical perspective. Alf was aware
that his silence had forced students to think for themselves about what he was doing, putting the
onus of explanation on them. He also became aware of ‘silence’ as a potentially broader
categorisation. We were looking in the same direction with more of a sense of each other’s
frames. Micro-strategies involving silence and lesson introductions for algebra, given All’s
scheme of work, were discussed drawing on Laurinda’s observations of eftective mathemitics
teachers and lessons and Alf decided what he was going 10 teach.

3) Life histories of silence

We cach wrote our own story of silence in the style of moments or incidents that came to mind
and then shared the writings with a view to offering a sentence of the connections or related
themes found in the other’s. What follows are those sentences to give an indication of the
difference in frames and yet broad experiences which were available at the start of the work
together in the classroom:

Alf on Laurinda: Silence painful and angry as a child - alienation transformed into listening
through groupwork and counselling training at University.

‘*Later Mum told me that Dad was just as upset as | was, but for different
reasons. He got frustrated at not being able to give me any answers to my
questions.” (Laurinda 20/11/95)

Laurinda on Alf: Travel - opening of the mind through contemplation of natural phenomena and
other peoples and religions.

*Silence is also in waiting. | think | learned how to wait in Zimbabwe - hours
by the side of roads waiting for buses and lifts. | have an image of waiting
with Zimbabweun friends who would just sit ..." (Alf 20/11/95)

Commentary 3 )
A common strand that emergéd was an interest in and experience of Gattegno (1964-66)’s Silent
Way of teaching a foreign language. This method involves the teacher working with a group of
students intensively - without speaking in the initial stages. Alf had been to an ltalian weekend
course and Laurinda to a briet Spanish sesston followed later by a Japanese weekend course.
O
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Alf realised that he had introduced & number of concepis to classes, afier the “Silent Way”
weekend, by intentionally writing on the board in silence.

4) Working in the school - silence in year 7
Alf 20/09/95: We were going to do some work on arithmogons - |
drew onie, put a number in two circles, paused and filled the box in
in between by adding, paused ... put a number in the third circle ..
filled in the other two boxes by adding in the sime way. A tew
hands had gone up; there was silence. Another example, still silence:
a couple of students bursting 1o tell the answers in the boxes, but still
silence (this was surprising). | was making eye contact with many of
the class and looking a lot at a girl who I felt might be the last to pick up what was going on -
there was concentration, bat still no understanding on her face. A third example ... [ turned to
look at the class and everyone's eyes were burning into the board - | hadn't experienced this
before and I almost broke down. Still silence ... 1 now filled in two boxes with answers trom
the class, everyone's hand seemed to be up except the girl; she was straining and secmed
have just understood; she half whispered an answer, not quite committing herself - but it was
correct. One more example ... two boys had lost concentration,
staring brought them back. The girl’s hand was now up with the rest
- the boys seemed to be following, so | nodded at her and a correct
answer came. [ then drew an arithmogon with only the boxes fifled
in and invited the class to try 1o find what the numbers in the circles
could have been ... no one needed a further explanation. which is a

rare event for me!
Laurinda: From my lesson observation notebook 18/09/95 (see Commentry 4 for explanation!)

- Strategies for "knowing that they all know' (first bit) ... wonderful build of energy here! - a
sign 1o move on often and articulation can get in the way ... a move direct to the filled in squares
(done/said before your decision) ... (yes ... that's what you did).

Commentary 4

The story of the lesson illustrates an example of Alf experiencing a change in perceived
behaviour of the students in relation to his changed behaviour. The energy of the students in
response to his waiting for more of them to offer was what had been surprising.

The lesson observation notes need some expansion, however, beciuse in this case there is clear
evidence of Laurinda also leaming. The first phrase (a macro-strategy or purpose) refers to the
fact that Alf was demonstrating a technigue (micro-strategy) of waiting for responses which had
the effect of allowing enough time for more students o be able 1o offer. There was & wondertul
build of energy into the completion of the second arithmogon. However, at this stage Laurinda
felt uncomfortable since she wis aware that she would have made the decision o move oo the

next stage of presentation of the challenge of “what's in the circles given the filled in squies”.
M OAN
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The rather strange, hesitantly oftered, next phrases were interpreted in conversation after the
event as evidence tor this discomtont. Laurinda felt that either the energy in the students might
become dissipated by the task being perceived as 0o eusy or continue 10 build and need releasce
in mayhem! Neither of these positions held and all children in this mixed ability group became
completely absorbed by the fourth example. The energy levels of the students were high and the
final two statements in the notes confirmed Alf’s move 1o the challenging problem. This incident
continues to provide us with questions about the links between energy, motivation and the use
of silence in the mathematics classroom. '

Within the theoretical perspective this exploration of the use of teacher silence (the mucro-
strategy or purpose) was here developed through micro-strategies of (1) giving the students a
visual task offered slowly and silemly which focused the attention of the students and (2) tiining
a change from do-able to more challenging yet reluted task. Having experienced the power of
this technique under thesé circumstances both Laurinda and Alf were in the position of having
implicit beliefs or central strategies brought into question having experienced a learning episoxde.
which they valued for the students. What were these central strategies? Further discussion
would suggest that “autonomy” was an inhibiting factor for Alf in the first year of teaching
which could now be adapted as a theory given his increasing ability to take the authority
position. For Laurinda it was 10 see that it was possible 1o continue the energy build using
silence without boring the brighter students for the sake of the “girl’. In this case the evidence
was that the students were not bored and attacked the challenging problem.

§) Silence and energy versus slillness - a new common frame

A year 7 (ages 11 - 12) class had been working at seeing whether there was a link between the
rules to describe a function and the graphs of the function articulated, as a purpose, by Alf as
whether they could know what the graph would look like without needing to plat the points. The
class had been working in the first quadrant only. To introduce these ideas the class had been
playing the function game (1o be played as part of the presentation at PME20), Banwell et al,
1972). The game is often played in silence which tfocuses individual attention and energy in the
moment on the task of sorting out what is going on.

In discussions before the lesson the decision had been made for Laurinda to begin by inviting
the group to share with her what they had been doing with Alf in the previous lesson. After
negative numbers had been introduced into the game Alf would then refocus the group's
attention on the purpose trom the previous lesson and extend the work into plotting graphs in all
four quadrants. At the handover Laurinda had used the micro-strategy of holding the sifence
longer than she would nomaily have done 10 force every student 1o commit themselves to an
answer which in this case was negative. As the pens passed to Al the students were excited and
present in the task, yet not silent nor easy to handle! It was essential that Alf provided the move
from this doable to a more complex yet related challenge so that the energy could be used.

Into an energised space Alf said “What's different about what you've been doing with Miss
Brown and what we were doing last lesson?” The effect of this question wits to make the group
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“absolutely still. This was a silence in the students which was of a different quality 1o that
experienced before - a stillness.

Commentary §

The silence energy which we had identified in the first visit described above was energetic and
mobilising for the leamers, their attention was focused in the present and they were using
themselves in the moment bringing everything they have with them to restructure their
experience. The contemplation (Gattegno, 1987 ) stillness seemed o be trapped by the invitation
to compare two aspects of experience, before and atter and it was as it their presences went
away 10 attend 1o that difference as they looked inward. This stillness was also powertul but not
about experience, more about integration (Gattegno, 1987). There had been the question and this
was the reaction - this stillness was their will, not imposed by the teacher.

Some final thoughts and directions for future work
We work within the realm of what Bruner (1990) calls a “cubrally sensitive psychology ™

*(which) is and must be based not only upon whiit people actually do but
what they say they do and what they say caused them to do what they did. Tt
is also conBerned with what people say others did and why ... how curious
that there are so few studics that (ask): how does what one does reveal whut
one thinks and believes (pl6-17).

The interaction of the two researchers/teichers also works creatively as ideas coemerge and
implicit theories of learning and teaching were made conscious allowing the possibilities of
adaption. There is now not so much of a feeling of an unbnidgeable gap for Al but a sense off
staying with the uncertainty and developing ways of working on his practice:

*One discipline that has come out of the work is that of “staying with the
story . In my notes on teaching in the first year, the observations are in
general distant - about whole classes - with observation and analysis all mixed
in ... forcing myself to hold back the analysis and stay just with stories about
individual$' or groups the analysis from this data then has the possibility of
throwing up something [ had not been aware of before.” (Alf, 3/12/95)

There was also evidence here for the students being engaged in and enjoying the chatlenge of
mathematics. Here there is *silence on the pant of the teacher(s), so that they can clearly hear the
verbal messages of the students’ (Gattegno, 1971) and support tor a listening classroom (Davis
1995). The voice of the students, repressed in the delivery mude ol teaching where they listen in
silence to explanations, is found in the task of interpreting ever more complex challenges.

We agree with Edwards and Naiez (1995) that the studemts” understandings be seen as
‘appropriate, adaptive expectations arising from their own embodied experience in the world®
and that the teacher "must create situations in which the new mathenvatics is more adaptive than
the 0ld’. Our current work is developing our practical skills in sharing purposes and responses
in the classroom so "teaching with an emphasis on communication” tibid. 1995).
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Within this realm we seem 1o be developing an image of whole class teaching which is neither
exposition and practice nor individualised scheme but allows coemergence (Reid, 1995) of
mathematics within the classroom and i tentative thesis would be that purposes act as
mechanisms for the students and teachers to ‘stay with the complexity’ within the classroom
thereby accessing their intuition (Gattegno, 1987).

Thanks to Greenshaw High School, London for supporting this work.

References

Banwell, C, Saunders, K.and Tahta, D, 1972, Starting Points , London: Oxford University Press
Bateson, G, 1979, Mind and Nature, New York: E P Dutton

Brown, L, Hewitt, D and Mason, J, 1994, ‘Ways of Seeing’. In Teaching Mathematics, b
Michelle Sclinger, London: Routledge

Brown, L, 19954, *The influence of teachers on children’s image of mathematics’. Proceedings
of the Nineteenth International Conference for the Psychology of Mathematics Education, Vol
2,146 - 153

Brown, L (with Dobson, A), 1995b, "Using Dissonance: finding the grit in the oyster™. In
Liberating the Learner, Eds Claxton, G, Atkinson, T, Osborne, M and Wallace, M, London:
Routledge

Bruner, J, 1990, Acts of Meaning, London: Harvard University Press

Claxton, G, 1984, Live and learn: an introduction to the psychology of growth and change in
everyday life, London: Harper and Row

Claxton, G, 1989, Classroom Learning, Open University course E208, Exploring Educational
Issues, Unit 13. Milton Keynes: Open University

Davis, B, 1994, Teaching Mathematics: Toward a Sound Alternative, Unpublished PhD thesis:
University of British Columbia, Canada

Edwards, L D and Naiez, R E, 1995, *Cognitive Science and Mathematics Education: A Non-
Objectivist View'. Proceedings of the Nincteenth International Conference for the Psychology
of Mathematics Education, Vol 2, 240) - 247 ’

Gattegno, C, 1964-66, The Silers Way in SpanishiFrench/English. Reading, England:
Educational Explorers

Gattegno, C, 1971, What we owe children, London: Routledge and Kegan Paul

Gattegno, C, 1987, The Science of Education : part I theoretical considerations, New York:
Educational Solutions

Lakoff, G, 1987 Women, Fire and Dungerous Things, Chicago: University of Chicago Press
Mason, J, 1994, *Researching From the Inside in Mathematics Education - Locating and 1-You
Relationship® Proceedings of the Eighteenth International Conference for the Psychology of
Mathematics Education, Vol 1, 176 - 194

Miles, M, 1990, ‘New methods for qualitative data collection and analysis: vignettes and pre-
structured cases’. International Journal of Qualitative Snudies in Education, 3(1), p3§

Nisbet, J & Schucksmith, J, 1986, Learning Strategies. London, Routledge and Kegan Paul
Reid, D A, 1995, The Need 1o Prove, Unpublished PhD thesis: University of Alberta,
Edl.nunlon, Canada

Vaiela, F, Thompson. E and Rosch, 5. 1993 The Embodicd Mind, Cambridge: The MIT Press

RIC S 2152



THE CULTURAL. EVOLUTION OF MATHEMATICS
Manchester Metropolitan University

The ever increasing rate of social evolution results in the demands being placed on
mathematics becoming ever more complex. This paper considers the effect of
mathematics being stretched between the needs of increasingly diverse subcultures
whilst the rapidity of change causes a re-evaluation of traditional roles such as those
between teacher-pupil and parent-child.

As teachers, we rightly value the way in which our students bring meaning to the
mathematical situations they encounter. It seemis there is much scope for judgment,
insight and creativity in the style of mathematical work being introduced in many
schools and we may aspire 10 encourage these qualities in the children’s learning. Yel
there is still a need for an individual to reconcile his or her own personal
mathematical understanding with the ideas and traditions growing out of centuries of
mathematical exploration and invention (cf. Ball, 1993; Brown, 1994 b). It is all
very well students being creative mathematicians but they still need to be able to do
everyday calculations and understand aspects of conventional mathematical thinking.
We are often tom between attempling to focus on our student’s own way of seeing
their mathematical endeavours and seeing these endeavours with our own eyes,
inspired, maybe, by a “correct” view of mathematics. There are, inevitably,
difficulties for us in making sense of student’s own developing understanding without
using our own “expert” overview as a yardstick, especially when we pose the tasks
they are working on. Teacher descriptions of children’s learning often presuppose an
adult overlay framing the mathematical ideas supposedly being addressed.
Meanwhile, the sort of constructions students are likely to generate for themselves
are a function of their own particular concerns in relation to the sorts of tasks they
are presented with. Whilst we may wish to encourage students to pursue their own
mathematical concerns at times, we retain the option of blowing the whistle and
denying that their work is mathematics at all. Furthermore, as the apparent
_relevances of different aspects of mathematics, as perceived by society, grow or
fade, the nature of tasks on offer and the values associated with them will alier. The
ground does not rest beneath that which is called “mathematics”. This paper
considers how social evolution results in a fragmentation of any holistic notion of
mathematics and forces a reevaluation of the teacher-student relationship

Taking a broader view, any society can itself be seen as being shaped as an idea by
people who tell “stories” about it. There is, necessarily, a self-reflexivity to the very
notion of “society”. Mathematics, likewise, can be secn as being conditioned by its
position and shaping within such stories and this produces a multiplicity of co-
existing views regarding what mathematics is and the role it serves. The creation of
these difterent camps can result in conflicting demands being placed on it. A
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particular dispute emerges around attempts to decide whether mathematics is in the
world or in the mind. The disparity between these views is not resolved through a
closer examination of what mathematics'“is”. One can, however, look at the social
space which gives rise to these different perspectives and seek 1o understand the
processes at work. But even within this task one needs to be alert to potential disputes
regarding the way in which an independently existing mathematics might be invoked
to arbitrate between the perspectives being examined.

As an individual | declare my own identity through asserting my identifications with
various groups, by participating within them. Through doing this, both the group
and I, myself, evolve (Habermas, 1991). Habermas® broader project focuses on what
it means 1o create commonality and communicative links between differcnt forms of
life (see White, 1988, p. 154). He sees the building of these links as an integral
element of growth, where both social and individual evolution are bound up with
attempls lo reconcile social practices with descriptive practices (Habermas, 1987, p.
60 ). Such practices however, can be highly localised and for this reason he seeks to
develop a multi-dimensional concept of the world, as experienced by its various
inhabitants, towards integrating alternative practices.

To engage in mathematical learning, not only is it necessary to share understandings
with other individuals, one also needs to be able to participate in and move between a
variety of mathematical subcultures; “everyday” mathematics, various types of
school mathematics, examination mathematics, novice vs. expert mathematics, elc.
each with their own particular language, scope of interest, values and associated
skills (cf. Cobb, 1994; Brown, In press; Lave, 1988; Carraher, Carraher and
Schliemann, 1985). Insofar as mathematics is socially constructed there is a need 10
examine the way in which the particular subculure flavours the mathematics it uses
and how these various demands made on mathematics evolve as social needs change.
As an example, the variation in styles of questions employed by different
examination boards within the United Kingdom, results in students not being
examined in mathematics per se, but rather, in the particular style of questioning the
board chooses to offer. Similarly, the “geometry™ I did in school twenty five years
ago with protractors and set squares is qualitatively different to the **geometry”
present in work with Cabri software (cf. Pimm, 1995; Laborde, 1993). I claim my
own school’s penchant for wobbly compasses had considerable effect within my
formative experiences of what constituted a circle!! Classroom technology both
encourages and facilitates a shift of focus. The mathematics itself is different, not just
its presentation. Old points of anchorage get eased out. For example, a triangle in
Cabri environment is qualitatively different 1o one in a pencil set square and compass
environment, or one made with plastic strips, or one created on a computer using
BASIC graphics or LOGO. In each situation the triangle appears in an environment
where centain things can be done to it; it is a function both of available operations
and of things that can go wrong. Each environment hosis a particular style of work
or mode of culturality. The triangle appears in the specific cultural discourse,
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differentiated from the lhings around it, in terms of both its innate qualities and the
way it is produced in the panicular field. David Pimm (1995, pp. 56-58), in homage
to Magritie’s painting of a pipe known as “Ceci n’est pas une pipe”, speculaies:

Q “This is not a triangle”,

Magritte’s joke however does not transfer successfully. For it 1o work we would
need 1o assume the primacy of a transcendentally defined mathematics. existing
outside most cultural practices. In many cultural discourses a pencil drawn triangle is
indeed a triangle, not just “as good as the thing itself for our purposes™ (ibid.), not
merely a nice drawing that helps us see the thing itself.

Mathematics in learning situations is generally subject 1o such cultural and stylistic
flavouring. This sort of concern invites a shift from having an overview of
mathematics gu mathematics, towards undersianding how it is 1o engage in
particular versions of it, within given social settings (cf. Mellin Olsen, 1987, pp. 18-
76). Further, there is a need to understand how children participate, with their
teachers, in the constitution of classroom mathematical practices (cf. Cobb, 1994, p.
I5). Habermas™ project is concerned with breaking the shackles of conservativism
(see Huspek, 1991) and sceks to prevent this constitution from being mere
reproduction. Participants in mathematics lessons, for example, would need to build
a clearer understanding of how their actions relate 10 norms inherent in the
particular subculture and how the criteria might change as they move into a new
subculture. That is, students need to become more aware of the parameters of their
own learning, towards being able to take a critical stance of how these parameters
govern their situation. Skovsmose (1994) advocates an increased emphasis on
thematic project work within mathematical learning to enhance student awareness of
how problems may be contextualised. Meanwhile, Mason’s work focuses more
closely on the parameters of mathematical problems themselves (op cit.). The insider
perspective needs (o be understood more closely in relation 1o the contextual forces
operating on it. An essential aspect of this that needs 1o be addressed by empirical
mathematics education research is an analysis of how the symbolic framework
employed within a given subculture mediates access to the understandings of that
culure.

Like Cobb (1994, 1 feel it is inappropriate to insist that either individual or social
perspective takes precedence. In looking around me | have some awareness of the
conventions inherent in my culure and how they influence the way | see things, quite
independent of any explicit educational programme alerting my attention to this. As
an individual 1 have some concern with how I fit in. This seems inevitable in a world
where so many subcultures confront each other and maybe some offer me
membership. However, in line with Habermas, | suggest the task of education must
be, in part, concerned with enabling the student 1o develop this self-reflective critical
stance in relation 1o the perspective he or she assumes. More than ever, students are
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preparing themselves for a world undergoing fundamental structural changes,
comprising rapid growth and increasing diversity. This creates pressure to
regenerate styles of teaching and learing mathematics whilst moving away from
treating mathematics as though it could be conceptualised in a stable state in relation
to the reality it serves (cf. Brookes, 1993, 1994).

There are, however, a few remaining difficulties, which make the policy
implications of such a view less than clear. Initiation will always remain an
indispensable dimension of mathematical activity. Indeed it would be hard to
conceive of mathematics teaching without initiation; the whole enterprise would
dissolve in to thin air. We need to set something up before we can engage in a
critical attitude. Nevertheless, in an environment of rapid environmental change we
are increasingly concerned with enabling children to respond positively to constant
renewal. The old ways cannot be our only concern. Indeed as adults we can only
assume partial control in making the decisions. Teachers and pupils invariably share
responsibility for structuring the space they share but as my colleague Olwen
McNamara has pointed out, adults often find themselves very much at the beck and
call of their offspring in such shared space. The child’s action activates a response on
the part of the adult trying to cope; the adult’s behaviour forming itself around the
child’s whims. (Apologies to my baby son Elliot!). But things need to be in motion
or, at least, anticipated, before resistance is possible by either adult or child.

I return to David Pimm’s intriguing account, where he examines some of the issues
associated with a move towards a more critical mathematics education. He offers
examples of a number of questions which could only arise in a discourse designed
specifically for the teaching of mathematics. The stories are daft in the sense they
would not have any function outside of a pedagogic frame. (E.g. If one Confederate
soldier kills 90 Yankees, how may can 10 Confederate soldiers kill? (Pimm, 1995, p.
64)) But what are the more honest alternatives? To engage in critical mathematics
education it is a prerequisite that we embed the mathematics in a social practice, even
if this is simply the social practice of doing school mathematics, but all 0o often the
attempt to embed mathematics results in a curious world that exists only for
mathematics classroom. On the other hand firm emphasis on a more pure
mathematics, situated only in the practice of doing mathematics, can result in an
alienating discipline restricting access to all but a few and concealing its applications
in broader social practices. Pimm (Ibid., pp. 153-158) questions the virtue of giving
primacy to critique in the way Skovsmose seems to. There is a risk that if children
focus too much on critique they do not learn mathematics. Skovsmose’s approach
which emphasises teaching mathematics within social themes, certainly would
reorientate the way in which we value mathematical concepts, placing more stress on
those with practical potential, but then which practice? We risk introducing all sorts
of artificial worlds as a proxy for social realities. However, if we reject such a move
we are still left with deciding what it is we do promote. Do we make some serious
investment in embedding mathematics in order to develop skills of critique or
Q
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concentrate on going with some version of mathematics itself’? John Redwood, a
right wing government minister, recently questioned the value of comparative
religion in British schools on the grounds it meant that cach religion examined '
received no more than lip service. To embrace a religion you need 10 make a total
commitment, dwell in it as an act of faith. He argued that children are not equipped
10 hold on 1o 100 many versions simultaneously and they should instead focus on one.
But, of course, such a policy results in one religion assening its power over all
others. Similarly, if we invest 100 much faith in one version of mathematics we risk
forcing students in 1o conservative reproduction of the status quo and providing
shon cuts for getting therc. However, we are unlikely to face such an extreme
polarity of choice. '

At some point we need 1o concern ourselves with the issue of how far the teacher can
take responsibility for facilitating initiation, in relation o the students building
significance for themselves (cf. Brown, 1996) but, before this, we still need 1o decide
what it is we are initialing students in to; various cultural practices, some son of
disembodied mathematics or, more probably, somewhere between. We are
necessarily in a state of moving between situated mathematics, of which stories can
be told, and a mathematics understood as if existing outside of everyday human
discourse or, at lcast, functioning as a discourse with a very specific structure.
Whilst the stories that Pimm cites lack credibility in the real world, all such stories
would 10 a degree. They more or less embody some view of abstract mathematics
and we can never have anything more. We need such stories 1o mediate experience,
10 help associate sense and reference. “Maths-speak” is, from a post-structuralist
perspective, just as much a story as all the other stories, although some stories may
appear more overlly mathematical than others and so more transparently reflect the
status quo”? Qur overarching task is 1o nurture a dialectic between reality and stories
told about it, a dialectic which transforms both. As Pimm suggests, we need to
combine descriptive with generative language and, I suggest, not just generative in
the existing franie. Stories cannot usefully function as a mere map but also need o
trigger renewal. '

In summary, there are many versions of mathematics engendered through practice in
a multitude of subcultures. For a teacher there is always a decision as 10 whether
mithematics should be situated in “practical” examples so as to make it more
meaningful and accessible. However, many atiempts at situating mathematics result in
an anificial world created purely for pedagogic purposes. Meanwhile, the teacher
may or nky nol wish to make initiation of their students into the status quo their
principal concern. Whatever they decide it may be that students construet their own
agenda anyway. Combining the teachers perceived intention with an outside view on
how this intention is associated with significance 1o the student, we may begin 1o
speculate on how much a teacher’s input ensnares the student into reproducing the
status quo and whether this is desirable or not. The task of the teacher seems 10
always involve initiation to a degree but if 100 many shor cuts are taken in effecting
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this initiation, learning becomes compliance, resulting in students being ill equipped
for facing new situations. We also risk facing a broader scale version of the
Brousseau’s “didactical trap”, namely, the more we seek lo specify the nature of a
more pure mathematics the more risk there is of students not experiencing it.
‘Teachers, however, need to find ways of enabling students to engage mathematically
beyond the frames teachers themselves offer.

So then, | am floating the idea that mathematics is located in the practice of engaging
in mathematical activity (cf. Brown, 1991, 1994 a). Mathematicians learn their skills
whilst engaged in such practice. And that mathematics has a human dimension both
in its historical creation and in its direct interface with individual humans.
Mathematics is not so much oriented around universal facts but rather revolves
around personal awarenesses engendered through practice. In learning mathematics a
human is concerned with how he or she may use mathematical ideas and with his or
her performance in mathematical activity where mathematical knowing involves
some self-reflection on that known by the learner. ‘The discipline of mathematics per
se is not sufficient in itself in informing action; there rieeds also 1o be some
development of practical skill of engaging in mathematical activity as understood in
broader social practices. For this we need to know a little about the reflective state of
being engaged in a mathematical task. Communication involving teacher and student
is, at least in part, about operating on knowing through helping students to become
sensitised in mathematical situations. This knowing, however, emerges through
action since the social practices which host specific actions are imbued with the
society’s preferred ways of seeing things. Indeed, in this respect the individual
cannol be seen as separate to his or her society nor the mathematics it uses - since the
society speaks itself through the words and actions of its individual subjects.

Choices for teachers are not clear. Conceptions of mathematics change variously in a
multitude of practices whilst governmental preferences in curriculum design
fluctuate in response to rather different agendas. Criteria for professional ’
advancement are not always commensurate with meeting perceived local needs.
Teachers, however, must assume some sort of professional identity if they are 10
build up resistances to increasing environmental pressures. The teaching
environment has become too complex for all demands to be complied with and so
teachers are forced into making choices, both constrained and enabled by the
structural framework they meet. Rapid change seems to have become a permanent
condition rather than being a mere short term phenomenon seeing us through to a
new stable state.

These demands have been addressed in some quarters. For example, Brookes has
considered issues in education resulting from rapid environmental change.

.practce is governed by beliel and that in changing circumstinces there is a need to work at those
implicit presuppositions which prey ent accommodation o new conditions,

-The co-existence of an increasing variety of possibility in the world with the constant universal
commonness of grow th (Tom birth 1o maturity implies unavoidable contlict.
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-When the rate of change of environment is Faster than the tate of human generation there is an impliot
destabilising.

“This is scen as it constant state of resolving: that is of control in changing from state 1o state. 1t implics
dynamic stability; homcorhesis (stabiity o How ) instead of homeostasis (stability of state) (Brookes,
1UK6). .
These principles locate a desire to address the failures of teaching, of learning and of
mathematics to keep pace with demands placed on them. Our attempts to describe
them always lag behind their reality. Brookes (1994) offers the example of
“computer studies”, as taught in British schools until recently, where
“environmental” change of computer knowledge and skills was far greater than the
response lime needed for the necessary change in the exam system. 1t was supposedly
a “modern” subject but permanently out of date. Mathematics like any curriculum
subject is, to a large measure, a function of the demands placed on it. As these
demands evolve the subject itself comes under increasing pressure to change. What
appeared static begins 1o strain as its pace of evolution overtakes that of gencrational
change (i.e. pertaining (o changes consequential to normal biological growth).
Brookes (ibid.) argues that the recent penchant for criterion referenced testing in
curriculum documents within the United Kingdom is “an intellectual product of
engagement with a strongly behaviourist form of thinking involving a belief in -
identifiable aims and objectives for any particular educational enterprise™. Such a
move, he sees as an atlempt to force adaption to a new order, sterilised in the
language -of the old. Brookes continues: “The recognition that the world is changing
rapidly casts doubt on any programme which depends on rigidly defined
propositions embodied in a static educational theory not capable of responding to
environmental change™. British teachers have recently experienced a succession of
such curriculums, with each new set of guidelines modifying the last to a significant
degree. The teachers did not have the opportunity to live in a particular version for
more than a few months before yet another change was demanded. The
disorientation and fatigue brought about in teachers by such rapid change resulied in
a promise from the government not to change anything else for another five years to
appease a disillusioned teaching force. Brookes (ibid.) suggests that for education
systems to be compatible with the world as we experience it we need 10 “accept the
twin constraints of an environmental framework that is changing non-repetitively
and accelerating and a generational framework which is cyclically repeatable and
only gently changing”. The rapidity of current environmental change is such that
educational policy grounded in the beliefs of the last generation and how they did
things, loses touch with the challenges faced by the new generation. The very
relationship between successive generations is challenged through past roles, assumed
between old and young, father and son, teacher and pupil, being undermined. To
meet the demands of such growing pressures students should be equipped to generate
and work with their own accounts of the realities they face rather than rely too
heavily on the accounts provided by their elders. The structures which govern our
actions in mathematics education, however, are embedded in the very language we
us§:; our mathematical language, the way governments describe mathematics on a

Q I :

3
PRI



curriculum, the way we describe our individual intentions as a teacher, elc.
Increasingly, none of these ways of talking exist for very long and often become
invalid before they become familiar. Their chances of surviving and being passed on
to the next generation become ever smaller.
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BEGINNING LEARNING NEGATIVE NUMBERS
Alicia Bruno and Antonio Martinén
University of La Laguna (Spain)

In this work we put Jorward a way of learning negative numbers and also give the
main conclusions we have reached from our research in this area. The basic
characteristics of our proposal are: a) consideration of the  extension of non-
negative real numbers to real numbers; by attention to three dimensions of numerical
knowledge, that is, abstract, contextual and the number line; ¢) basing learmng ona
mcunmg,/ul and concrete process through pmhlcm solving,

INTRODUCTION

Research into the learning of negative numbers has focused on various aspects.
Some authors have paid attention to the moment in the learning process when these
numbers can be introduced and to the students’previous concepts about integer
arithmetic (Murray, 1985; Human and Murray, 1987, Davidson, 1987). Other
researchers have focused on the role of the number line (Kiichemann, 1981; Peled,
1991) or on the solving of additive problems (Vergnaud, 1982).

The teaching of numbers spans a large period in students’school life. Children
begin by studying non-negative integer numbers Z; and end with real numbers R,
passing through several intermediate stages: We believe that the most delicate
moments in this long process are precisely those when extensions are made from a
numerical set to another, when it is necessary to relate the new numbers, the
operations performed with them and the order between them with those numbers
already known. As such, numerical extension should not mean a break in numerical
knowledge but rather an extension in knowledge by integrating old and new
knowledge in a single whole. The purpose of the present work is to put forward a
proposal about how to achieve extension to negative numbers. The basic ideas about
how this can be done can be suminarized as follows:
1) We consider the introduction of negative numbers starting from non-negative real
numbers R;: and so we study the extension R+ — R. In some countries, Spain for
example, the extension studied in schools is Z+ — Z.
2) Knowledge of negative numbers is manifested in several dimensions (Peled, 1991).
Pure and symbolic mathematical knowledge is found in the abstract dimension. Use of
numerical knowledge in concrete situations is found in the contextual dimension.
Finally, identification of numbers with points on the number line is found in the
number line dunension. '
3) Learning is carried out by solving several types of problems in different contexts
and with different structures. We have studied the identification of addition and
subtraction, as this is a basic idea.
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In this work we also present the main results we have obtained froim a classroom
experiment based on our proposal. We worked with three experimental groups (Gl,
G2 and G3) and two control groups (G4) of 12-13-years-old students in three different
schools in Tenerife (Spain). We had prepared curricular material which was used by
the students for approximately two months (4 or 5 hours per week). In the experiment
the students carried out various tests and 11 students (S1, S2, ..., S11) belonging to
groups Gl, G2 and G3 were selected to undergo clinic interviews. These- students
were chosen on the basis of the different levels of knowledge shown in the tests they
carried out. '

EXTENSION TO REAL NUMBERS

There are several ways of extending Z, to arrive at R. For example, in Spain,
extensions are carried out in the following sequence:

Z,— Q4 ; i—s 7 Q:— Q—> R.
The lack of continuity in the above sequence is obvious. We believe that a suitable
learming sequence is the following;
Z, > Q. » R, >R,

whereby there is a continuous progression towards R. One of the aims of our
experiment was to check that this sequence of extensions does not mean a poorer
understanding of Z. Thus, groups G| and G2 did the extensions Q. —» R, — R,

although the main work was focused on the extension: R, = R. Group G3 worked on
the extension Z, — Z, with the same material as groups Gl and G2, but using integer
numbers only. The control groups (G4) worked on the extension Z, — Z using their

textbook, except for some changes needed to make contrasts with the experimental
groups.

In other research (Davidson, 1987) the possibility of introducing negative
numbers at early ages has been studied, allowing a sequence like the following to be
carried out:

Z, > Z > Q > R

The results of the tests undertaken by the students lead us to believe that
working with extension Ry — R, instead of with Z, — Z, does not ‘mean poorer
knowledge of Z. In order 1o illustrate this conclusion, we present in Table | average
results x (0 < x £ 10) and the standard deviation s, for groups of questions on integer
numbers: order, addition-subtraction, multiplication-division, problem solving and
problem writing (giving the students an operation so that they write a problem).

‘The data in Table 1 show similar knowledge in all groups regarding the difterent

aspects of integer numbers. In other words, the groups that carried out the extension
to R did not achieve an interior level of knowledge of integer numbers.
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Table 1. Results of questions about Z

Gl G2 G3 G4
Order x=82 x=86 x=83 x=84
s=2 $s=273 =22 s=24
Addition x=8.0 x=8 x=17 x=75
Subtraction s=1.6 s=25 s=25 §s=23
Multiplication x=84 x=74 x=68 x=1706
Division s=1.5 s=28 s=27 s=19
Problem x=73 x=0.6 x=56 x=64
solving s=18 s=19 s=22 . s=23
Problem x=85 x=6.06 x=56 x=64
writing s=18 s=19 s=22 s=23

THREE DIMENSIONS OF KNOWLEDGE

Peled (1991) concluded that the descriptions made by students about how they
perceive negative numbers and operations using these numbers can be considered in
two dimensions of knowledge: a quantitative dimension and a number line dimension.
Our research leads us to divide the quantitative dimension into two, which we call the
abstract dimension and contextual dimension.
Abstract dimension. This refers to the abstract and symbolic knowledge of numbers,
order and operations. For example, an aspect of this dimension is the addition
3+(-8)=—5 obtained when applying a rule of type “to add a positive number and
negative ones, subtract absolute values and write the sign of the greater value™.

Contextual dimension. This covers the knowledge expressed in concrete numerical
situations. For example, associating the number -2 with “I owe 2” or “2 below”. In
our research we have worked with numerical situations in six contexts: have-owe,
temperature, sea level, road, time and clevator. Furthermore, the numerical situations
considered correspond to states (1 owe 27), variations (I lose 2") and comparisons
(“I have 2 fewer than you™).

Number line dimension. This dimension is seen when making representations of
numbers, operations and order on the number line.

The level of knowledge in each dimension for negative numbers is different for
each child (Peled, 1991). We have studied the transferences of knowledge made
between the different dimensions. So, in the interviews made with the 11 students, we
posed questions in which they were asked to pass the knowledge given in one
dimension to another dimension. In total, we posed 18 to 20 questions for each
transference. In Table 2 some examples of the questions made to the students are
given.

Q
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Table 2. Example questions about transferences between dimensions

abstract — number line number line — abstract
Represent on the number line the operation: Tell me an operation that might be represented
-4+10=6 on the number line in the following way:
‘ -1
1 T T T 1 O O A Y
LI S O N N B BN N N B S B ey
- 0 6
abstract — contextual contextual —» abstract
Tell me a situation that might be solved using the| Tell me an operation that might solve the
following operation: -4+7=3 following situation:

The temperature in Madrid is 9 degrees above
zero. In Paris it is 12 degrees less than in
Madrid. What is the temperature in temperatura
in Paris? ]

contextual — number line number line — contextual
Represent the following situation on the pumber | Tell me a situation which might be represented in
line the following way:
An elevator was on the floor 5 of the basement .
and went up 7 floors. After going up in this way, -
what floor was the elevetor on? ’ _‘_’_*_+—H_H—‘—,—+—H—f—
3 [} 4

The percentages of transferences carried out correctly are given in Table 3.

Table 3. % of correct transferences between dimensions
SI __S2 S3 S4 S5 S6  S1 S8 SS9 St Sii

students’levels L L ML ML M M M MH H H H
abs[‘rac[_)number line 6 6 29 25 44 68 44 43 82 83 87
number line -5 abstract 6 18 25 37 50 75 50 56 84 81 93

abstract—contextual 3t 30 3 43 61 43 kN 62 72 62 77

contextual-—abstract 55 42 55 47 80 63 55 77 95 94 83
contextual-->number line 30 30 85 45 85 85 90 75 100 100 95
number line—contextual 44 40 72 55 90 75 89 95 100 95 100
Students’levels: L = Low, ML = Medium-Low, M = Medium, MH = Medium-High, H = High

Here, in brief, are some of our conclusions:

Asymmetry in transferences. In Table 3 it can be seen that the differences in
transferences between the abstract and number line dimensions and between the
contextual and number line dimensions are not excessively wide. However, there
seems to be an asymmetry between the contextual and abstract dimensions. For all
students, it is more complicated (o puss from the abstract (o the contextual than from
the contextual to the abstract.
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Difficulty in transferences. From Table 3 it can also be concluded that there are wide
differences between students in a single transference, depending on the student’s level
(for example, from a 6% for student S1 to 93% for student S11 in the transference
from the number line to the abstract). On the other hand, there are certain constans in
students’ answers:

It is casier for all students to arnve at the representation on the number line
from the contextual than from the abstract. ' .

It is easier for all students 1o arrive at the contextual from the number line than
Srom the abstract. '

It is casicr for nearly all students (except 83 and S10) to arrive at the abstract
from the contextual than from the number line.

Representation of states and variations. Students differentiate states and variations,
representing themn with points and arrows, respectively. Those students who cannot
difterentiate themn are of a low or medium-low level. Bell (1986) noted that students
have difficultics in handling combinations of transformations (addition of two
transformations resulting in the total transformation, t,+t;=t,) when they do not know
the starting point. We have observed that in order to represent variations there are
soine students who need a point for the initial position (this need varies in accordance
with students’levels).

Types of situations used. It can be seen that when students invent contextualized
situations there are differences depending on the initial dimension. When they invent
situations on the basis of a representation on the number line they use contexts
(clevator, road, etc.) and structures that they do not use when the initial dimension 1s
abstract, when they always use the owe-have context.

On the other hand, there are situations of symmetrical transference between the
three dimensions, for example, a simple situation such as “the temperature is 8 degrees
below zero”. However, there are more complex situations, such as some of additives,
in which the three dimensions are not related symmetrically.

Representation of numbers in isolation. When it came to representing on the number
line an operation such as —4+7 (that is, when passing from the abstract to the number
line dimension) an error commitied by some students was to indicate the three numbers
involved in the operation in an isolated way on the nuinber line, without demonstrating
that for them the number line is a model where this operation can be calculated in a
meaningful way. This error has been noted in the work undertaken by Carr and
Katterns (1984), but with respect to operations with positive numbers.

ADDITIVE PROBLEM SOLVING STRATEGIES .

In our opinion, the nain difficulty in learning negative numbers is that the old
notions of adding and subtracting, which scem to be contradictory with positive
numbers, are integrated here in a single idea of addition. Qur proposal is to use a
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“double language”: for example, “he lost 2” is the same as “he won -2 We use this
double language when solving additive problems. Following the classification adopted
by Vergnaud (1982), the problems we used had the following structures:

- addition of two states resulting in the total state: s, + s, = s,

- addition of two transformations resulting in the total transformation t+t=1t

- addition of an initial state and a transformation resulting in the final state s; + t = g,

- addition of a state and a comparison resulting in another state s; + ¢ = s,

In the interviews we gave the 11 students various additive problems with the
structures and contexts already referred to. In this section we show some of the
strategies used by the students to solve these problems. We shall comment on those
strategies we consider most important, either because of the frequency with which they
are used, or else because of their interest in allowing us to know students’
understanding of the three dimensions. In order to solve problems, students usually
formulated an operation and/or made a representation on the number line.

Looking for operations that match the results on the number line. They solved the
problem on the number line and then attempted operations until they came up with an
operation whose result matched the result on the number line. This was especially the
case in the more difficult problems, for example, those problems in which the unknown
datum was the first or second term in the following equations: s;+s;=s,, t;+t;=t,,
sitt=sy, s;+¢=sz; in other words, problems we call unknown 2 and unknown 3 So,
although a student might fonmulate an operation, this did not imply that this operation
was meaningfully related to the text of the problem.

Falsifying results of operations. This phenomenon is related to the previous one and
comes about when students know the result of the problem;, because they have done it
on the number line, then formulate an unsuitable operation for the problem, and yet
write the solution previously obtained on the number line as the result of the operation
and not the result obtained from the operation they have formulated.

Having erroneous operational rules. Having erroneous operational rules sometimes
leads to making incorrect formulations as solutions to the problems. This type of error
comes about through the following sequence of actions: students know beforehand the
solution to the problem, as they have done it on the number line; they wish to
formulate an operation whose result matches that obtained on the number line, but,
because their operational rules are incorrects, they formulate incorrect operations or
operations unrelated to the problem.

Changing the structure of problems. Here students change the structure of the
problem to another structure which is the consequence of the structure given and
which is easier for them to understand. Usually this occurs with problems of the types
unknown 2 and unknown 3. In the example given below, which is a problem with the
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structure §; +t=s;, where the transformation (t) is the unknown, some students changed
it into a problem with the structure t,+t2 =t,, where t, is the unknown, Example:

T: A child begins a game with 6 pesctas and finishes the game owing 5 pesetas. What has

happened during the game?

S10. He has lost 11. Becanse at the end he owed 5 and at the beginning he had 6, meaning’
6:5 11 :

=3, which was what was left at the end, -5-6 -11. Because we take 1t that as he was left with less

money than he had at the beginmng, he had 1o lose the 6 pesetas, and he lost the 6 pesetas, and he

lost another S, which was what he owed, so he lost 11.

Interpreting results incorrectly. Sometimes the explanations given by the children
reveal a faulty relationship between the contextual and the abstract, while at other
times they seem forced justifications. For example, a problem where the result is the
age of someone who lived before Christ can be justified by saying “this person’s age is
~20 because he lived before Christ”.

Following the order and signs of the data in the text. A frequent way of solving
problems was to formulate an operation with the numbers following the same order as
stated in the text of the problem and with the signs showing the situations. The
following example demonstrates this type of error.

T. A person was born in the year 15 before Christ and died in the year 7 before Christ. How may
years did he live?

S5 -7 =22 :

He was born in the year 15 before Christ, which would be negative, and he died in the year 7 before
Christ, which would be negative. Ay minus and minus are added and the sign of the greater value is
written. How many years did he live?.. He lived 22 years.

Representing numbers in isolation on the number line. At cerlain moments some
students fail to grant any meaning to the representation on the number line. So, for
example, they place the three numbers involved in the problem as points on the
number line without any relationship between them. In other words, they do not relate
the representation on the number line with the problematic situation. This can be seen
in the following example.

T. The temperature in Madrid is 5.5 degrees above zero, and in Paris it is 9.3 degrees less than in
Madrid. What is the temparature in laris?
SL.Subtract and there are...

S [ T S IS R N N T I I B P
rrrrrrerrrrrrrr il
43 3% 0 s

This type of representation shows that the students is not granting any meaning to the
situation. However, this is not because the situation involves negative numbers, as, in
initial tests where students were asked to represent similar situations with positive
numbers, this type of representation was also used (Bruno and Martinon, 1994).
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CONCLUSIONS

- We believe it possible 1o make the extension: Z, — Q, = R, — R without any
negative effect on the knowledge the students should have about integer numbers.

- We have studied three dimensions of knowledge of negative numbers and we can see
that transference from the abstract to the contextual dimension implies greater
difficulty than transference from the contextual to the abstract. It is easier 1o arrive at
representations on the number line from the contextual than from the abstract.

- One of the main points of discussion about the learning of negative numbers concerns
the use or not of the number line. Some researchers have pointed out the difficulty of
adding and subtracting on the number line both with positive numbers (Carr and
Katterns, 1984, Emest, 1985) as well with negative numbers (Kichemann, 1981).
Kichemann states that he number line should be abandoned as a model for the
teaching of subtraction of negative numbers. Our results show that there are
difficulties, but they also demonstrate that it is easier to begin learning the number line
through contextualized situations.

- There is a certain disconnection between solving problems using the number line and
solving by formulating operations. It is easier and more secure 1o solve problems using
the number line than by formulating operations. This is shown in those actions we have
called looking for the operation and falsifying the resull.
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CONCEPTS OF MULTIPLICATION
OF CHILDREN AND TEACHERS IN MOZAMBIQUE

Frouke Buikema Draisma

Universidade Pedagégica, Delegagio da Beira, Mozambique

1. INTRODUCTION

Since August 1991, 1 am working with a group of about forty students who are
following a special Master's Degree course in Mathematics Education for Primary
Schools. The students are all primary teachers with at least three years of experience
in teaching. [ am doing the subject of Psychology of LearningMathematics with
them. The work the students and I did together lead to some insight in problems in
mathematics learning in primary school in Mozambique. 1 want to dwell on one of
these problems in this paper.

During the first four years of the course, the students had to concentrate on observing
children doing mathematics. Through practical tasks they learned more about the
children’'s way of thinking and not less about their own way of reasoning when doing
mathematics. One of the tasks in 1994 was to realize some work sessions with
primary school pupils about multiplication. Much information came out and several
questions arose, among which the problem I want to present here.

Although 3 x 4 and 4 x 3 give the same result, there are different ways of "reading”
(or interpreting) the multiplication. For some people 3 x 4 means 4 + 4 + 4, because
they think it is "three times four” and for others it means 3 + 3 + 3 + 3, because they
think it is "three repeated four times”. In several reports of the students about their
work sessions we found that these different interpretations of a multiplication can
icad to confusion in teaching and learning basic facts of multiplication.

1 present some short dialogues found in a report of student Z. She did work sessions
about multiplication with André, a 13 year old pupil from grade S. These dialogues
illustrate clearly how the difference in the two ways of interpreting a multiplication
may lead to confusion in teaching and learning.

2. DIALOGUES BETWEEN LEMEP-STUDENT Z. AND ANDRE,
A THIRTEEN YEAR OLD PUPIL OF GRADE 5.

Student Z. did some tests about multiplication and found out that the pupil André had
difficulties in memorizing the basic facts of multiplication when involving bigger
numbers like 6, 7, 8 and 9. She decided to help André. In some work sessions she
wanted to show him that there exist relations between basic facts. She argued that
Andre will probably memorize the basic facts of multiplication more easily when
understanding these relations.

Q .
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2.1 Preparation of the work session

In her preparation for one of the work sessions with André, Z. decided to do the
multiplications 6x9; 7x9; 8 x 9 and 9 x 9 with him. Her main idea in order to
help the pupil was based on: 6x9 =5x9+9

=45+9

=54
This idea is written in the Mozambican Mathematics schoolbooks for grade 3.
(Draisma et al., 1984, p. 22-34). The book shows that there are relations between the
basic facts of multiplication which can be useful for memorizing them and for
building the times tables by adding always once more the second factor, for instance,
6x9means9+9+9+9+9+9,0r 6x9=5x9+9. Building up a times table you

get. Ix6 =6
2x6 =6+6
3x6 =6+6+6
4x6 =6+6+6+6elc.

Note: After analyzing the work session Z.gave an important information: she said
that she used to interpret the multiplication 6 x 8 as "six is repeated eight times" or,
6x8=6+6+6+6+6+06+06+ 6, thus the first factor is repeated., while
organizing the times tables she repeats the second factor:

6xl=1+1+1+1+1+1
6x2=2+2+2+2+2+2
6x3=3+3+3+3+3+3

Constructing times tables, she adds one unit more to the second factor in order to get
the next result. The three in 6 x 3 comes from 2 + 1 ("two units and one unit more"),
s06x3=C+D+C+D+(2+D+2+D+2+D+(2+1).

2.2 What happened during the work session?

In several parts of Z's work session we found a mixture of two ways of interpretation
of a multiplication, what leads to some confusion by André.

A. . Student Z. wants to explain how the pupil can find the answer of 7 x 9 using the
idea that 7 x 9 comes from 6 x 9 + 9, just as what she wrote in her preparation.
(Observation: Earlier in the work session André found easily the result of 6 x 9
as 5 x 9+ 9.). Here follows a part of the dialogue:

Z: If you have got seven times nine (7 x 9), what are you going to do?

Here we have nine times six (indicates the product calculated before:
6x9=5x9+9andtheresu_|l)

A oL {no answer)
Z: Now, seven times nine (7 x 9 ), what are you going to do?

A L (no answer)




E

Z. “"Here we have nine times six and it is the same as six times nine "(and she
writes 9 x 6 = 6 x 9) and asks again: "Seven times nine?"

A: "Is equal to nine times seven."
Comment

The first problem arises when Z. changes 6 x 9 into 9 x 6, without being aware the
change she made. Later on it seems that she became aware of the change, when she
said: "9 x 6 is the same as 6 x 9".

The point is, why did student Z. change from 6 x 9 to 9 x 6? Was it a mistake ?
Probably, thinking about the multiplication 6 x 9, she thought "six repeated nine
times" , because, as she said, she used to interpret a basic fact in this way.This
interpretation leads to trouble. She started, showing the pupil that

6 x 9 means 5 x 9 + 9, and in this reasoning the nine is repeated and not the
six..While changing 6 x 9 into 9 x 6, Z. wants André to find the relation between 9 x
6 and 7 x 9, but he didn't succeed. '

Student Z. used two different interpretations of multiplication: for 9 x 6 she said:
"nine repeated six times” and for 7 x 9 she said: "seven times nine.”

In both tasks she is repeating the nine and therefore she thinks that her reasoning is as
foreseen in her preparation and is done as in the schoolbooks. But in fact, she
adopted two ways of interpretation of multiplication, which lead to some difficulties
for the pupil: he couldn't give an answer.

B. Inthe following part of the work session another problem came out when Z.
asked: "How many units is six more than five?.

Z: "We have nine times five and nine times six"."How many units is six more
than five?”

"One unit”
"You already did nine times five. How do you do with nine times six?"

"Do we add nine six times?”

N> N>

"Do you think we have to add all those times? If you already know nine
times five, the nine is added how many times?"

"Five"
"To get six how many is missing?”
"One time."

"One time, of what?”

>N > N>

"One time six"

Lo

The pupil is reflecting, waits for a moment and then says: "One time nine".

O
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Comment

The question "How many units is six more than five?" is originated by Z's way of
organizing the times tables. For her the relation between 9 x 5 and 9 x 6 is that you
add one unit to each 5 for obtaining the result of 9 x 6. But Z's main objective was
to show the relation between the basic facts according to the interpretation of 6 x 9 =
5 x 9+ 9, as in the schoolbooks. In this case you add one nine more These two ways
of building times tables are mixed up in Z's mind and lead to some difficulties by
André.

— The answer "one unit” was easy to find for André. But he starts doubting when he
has to give an answer to the question:"You did already nine times five. How do you
do with nine times six?" In this question Z. wants to know which factor has to be
added once more.. In her mind the “one unit more” is used in order to get "one time
nine more”. She thinks “nine times six is nine times five and nine times one”, or 9 x
6=9x 5+9x | and inverted the interpretation of "nine times one" into "one time
nine more”. But André learned and interprets

9x6=8x6+ 1x 6. and therefore he starts doubting:

— We can observe that when he asks: "Do we add nine six times?”

— Later on, when the pupil has to answer of what has to be added once more, he first
says "one time six", according to his interpretation of multiplication. But then he is
reflecting, probably about what Z.had said earlier, "nine repeated six times", and then
says "one time nine".

C. In the next part André is confused about which factor is repeated in the basic
fact 6 x 8 and writes 6 x 8 = 5 x 8 + 6. Z. is rather admired with the child’s thought,
not being aware that the child was influenced by her different interpretations of a
basic tact of multiplication.

Z. Trytodo6x8

A: Writes:6x8=5x8 =40+6

=46

Z: But, how? More six? That six, where did you find it?

A: 1did five times eight.

Z: Five times eight. Yes, but this six (indicating the six in 40 + 6), how did it

appear?
A: There were 6. Here I did five times eight, so then there is missing six more.

Z: How is there missing six more ? There were six and you took five of it.
How much is missing?

A: One.
Z: One, of what?
A L. (no answer)

P
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3. CONCLUDING REMARKS
“The report of this work session done by Z. shows us the following facts:

a) - Z. was used to interpret basic facts of multiplication in different ways and was
not conscious of that fact.

b) - After analyzing the work she became aware that these two ways of interpretation
can become a problem for teaching and learning when the teacher is not respecting
the pupil's interpretation of a multiplication.

¢) - There are different methods of building up times tables, what must be considered
when teachers will show the relations between the basic facts.

d) - It is necessary to study the different ways of interpretation of a multiplication in
the teacher training courses in Mozambique.

e) - The different interpretations are related to the language expressions used: looking
at the written basic fact 3 x 4, some people will say "three times four”; others say
“three four times"; others: "three repeated four times"”, or "three multiplied by four."

f) - It seems that the mother tongue used by teachers and children in Mozambique
influences the way of interpreting a multiplication. '

4. WHAT TO FIND OUT?

Some research has started to look for the reasons of the use of two different ways of
interpretation of a multiplication among Mozambican teachers and children. The -
research goes on and will focus on: a) the language used in multiplication;

b) the didactical aspects of teaching and learning multiplication; c) the question if
there is any advantage in using only one interpretation of multiplication in lower
primary school? If so, which interpretation should be chosen in Mozambique?

4.1 The language used in multiplication

a) In the LEMEP-course we have been studying both interpretations of a
multiplication. Some students admitted that their interpretation of a multiplication
could be influenced by their mother tongue, because in their mother tongue they will
read 3 x 4 as "three repeated four times” Some of them argued that they have learned
at school, where Portuguese was the language of instruction, that 3 x 4 means 3 + 3 +
3 + 3. Others said that they have learned at school that 3 x 4 means 4 + 4 + 4.

Jan Draisma, lecturer of Didactics of Mathematics in the LEMEP course, did a
study about the expressions related to multiplication, used in the students' mother
tongues. The results show that there is some interference of the Portuguese language
into the mother tongue and vice versa (Jan Draisma, 1995).

b) During an excursion with the LEMEP-students to Zimbabwe, we saw several
mathematics lessons in different grades at two primary schools. At the primary
school of Chitungwiza, in a 3rd grade, the times tables of eight and nine were written
on the blackboard in different ways:
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on the left: 1x8 ontheright: 9x 1

2x8 9x2
3x8 9x3
etc. etc.

The LEMEP-student Mussa José, who attended the lesson, asked the teacher why she
had written the times tables in different ways. She answered: "The pupils who speak
fluently English prefer to use 1 x 8; 2 x 8; 3 x 8; and the pupils who are Shona
speakers prefer to use 9 x 1; 9 x 2; 9 x 3." Unfortunately there was no time to discuss
this aspect a little more with the teacher.

The point is, if you want to help a child to memorize the basic facts showing which
relations exist between the basic facts, you must know how the child interprets a
multiplication. And her interpretation is influenced by the language she uses. It seems
the primary school teacher of Chitungwiza already understood this.

¢) In "Teach yourself Swahili", under the title "How often?" the author states:
"Note that, as mara tatu means three times, "'sita mara tatu' means "6, three times"
just the reverse of the English "six times three", although the result is the same. -
Anyone who has to teach arithmetic should make a special note of this, for the
ignoring of this fact in the earlier stages is the cause of much of the haziness with
which African children regard arithmetic.” (D.V. Perrott, 1967)

These points are probably indications that the interpretation of a multiplication by
Southern African, Bantu language speaking pupils and teachers, using Portuguese or
English as medium of instruction, is influenced by their mother tongue.

4.2 The didactical aspects of learning and teaching multiplication

a) My first years of experience in education were in the Netherlands, where |
worked for seven years as a primary school teacher. At that time I was not aware that
multiplication could be difficult or a problem to teach or to learn. It was clear for me
that 4 x 3 ("four times three") is equal to 3 + 3 + 3 + 3 and I was never doubting this
meaning of multiplication..It seems to be a long tradition in the Netherlands that in a
multiplication the second factor is repeated (Fred Goffree, 1989; Adri Treffers and
E. de Moor, 1990)

Acquiring new experiences in primary education in Mozambique, I was
confronted with other ideas. I met many primary and secondary teachers who used to
interpret 3 x 2 as "three repeated two times." So for them 3 x 2 means 3 + 3.

b) Some literature research was done on Portuguese books used for teacher
training before independence in Angola and Mozambique. We found both ways of
reading and interpreting multiplication:

— Didactica das Liges de Aritmética da 1* classe (2° ano) do Ensino Primario,
(1964) This book was a guide for primary school teachers used in Angola and in
Mozambique for many years before their independence came (1975), For introducing
lhe meaning of muluphcauon two different expressions are used: a) "three twigs with
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two leaves each” b) "two leaves, three times, that makes six." (page 77 - 80)

— Elementos de Didactica , Classe Pré -Primaria“(1966).The author, Fausto Faria de
S4, was the teacher educator for didactics at the "Escola do Magistério Primario”
(Primary Teacher Training College), in Maputo (formerly Lourengo Marques) for
many years. He uses two ways of interpretation of a multiplication. The author is
speaking about shoes and interprets 2 + 2+ 2 as 3 x 2. "There are three times two
shoes " In the same lesson he is speaking about cherries and he interprets 2 + 2 + 2
as 2 x 3. "There are two cherries repeated three times ." For both interpretations the
author doesn't make difference in the picture: three groups of two, can be used for
reading 3 x 2 and also for 2 x 3.

There are other Portuguese books on Didactics of Mathematics, that use only one
interpretation. They are based on the following reading of the expression 3 x 4: "trés
vezes quatro” (= three times four).

- Diddctica do Cdlculo, 1972; Gabriel Gongalves, p. 180,
- Diddctica Especial , 1964; Francisco A F. Queir6s,

Page 27 e 28: Example: l+1+1+1=4
4times 1 =4
4x1=4

The author of this book says:

“The given example here about a multiplication in the quantity of four, poses a
problem which we wish to explain, because it goes against the traditional
current of the indication of multiplication.

We put this operation in the line of an addition and this lead us to consider the
multiplicand as a factor that is repeated and the multiplier as the indicative of
the number of times that this factor is repeated. So therefore we say that:

5%00 + 5800 + 5800 = 15$00

1t is three times 5$00 = 15$00

That is 3 x 5300 = 15%00

and not: 5%$00 times three, or, 5800 three times.
because: 53$00 x 3,or 5800 3 X

does not translate the logical sequence of the passage from addition to
multiplication. The commutative property of multiplication has to be taught later
and as we are in the beginning, (he means in the beginning of teaching children
the multiplication) we don't see that we can do it in another way."

In several Portuguese schoolbooks for pupils, which were used in Mozambique for
many years, 3 x 4 means 3 + 3 + 3 + 3, because you say (think or read) “three
repeated four times”. But looking at the more recent mathematics books for primary
school in Portugal, you will find that in many books a multiplication as 3 x 5 means
5+ 5+ 5. It seems that children in Portugal nowadays learn that in a multiplication
the second factor is repeated.

Q
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¢) In the Zimbabwean Syllabus for Mathematics at Primary School, of the
Ministry of Education in Zimbabwe, 1987 (first edition 1984), children in grade 2
learn that for 2 (3) they have to say (or read) "two sets of three", what means 3 + 3,
SO the three is repeated.. But when they are in grade 3, they have to say (read) for
2 x 3 "two multiplied by three", and ip this case 2 x 3 means 2 + 2 + 2; now the two
is repeated.. '

It is evident that the two ways of interpretation of a multiplication by Mozambican
teachers and children, is not only coming from mothertongue influence. Several
books, including books about didactics of mathematics, use two different expressions
for reading a basic fact of multiplication. These books were guiding the teacher
training courses in Mozambique during a long time.
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ON PRESERVICE TEACHERS' UNDERSTANDINGS OF
DIVISION WITH REMAINDER

Stephen Campbell!
Faculty of Education

Simon Fraser University
Canada

Abstract

The focus of this study is on preservice teachers’ understandings of
numerical entities, expressions and terms pertaining to division with remainder.
Many problems appear to result from the conflation of whole and rational
numbers and inadequate understandings of alternative expressional forms of these
entities. Data obtained from clinical interviews (n=21) indicate pervasive
conceptual and referential difficulties with numerical entities and linguistic terms
pertaining to them. Such difficulties were manifested in division tasks involving
prime decomposition, calculators and the division algorithm. It appears that
partitive dispositions towards division exacerbate many difficulties that quotitive
dispositions towards whole number division with remainder may resolve.

Background

There is an increasing awareness and focus in research in mathematics
education of the influence of informal knowledge and everyday experience that
leamers bring with them into the mathematics classroom (e.g., Mack, 1990).
Furthermore, leamers difficulties in relating practical, 'real-world' situations
with arithmetic operations of multiplication and division has been a matter of
intense and ongoing investigation (e.g., Greer, 1992). These difficult and
important problems of informal knowledge and 'real-world' contextualizations
with respect to prospective and preservice teachers' understandings of division
have been the subject of intensive research in recent years (e.g., Graeber, Tirosh,
& Glover, 1989; Ball, 1990; Simon, 1993), especially with respect to partitive
and quotitive models of division proposed by Fischbein, Deri, Nello, & Marino
(1985). A number of studies have also considered preservice teachers' subject
matter knowledge in so-called 'decontextualized' problem situations involving
divisibility (Zazkis & Campbell, in pressa), division by zero (Ball, 1990), long
division and division with remainder using calculators (Simon, 1993). The
objective of this study is to further investigate preservice teachers' subject matter
knowledge of division with remainder in such 'decontextualized' tasks involving
prime decomposition, division with calculators and the division algorithm.

t This study was supported in part by -grant #410-93-1129 and fellowship #752-
94-1246 from the Social Sciences and Humanities Research Council of Canada.
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Theory

Terms such as 'decontextualized’ or ‘context-free’ mathematical knowledge
can be problematic if they are interpreted to mean independence from 'real-
world' contexts rather than, as they are usually intended, independence from
practical 'real-world' applications. It is important to qualify the former
interpretation as it is highly questionable that ‘abstract’ understandings of
mathematical entities and algorithms can ever be completely decontextualized or
disembodied from 'concrete’ real-world experience (Campbell & Dawson, 1995).
Given that cognitive structure, and mathematical cognition in particular, emerges
and co-evolves with such concrete experiences, the meaning of terms such as
‘decontextualization’ and ‘context-free' cannot be taken to disclude embodied
real-world experiences.

This is not to say that a distinction between concrete experience and
abstract understanding is not a useful theoretical distinction to make. The question
is where to draw the line. Here, the subset of real-world' experiences,
sensorimotor and perceptual, involving symbolic expressions of mathematical
entities and mechanical computation of algorithms, independently of their
application, will be incorporated as an important part of the 'abstract’ context
constituting cognitive understandings of mathematics. Furthermore, it is assumed
that schema theories that model cognitive structure (see below) can be used to
investigate the 'harmful tangle’ (Sfard, 1991) of 'fragmented’ (Bali, 1990) and
‘sparsely connected' (Simon, 1993) knowledge that preservice teachers exhibit
within these abstract contexts.

Whatever the 'true’ ontological nature of mathematical entities, our ways
of talking, writing, and thinking of them requires that cognitive structures be
developed in which they are granted at least nominal existence. As Sfard
indicates: “Seeing a mathematical entity as an object means being capable of
referring to it as if it was a real thing" (1991, p. 4, my emphasis). Here, it will be
assumed that cognitive structure can be discursively investigated to determine if
the abstract conceptual objects expressed and intended meaningfully refer to the
ideal entities logically defined and implied by mathematical formalisms. In accord
with constructivism, the development of understanding such conceptual referents
entails that leamers actively construct objects or schemas pertaining to them.

The theoretical framework assumed in this study is more fully explicated in
Zazkis & Campbell (1994). Briefly, according to this interpretation, derived by
Dubinsky (1991) from Piaget: interiorizing sensorimotor activities into processes
that can be enacted in imagination which may then be encapsulated into atemporal
cognitive objects, along with the construction of connections that relate disparate
actions, processes and objects, lead to the thematization of more general cognitive
structures called schemas. Novel experiences, if not readily assimilated by
existing constructs, dis-equilibrate the subject which in turn may require and
motivate alteration and further development of cognitive structure in order to
accommodate some aspects of those experiences, thereby restoring equilibration.
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Methodology

Individual clinical interviews were conducted with 21 pre-service
elementary teachers; all volunteers from the group of students involved in a
professional development course, "Foundations of mathematics for teachers.” The
interview protocol allowed for the flexibility to probe and clarify participant
understandings of the concepts involved. The instrument was designed to present
familiar concepts pertaining to division with remainder in novel and unfamiliar
contexts. The instrument served to guide the investigation of epistemological
obstacles and conceptual lacunas in our participants’ existing content knowledge
affecting their ability to assimilate and accommodate these problems. Calculators
were available for the use of the participants. The specific question sets from
these interviews, considered in this report and pertaining to whole number
division with remainder, are:

Question set 1: If you divide 21 by 2, what would the quotient be? What would be
the remainder?

Question set 2: Consider M=33x52x7. If you divide M by 15 what would the
remainder be? What would be the quotient?

Question set 3: Suppose you're asked to perform division with remainder on
10561/24. Will your calculator help you? How?

Question set 4: Consider the number 6x147+1, which we will refer to as A. (a) If
you divide A by 6, what would be the remainder? What would be
the quotient? (b) If you divide A by 2, what would be the
remainder? What would be the quotient?

The interviews were transcribed and categorized in terms of different
questions, their difficulty, and identifiable cognitive tendencies of various degrees
of sophistication exhibited by the participants. The analysis focused on relating
division with remainder to the concepts of divisibility, division and
multiplication. Only a brief synopsis of the results from this analysis can be
reported in the space allocated here.

Qualitative data analysis and interpretation

Of the 21 participants considered in this study, 16 were asked to provide
the quotient and remainder of 21 divided by 2. Most participants (12 of the 16)
readily provided answers for the quotient as 10 and 1 for the remainder.
However, responses from a couple of our participants, James and Louise,
cogently illustrate two facts about division with whole numbers that can readily
be taken for granted: first, that whole number division requires that the
remainder and quotient are whole numbers; secondly, that the remainder be
smaller than the divisor. Both of these cases will be considered in turn.

James' response to the remainder of 21 divided by 2 was .5. An analysis of
the transcribed data with the worksheet he used through the course of the
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interview confirmed that he performed long division to obtain a rational quotient
of 10.5 and identified .5, the decimal expansion of the fractional component of
the rational quotient, as the remainder. When the interviewer asked James how he
would conceive the remainder as a whole number he responded as follows:

James: We're dealing with 2 parts, so we'll add them together and get 1,
remainder 1.

Interviewer: Okay. When you say that we're dealing with 2 parts, would you
explain that a bit?

James: We're dividing the 20 into 2 parts. [...] So you're taking the 21 and,

[I] don't know, it has a picture, you're taking it and splitting it in
half and finding out what fits on either side.

Interviewer: Oh, so you've got 10 1/2 in here. . .

James: So you've got 10 parts here and 10 parts here, but you've still got
that one part so half of it is over here, and half of it is over there.
[...] So you've got 2 half parts, so you add them together, and you
get 1.0. [ ...] And you get remainder 1. Look at it either way.

This excerpt reveals that James considered both division and the arithmetic units
involved partitively. Despite the fact that the problem situations were presented in
the context of elementary number theory and whole numbers, at least two thirds
of the 21 participants in this study, on different occasions, identified a rational
number as either remainder or quotient. Most of these cases led to considerable
confusions that prevented participants from achieving task solutions.

With respect to the constraint that the remainder be smaller than the
divisor, Louise, stated that the remainder was 3 with a quotient of 9, noting that
'2x9 is 18, plus 3 is 21'. When the interviewer intervened to point out that the
remainder is meant to be taken as less than the divisor she responded:

Louise: Right, I'm wrong. 10, with remainder 1 (laugh). I did that same
mistake on the exam. Common error for me.

Interviewer: Why do you think you have a tendency to look at it that way?

Louise: Yeah, I went with the multiple closest, but the multiple closest
would have been 10. I thought 9 was the closest to it, because of 18,
I never even thought of 20.

Louise's quick reaction to the intervention and subsequent explanation indicates
that her initial response pertained more to her familiarity with, or recall of,
specific number facts rather than a gross misconception regarding the constraint
upon the remainder. What is particularly evident in this case is that Louise did
not perform long division in order to find the quotient and remainder. In looking
for the ‘closest’ multiple, however, she revealed at least an implicit awareness of
lquotitive division. At least 10 of the 21 participants in this study, on different
¢
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occasions and contexts, were readily disposed towards quotitive interpretations of
division in problem contexts pertaining to whole numbers. The majority of these
cases led readily to problem solutions.

Nineteen of the 21 participants in this study were asked what they thought
the remainder would be if M=33x52x7 was divided by 15. Of these 19
participants, 8 eventually expressed a need to calculate in order to determine the
remainder, while only 4, appealing to various divisibility criteria, were able to
respond definitively that the remainder would be 0 (Zazkis & Campbell, in
pressb). Of particular interest here is that at least 5 of the 19 participants asked
this question (more than 25%) were unsuccessful in their attempts to assimilate
this novel experience. They confused the remainder with the quotient in terms of
‘what you are left with'. For example, one of our participants, Leigh, identified
the remainder with ‘the result', and then the quotient with ‘the number of times'
the divisor could be 'taken out' of the dividend. She confided: "I don't
understand, I thought I understood the meaning of quotient, [...} when [the
question is}] set up like that I don't know how to take that meaning and apply it to
that situation”. A majority of the participants in this study experienced analogous
difficulties assimilating and accommodating the meanings of quotient and
remainder in the less familiar and potentially dis-equilibrating ‘situational’
contexts of question sets 3 and 4.

At a user level, division with calculators ostensibly involve the domain of
rational numbers. If calculators are to be useful to enhance conceptual
understandings of division, it seems crucial that they be effectively used for
whole number division. There are two main approaches to determining a whole
number remainder, R, from a rational quotient, q. The integral approach
involves subtracting the product of the integral component of the rational
quotient, [q], with the divisor, D, from the dividend, A: A-[q]D=R. The fractional
approach involves multiplying the fractional component of the rational quotient,
{q}, with the divisor: {q}D=R. On both intuitive and procedural grounds, it
might seem that the latter approach would be easier to grasp or at least be easier
to calculate than the former. However, the results of this study indicate that such
assumptions could not be more mistaken.

Seventeen of the participants in this study were asked how their calculators
could help them to determine the remainder in dividing 10561 by 24. Seven
participants avoided dis-equilibration by indicating that a calculator would be of
no help to them whatsoever. Four of these 7 participants were aware that in most
cases division with a calculator would result in a value to the right of the decimal
point that would be ‘completely different’ from a nonzero whole number
remainder and could see no relationship between them. Some participants
indicated that there was ‘a way to do it' but they just couldn't remember or didn't
know what it was. In fact, out of the 10 participants that fixated their attention
up:)n the fractional component of the rational quotient, not one was able to
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successfully use the calculator to determine the exact whole number remainder.
The difficulties and limitations of this approach gave way in almost all cases to
our participants either assimilating the problem by resorting to long division in
order to determine the remainder or giving up altogether.

In contrast, the experience of 7 of the 8 participants who used the integral
method suggests that it is, conceptually and procedurally, a much more accessible
approach to whole number division using a calculator. This appears to be due, in
large part, to the fact that it evokes an intuitive quotitive interpretation that resists
the conflation of numerical domains. The following excerpts from the interviews
with Andrea and Kylie illustrate this approach:

Andrea: 10,561 divided by 24 equals 440.04167... 24 goes in here 440x24,
so you go 10,560, with remainder 1."

Kylie: “Um, well the way, actually when I use a calculator to do um, to
try things like this with larger numbers, um, you have to use it in a
different way for it to help you, like you have to find out how
many times; what I do with the calculator is, I find out how many
times 24 goes evenly into 10,561 and then I multiply that number
by 24, I see what the number, um, that comes up with it, it'll be
slightly less ... either it will be even, it'll be the same as this, or
slightly less, and you subtract um, you subtract the number
[product of quotient and divisor] it [the calculator] comes up with
from this [the dividend] to get the remainder."

It is particularly evident from Kylie's remarks that the integral method of finding
a whole number remainder using a calculator evokes a quotitive interpretation of
division that is clearly based upon the division algorithm: A=QD+R where
0<R<D. Another important thing to note about this method of using the
calculator for whole number division is that once the whole number quotient is
obtained from the rational quotient, subsequent calculations exclusively involve
whole numbers — not only avoiding problems pertaining to conflated numerical
domains, but also interpretations of the fractional component as the whole
number remainder (which is only valid when R=0), truncated decimal expansions
and round-off errors observed in this study by those using a fractional approach.

The results of this study do not suggest that division with remainder will
always be evident to learners when tacitly using the division algorithm. With
question set 4, the dividend was explicitly expressed in the form of the 'right-
hand side’ of the division algorithm, and participants were requested to identify
quotients and remainders. Of the 19 participants who were asked questions from
this set, only 4 did not calculate the dividend for any of the questions they were
asked. Of those 4, only 2 participants correctly identified the remainders and
quotients for all the questions asked of them from this question set. The other 15
participants, at one point or another, resorted to calculating the dividend and
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dividing. Of those 15, 9 panticipants evaluated the dividend and relied upon long
division in addressing this question set. And, finally, 2 of those 9 participants
initially attempted alternative procedural activities that both led to the rational
quotient; both, in fact, due to difficulties interpreting the fractional component.
Ironically, 15 of 19 of our participants, at some point in question set 4, resorted
to a complex iterative application of the division algorithm — long division.

Conclusion

The division algorithm establishes an important structural relation and
defines the operation of division amongst the whole numbers, the elements of
which are ostensibly referred to by the terms: dividend, divisor, quotient and
remainder. Within this context, the relation between these terms can be clearly
and unambiguously defined. The phenomenological origins of the division
algorithm appears to reside in an intuitive understanding of indivisible units.
Whereas the motivation for the division algorithm can be seen as a natural
consequence of such a constraint. These data strongly suggest an implicit relation

-between our participants' fixations upon fractional units and partitive division and
integral units and quotitive division. The distinction between fractional and
integral units, I believe, is prior to the partitive and quotitive models of division.
Difficulties reconciling formal and intuitive models of division may stem from
compromised thematization of division schemas in part due to conflation of the
basic conceptual objects distinguishing whole and non-negative rational numbers.

" Be this as it may, it is a common didactic practice to consider whole

numbers, for all practical intents and purposes, as a subset of rational numbers

. (e.g., Freudenthal, 1983, p. 103). This practice, which promotes and advocates
dual emphases upon the numerical aspects of count and measure, the equivalence
and equivocality of "how many' with 'how much’, implicitly carries with it the
implication that any particular whole number is also a rational number and
therefore can, both in principle and in practice, be divided. Conflating these
aspects of number trivializes the historically and conceptually crucial distinction
between divisible and indivisible units in pre-Euclidean Greek mathematical
philosophy. More importantly, such conflation appears to raise the potential for
conceptual confusions and semantic ambiguities with respect to the procedures
and numerical reference of terms pertaining to division in different domains.

Even if the numerical domains are not conflated and properly referenced
with respect to the operation of division, there is another layer of problems that
arise with respect to less familiar expressional forms of the numbers involved. As
we have seen, whole numbers can be expressed not only in their familiar decimal
representation but also in the potentially dis-equilibrating forms of prime
decomposition and equational expressions such as the ‘right-hand side’ of the
division algorithm: QD+R; e.g., 45=32x5=11x4+1. Furthermore, rational
numbers can be expressed in decimal representation with expansions 'to the right
of the decimal point’ as well as in various fractional forms; e.g., 11.25=11
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1/4=11 + 2/10 + 5/100. The data from this study identify significant obstacles and
lacunas in some leamers’ understanding of the meaning and reference of terms
pertaining to division involving these different expressional forms. The nuances
of the data set and the theoretical analysis of the schemas involved are too
complex to explicate any more details within the space provided.

Most leamers of mathematics are tacitly familiar with the division algorithm
through ‘performing’ and ‘checking’ the results of long division. It is indeed
tempting to consider the division algorithm itself as the ‘inverse' of whole
number division in the same sense that one would consider multiplication as the
inverse of division in the domain of rational numbers. However, an inverse
relation of whole number division with multiplication obtains only in the
restricted sense of divisibility (Zazkis & Campbell, in pressa). Even with an
understanding of divisibility, understanding the nature of whole number division
and it's relation to multiplication is not readily evident. As one of our participants
observed: "you never have a remainder in multiplying. [...] an inverse of
something is just the opposite. Once you have a remainder it makes it totally
different from multiplication.” The question that begs to be addressed by
teachers, learners and researchers alike is WHY?
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REFERENT TRANSFORMING OPERATIONS: TEACHERS® SOLUTIONS

Tania Campos, Sandra Magina
Maria Carolina da Cunha, and Silvia Canoas
Pontificia Universidade Catdlica de Sao Paulo, Brazil'

Referent transforming operations are difficult for pupils and some indication already
exists that this may also be so for teachers. Some pupils succeed in these problems by
using informal strategies that allow them to keep the situation in mind. We investigated
the responses of 40 Brazilian teachers 10 two problems involving referent transforming
operations and analysed their approaches when the solution was successful. Modest
rates of success were observed, upper-school teachers performed better than primary
school teachers. The majority of the successful solutions was obtained through formal
strategies. These results raise the questions of whether the teachers’ knowledge of
street mathematics might emerge in other situations and how 1o integrate experiential
and formal knowledge of mathemaiics in teacher education programs.

The difficulties of referent transforming operations have been widely discussed
in the literature about children's conceptual development. Prospective teachers also
have difficulties with such transformations of referents (Simon, 1993) when the
transformations are not of the well practised sort such as distance divided by time
cquals speed. When we consider that one of the important goals of numeracy
development in school is to make mathematical approaches to problem solving
available to students, teachers’ difficuities with referent transforming operations
become a clear stumbling block for the accomplishment of this godl. How can we
solve a problem using mathematics if we fail to understand the meaning of the answer?

Researchers in different countries have already documented primary school
teachers’ difficulties with divisidn and multiplication problems (e.g. Simon, 1993;
Tirosh & Graeber, 1989) and with referent transforming operations, where intensive
quantities were involved (Thompson & Thompson, 1994). It is thus clear that teacher
education needs to effectively tackle the question of promoting the understanding of

more complex models in the conceptual field of muitiplicative structures.

' The authors are thankful to The British Council and CNPq
whose support made this research possible.
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In order 1o design stratcgies for tcaching teachers, we investigated the nature of
their difficulties and the solutions found by the successful teachers in two problems,
one involving multiplication and the other division. Because students have been shown
to keep the meaning of problem situations in mind by resorlifig to non-algorithmic
solutions (such as building-up strategies in ratio problems), we wanted to know
whether these types of solution would also be predominant among the successful
teachers or whether their (assumedly) better mathematical knowledge would allow
them to achieve meaningful solutions through more formal routes. The worst scenario
would be one where the teachers did not use non-algorithmic solutions (perhaps
because these are somehow excluded from their social representation of adequate
mathematical knowledge) but have not developed enough formal mathematical
knowledge to implement formal solutions correctly. Thus we decided to investigate
also the impact of training routes on their relative ease in handling referent
transforming compositions.

Method

Subjects: We interviewed 20 Brazilian primary school and 20 upper school
teachers in S3o Paulo. The two groups differ both in terms of teacher education and
level of instruction in mathematics. Primary school teachers are educated at the
secondary level in a three-year program. They teach all the primary school subjects
and consequently cannot develop their studies of mathematics in depth. Upper-school
teachers (for grades five and beyond) are specialized and follow a four year university
program with considerable amounts of study of their own subject plus teacher
education courses.

Design: The teachers were asked to participate in a study to investigate their
ideas about some mathematical concepts and how to explain them to pupils. They
answered a series of questions, clearly identified as related either to multiplication or

division. This reports only analyses two of their responses.
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We chose two problems expected not be common in the classroom (see Table
1); one proposed a new situation (problem 1) and the other asked a different question
from what would be usual for fractions problems (problem 2). Both problems dealt
with extensive quantities to avoid confounding the difficulty of referent transformation
with that of intensive quantities. The problems were adapted from Simon ( 1993;

Simon and Blume, 1994) to allow for comparisons.

Table 1

Problem 1. John and Paul worked together to measure the sides of a rectangular
surface. John measured the width and Paul measured the length. Each one used a rod
and their rods were of different sizes. John said: "The width is 5 of my rod". Paul
said: "The length is 4 of mine”. What could they conclude about the area of the
surface? Why?

Problem 2. Serge has 35 cups of flour to make muffins with. For each muffin he
needs 3/8 of a cup. If he uses all the flour he has to make all the muffins he can,

according to the recipe, how much flour will be left?

Procedure: The teachers responded to the questionnaire in writing. The
interviewers were supportive when the teachers expressed difficulty and concern over
their own mathematical knowledge but did not offer further clues.

Results .

Quantitative analysis: First, the overall performance of the two groups was
compared. We do not make any assumptions about the representativeness of these
samples, which are small and were not drawn in a systematic manner. The
quantitative results can only inform about the sample itself and no generalizations are
possible. Table 2 shows the frequencies of teachers who did not attempt the problem,

those who attempted but failed to reach a correct answer, and those who succeeded.
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A correct response in problem | indicated the number and nature of the units of

measurement of area; in problem 2, 1/8 of a cup was left.

Table 2

Frequency of responses for each group of teachers

Problem | : Problem 2
Blank Wrong Right Blank Wrong Right
Primary school 10 8 2 8 12 0
Upper school 0 11 9 1 12

The quantitative analysis indicates that: a) the problems were not trivial for the
teachers and rates of success are modest (in the case of upper-school teachers, the rate
of success in problem 2 is comparable to that observed by Simon, 1993, in his sample
of U.S. primary school teachers); b) primary school teachers attempted thé problems
much less often, even when no computational difficulty was present (problem 1); c)
the difference in performance across the two groups in these items was significant (a
t-test for independent samples indicated that the mean correct responses for both
problems differed significantly at the .004 level).

Qualitative analysis: The purpose of this analysis was to investigate the nature
of the successful strategies. For each problem, we devised a descriptive classification
of the process used in calculating the answer.

Responses to problem | were analysed into the four following categories.

1. Multiplying the numbers and the units, indicating that a new unit is
formed by the product of the original units. Two different approaches were
identified: a formal one, where the units and their product were represented by letters;
and an integrated approach, where a formal rcpl;esentation was related to an
experiential one, with explicit mention of a rectangula:r unit of area. It is noteworthy
Q :
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that no experiential solution without a formal approach was observed. No responses
from the primary school teachers and 9 of those from the upper school teachers fell
into this category. An example of the formal approach is:

5j . 4p = 20 jp j (measure of one rod) p (measure of other rod)

An example of an integrated approach is illustrated in this answers, where two parallel
solutions were offered:

20 times the product of the two units of measure

1 :  For each rod L there are 4 in the length and for each rod C there are 5

in the width, that means, there will be 20 reciangles equal to L and C
inside the whole figure

2: L*5.u

C+4 . up

lL . C\=1 A,

5\ . uj/ 4. up

20 uj.yg = 20 . prod. unit of measure

2. Multiplying the numbers but making no reference to the units, as if the
issue were not problematic. - Two of the responses from each group of teachers fell
into this category.

3. Denying the possibility of calculating the area. Some of the teachers
denied that it was possible to know anything about the area of the surface because,
they argued, in order to measure, it is necessary 10 have a single unit. This
explanation clearly fails to take into account that a new unit would be formed by the
product of the two linear measures and would be constant for the whole surface.
Three primary school and five upper-school teachers gave this sort of response.

4. Responses which lacked internal consistency. Some responses seemed to
reflect the consideration of the emergence of a new unit but were incomplete or
inconsistent with the information in the problem. Four primary school and five upper-
Q .



school teachers showed this type of response. One example:
20 square rods; it is a rectangular region (our underline; notice that the teacher
indicated that a new unit is formed but calls it "square”, apparently without a
JSull realization bf both senses of "square” in this expression, that the unit is

squared because x is multiplied by x and thar the resulting area unit is a

square).

Responses to problem 2 showed a greater variety of approaches, which we
attempted to capture in six descriptive categories.

. Uses a formal procedure and maintains the transformation of the
referent in mind. This route involves dividing 35 cups by 3/8, identifying how many
muffins can be made and what portion of a muffin is left; this calculation is followed
by a new transformation of referent, from fraction of muffins into fraction of a cup.
The only two upper-school teachers who used the formal solution successfully wrote
down the referent at the end of each computation, as exemplified in this transcript:

35 cups | muffin 3/8 cup

no of muffins = 35 = 35 x 8/3 = 93 1/3 muffins (calculations here)
3/8

93 muffins 1/3 muffin lefi

1/3 muffins  1/3 x 3/8 cup = 1/8 cup lefi

2. Uses a formal procedure but fails to observe the transformation of the
referent. This strategy (used by 3 primary-school and 7 upper-school teachers)
involved the use of the same initial step of dividing 35 by 3/8 but the teachers took the
remainder 1/3 to refer to cups of flour.

3. Uses a measurement solution and thereby avoids the transformation of
referents. This solution (used by two upper-school teachers) involves calculating how
many eighths in 35 wholes, followed by a division by 3/8. One example:

B =35.8= 280=" 229+1=3.93 + [
8 8 8 8 8 8




4. Uses a scalar solution and keeps the referent in mind. This solution (used
by two upper-schoolh teachers) involved a building-up strategy where the
correspondences between cups of flour and muffins were preserved throughout; short-
cuts were used rather than a laborious composition muffin by muffin or cup by cup.
For example:

I cup » 2 muffins and 2/8 left

2nd cup + 1/8 > 2 muffins + | muffins +_1/8

3rd cup > 2 muffins + 2/87 1 muffin

3 cups » 8 muffins

33cups» 11 x8 = 88 muffins

2 cups - 5 muffins and 1/8 cup left

93

5. Calculates 3/8 of 35 and indicates either this or 5/8 as the answer. This
appeared to be the solution of a traditional fractions problem - What is 3/8 of 35? or:
What is left from 35 if you take 3/8 away? - rather than an answer to the problem at
hand. In either case, unreasonable responses are obtained: the answers are
approximately 13 and 22 cups, which represent amounts considerably larger than 3/8
of a cup, the upper limit for answers 10 this problem. One primary school and three
upper-school teachers responded in this way.

6. A mixture of computations that we could not interpret in any model.
A 10tal of eight primary school and four upper-school teachers presented this type of
response. ‘

Discussion and conclusions

The main purposes of this study were to investigate whether referent
transforming operalidns pose difficulties for ieachers and how they surpass these
difficultics. In problem 1, few teachers established a clear connection between the
prloducl of two linear measures and a unit of area. In problem 2, many failed to
(S
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realize the inadequacy of solutions where the answer was larger than 3/8. These
results suggest that it is possible that non-algorithmic solutions are blocked by school
instruction in mathematics even for teachers, who might be expected to succeed if they
had tried out such solutions. Had the teachers - many of whom were females - been
concerned with problem 2 in their kitchens, would they have behaved differently?

Although this study answers some questions, it raises many questions for further
research in teacher education. Fir&t, it would be of interest to know whether work
with teachers would show effects of the social context of testing similar 1o those
observed by Nunes, Schliemann, and Carraher (1993) with Brazilian youngsters. A
positive answer would represent a challenge to teacher education: Can teachers learn
more mathematics in their teacher education without losing touch with their knowledge
of street mathematics? Can most be taught in such a way that they will be able to
connect their experiential and their formal solutions? And, if so, will they then devise
techniques for instructing their students which will promote such connections?
Second, the variety of approaches observed in problem 2 raises another question: Are
teachers in a position to assess the different approaches if their pupils were to use
them? Can they recognize the different ways of reasoning underlying the different
methods? And what role might the discussion of these different methods play in
teacher education?
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RECONSTRUCTING TEACHERS’ THINKING IN TEACHING PROBLEM SOLVING'
Olive Chapman
The University of Calgary

This paper reports on an open-ended, experiential problem solving inservice program and its effects
on teachers’ thinking and teaching of mathematical problem solving. The program was framed in
a constructivist perspective of learning. The participants consisted of 6 elementary teachers who
disliked/feared problem solving. Data collected by interviews and classroom observations were used
1o identify patterns in the teachers’ behaviours and attitudes to determine the effects of the program.
The results indicated positive changes in the teachers’ confidence in their ability 10 solve problems
and in their teaching approaches. They also suggested that allowing teachers 1o work from personal
experiences to self-constructed theories of practice is a meaningful way of helping teachers to
transform their teaching o reflect the philosophy of current reform movements in math education.

Changes that are now being advocated in mathematics education (NCTM, 1989, 1991)
require teachers to abandon their traditional transmission approach to teaching mathematics
for more innovative approaches. Given the importance for mathematics teachers to change to
facilitate the successful implementation of such reform recommendations, research studies
involving the mathematics teacher’s knowledge, beliefs, practices and learning have begun 1o
gain prominence (Cobb, Wood & Yackel, 1990; Cooney, 1985; Hoyles, 1992; Ponte, 1994,
Simon & Schifter,1991; Thompson, 1984; Wood, Cobb & Yackel, 1991). One of the underlying
themes of these studies is to understand how to influence change, where necessary, in the
teaching of mathematics. The issue of change raises the issue of the nature of inservice teacher
development programs to facilitate it. Cobb, Wood and Yackel, for eg., in their work have
focused on teachers’ change in the context of classrooms as learning environments for teachers
and teachers’ learning is tied 1o the classroom interactions.

The current trend to accept a constructivist perspective of learning (von Glasersfeld, 1991)
in mathematics education is also flowing over into teachers’ learning as reflected in the Cobb
et al and Simon & Schifter studies. The constructivist perspective recognizes that knowledge
cannot be acquired passively and can only take place wh;an existing cognitive structures meet
with perturbations. von Glasersfeld (1989) emphasized that the most frequent source of
perturbations is the interaction with others. Placed in this context, mathematics teachers'

learning can be viewed as both an individual and an interactive activity during which the

Q “his study was funded by a grant from the Alberta Advisory C ittee for Educational Sudies.
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teachers construct their own meaningful kndwledge by engaging in and reflecting on
experiences with mathematics and negotiating personal meaning of these experiences with
peers. Thus learning can be characterized as a process of self-reflection and mutual adaptation
by which the teachers organize their beliefs to give meaning to their personal experiences in
the process of interacting with others. The study presented in this paper is framed in this
perspective of constructivism and teachers’ learning.

The study focused on mathematical problem solving, an area that has been under-
represented in research in terms of the role of the teacher in teaching problem solving (Silver,
1985) and continues to be so. Given the significantly increased emphasis on problem solving
in the current reform recommendations, providing help for teachers to effectively deal with
this, becomes critical. Such help is probably more important for elementary teachers who are
more likely to have poor backgrounds in mathematics and to conceptualize problem solving
through the eyes of a "poor" problem solver. An approach based on constructivism becomes
relevant in working with these teachers to provide them with meaningful experiences to allow
them to reconstruct their understanding of problem solving. Inservice programs for teachers
have traditionally been prescriptive, an approach that is now viewed as problematic in facilita-
ting meaningful outcomes for the teacher. In shifting to a constructivist perspective, this study
was based on an inservice program that did not provide a "recipe” for doing or teaching prob-
lem solving. It was assumed that the teachers would construct their own processes by them-
selves. The outcome of the study determined the extent to which this occurred and its nature.
RESEARCH PROCESS:  Six elementary teachers (grades 3 to 6) were selected from those
who volunteered to be participants of the study. The criteria for selection were that they not
be mathematics majors or mathematics specialists and that, as students, they had a fear and
dislike of mathematics, in general, and problem solving, in particular, and continued to feel this
way. The teachers were all exposed to problem solving based on the approaches prescribed by
the textbooks they used. These approaches generally involved the "routinizing" of non-routine
problems by demonstrating a strategy, then presenting several problems that could be solved
using that strategy. This resuited in the teachers presenting problem solving in an algorithmic
way that focused on getting the "right” answer. The study, conducted as a descriptive qualitative
study, was carried out in two parts. The first part consisted of the problem solving inservice
Q
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(PSI) program and the second, of data collection to determine the effects of this program on

the teachers’ thinking and teaching of problem solving.

(a) The PSI Program: In this program, problem solving is being used as the process of

solving non-routine or open-ended mathematical problems. The program involved engaging

the teachers directly and indirectly in problem solving activities for 20 hours "in-class" and at

least 4 hours/week on "take-home” assignments over a 4-week period during their summer break.

The rescarcher (a mathematics education professor) was the facilitator of the "in-class" activities.

The key ideas that provided the framework of the program were:-

I. Teachers should critically examine, through their personal experiences, the nature of

problems and the process of solving problems as a basis for understanding how to teach

problem solving.

ii. Teachers should be placed in a learner’s role to experience genﬁine problem solving in a

setting which fosters individual and social construction of problem solving concepts.

iii. Teachers should reflect on both the affective and cognitive aspects of their problem solving

behaviours to understand problem solving in a more realistic and humanistic way.
The key activities of the program included the following: The teachers,

- shared how they taught problem solving.

- shared and resonated in stories of personal experiences that reflected their feelings and
beliefs about problem solving.

- shared and reflected on how they solved problems in the real world.

- solved non-routine and open-ended problems individually and in groups of 2 and 3.

- working in pairs, observed each other solve problems while thinking aloud.

- working in groups of 3, took turns being the teacher and students while solving problems.

- taped themselves as they individually solved a problem thinking aloud and including all
emotional aspects of the experience.

- solved problems by writing detailed narrative journals of their processes, including all
emotional aspects of the experience.

- in all of these problem solving situations, reflected on several aspects of their experiences,
including their problem solving processes, their feelings, their thinking, the relationship

h=*veen their processes and their real life problem solving processes, what they now knew
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that they did not know before, and how should problem solving be taught. These reflections
were done orally, as a group, and were audio taped.

In general, for the purpose of the study, all oral aspects of all of the activities were audio-
taped and all tapes were transcribed. Copies of all written work were also obtained for data.
At the end of the program, the teachers were given readings on how to assess problem solving.
(b) Other Data Collection:  The second part of the study consisted of observing the teachers
in their classrooms teaching problem solving to collect information to determine the effect of
the program on their teaching. They were observed a total of four hours each, one prior to and
3 over a period of 1 1/2 years after partici})ating in the PSI program. Field notes were made
during the observations and the lessons were audio-taped. Each observation was followed by
an in depth, open-ended interview on their teaching, beliefs and attitudes towards
mathematical problem solving. All interviews were tape recorded and transcribed.

Data analysis involved a thorough examination of the data to identify patterns in the
teachers’ behaviours and attitudes to determine the nature of the effects of the PSI program.
RESULTS:  The results indicated positive changes in the teachers’ attitudes and teaching of
problem solving. Positive changes are being interpreted as a shift towards recommendations
of the NCTM standards. What follows is a sample of some of these changes.

Effects on attitudes:  The most significant outcome for the teachers was their increased
confidence in their ability to solve both routine and non-routine problems within the context
of their teaching and the active(geof thevir mathematical background. The teachers
attributed this to becoming aware that many beliefs they had of themselves as problem solvers
and of the process of mathematical problem solving were misconceptions and created obstacles
in their learning. Some of these beliefs were: "You must follow an algorithm to solve a -
mathematics problem.” "You shouldn’t abandon a method while solving a problem. If it wasn’t
working, it was because something was wrong with you and not the method.” "Getting stuck
and frustrated was proof of how dumb you were in solving mathematics problems." Interacting
with peers and seeing each other "struggle” with similar things in solving the problems made
them understand their personal struggles with problem solving in the past in a more objective
way. Comparison to their experiences with solving real life problems also contributed to their
understanding of situations like "barriers” and "frustrations” as integral features of problem
Q
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solving and not situations they "crcate” because something was wrong with them. Successfully
solving problems they thought they could not do, with little or no help from anyone, but
depending on their own thinking, conflicted what they were told by their math teachers and
verified what they always felt "deep down inside" -- that they could do better in solving
mathematics problems. In general, their awareness seemed to free them from the traps of their
past experiences and gave them permission to do things they thought were not allowed or valid
when solving mathematics problems. It also shifted their view of problem solving from a
prescribed algorithmic process to an open-ended process in which the problem solver had to
be in control in terms of interpreting the problem and deciding on how to overcome the
inherently necessary barriers to a solution. This view was reflected in their teaching.
Effects on teaching: The program also had a significant positive effect on their teaching
approaches. There were several aspects of their experiences with the program that they
integrated into their teaching. However, although there were many similarities, each teacher
lived out the experience in her classroom in her own unique way. Common aspects of their
behaviours included, a shift to: engaging students in problem solving more often; being less
dependent on a textbook; using more cooperative learning groups; having students share
solutions and meanings; emphasizing process over final answer; listening more to students,
focusing on the students’ thinking behind "right" and "wrong" answers; using non-routine
problems; exploring alternative solutions; asking non-leading questions and being more
sensitive to the nature of intervention in the students’ processes, i.e., when and how they
provided help. These were all behaviours they conceptualized as a group based on their
collective experiences with the program. In fact, they had constructed some theories to guide
their teaching. For example, they identified 3 situations that warranted active intervention by
ihe teacher: stuck, off-track and lost. The nature of the intervention was different for each of
these state. The overriding principle was that intervention could not be to tell students how
to get the answer but to stimulate their thinking to get over barriers and to make sense of what
they were doing. Most of the interventions observed during their teaching were at the stuck
state and often consisted of the teachers asking open-ended questions.
The differences in the teachers’ behaviours are much more difficult to summarize because
Sey are related to how the teaching process unfolded for each teacher and should be
E MC 2-197
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presented in this context. Some of the teachers, for example, emphasized the meaning of
"barriers” and "stuck” and framed their teaching around these concepts. Others focused on
"does it make sense?” Some developed a structure to help students to attack the problem while
others were more open ended in their approaches. However, in general, they altered their
teaching in ways that strengthened where they thought there were weaknesses based on the
knowledge they had now acquired about problem solving; Given the constraints on space, it
is not possible to describe each teacher’s situation. Thus two cases of teaching structures and
some excerpts of their post-program experiences are summarized here.

Mary (grade 3), prior to the PSI program, did not engage her students in genuine problem
solving. She focused on teaching algorithms based on key words and assigned problems that
could easily be solved using those steps. She would read the questions to emphasize the key
words for the students. Students worked individually, but were expected and guided to solve
the problem in the same way, following the algorithms. About a year after the PSI program,
her teaching looked as follows: She wrote the problem on a flip chart. Students gathered
around the chart sitting on floor. She asked them to read the problem to themselves. She
asked one student to read it aloud. She asked them if they saw the difference between the
information part and the question part of the problem. She asked a student to read the
question part. She checked on whether the others agreed. She asked another student to read
the information part. She asked if the information made sense, or, what did they think about
the information. She gave them time to solve the probiem working in small groups. She
circulated and used non-leading questions to intervene when they needed help. Students
regrouped to present and discuss their solutions. She first asked them to share something they
liked or did not like about the problem. She then allowed them to present their solutions and
to explain why their solutions made sense. She reminded them to listen to the other ideas to
see if they made sense.

Kate (grade 4) described her approach prior to the PSI program as follows:

I tended to just give it (the problem) to them and then leave them with it and then at the end
the ones that were successful would present their answers and the others would look at it.

She usually started with a structured format of the Polya’s 4-stage model and a list of strategies
#i

prescribed in the text she used. She explained:
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Last year [ would make them (the students) write what strategy they were going to use and
then do it. And they would often have the wrong strategy. They would say, "I'm going to do
so” and then they do something different. I don't think it was helping them.

The year following the PSI program, she ignored the structured format of Polya’s model and
delayed going through a list of strategies until later in the school year. Instead, she focused on
getting the students to think. This she found to be a challenge. She explained:

This class is really resistant to thinking. I now make them think, but my two top kids, for
example, hate me for that, because now they are not the ones coming up with the answers,
because they are use to looking at things obvious to them and so they feel frustrated. But
some of the weaker kids are doing much better.

In her teaching, first she asked the students to read the problem and to write their meanings
or interpretations of the problem. She then asked a few volunteers to read theirs and, if there
were no questions about surface features of the problem, instructed the class to solve the
problem. She circulated and intervened with non-leading questions only if the students
indicated to her that they were stuck. After solving the problem, the students were required
to present their solutions, regardless of whether they were "right" or "wrong", and defend them
1o the class. The goal was for the students to decide on what made sense and why.

The grade 6 teacher summarized some of her changes:

This year I have really concentrated on not jumping in for them and saying, "Yes, that is
right! That is right!" because I used to feel so happy that they were getting close to the
answer. Now, instead, [ will question them and say, "Well, what do you think?" "What about
the looking back stage?" "What are you going to do now?" So I try not to wrap it up quite
so nicely for them. We will eventually go over the solution or solutions. I think 1 have made
them and myself more aware of other solutions that could be available. I am making them
more aware of looking at things from different angles, from different perspectives, not only
in their answering but in their figuring it out as well.

Another grade 6 teacher noted:

Well I think more kids are feeling successful. Maybe it is because I feel more successful too
and maybe I think it is more fun now t00. [ do think that it is more fun. And so that is bound
1o rub off on other kids too. And also the business of hearing how they did it. It is fun to see
their ways and to see that they can be quite different but still very acceptable.

Similarly, the grade 5 teacher noted:

Well it is interesting, | had a comment a couple of weeks ago from a girl who said, "When
are we going to do problem solving?" as if it was a separate entity. And I said, "Well, we have
been doing problem solving all along.” But, so in a way I guess that it is more fun for them,
that they don’t realize what they are actually doing sometimes.

Aruitoxt provided by Eic:
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All of the teachers pointed out that their teaching after the PSI program was more
challenging, but more interesting and rewarding particularly because they were learning a lot
from the students. They also found that the way they were teaching other areas of mathematics
was being influenced by their problem solving approaches.

CONCLUSION‘: The outcome of the study indicated that an open-ended, experiential problem
solving inservice program, grounded in a constructivist philosophy, can make a significant
contribution in helping teachers to reconstruct their thinking and teaching of mathematical
problem solving and mathematics in general. Although the effectiveness of the program was
probably helped by the fact that the participating teachers were highly motivated to revise their
teaching and participated of their own free will, what seemed of significant importance, was
allowing the teachers to work from personal experiences to self-constructed theories of prac-
tice. This seemed to have allowed them to construct meaningsthat reflected theories that made
sense to them in the context of their teaching. Overall, this seemed to be a more meaningful
way to the development of mathematics teachers to better help them to transform their
thinking and teaching to reflect the philosophy of recent reform movements in math education.
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Bayesian implicative Analysis: How to identify the concepts necessary to
acquisition of a competence? One example of application to the

conceptualization of fraction in teenagers.

Camilo Charron* and Jean Marc Bernard, *LaPsyDEE l.aboratoire de l’sychologie du
Développement et de I'Education de PEnfant. CNRS, University of Paris V, 46, rue Saint-

Jacques, 75005 Paris, France, e-mail : lapsydee @ msh-paris.fr

Daoes success to test A amply, e general, suceess 1o test B” Such question about oriented
dependencies often arise ml sychology of Education. Loevinger 's index H can be used 1o measure
descriptvely such near-mmplicanons. A bavesian methodology is proposed 1o generalize
conclustons reached after this descriptive stage. Resuts of the method are summarized by an
implicative graph relatng several tests. This Bavesian Implicative Analvsis is used for analyvzing an

experiment about the conceptualization of fractions in teenagers.

FFor a psychologist specialized in mathematics education, it can be very useful to
have at his disposal methods allowing him to identity the notions necessary for the
acquisition of a competence in a given concepiual field. With such methods, one could
evaluate the effects of a domain already studied and could thus contribute 'to the
development of a new didac(ic; Before acquiring a concept, it is necessary to go
through several stages that sometimes include episiemological obstacles (Vergnaud,
1981).

A difficulty appears during the acquisition of rational numbers : fractions
expressing a non-inclusive relationship (Part/Part) are more ditticult to master than
fractions expressing an inductive relationship (Part/Whole) (Vergnaud, 1983). Then,
two questions arise © 1) To what extent the Part/Whole fractions are necessary io
master Part/Part fractions ? 2) What are precisely the obstacles faced during the
conceptualization of Part/Part fractions ? The purpose of this article is to show how it
1s possible to answer these questions through an example of research about the
conceptualization of fractions during secondary school with the Bayesian Implicative
Analysis.
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I'rom experimental data taken from a group of students, it is possible to quantity the
oriented dependencies between the performances (success or failure) observed during
two tests. An near-implication (or in short an implication ¢ — b) of a modality o
towards a modality 5 appears when the students presenting ¢ present gencrally b,
whereas the opposite is not necessarily true. Therefore, it is important (1) to have an
“index that guantifies descriptively the magnitudes of near-implications, for a sample of
subjects, (2) to have inductive methods that gencralize these near-implications to the
reference population from which the sample was extracted. The Bayesian methods
allow to deal with this question in a general way (Bernard, 1991). They have been
recently applied to the implicative analysis (Charron, 1996 ; Bemard et Charron,

submited).

Method

18 problems concerning the use of fractions were given to 165 pupils : 55 fifth
grade pupils (average age : 10 years and 11 months), 55 seventh grade pupils (average
age : 12 years and 10 months) and 55 ninth grade pupils (average age : 1S years and 3
months). In each problem, a fraction (given or to be found) was relating a compared
quantity to a quantity of reference. There were three different type of tasks :
computation of the fraction (OF), computation of the compared quantity (QC),
computation of the quantity of reference (QR) in two different cases (the fraction
expresses a Part/Whole relationship, PW, or a Part/Pant relationship, PP). For each of
these six types of problems, three situations were presented (slices of cake. clients in a
restaurant, trees in a forest). The crossing of the «task », « relationship » and
« situation » factors led to the elaboration of I8 problems linguistically similar.

t:xamples of problems are presented in table | :

Results
kzach of the six types of the problems above was considered as a single test. Each
test was coded in success/failure according 10 the following criteria : success (denoted

1) when at least two of the three situations were correctly answered, failure (denoted
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Table 1 : Statement examples for each of the 6 tests.

Computation of the Compared Quantity of the Part-Whole
Relationship (QC/PW)

“In a forest. there are 80 trees and 4/5 of the trees are chestnut trees.
iind the number of chestnut trees in the forest.”

Computation of the Reference Quantity of the Part-Whole
Relationship (QR/PW)

“At a restaurant, 30 clients have finished cating, that is 3/5 of all the
clients in the restaurant. Find the number of clients in the restaurant.”

Computation of the Fraction of the Part-Whole Relationship
(OF/PW)

A " 1R

o

“A large cake is made up of 90 shices. 36 slices have been eaten.
What fraction has been eaten? Reduce the fraction to the simplest
form possible (a fraction that can not be reduced any further).”

Computation of the Compared Quantity of the Part-Part
Relationship (QC/PP)

At a restaurant. 70 people order meat and the others order fish. The
number of people who order fish represent 2/5 of the people who
order meat. ind the number of people who order fish.”

Computation of the Reference Quantity of the Part-Part
Relationship (QR/PP)

“In a forest of cedar and pine trees, there are 60 cedars. That is, 3/5
of the pine trees. Find the number of pine trees.”

Computation of the Fraction of a Part-Part Relationship (OF/PP)

“A cake has 49 decorated slices. 14 shices are not decorated. What
fraction represents the number of non-decorated shices, compared to
the number of decorated slices”? Reduce the fraction to the simplest
form possible (a fraction that can not be reduced any further).”

O
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() otherwise. During a preliminary analysis. no effect of surface traits (cakes, clients,
trees) was discovered. Thus, we focused on the study of the global implicative
structure relating these six tests : QCPW, QRPW, OFPW, QCPP, QRPP, OFPP. The
implication relations between these tests, taken two by two, have been quantified by
the loevinger’s index, that ranges from - 10 1 (see Charron, 1996 and Bemard and
Charron, submited, for more details). In the following, an observed Loevinger’s index,
denoted H, should be clearly distinguished from the corresponding « true » index.
denoted 7, that is the one in the population. There is no implication for a negative
values : for a value of 0 the two tests are independant ; the closer to 1 the H index is.
the higher the implication is ; there is a strict implication for a value of |. In practice,
we define a reference value, called « negligible limit of implication », under which we
consider that the index value is negligible. On the contrary, a « limit of notable
implication » 1s also defined, above which the implication will be termed as notable.
As far as our set of problems is concemned, these reference values were respectively
taken to be .20 and .60. The following tables present observed relations of vary in
magnitude (in terms of H) for the ninth grade students, respectively from QCPW 1o
QRPP, from OFPP to QRPW, from QRPP to OFPW, and from QRPP to QRPW. In

each case the first test is in lines, the second one in columns :

10 1 0 I 0 10

I | 143t 1120] 8 1i16f1 F171 0
01317 012118 022116 0115123

H = 0,002 H - 0521 H = 0,909 Ho- 1
(negligible implication) (intennediate implication) (notable implication) (strict implication)

The figure la presents the descriptive implicative graphs. which reflect the near-
implication relations between the six types of problems, for each school grade. Only
the non negligible relations (that is the ones such as H > 20) are represented. The
values of the H index appear besides each line. The line’s thickness retlect the value of
tl. ‘The arrows indicate the implications between the successes and the dotted lines
indicate the implications from success to failure (negative exclusion) or from failure to
suceess (positive exclusion).
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The figure 1b sums up the cases for which the Bayesian inference relative to the
index 77 allows to conclude inductively to a non-negligible implication. The values 7,
such that Prob(n> m) and 7> .20 are writien besides each line. This type of
inductive statement means that there is a 90% probability that the index n is higher
than 7. The type of lines, solid or dotted, must be interpreted as in figure la.
‘Thickness now indicates the value of 7. The fact that some lines disappeared from la
to Ib corresponds to the situations of ignorance about the associated 77's. For these
cases, {t would be useful 10 have a higher number of students to reach a conclusion. in
this respect, the descriptive graph is a guide that indicates the relations that could be

demonstrated if more data were available.

To be concise, the commentary is focused on the inductive graph (Ib).
Nevertheless, the reader can refer to the descriptive graph, particularly in cases of
ignorance. Figure Ib shows that the implication network is much richer for seventh
graders and that a success to failure implication (negative exclusion) only appears for
fitth graders. Such negative exclusion between QCPW and QRPP means that most of
the pupils who succeed in resolving the first problem, failed on the second one. For
seventh graders, this relation is replaced by an implication of QRPP towards QCPW,

whereas for fitth graders, no relation is assessed.

If we compare the implicative network of the three graphs, we note that, for the
three age-goups, the implication of the items PP towards PW is more frequent than the
reciprocal implication PW towards PP. The pupils who succeed in Part/Part problems
(PP) generally succeed in Part/Whole problems (PW), whereas the opposite
phenomenon is less marked. For each task, the magnitude of direct implications PP
towards PW increases with age (true indices respectively greater than .60, .78, .52 for
QC, ignorance statement; greater than .71, .90 for QR and greater than .27, .72, 91
for OF). On the other hand, reciprocal implications PW towards PP remain
comparable in size (in the same order, true indices greater than .44, .53, 39, ignorance

31, .21 and ignorance, .29, 25).
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it is important 1o note that at the three ages. QR tests imply OF tests. The magnitude
of these relations increases with age. Finally, tor seventh and ninth graders,
intermediate implications were found from OFPP 1o ORPW and from ORPM 1o
QCPW. Furthenmore. the implication irom QRPP lo;vurds QFPW is intermediate for
seventh graders (greater than .35) and increases for ninth graders (greater than .52).

No inductive conclusion of negligible implication could be drawn for the observed
indices less than .20, Additional data would is required o draw any conclusion about
themy. However. an analysis carried out by pooling all age-groups together show that
generally. non-drawn implications (less than .20) are negligible (most of the

probabilities of the statement 77 < .20 are at least equal 1o .90).

Conclusions

Three main results emerge from this study. First of all. we can see that for fifth
graders. a success in QCPW implies a failure in QRPP. When analysing the resolution
process in details. we found that the pupils ofien use the same straiegy for both
problems : this strategy, which was cfticient for the first problem but irrelevent for the
second one, was incorrectly generalized (Charron. 1996). 'The method presented here
allowed to detect a conceptual obstacle for the young pupils that is overcome for older
ones. Second. in order to succeed in PP type tasks, the success in the corresponding
PW type task is necessary. Thus. the acquisition of the PartyWhole concept is
necessary to the mastery of the Part/Part concept. Finally, 1asks off QR and OF type
share many relations of implication. These links suggest that they require common
processes of resolution. The scope of these conclusions was controled through clinical
interviews and qualitative analysis (Charron, 1995 and submited). More generally, we
hypothesize that the near-implication relations found reveal operative invariants in
construction.

Morcover. several suggestions concerning the teaching ot mathematics can be
outlined. The notion of PartyWhole relationship should be introduced to pupils before

the Part/Pan relationship. Furthermore. the fitih grade pupils should be warned that
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~ obstacles could appear at their level, so that they can avoid them. Both QR and OF
lasks can be taught simultancously while clarifying their common points and
differences. Althought it is difficult 1o say that in every didactic situation, PW
fracions are pre-required for PP fractions, we may nethertheless notice that this

necessity is nowadays present in teaching.

The Bayesian Implicative Analysis allows 1o bring into light and 10 gencralize the
necessary stages for the acquisition of a concept. It was presented here from an
example of siudy of the fraction conceptualization. It can be apply 1o other
mathematical 1asks and thus be usetul 10 a better understanding of the development of
mathematical competences. The AIB-2 software package, operating under Windows,
allows all the computations and graphs presented here, and is available from the

authors.
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HOW DOES ADDITION CONTRIBUTE TO THE CONSTRUCTION OF
NATURAL NUMBERS IN 4- TO 13-YEAR-OLD CHILDREN?

Camilo Charron and Nelly Ducloy, LaPsyDEE, CNRS, University of Paris V

Classification und seriation are necessary condmions for number construction, but are
they sufficient? The pollowing tvpes of exercises were given to 217 children aged 4 o 13: Discrete
Quuntines Conservation (DOC), Arithmene Impheanons (A, Number Classification (equality
herween quantities and between transformations), Ordering (hetween quantitics and between
transformations), and some addiion problems. Success on DQC and Al implicd suceess on some
addiion problems. Moreover,: suceess on complex addition problems was accompanied by a
change in numerical knowledge: natural mumbers are considered as a particular cluss of signed

" mtegers.

Piaget and Szeminska (1941) thought that numbers were the result of the
operational synthesis of classitication and seriation, which occurs at the age of' 7 or 8. Other
studies have pointed out (1) counting abilities beginning at the preschool age (Gelman and
Gallistel. 1978 Fuson and Hall. 1983) (2) fater abilities related to mastering the sequence of
counting words (Piaget et al.. 1987). How can we explain this paradox? We could contend
that the use of ditterent criteria to detect abilities leads psychologists to study difterent areas
of knowledge (counting tasks, conservation exercises. addition operations, etc.). We could
also assume that the abilities needed 1o meet the same criteria change with age. For example,
are the skills needed to succeed in conservation of discrete quantities the same at the ages of
8 and 127 Probably not. '

But it is important in teaching number to know the real nature of the learner's
knowledge. as well as the conditions under which it can be acquired. In this respect, an
experimental study. on the numerical sequence would be worthwhile (Vergnaud, 1991).
L:ven if there 15 a great deal of research on number. few studies have dealt with the role of
addition in number construction. In describing additive structures, Vergnaud (1991) showed
that some preschool-age children are able to understand certain elementary properties, such
as the fact that addition makes a quantity bigger and subtraction makes it smaller. He also
showed that other properties have not yet been acquired in the teens. Could addition give
numbers their properties of transformation, cardinality. and reversibility, and thereby
contribute to the acquisition of conservation?

The aim of the present study was (1) to find out. whether addition is also
necessary to many stages ot number acquisition, and (2) if’ so. to determine how additive
structures contribute to the construction of numerical knowledge. For the remainder of this
article, numbers reterring to quantities will be considered as natural numbers (denoted N),
the numbers reterring to a relation, a difterence. an addition, or a subtraction will be

considered as signed integers (noted Z) .
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Method

Population

The subjects were 217 children from six grades in twelve schools in the Parisian
area: second-year preschool (mean age: 4 years 9 months). kindergarten (mean age: 5 years
10 months), first grade (mean age: 6 years 9 months). third grade (mean age: 9 years), fifth
grade (mean age: 10 years 11 months), and seventh grade (mean age: 13 years 2 months).
‘There were 31 children in cach grade, except for the third grade where there were two
groups of 31 subjects.

Procedure

The testing was done in two or three individual sessions lasting between 30
minutes and one hour depending on the child's attention span. The experimenter described
the problem. The children answered orally and explained their thinking to the best of their
ability. All children did the same four exercises to begin with, hereafler called the baseline
tests, and then did exercises from one or two booklets (A. B, C) containing six problems
cach. The preschoolers were tested on exercise booklet A. The kindergartners and first
graders, and the first group of third graders, were tested on booklets A and B. T'he second
group of third graders, and the fifth and seventh graders were tested on booklets B and C.
By construction, the exercises in booklet A were easier as a whole than the ones in booklet
B. which were easier than the ones in booklet C. The testing order was counterbalanced.

‘The materials used were the same for each exercise (except for the baseline tests).
They consisted of marbles of two ditterent colors, boxes, and a grid to help the younger
subjects count. Different numbers were used for each age: O to 4 for the preschoolers, 0 to 7
for the kindergartners, 7 to 15 for the first graders. and 9 to 30 for the third. fifth. and
seventh graders. The exercises are described here with the values used for the third graders
and above.

Exercises in the baseline tests

Discrete Quantity Conservation (DOQC) (Piaget et al., 1941). A collection of 16 green marbles are
lined up spaced at regular intervals. The child is asked to put out as many blue marbles as green
ones. After the experimenter puts each blue marble next to a green marble for verification, the
marbles in one of the rows are spread out and the child is asked, "Are there the same number of
blue and green marbles?" (question |: quotity conservation). Then the preceding manipulation is
repeated and the child is asked, "Are there as many blue marbles as green ones?" (question 2:
quantity conservation).

Arithmetic Implications (Al) (Piaget et al. 1987). The materials consist of two boxes located at
difterent heights. The upper box () is connected to the lower box (L) by means of an opaque tube
in which the marbles can drop from U 1o .. Two experimental situations are set up. In the first, the
total number of marbles (T) is 15, 15 in U and 0 in L. In the anticipatory phase, the child is asked,
"Before the awelfth marble: drops” down, how many marbles will there be in L and in U?" In the
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exceution phase. the child makes the marbles go down. Then 1. and U are hidden and same
questions are asked about the cardinals of U and L. in the second situation. there are |8 marbles in
U and 0 tn ).. in the anticipatory phase, the child is asked, "It we drop |5 marbles from U to L., will
the ninth one be in U or in L? And the tenth? And the tificenth? And the sixteenth? And what other
ones will be in U In the exccution phase, the experimenter says, "You will drop |5 marbles into
1." U and L arc then hidden and the child is again asked the questions about the ordinals in cach
box.

Elevator (I3). The subject is presented with a sheet of paper showtng a vertical line of circles
depicting the tloors ot a building. with as many basements as floors above ground. The nuddle
circle represents the ground floor and is labelled zero. After having made sure the subject
understands how the "clevator” works. the expersmenter turns over the sheet of paper and asks the
following questions: "The elevator starts at the ground floor and goes up 26 floors. What floor is it
on?" (question |). "The elevator leaves the | th basement and goes up to the 13th floor, how many
floors has it gone up? (question 2). "The clevator moves up 24 tloors from the 17th basement.
What tloor docs it stop at?" (question 3). "The clevator goes up 23 floors and goes down 17 Hoors.
Has 1t gone up more {loors or gone down more floors? (question 4). "How many?" (question 3).
"And if it had started at the ground floor, where would it be? And what if it had started from
another floor? Can you give an example? (question 6). "The elevator goes down 17 floors, goes up
9 tloors, and goes down |3, how many tloors has it gone up or down™ (question 7).

Combinations of Opposing I ranstormations (COT). A box of I { green marbles is presented and the
child counts them (this will be called the initial stage, I, with |y = {1). The box is then hidden and
18 other green marbles which the child does not see are added. The box ol marbles is presented
again and the child counts (this is called the tinai stage, Fy, with I, - 29). The child is asked how
many marbles have been added, which corresponds to the difference between Fy and 1, (question 1),
‘The excrcise is repeated with 1y : 28 blue marbles and F, — 15 blue marbles (question 2). The child
has F; and I~ in front of his eyes and is then asked, "What have we done in all, have we added or
taken away some marbles?™ (question 3). "How many?" (question 4).

Booklet A exercises

Discrete Quantity Conservation (ADOQC). ‘The child is shown 16 marbles lined up in a row, First the
child takes them in histher hand Then the experimenter tays them out in a square in the middle of
the table, and finally moves them to the edge of the table. After cach move of the marbles the child
is asked, "Are there more, tewer, or the same number ot marbles compared to before?” (questions |,
2. and 3).

Lquivalence Classes (AVC) ‘The child is shown two boxes containing no marbles, two boxes
containing 9 marbles, three boxes containing 12 marbles, one box containing 7 marbles, and three
boxes containing 14 'marbles. He/she is then asked to gather up the boxes which have the same
number of marbles (question 1), justity histher classification (question 2), and use a number-word
to name cach class constructed (question 3).

Equality Conscrvation in N (AECN) Two boxes of marbles of different colors bul equal quantitics
(1 =12 - 21) are presented. ‘The chitd has to count them (questions | and 2) and state whether
there are more, fewer. or an cqual number of marbles in cach box (question 3). Then the
expenmenter points out the equahty of two other collections of & marbles. which are added to the
boxes. The content is then concealed and the senation question is asked again (question 4).

O
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Order Conservation in N (AQCN). The setup is comparable to AECN, but the two initial collections
are unequal (1 - 17 and 2 18). Questions 1, 2, 3. and 4 are the same as in the preceding
exercise. .

Searching tor Part of a Whole (ASPW). A box is presented containing 14 blue marbles, which the
child has to count (question §). ‘Then another closed box containing green marbles is presented and
the experimenter says, "IF I count the blue and green marbles hidden in this box, there are 27
marbies in all. How many green marbles are there in the closed box?" (question 2).

Commutativity in N (ACN). The child is shown 17 blue marbles and 19 green marbles and is told to
count them (questions | and 2). He/she is then asked how many marbles heishe counted altogether
(question 3). The experimenter then tells the child to imagine another child who did the addition in
the other order and asks, "Did he find more, fewer, or an equal number of marbies compared to
you?" (question 4).

Booklet B exercises

Associativity in N (BAN). There are three sets of marbles (A = 13, B = 12, C=16). The child
counts A and B and is told to perform the operation A + B (question 1), count C. and then perform
the operation (A + B) + C (question 2). He/she is then told that another child did A + (B + C),
and is asked, "Did he find more, fewer, or an equal number of marbles compared to you?" (question
3).

Difference Conservation in N (BDCN). The child is shown 25 blue marbles and || green marbles
and asked, "Where can you find the most?" (question 1) and "How many blue marbles were added?
How many green marbles were taken away?" (question 2). The child is led to consider the equality
between two other collections of 9 marbles, which are added to the two boxes. The content is
hidden and the same questions are asked (questions 3 and 4).

Yor the following exercises, the same objects as tor baseline test exercise COT were used. Adding
will be called a positive transformation and subtracting will be called a negative transformation.

Order Conservation in Z (BOCZ). The child is told to count two unequal positive transformations
(question | with |, = 12 and F, * 25; question 2 with |, = 10 and F, = 24) and asked, "To which box
did we add more marbles? (question 3). The child is then told that 12 unseen marbles were added
on each side, and is asked the seriation question (question 4).

Equality Conservation _in_Z (BECZ). The setup is the same as above except that the two
transformations are equal (question | with |; = 12 and F; = 26; guestion 2 with 1, =9 and F, = 23).
Questions 3 and 4 are the same.

Combining F'ransformations and searching for a Negative transformation (BCTN). The child is told
to calculate a positive transformation (question } with |, =9 and F, == 22). Another box whose
content is unknown is shown and then hidden, and some marbles are taken out. The child does not
know the transformation, but is told that the result of the addition of both transformations is equal
to +6. He must deduce that the unknown transformation is negative {(guestion 2) and calculate it
(question 3).

Commutativity in Z (BCZ). The child is told to calculate two positive transformations (question |
with I, 1hand ¥, 26: question 2 with |, - 14 and ¥, - 26). and asked how many marbles were
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added altogether (question 3). Then the expenmenter tells im/her to imagine that another child has
done the addition in the other order: "Does he count more, fewer, or the same number of marbles
compared to you?" (question 4).

Booklet (C exercises

Associativity in Z (CAZ). The child has to calculate T1. 12, and 3 (question | with [, - 7 and
F, = 26: question 2 with |, =20 and F,- 4. question 3 with |s- 14 and F, - 27), and add three
transtormations: (11 + 12) + 13 (question 4). Then hesshe s told that another child did
T1+ (124 13) and asked, "Did he find more, fewer, or an cqual number of marbles compared to
you (question 5).

Difterence Conservation between Positive ‘Franstormations (CDCPT). The child calculates two
positive transtormations  (question | with |, =9 and ¥, = 24 ; quesnon 2 with §, =7 and F,  23)
and is asked. "Where did 1 add more marbles?" (question 3). "And how many more?" (question 4).
He/she is then told (but does not see) that 11 marbles are added on each side, and is asked the same
questions again (guestions 5 and 6).

Order Conservation of Opposing Transtormations (COCOT). The setup 1s the same as in BOCZ,
but the two transtormations arc opposing (question 1 with 1, = 9 and ¥, = 18; question 2 with
Iy - 26 and ¥, = 19). The child is asked, "Which box received the most marbles?” (question 3).
He/she 1s told without seeing that 13 marbles are added on cach side, and is asked the same
queshion (question 4).

Intference  in Negauve  Transformations (CDNT). The child calculates two negative
transformations (question | wath |, = 17 and ¥, =9 ; question 2 with 1, =25 and ¥, = 14) and is
then asked, "From which box did we take more marbles away?" (question 3) and "How many
more?" (question 4).

Difference 1n Opposing fransformations (CDOT). The child calculates a negative transformation
fquestion 1 with 1, = 2] and F, = 12) and a positive transtormation (question 2 with I, ~ {1 and
F2 = 25), and is then asked how many marbles were added in T1 compared to T2 (question 3).

Ditterence in Opposing_ Transtormations, Searching for the Referrer (CDOTSR). The subject
calculates a positive transformaton (question | with |, = 13 and ¥, = 22). Another box of unknown
content 1s presented, hidden, and some marbles are taken out. The child does not know what the,
transformation is but is told that the diftference between the two transtormations is +15. He/she
must deduce that the unknown transtormation is negative (question 2) and calculale it
(question 3).

Resuits

The baseline test exercises DQCT, DQC2. Al E and COT were scored as success or
tailure. The problems in exercise booklets A, B, and C were scored by grouping into
exercise/ability pairs (table I) An exercise/ability was considered to be performed well when
two thirds of the questions in it were correctly solved.

Analysis of the baseline test scores indicated the following success order: DQCY. DQC2.
Al COT, and E, DQC! were solved the best, and COT was solved the worst {1211 = -
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17.73*** prob(Lin/s< -1.153) = .90}]. The number of wel-performed exercises in the
baseline tests (from O to 5) increased with age |Phi? = 0.97: p < .0001]. In order to determine
what notions are necessary to success on these exercises. the implication relations between
the baseline test exercises and the items/abilities were noted. Remember that there is an
implication (or quasi-implication a — b), from exercise a to exercise b when, as a whole,
subjects who exhibit a also exhibit b, while the reverse is not necessarily true. This relation
can be quantified by lL.oevingers H (1947). For values of H less than or equal to 0, the
implication does not exist. When the index is 0. the two exercises are independent. The
closer H is to 1, the higher the implication. and the implication is strict when H is |. Table 1i
presents the original matrix of observed implications between the baseline test exercises and
the items/abilities in booklet A for the 4- to 9- year-olds.

Table I: Inventory of numerical abilities tested and exercises testing each.

Numerical abilities tested Name of exercises and
question numbers involved
Counting (CG) AQCNI1.2 AECNI,2 ACNI.2 ASPWI
l:quivalence class (EC) AECI2.3
Discrete quantity conservation (DQ) ADQCI23
Equality in N (EN) AECN3
Conservation of equality in N by translation (CEN) AECN4
Equality in Z BECZ3
Conservation of equality in Z by translation BECZ4
Conservation of difference in N by translation BDCN4
Conservation of difterence in Z by translation CDCPT6
Order in N (ON) AOCN3 BDCNI
(onservauon of order in N by translation (CON) AOCN4 BDCN3
Order inZ BOCZ3 CDCPT3 COCOT3 CDNT3
Conservation of order in Z by translation BOCZ4 CDCPT5 COCO14
Addition in N (AN) ACN3 BANI,2
Addition in Z BCZ3 CAZ4
Searching for Part (Subtraction) (SP) ASPW?2
Difference in N (Subtraction) BDCN2
Difference in Z (Subtraction) CDCPT4 CDNT4 CDOT3
Calculation of a positive transtormation BOCZI1,2 BECZ1,2 BCZ1.2 BCTN! CAZ1.3
CDCPTL,2 COCOTI CDOT2 CDOTSRI
Calculation of a negative transformation CAZ2 COCOT2 CDNTI,2 CDOTI
Negative sign and calculation of a negative BCTN23
transtormation
Negative sign and calculation of a negative . CDOTSR2.3
‘transformation of a referrer
Commutativity in N (CN) ACN4
Commutativity in Z ~ BCZ4
Associativity in N BAN3
Associativity in Z. CAZS

O
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Table 11: Original matrix of observed implications between the baseline test exercises and
the items/abilities 1n booklet A.

Count Lquivalence Classes Order Additive Structure
a—- bl CG EC DO EN | CENJ ON | CON| AN Sp CN
DQCH| 138 3 459 507 778 261 534 377 .384 332

DQC2 1 | 878 1 | 1 916 | .802 | .778 .683
Al i i ] I 1 1 664 | 604 | 778 .62
i 1 i 1 1 1 1 1 1 I 1

coT i i 1 ] 1 1 1 1 1 1

Looking at the boldface characters in table Il. we can see that success on DQC (|1
and 2) strongly implies abilities in order, equality, and additions in N. Concerning CO'T, |2
and Al. the value of the index is close to or equal to |. An identical analysis performed on
booklet B abilities (for 5- to |3-year-olds) and booklet C abilities (for the 9- to | 3-year-olds)
showed that the conservation of diflerence in N or in Z implies conservation of order,
conservation of equality, and the calculation of transformations.

In order to explain the role of addition in the construction of numbers. the correct
answer patterns for exercises involving the conservation of equality, order, and difterence, in
N and in Z. will be discussed. At the lowest level, the child answers simply, sometimes
without explanation, as in "There are as many marbles as before” (for AECN4). Other
children can explain their answer. as in "There are more green marbles added because you
put in six green marbles and four blue marbles a minute ago, and now five and five (first
grader for BOCZ4). At the next level. the child explains a generat rule. saying that adding
the same number to two collections does not change the preexisting relation (of order or
equality) between the two, as in "You added the same number of marbles, so it is like it was
at the beginning; it doesn't change anything” (fifth grader for BDXCN4). At the highest level,
the child understands order conservation as an invariant that is independent of addition. as
in "It is just hike multiplication; both results are high and it doésn't change the final result
because you added nine here and nine there. The two results get higher in a same
proportion” (third grader for BDCN4).

The same pattern was found for commutativity in N (ACN4) and in Z (BCZ4). and
tor associativity in N (BAN3) and in Z (CAZ3). The child interchanges the boxes without
explanation. During verbalization, the child agrees that A+ B =B+ A, as in "It's the same
because it means the same thing: it's the same addition, 12 + 15 and 15 + 12" (third grader
tor BCZ4). This phenomenon is seen as a result of adding. Then this result is abstracted and
made into a general rule, which becomes a property of addition, as in "When we add,
whether the number is before or after makes no ditference.” At a higher level. the seventh
graders accurately name the tested relation as an independent entity. as in "lt's
commutativity, "It's associativity”. or "This is found in multiplication to0.”
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As for transformations. which were part of various exercises, they are regarded as
the addition or subtraction of a natural number. as in "You added 9" (all ages). Later on,
these transformations become objects referred to by a name (e.g. the difference), as in
"Because 14 is positive and 9 is negative, the ditterence is 14 +9=23" (for CDOT3).
Others consider this entity as a signed integer with all of its properties, as in "They are
signed integers, so we can add them” (seventh grader for COT). At this level, the natural
number is no longer a quantity. It also becomes a particular kind of signed integer.

Conclusion

As expecled. two main results stand out from this study. (1) Addition. like
equality and order, contribute to the development of numbers from preschool age on. (2)
Natural numbers gradually acquire more and more. increasingly complex properties based on
order and equahity relations and additive structures. One of these properties, the
quantification of differences (additions or subtractions). is constructed like a signed integer.
‘I'he latter leads the subject to reconsider natural numbers, which then become positive
signed integers.

At first. concepts are problem-solving tools. whether implicit or explicit. They are
initially seen as the properties of another existing mathematical object, such as addition.
Some of these tools are then granted the status of an object, with properties of its own. The
shift from the tool to the object leads to the re-elaboration of former knowledge. The use of a
variety of addition problems as early as preschool can contribute to reinforcing the
acquisition of number.
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OVERCOMING ISOLATION IN TEACHING: A CASE STUDY OF
COLLABORATION IN A PROFESSIONAL DEVELOPMENT SCHOOL
MATHEMATICS DEPARTMENT
Daniel Chazan (Michigan State University), David ben-Chaim (Oranim School of
Education, Haifa University), Jun Gormas (Michigan State University) with the aid of

Sandra Callis Bethell, Michael Lehman, Steven Neurither, and Martin Schnepp (Holt
High School)

This paper analvves interviews with teachers who shared teaching assignments
in which they explored an innovation in the teaching of lower track Algebru
One classes. The teachers emphasize two important ways in which sharing a
teaching ussignment lead to their professional growth. They emphasize the
value of the opportunity to experience an innovation in context and the
importance of having to make joint pedagogical decisions.

Saciological descriptions of teaching (e.g., Lortie, 1975) and analyses of the culture
of teaching (e.g., Feiman-Nemser & Floden, 1986) portray an occupation in which
practitioners operate individually behind closed doors. In attempting to explain this
phenomenon, Huberman (1993) suggests that the development of an instructional
repertoire is an inherently idosyncratic process; teachers are artisans. Yet, research
suggests that teacher-teacher professional collegiality can serve as an important
catalyst for professional development and school change (see Griffin, 1991 for an
elaboration of this argument). Such teacher collegiality can take many forms from
occasional conversations about teaching; to the sharing of lessons, materials, and
classroom stories; to intensive collaboration on a shared teaching assignment.

Proponents of collaboration among teachers suggest that "what is most deeply
known about teaching is known by teachers” (Griffin, 1991, p. 250) and that
therefore it is sensible to have teachers learn from each other. Some (e.g.
Rosenholtz, 1989) argue that this learning should happen in the classroom. They
focus on organizational arrangements in which teachers learn from each other by
sharing responsibility for the instruction of a group of students (see the review by
Cohen, 1976). Because of his emphasis on teacher artisanship, Huberman is
skeptical. He argues that, "it is hard to imagine two such people equally responsible
for the same pupils at the same time. The response set of one person would collide,
early on, with that of the second, whose reading of the situation and whose rapld
on-line response would necesarily be different...” (1993, p. 17-18).

This paper presents a case study of one high school mathematics department's
attempts to develop professionally through shared teaching assignments whose goal
was to create an innovative Algebra One experience for students in lower track
classes (referred to as "team teaching” below). Though, as Huberman suggests,
there were tensions inherent in the sharing of a teaching assignment, the teachers
reports of their experiences were quite positive. In this paper, we analyze
interviews with the teachers with our focus on the explanations given for their
perception that shared teaching assignments present unique professional
development opportunities.
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Background/Context

Holt High School, the setting for the events described in this paper, is located in a
suburban/rural community ten miles south of Lansing, the capital of Michigan, and
a similar distance from East Lansing, home of Michigan State University.
Historically, there were always connections between people associated with Holt
High School and others associated with Michigan State, as there are with many local
K-12 schools. But, the nature of these connections and the level of institutional
involvement escalated dramatically in the mid-eighties. In the mid-eighties,
Michigan State University revamped its teacher education program and began to
implement Holmes Group notions of professional development schools (see Holmes
Group, 1986). The notion was to create institutional connections with schools like
Holt High School around teacher education, the development of exemplary practice,
and educational research. The vision suggested a synergistic set of activities and
collaborations between university faculty and K-12 educators around important
issues of educational practice.

Michigan State University's Professional Deveopment School initiative at Holt High
School is a complex one which defies simple description. On one level, it has meant
the infusion of resources into the high school. Within the Mathematics Department,
these resources led to a series of projects. We will concentrate on one strand in the
work; concerns about students in the lower track classes of the high school which
led to changes in the lower track curriculum -- the gradual abolishing of pre-
Algebra, General Math, and Practical Math -- and to a focus on the teaching of new
approach to Algebra One. The Algebra One work has been the locus for team
teaching. For three years, a member of the math department taught with a
university faculty member. During the 1993-1994 year, the department decided to
use PDS funds to allow two department members to teach together. During the
1994-1995 school year, each of these teachers taught Algebra One with another
member of the department.

Algebra One Team Teaching in 1994-1995

Relevant literature (e.g., Geen, 1985) suggests that it important that team teaching
be organized around some defining purpose, be initiated by the involved teachers,
and be supported by administrators and/or department heads. Many of these
conditions were met at Holt High School.

The Algebra One team teaching at Holt centered on a new approach to algebra, a
subject which is often problematic for students. It focused on a change in how the
x's of algebra are conceived. In this approach, instead of viewing x's as unknown
numbers, x's are treated as variables which can take on a range of numerical values
(See Bethell, Chazan, Hodges, & Schnepp, 1995 for a development of this approach;
Chazan, in press). This change of emphasis has lead the department to develop a set
of materials and activities designed to promote classroom discussions and to replace
textbook presentations. But, these materials do not constitute a linear curriculum.
They pose open-ended questions, suggest the examination of calculation procedures
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used in day to day life, involve alternative assesement, and make use of graphing
calculators and computers. They are under continual development and can be used
in different orders; some teachers have particular preferences in ordering the
materials and others try to shape their instruction in response to comments their
students make.

Based on previous work, for the 1994-1995 school year, the mathematics
department wrote a Professional Development School proposal calling for the
participation of four teachers (half of the math department) in two Algebra One
team teaching pairs. Each pair agreed to share year-long responsbility for teaching
one Algebra One section. Both teachers would be present each day and would share
the instructional tasks. But, though the work was joint, the teachers contributions to
the collaboration were not identical. Each pair included a teacher experu:nu:d in the
curriculum and a teacher new to the curriculum. In each of the two pairs, the
teachers who had team taught Algebra One during the previous year agreed to help
introduce the other team member to the new approach to algebra. They agreed to
provide, especially early on, the big picture and direction as well as ideas about the
use of previously developed curricula material.

However, the teachers who had experience with the curriculum were also interested
in fearning from their colleagues. They each hoped to participate in the further
development of the curricular materials and to grow in their personal
understanding of teaching algebra. Since all four members of the two pairs were
experienced teachers, ranging from 7 years of experience to more than 20 years of
experience (one of the teachers not expenienced with the curriculum was the
departnent chair), they expected to learn from the particular expertise of their
colleagues (e.g., with alternative assessment) and from their general wisdom
accumulated during years of teaching experience.

The study

The fundamental data collected in this study were transcripts of structured
interviews carried out with all four teachers. Each teacher was interviewed in the
tall and in the spring. Each interview was carried out by a team of two
interviewers, lasted approximately ninety minutes, and was audiotaped. The
interviews were structured to collect data about the teacher's changing views of
algebra and their experience of team teaching.

The data were supplemented by visits to the Algebra One classrooms, notes taken
during weekly teachers meetings, and by interviews with a small sample of students
in the Algebra One classes.

Over the course of the year, though there were numerous examples of tensions in
these relationships, the teachers' informal assessment of team teaching emphasized
the unique and perhaps even transformative opportunities which it represented.
Theretore, the analysis focused on their reasons for teglmg lhdl the opportunities
presemed by team teaching were unique.
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Focused Analysis of Teacher Interviews

We classified the reasons given by the teachers for ascribing a special value to the
team teaching under two broad categories. 'First, the teachers saw great benefit in
their being physically present in the class with another teacher. They felt that this
shared experience allowed for the construction of mutual understandings which
often could not be captured or conveyed in words. Second, by teaching the same
material 10 the same students at the same time, the teachers had unparalleled
opportunities to collaborate in the midst of the complexities of teaching -- from
attempts to assess individual student understanding to decisions about course content
and sequencing of the material for the whole class. The shared teaching assignment
forced teachers eventually to take action. They had come to an agreement or
compromise. These two aspects of the team teaching form the framework for our
analysis of the interviews. '

Not having to rely on words: Shared experience of the same classroom
instead of talk about the classroom.

The teachers interviewed often compared conversations resulting from team
teaching favorably with departmental conversations about classes taught
individually. Their descriptions highlight the difficulties inherent in having
discussions about teaching without opportunities for shared examination of the
teaching itself. The following quote from Mike is in response to a follow up
question to a statement of his in which he claimed that team teaching had more
impact on his understanding of the algebra curriculum than the stories and sharing
he had participated in during the previous 3-4 years. We asked him why he thought
team teaching had this impact.

I had a picture in my mind about what the classroom might look like
[when hearing stories about instruction], but it was my classroom. It
was my set of norms, the way I operate a classroom. Team teaching
helped me understand how Sandy set up the norms of the class and the
time set up setting up the norms. But also how she questions kids in
such a way that is not threatening to them, so it's made me more aware
of how I question them. (Mike, Fall 1994)

As stated earlier, one of the goals for these team teaching situations was to work
with different curricular ideas. Rather than following a textbook page by page,
these teachers were working on developing an approach to algebra that presented
students with rich problems, allowing students the opportunity to analyze and
extract the pertinent mathematics, as guided by the teacher. In this context, the
curriculum was a living phenomena, rather than words or ideas taken out of the
natural environment of the classroom. Teaming allowed teachers to experience the
curriculum in context and not in an out of context verbal description. This
phenomena is described by Marty in the following two quotes:,
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1 heard Sandy talk about it [changes in curriculum], 1 looked through
the problems and stuff, but without seeing how it played out in the
classroom, 1 couldn't really understand the differences. And 1 had a lot
more concerns - that the kids would be lacking certain things when
they came out [of the class], because [when you look at the problems]
you miss the entire discussions part of any of the problems, which is
the key to when the mathematics starts coming out...1 was talking to
one of our special ed. teachers who was at an elementary school and we
were talking about teaching math differently and she said she talked
about it and talked about it and talked about it and didn't get it until she
team taught it. And | thought, ... that is the conclusion we are coming
to. (Fall 1994)

Building on the shared experience, the teachers then claimed to be able to construct
a different sort of vocabulary to talk about teaching and to have different kinds of
conversations. They claimed that they were able to use a shared vision of the class,
shared understanding of class norms, and shared observations of students’
interaction with the material as a backdrop for their discussions. Marty (Spring
1995) said, "The thing that | see is that it {team teaching] gives us a common
experience in mathematics so that we ¢an have a common language to talk about it.”

The idea that you need to witness the students doing mathematics differently was
furthered emphasized by Marty:

Unti! you see what goes on in the classroom ... I don't think a person
would understand otherwise. That's really pretty limited information
if you are just looking at test scores or whatever. It's the change in
attitude that the kids have in the classroom about math. It's what
they're doing in the classroom and how they understand the matenial,
not just it they can do problems with it. 1 think without team teaching
we're not going to get that point across to people, until they can
actually see it and talk about it with somebody as it's happening. (Fall
1994)

In discussing the students' progress and understanding, Steve, who had found verbal
descriptions of the class hard to understand, also mentioned the importance of what
he had actually witnessed. Steve was in the unique position of teaching an algebra
class based on a textbook during the sume time as he was team teaching with Marty
with the new approach. His experience lead him to make comparisons:

Probably the biggest thing that | carry away from the class is the fact
that | think the kids generally have a better feeling about math than a
textbook driven class, just possibly because their investment in it would
be in the discussions. Usually, we have some really good discussions
with the class. Yesterday was an interesting one where kids were very
eager to volunteer. (Spring 1995)
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of indjvidual responsibility
But, the teachers were not sharing an experience in which they were passive
observers; they had responsibilities to act in concert. In an article entitled "The
Persistence of Privacy: Autonomy and Initiative in Teachers' Professional
Relations,” (1990), Judith Warren Little presents a possible continuum of collegial
relutions (p. 512). This continuum moves from more independent teacher
relutionships to more interdependent ones. The team teaching in Holt High School's
Mathematics Department shares many characteristics with the kind of collaboration
that Little (p. 519) refers to as "joint work.” Joint work is an interdependent
relationship between teachers in which the teachers have a shared responsibility for
the work of teaching, collective conceptions of autonomy, support for teachers'
initiatives, leadership with regard to professional practice, and group affiliations
grounded in professional work. It is rare at the secondary level. In describing the
ditference between the independent and interdependent interactions between
teachers, Little suggests: -

Collegial relations that center around storytelling, mutual assistance, or
sharing issue slight challenge to autonomy conceived as personal
prerogative. Teachers in productive teams, departments, groups, and
projects express an alternative conception. The demands and the
prerogatives of professional autonomy shift from private to public,
from individual to collective. ... Teachers open their intentions and
practices to public examination, but in turn are credited for their
knowledge, skill, and judgment. (p. 521)

The teachers at Holt had much to say about the ways in which team teaching
provided opportunities for, and sometimes even forced, collaboration and public
discussion of teaching. Though some aspects of collaboration -- even when
ultimately rewarding -- could be uncomfortable, others were described as
pleasurable. For example, as the department chair, Mike commented on the
ditterence in the conversations when you are teaming versus when you are holding
department meetings.

But somehow, | really think that teaming forces you to talk about the

issues that in meetings we dance around all the time. Somewhere along

the line you have to talk about homework, you have to talk about

content, how you present content - what is important, what is not

important in the curriculum. You don't have a choice. (Fall 1994-5,

emphasis added) .
Sandy (Spring 1995) commented on the shared and continual sorting out of what is
going on in the class. She claimed that team teaching forces one to articulate
rationales for everything you do with students -- from disciplinary action to
grading to curricular choices. For example, Steve and N!;erty\'qollaborated closely
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on the grading of papers, consulting each other about the answers to open-ended
assessment questions and reaching a consensus on credit.

In contrast to the sometimes uncomfortable necessity to articulate one's practice,
one aspect of this collaboration which was particularly enjoyable to the teachers was
its emphasis on mathematics. Since the focus of the team teaching was on new
approaches to algebra, coupled with a pedagogy that allowed students to construct
knowledge and develop their own understanding, teachers were confronted with
basic questions about the meaning of algebra, teaching, and learning. The teachers
found this aspect personally enriching. Marty commented on this dspegt in the fall
and the spring:

I think that's one of the best things about team teaching, you're getting
together with other math teachers and just being able to talk about math
and talk about new ideas. (Fall 1994)

A lot of times where we're working after school we'll start putting a
problem together un we'll get a little carried away and add a few more
because it's fun. That's one of the neat things about the team teaching -
when you're planning together, if you can find the time in our
schedules. It's really enjoyable and you can get creative with problems
and I think that really shows in the classroom, too. The Kids pick up
on that - if you come up with a problemn that they think is really
interesting and unique. 1 think that happens more often when you're
working together with someone that if you're working alone. (Spring
1995)

At other points in the interviews the teachers talked about the opportunity to take
risks that one wouldn't take alone. They talked about the added confidence with
which one can try new ideas or teaching techniques as a result of having the support
of a colleague. Mike saw these benefit as a result of the development of trust and of
tamiliarity with another person’s thinking. As department chair, he thought that
such trust and familiarity might aid in the development of wider collegial relations
in the department.

So I think the more we can team the more we can face the issues.
Also, I think the more we can team, the more we can develop a real
trust of each other. I mean, you have to trust the person you're
teaming with, otherwise they're going to make you look like an idiot
in front of thirty-one kids. So you learn to trust them. You learn
how they think and why they do. So when you have these
conversations, you have a better idea where they're coming from.
So their ideas aren't off the wall in your opinion. Because they
actually do think about things. (Fall 1994)

O
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Conclusion

This analysis has focused on two sets of reasons given by teachers for finding a
shared teaching assignment professionally rewarding. According to the teachers, the
teum teaching within the Mathematics Department at Holt High School has produced
important changes in teacher relationships, professional development, curriculum
development, and instructional practices. They claim to have found themselves
thinking differently about the subject matter, their colleagues, students and
themselves. Will these reported changes affect their practice and the tenor of their
departmental and professional interactions in the future? Are the changes evident in
classes these same teachers teach by themselves? Will the work in Algebra One
spread into other areas of the curriculum? These are some of the questions we
intend to continue to pursue.

At the same time, we have other questions, ones about the range of applicability of
team teaching as a professional development tool. Clearly, compared to traditional
inservice activity, team teaching is a slow and expensive method of professional
development. Nonetheless, it does seem promising; the teachers' self-report is
positive; they report overcoming isolation and learning from each other. In the
future, we hope to explore whether there are other ways for teachers to share
experience and to make decisions collaboratively which perhaps might be more
widely applicable,
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NESB MIGRANT STUDENTS STUDYING MATHEMATICS:
VIETNAMESE AND ITALIAN STUDENTS IN MELBOURNE!

PHILIP C CLARKSON
Australian Catholic University (Victoria)

This paper descerbes one part of a loggrevdinal project studying bilingual Arzbic,
Vietnamese and kalian migrant children learning grade 4 mathemagcs in Melbourne
and Syduey, Auvstralia. Although the project has drawn on the work of Cymumuns
(1979 1991), we are also particularly 1oterested n why students Swilch batween
their laguages when processing mathemapcal problems. What may prompt a
bilingua! studear to switch lagguages? How often does 1t occur? Does it depend on
the mathematical context? What chagges might occur as the studedt progresses
through the primary school? This paper will comment on imtral findings from the
first phase of deta. :

Although Australia’s migrant intake has remained reasonably stable at about 100 000
per year for the last 20 years, there has been a change in the origins of immigrants.
In the late 1960s well over balf our immigrants were from English speaking
countries. This figure has now fallen to below 25% (Bureau of Immigration
Research, 1992). The 1988 Census reported that 2 220 000 or 14% of Australia's 16
million people spoke a language other than English in their home. Such changes in
the immigration profile have in turn led to a major increase in the number of Non
English Speaking Background (NESB) students in schools [NESB - people who were
born or their parents were born in a non English speaking country].

Up until the early 1970s it was assumed by most educationists that being bilingual
bestowed no advantage for school learning. However since then data has started to
accumulate which indicates that in particular situations bilingualism can be an
advantage. Much of this has come about by a clearer understanding of what is meant
by the term bilingualism (for example see Cummins, 1979, 1991).

During the last twenty years the links between language competence and mathematics
~ learning have been a major area of research for mathematics educators (see Ellerton
& Clarkson, 1992). The broad pattern of this interaction is now starting to.emerge
for monolingual speakers. Bilingualism was recognized early in this movement as an
important component, but has for various reasons not held center stage. Few studies
have taken up the specific issue of mathematical competence of NESB students in
Australia. The two major ones concentrated on NESB children’'s performance
compared to monolingual students (Ainley, Goldman & Reed, 1990; Hewau, 1977).

This project will report on the effect of level of competency of languages on
mathematical performance at a later time. In this paper, preliminary results
concerning Vietnamese and Italian students’ behavior of switching between
languages when completing mathematical items will be reported. Earlier research
elsewhere noted that bilingual students regularly switched languages when
attempling to solve mathematical problems (Clarkson, 1992; Dawe, 1983). Although
it was not possible to follow this matter up in any depth in those projects, it Was
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surmised that this could be an important factor in a bilingual student's attempt at
processing mathematical problems. We would also note that although there have
been many studies and much speculation on the role of code switching in general
(for a number of studies in various settings see Bialystok, 1991), there seems to be
none in relation to mathematics learning.

The first question to ask is, do these NESB students in an Australian context switch
languages when attempting mathematical questions, and if so with what frequency?
Other questions follow: Do smdents who respond in this way to mathematical
questions make more errors? What prompts students to switch languages? Do
students simply have a preferred language in which they wish to work when it comes
to mathematics? A further possibility deals with the perceived difficulty of a
problem. Does this prompt students to switch languages? Another interesting factor
is that of the mathematical context. Will there be a variation if students are
confronted with symbolic algorithmic items, with routine mathematical word
problems, or with open ended mathematical questions? The answers will have
important implications for teaching and learning mathematics.

Methods

Subrects

Overall, four groups of year 4 students are involved in this study. Experimental
target groups are NESB Vietnamese, Arabic and ltalian students. A monolingual
English speaking group of students form a comparative group. Schools were chosen
on two criteria. The first was that they had a positive commitment to bilingual
students and the use of their L.1, and the second was the ease of access by the
researchers into the school. All students included in the study will have completed all
their schooling in Australia. This stipulation is included since some immigrant
students who have completed little schooling in their home country are sometimes
started in higher grades when admitted to an Australian school because of
considerations to do with age. Such students may well introduce extraneous effeds.
Year 4 students have be chosen since a longitudinal format for the study will be
followed. It is planned to visit students again when they are in years 5 and 6.

In this paper we give a preliminary report on the Vietnamese and ltalian students
who live in Melbourne. Although we targeted 100 Vietnamese students who we
were advised by their schools were NESB, an examination of the student data
reduced this to a group of 80. [t eventuated that some students had only one parent
who wasborn in Vietnam, and some students spoke Chinese rather than Vietnamese
as their L.1. With the Italian students 95 were nominated by schools, but only 32 met
our criteria when data was examined. This calls into question just how well schools
do know the background of their students. The students were drawn from three
government and eight Catholic schools. The schools were all suburban, with the
majority of families living generally in working class or middle class areas. The
amount of school support for the bilingual students varied from bilingual teachers
being on staff and running combined mother tongue/LOTE programs for up to 2
hours per week, through to bilingual aides being available when needed.
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lastruments
AMathematicial Tests Three formats were used.
(i) Symbols Test: This test consists of items 1 to 10 and 21 to 30 of the ACER
Operations Test (Australian Council for Educational Research, 1978) giving a
maximum score of 20. All items are composed of mathematical symbols with no
~ words. For all items there is a stem followed by 4 or 5 alternative answers given.
(ii) Maths Word Problem Test: A range of 10 mathematical word problems drawn
from the ACER PATMATH series 1 (Australian Council for Educational Research,
1988), and hence a maximum score of 10. The items cover number, measurement
and spatial topics. The format of each item is a tem with 4 or 5 alternatives.
(iii) Maths Novel Problem Test: 10 'open’ items of the type that Sullivan and Clarke
(1992) have explored. Such items do not have one right answer and hence may well
present the students in this study with mathematical situations that are quite novel to
them. ltems are of an extended answer format. Two scores were computed from this
test. "I'he first was the ‘raw score’ which was calculated by allocating one mark for
each item where there was at least one correct answer given, giving a maximum
score of 10. A second score was calculated by allocating to each item a score of 1 if
one answer given was correct, a score of 2 if two answers were correct, and 3if
three or more answers were correct. Incorrect answers, when multiple answers
were given, were ignored. Hence the ‘novel score’ could range between 0 and 30.

Langugpe Information Sheet. An additional sheet was attached to the back of each
mathematics test instrument which asked for information on which language was
used to process each item. The first column listed the number of the items of the
test. Five more columns were headed ‘used all English’ through ‘used part English
and part Vietnamese (or ltalian)’ to ‘used all Vietnamese'. After completing the test
students were asked as a group to turn to this page. After some discussian about how
monolingual people can only think in one language, but people who know two
languages might think in one or the other, or sometimes swap backwards and
forwards between them, students were asked to look at this sheet. The supervisor
then said that s/he would like to know about the language(s) that students thought in
when completing the test. The students were asked to look back at item 1 and
remember as best they could which language(s) they used to think about it. They
were then asked to tick the appropriate column. After completing the second item as
a group the students were asked to work through the other items by themselves, each
time looking back at the item before ticking a column. The supervisor then maved
around the group (with the classroom teacher if available) handling any queries and
ensuring that students were not confused. In each class there were some students who
need further discussion about what to do, but all students completed the task
adequately. For analysis purposes the instrument was treated in a similar way to a
Likert scale with 5 being allocated to ‘all English’ through to 1 for “all Vietnamese'.

latervyew Schedule Selected NESB students were interviewed in a 1-1 situation. The
interview was video taped. To begin the interview, students were asked to solve
three or four unseen mathematical problems, some of which were of the ‘novel’
variety as described above. The video of them aitempting the solution of these
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problems was then replayed and used as a stimulus in discussing how they had gone
about the solution process, and in particular whether and at what stages they had
switched languages if they had indeed done so. During the interview the student was
also asked about their use of L.1 when doing mathematics in the classroom, and
outside of school, whether they attended special language school at weekends, and
who if anyone helped them complete their maths homework.

Results and Discussion

Cccurrence of Switching

It was suggested above that key beginning questions to this investigation were the
following: Did students switch languages when attempting the mathematical items?
If it did occur, how frequent was it?

To gain some insight into these questions, the number of items for which students
reported using their first language was calculated. These results-are presented in
Table 1. It should also be noted that only 2% of Vietnamese students and 3% of
Italian students indicated that they used their L1 for all items on all tests.

TABLE 1: Use of L1 in solving maths items (Vietnamese N=80; ltalian N=32).

Math Tests % of students using L1] % of students using [ % of students using
for at least one item. L1 for all items. L1 for no items.
Vietnamese [talian Vietnamese Italian | Vietnamese Jtalian
Symbols 43 22 14 9 56 78
Word Problems 53 28 9 10 47 73
Novel Problems 41 28 8 9 59 73

It is clear from Table 1 that there is a large minority of Vietnamese students who
regularly use their L1 in solving at least some mathematical problems. The
proportion of ltalian students using their L1 is about half that of the Vietnamese
studeats. Since many more of the Italian students were first generation Australians,
this difference is expected. In fact these percentages of ltalian students surprised
most of their teachers.

An examination of a percentage frequency table for each maths test (Tables 2 and 3)
is similar for both language groups in that there is little clustering of students who
use their L1 to complete a few items, or who prefer to complete nearly all items
using L.1. Rather the data tends to indicate that the students are reasonably spread
out. The one partial exception to this may be for the Symbols test which does seem
to have more students than the other two tests electing to use their L1 for all items.
However this effect is probably explained by the fact that this test has twice the
number of items than the other.

Ditticulty

The discussion of results will now focus on those Vietnamese students who reported
using their L1 to think about the solution for at least some of the mathematical
items. There were not enough ltalians in this category to calculate comparable
statisucs. .
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TABLE 2: Number of items on the Symbols Test versus the percentage of students
who chose to use L.1(Vietnamese N=80; Italian N=32).

Number of items % of students Number of items of students
for which L1 used | Vietnamese Italian | for which L1 used | Vietnamese Italian
0 57 78 11 3 0
1 0 0 12 1 0
2 5 0 13 1 0
3 1 3 14 3 0
4 3 0 15 ] 0
S 1 0 16 0 0
6 0 0 17 0 0
7 1 0 18 1 3
8 0 0 19 3 3
9 1 0 20 14 9
10 3 3

TABLE. 3: Number of items on the Word and Novel Problems Tests versus the
percentage of students who chose to use L1 (Vietnamese N=80; Italian

N=32).

Word Problem Test Novel Problem Test
Number of items | % of students Number of items | % of students
for which L.1 used | Vietnamese Italian|for which L1 used| Vietnamese Italian
0 47 3 0 59 73
1 6 7 1 4 7
2 6 3 2 S 3
3 5 0 3 1 0
4 6 0 4 7 3
5 S 3 S 3 3
6 4 0 6 3 0
7 3 3 7 4 0
8 10 0 8 4 0
9 0 0 9 1 3
10 9 10 10 8 7

It was suggested that difficulty may be associated with the use of L1. First of all we
focused on the students. We did this by comparing the Vietnamese students’ test
scores with the number of items for which they used their L1 in the solution
process. Table 4 shows the correlation coefficients calculated. It would appear that
for the Symbols and Word Problem Tests, there is little association between the
score gained on the test and the number of times students used Vietnamese. However
for the Novel Problems Test there is a small but significant result. These figures
suggest that students who obtained a higher raw score and a higher ‘novel score’ on
this test, also completed more items using Vietnamese.

In focusing on the items rather than the students, we looked for an association
between the item difficulty and the number of students who completed that item
using Vietnamese. The resulting correlations are shown in Table 5. The results in
'Il‘able 5 suggest linle association between item difficulty and the number of students
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who used their Vietnamese to complete the item for the Symbols and Novel Problem
Tests. However for the Word Problem Test it would appear that with an increase in
item difficulty there was also an increase in the number of students who used
Vietnamese.

TABLE 4: Correlations between score on tests and number of items for which
Vietnamese was used.

Mathematics Tests N [ Correlations
Symbols Test 30 | -0.13
Word Problem Test 41 | -0.14
Novel Problem Test 30
raw score 0.37*
novel scare 0.36*

* sig at the 0.05 level

Table 5: Correlations between the item difficulties and the number of students who
completed the item using Vietnamese.

Mathematics Tests N | Correlations
Symbols Test 19} -0.08

Word Problem Test 27 | 0.67*

Novel Problem Test (raw sc.) |28 1 -0.11

*sig & the 0.05 level

At this point it would be premature to read to much into these results. However it
does suggest that difficulty may well be an important variable to follow up in
further analysis of the full results. This was reinforced by some of the statements we
had from students during the interviews that were conducted.

Student 1:
Stl: Well | plussed because I did 6 plus 6 is 12 and I plus 4 more.
P: Soyou got 16. Did you swap back into Vietnamese at all or do that in English?
St1: English
P: Was that because this one you found a lot easier?
Stt: Yes
P: Is it when it gets difficult you swap into Vietnamese?
Stl: Sometimes when it is difficult | go back in my mind to Vietnamese and then [
doit.
P: Good well that was finished there.

Student 2:
St2: 25 ...there must be more than 10, but then...
P: I see ...Did you do all that calculation in English when you were adding and
subtracting .. or did you use Vietnamese at all?
S2: English
P: OK
St2: Sometimes if it is hard [ do in Vietnamese
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P: But this one was just confusing...? Do you use Vietnamese much doing
classwork.. .

St2: Sometimes

P: When?

St2: When it’s hard.

Student 3:
S3: 1 just said 4+6
P: Straightaway. .. Did you do that in English or Vietnamese?
Std: Vietnamese
P: Do you do all your numbers in Vietnamese?
St3: Yes
P: and why do you choose Vietnamese?
St3: [t was sort of like easier.
P: OK and you.......
(Similar excerpts could be quoted from various ltalian students.)

However not all students reported that the perceived difficulty or their actual
inability to progress with a solution prompted them to switch languages. Hence this
is only one, but probably an important factor, in explaining why students do switch
languages. It was also noted from the interview transcripts that students may well
choose to complete aspects of the solution process in one language and use their
other language to deal with different processes. Hence some children would read or
reread in one language but switch when it came to processing numbers. One or two
did the opposite to this.

Context

The reason for using three different mathematics instruments was to explore the
effect of context. It has already been noted that for all tests there were a number of
students who chose to use their L1 for at least some items. Hence from that
perspective, context does not seem to matter. However the differing results for the
correlations calculated does suggest that there may be an effect here worth
exploring.

Teachers ' Comments
When we started working with schools there was a range of incidental comment
from the classroom teachers. Some of the more interesting concerned their
perceptions of whether children in their class would use 1.1 while doing
mathematics. On the whole many teachers were not convinced that this would be so.
All were aware that the Vietnamese children did use their L.1 to varying degrees to
speak to their peers in the playground. A number of these students also used
Vietnamese in class, but for general clarification of the classroom procedures and in
discussing work more in the humanities area. Very few of the teachers who taught
the ltatian students even considered the possibility that these first generation
Australian children would use Italian at all during school time, although there might
be some use in the home. This outlook is in line with survey results that were
O .
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conducted some time ago where teachers saw little reason at all for using L1 in
mathematics and science classes (Clarkson, 1993). Such attitudes are surprisi ng given
the highly multicultural profile that Melbourne has. The results from this study may
help teachers to focus on the fact that bilingual children may well switch languages
for all areas of their class work, as well as for talking to their friends outside of
schoal.

NOTES: 1. This paper reports on a project being carried out by the author and
Assoc Prof Dawe of Sydney Univ. and funded by an ARC Large Grant in 1994/5.
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LEVELS OF FORMAL REASONING iN SCHOOL ALGEBRA
Carmel Coady University of Western Sydney, Nepean Australia

John Pegg University of New England, Armidale Australia.

This paper explores higher-level skills associated with school algebra. In
particular, it considers three topic areas that are problematic for many
students in the upper-secondary school. Three questions are discussed that
have been taken from a pool of questions used to explore students’
approaches to aspects of variable substitution, function notation and
algebraic fractions. These questions were chosen as they were identified as
non-routine by the 150 tertiary students in the sample, and required the
utilisation of more advanced skills. The results indicate similar response
patterns, covering all topic areas.

Introduction

Fundamental to the notion of formal reasoning in algebra is students’ ability to
understand the structures underlying mathematical concepts so that the identification
and subsequent analysis of relationships can take place. It is this very aspect that
forms the basic premise on which the SOLO Taxonomy’s description of the formal
mode is based. According to Collis and Romberg (1991), “The elements are abstract
concepts and propositions, and the operational aspect is concerned with determining
the actual and deduced relationships between them; neither the elements nor the
operations need a real-world referent” (p. 90). Collis, Romberg and Jurdak (1986)
note also that *“ ... the structure of the learned responses ... becomes increasingly more
complex” (p. 207).

In this mode, students begin to question why things are as they are, and can support
their conjectures with logical arguments and proofs. Leaming in this mode, according
to Collis (1992), leads to ‘theoretical knowledge’. This is very different from the
mode that is acquired at an earlier age, referred to as Concrete Symbolic. In this
concrete symbolic mode, concepts are experienced through the medium of symbolic
systems, such as written language, mathematics and musical notation, even though
such systems still have ties with the empirical world. Algebraic reasoning in this mode
is characterised by a dependence solely on manipulative procedures, such as,
simplification of expressions, expansion of brackets, solving simple cquations und
substituting numerical values for pronumerals (Coady & Pegg 1994). As responses in
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carried out in this mode may be authenticated with reference to the real world, or what
is seen as ‘real’ by the student (Collis & Biggs 1991). Thus a student responding to a
question in a concrete symbolic manner does not recognise any constraints imposed by
the mathematical system, nor does the consideration of possible alternatives take place
once a conclusion has been reached.

The remainder of this paper explores the extent to which older adolescent students
have developed a formal level of reasoning, as described in the SOLO model, and also
identifies particular characteristics of this higher-order level of functioning pertaining
to the algebraic topics of variable substitution, function notation and algebraic
fractions. The following discussion emanates from students’ responses to what they
perceived as non-traditional (in the text-book sense) questions from the topic areas
mentioned above.

Methodology and Sample

A series of questions, related to the three topic areas, in the form of a pencil and paper
test, were given to approximately 150 first-year university students, all of whom were
enrolled in scientifically-based undergraduate courses. The age group of the sample
ranged from 17 - 20 years. Approximately 10% of the sample were interviewed about
their responses.

Since it is the intention of this paper to report only on the characteristics identified in
those responses classified as formal, the following percentages should be of some
interest. They represent the proportion of students’ responses within the topic areas
1o be discussed, that may be classified as formal: variable substitution 45%; function
notation 12%; algebraic fractions 46%.

Results and Discussion

A variable substitution question: If p = 2q and ¢ = st find pg in terms of ¢ when

i
s=—.
2

Two qualitatively different groups of responses were evident. The first group,

. . Lo [ .
classified as non-formal, was confined to making the substitution, s = P This was

the full extent of the processing of this question.

The second group, classified as formal, was able to utilise variable substitution, albeit
with differing levels of sophistication, and it is this ability to “... conceive of an
algebraic expression as a process ..."” (Tall, citied in Kieran 1992 p. 393) that is
indicative of higher-level thought processes. In fact, by using the number of
substitutions miade as a means of differentiating between response levels, three
different levels of responses were able to be identified. Typical examples included:

O
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Level I: “p=2q *g = st

= 2st =t

2
=2X5t p=2q
=t =2x -t

- t"

The focus at this level was on a single variable substitution only, after which the
processing of the question terminated.

Level 2: “pq = 2gst “pq = 2qst
i
= 2 . = 2 Pl
93t q
=q

At this level of response students demonstrated their ability to work with pg from the
outset, although they later became lost in the symbolism.

Level 3: “p=2q “pq = 2gst
= 2st = 2stst
=2 x Lt =25
2
=t = 2 x 'l— t2
4
pq = stt o le
2
— l t2n
2

Clearly this third group of responses indicated the presence of an overall strategy
designed to achieve the desired result.
Q
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A function notation question: If f{1) =5 and fix + 1) = 2f(x), find the value of f{3).

Once again a clear dichotomy in the students’ responses was observed.

The first group, classified as non-formal, indicated that the students had only a
superficial understanding of function notation. Their responses usually involved the
substitution of x = 3, followed by some rather extraordinary calculations, thus
reflecting little understanding of the interrelationships within the system. For example:

“f3 + 1) = 2f(3) “f(x) = f("z* D
f(4) f(1+1)
2 ey f(1) = =f(l)=5
5 3) Q)] 5 N
£(3) = @ = £y

Furthermore, the students’ use of incorrect manipulative procedures was generally
characteristic of this type of response.

The second group of responses, classified as formal, indicated that students had a more
profound knowledge of the concepts involved in function notation, extending well
beyond the simple rearrangement of the formula or the substitution of numbers.

As illustrated below, three levels of response were able to be distinguished.

Level I: “f(1) = 5
fx+1) = 2f(x)
f2) = 2x5=10"

Responses at this level indicated that siudents could work within the function notation

framework but with one aspect only. Hence, answers were brief and to the point, and
involved no additional processing.




Level 2: “fx + 1) =2f(x) “f(l)=5

Letx=0 f(x +1) = 2f(x)
t(1) = 2f(0) f(2+1)=2£(2)
2f(0)=5 f(3) = 2f(2)”
f(0)=25
f(3)=17.5"

Students responding at this level again were able to work within the structure atforded
by function notation although the need to perform many independent steps indicated
the lack of any overall strategy. Students appeared to select each step almost at
random and while very often these were valid, they achieved no logical purpose in
terms of answering the question correctly.

Level 3: “f(1 + 1) =2f(1) “f(3) = 2f(2)
f(2)=10 =2[2f(1)}
f(2+1)=21(2) =2[2x5]

f(3) =20 =20"

At this level, the responses indicated that students were capable of applying the
concepts underlying function notation as well as identifying and using the
interrelationships existing within the question.

An algebraic fraction question: If 0 < x < 8, discuss the possible values of x given
Jx—-4
2x-10°

This question elicited responses that fell into one of two broad categorisations. The

first group was limited to those responses involving either elementary symbol
1

) . x—-4) .. . )
manipulation such as ! " )5) , or the substitution of values for x that produced a list
X —
Jx-4 T . .
of values for 0’ The actual number of elements in this list varied according to
x—

the number of values of x selected for substitution.



The second group of responses indicated that students had the ability to consider the
various limitations (both implicit and explicit) placed on the values of the pronumeral.
While this ability marked the onset of formal reasoning, the degree to which these
higher-order skills were developed varied from student to student, with three levels
again being discernible.

Level I “x# 5”7 “x>4”

These exemplars reflect the fact that, at this level, the students’ focus was directed at
either the constraints determined by the numerator or denominator but not both.
Unfortunately, written responses of this quality did not indicate whether the explicit
constraint on x (0 < x < 8) was taken into account. However in follow-up interviews,
when prompted to review these answers in the light of the question, an oral response
suggested that this constraint had been considered (although no attempt was made to
rewrite these responses in order to incorporate this constraint).

Level 2: “x>4,x#5"

At this level, students tended to list the restrictions on the variable by examining the
numerator and then the denominator in turn, but then did not have the ability to
integrate the two. In the interview situation, this independence was confirmed.

Level 3: “4<x<8, x5

A response at this level consisted of a succinct statement that took into account all
possibilities.

Conclusion

This paper has sought to confirm some general characteristics of formal reasoning in
algebra and furthermore, to specifically identify the key descriptors of such reasoning
in relation to some algebraic topics, such as, variable substitution, function notation
and algebraic fractions.

With the responses given to the questions in each of the areas explored, those
classified as formal depended heavily upon the students’ identitication and subsequent
utilisation of the relationships inherent in the mathematical systems. Embedded within
this was the students’ ability firstly, to use an algebraic expression as a mathematical
object and secondly, to consider conditions and constraints, while using manipulative
techniques only as a ‘tool’ to reach a conclusion. These formal responses contrasted
markedly with those responses classified as non-formal, where the prominent
characteristic was the reliance on numerical substitution and/or incorrect or
inappropriate manipulative algebraic procedures. There was strong evidence that
students responding non-formally wished either to work only with numbers or simply
do operate on the symbols within the provided mathematical system.
Big



In the case of variable substitution, the structural aspects of algebra, that is the ability
10 operate on algebraic expressions leading to different algebraic expressions (Kieran
1992), are of paramount importance. An important element in distinguishing the levels
of formal reasoning was related to the number and type of variable substitutions made.
Furthermore, increased levels of complexity in the structure of the given answers were
also noted, with the pivotal factor being the ability to monitor successfully all the
variable substitutions required.

When working with function notation, students responding formally first, were able to
keep within this framework and secondly, with varying degrees of success, were able
to maintain the integrity of the function notation fabric. Dominating this type of
question was the ability to devise a strategic plan based on the relationships within the
question and then to monitor all these relationships while still working towards the
correct goal.

Responding formally to questions involving algebraic fractions required students to
consider the constraints and limitations placed upon the variable and to have the ability
1o integrate these to produce a concise mathcmatical statement. Failure to contemplate
such possibilities in any form, led to responses that were classified as non-formal.

The representative sample of problems discussed in this paper differ in the
mathematical skills and techniques required to solve them, in the absolute sense. The
students’ knowledge of and ability to utilise these skills was exemplified by the
variability shown in the written responses. However, in seeking to interpret the causes
of this variation, some commonalities in the structure of the solution strategies
employed were apparent. (Furthermore, these became even more evident in the
subsequent interviews.) Firstly, the students needed to be able to interpret the
question, in order to understand its implications. While this could assumed to be an
automatic action for experienced algebra students, this process proved surprisingly
difficult for the students included in this sample. In fact, in many cases the students
simply could not comprehend the question. Thus, the essential requirement of gaining
an overview of the question was lost completely. This, and to some extent the
following phase, were the first clear indicators that students had not reached the high
levels of cognitive growth required by formal reasoning.

Secondly, students needed to focus on the relationships within the question.  This
phase may have required the rearrangement of the variable relationship/s into a more
useful form, or, the determination of the source of any limitations placed on the
potential values of the variable. The former was a requirement of the questions on
variable substitution and function notation, while the latter was essential for the
question on algebraic fractions, if a meaningful solution was to be obtained. Thirdly,
the identification and associated ramifications of these relationships must be
anticipated before the final phase, that of intégration, takes place. Once the
re&{tionships within the mathematical system were recognised, successful integration
ERIC
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appeared either to take the form of a concise statement (as with the question on
algebraic fractions) or to involve the utilisation of applicable (and correct)
manipulative algebraic procedures in order to attain the correct conclusion. It must be
stressed here that the transformation procedures used, were not based on real-world
connections, and were used as an ‘aid’ in achieving the end product.

Teachers in the senior-secondary school years seek to realise the potential for formal
reasoning in many of their students, but as Collis (1992) pointed out, this reasoning
*“... does not generalise to all thinking and may not develop in some students at all”
(p. 21).Formal reasoning requires the development of high levels of cognitive growth
in both the procedural and the structural aspects of algebra. Clearly, this study has
shown that not all students entering university undergraduate programs have attained
such levels. The next important step is to identify the role manipulative algebraic skills
play in enhancing or detracting from formal responses.
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YEARS 2 AND 3 CHILDREN'S CORRECT-RESPONSE MENTAL
STRATEGIES FOR ADDITION AND SUBTRACTION WORD
PROBLEMS AND ALGORITHMIC EXERCISES

Thomas J. Cooper, Ann M. Heirdsfield and Calvin J. Irons
Centre for Mathematics and Science Education
QUT, Kelvin Grove, Queensland, Australia

This paper reports on a longitudinal study in which 104 children were
interviewed with 2 and 3 digit addition and subtraction word problems and
algorithmic exercises across years 2 and 3. The strategies students used when
correctly answering both word problems and algorithmic exercises were identified
and compared within each interview and across the 6 interviews. Analysis of the
strategies indicated a greater variety being employed for word problems than for
algorithmic exercises. Non traditional procedures were dominant for the first 3
interviews, however, a right-to-left strategy similar to the pen-and-paper
algorithms became the most popular strategy by interview 5. This was particularly
so for algorithmic presentations.

Research suggests that allowing children to construct their own mental
computation procedure, “the process of carrying out arithmetic calculations without
the aid of external devices™ (Sowder, 1988, p.182), should play a major role in the
changing curriculum (e.g., Coburn, 1989; Mclntosh, 1992). In the past, the focus
of primary mathematics computation has been the traditional pen-and-paper
algorithm. Now, there is increasing awareness of the role of mental computation as
a valid computational method as well as the contribution it makes to mathematical
thinking as a whole (e.g., Reys & Bargen, 1991; Sowder, 1990). Research indicates
that children actively engaged in the invention of alternative algorithms develop an
understanding and appreciation of the number system as well as the flexibility in
number calculations (e.g., Kamii, Lewis, & Jones, 1991; Thompson, 1994). As
well, children’s construction of mental computation procedures is of practical value,
because mental computation is the method primarily used to solve everyday
mathematics problems in the real world (e.g., Clarke & Kelly, 1989).

A variety of mental strategies for addition and subtraction has been identified
in the literature (Beishuizen, 1993; Carraher, Carraher, & Schliemann, 1987;
Ginsburg, Posner, & Russell, 1981; Hope, 1987; Madell, 1985; Resnick, 1986).
These are listed and described in Table 1, as categorised by Cooper, Heirdsfield,
and Irons (in press). They are listed in what, ideally, appears to be increasing
order of power and decreasing load on memory.

The right to left separation strategy appears to be similar to the traditional
addition and subtraction pen-and-paper algorithms. These algorithms are symbolic
procedures which follow set patterns of activity: the numbers are written vertically
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with place values aligned, the place values are separated, and then, with renaming as
required, the computation process moves right to left. The right to left separation
strategy may not involve carrying or decomposing tens. For instance, mentally
computing 25+38 by first adding 5+8=13, then adding 20+30=50, and finally
combining 50+13=63 is an example of the right to left separation strategy.
However, this strategy, in all its forms, does have the following common aspects
with the pen-and-paper procedures: both numbers are separated into ones and tens;
and the operation moves right to left. No other mental computation strategy has
these commonalities. In fact the aggregation and wholistic strategies are in
opposition to the pen-and-paper algorithm procedure in not separating all numbers
into their place values.

Table 1
Mental strategies for addition and subtraction
Strategy Example
Counting 28+35: 28, 29, 30,... (count on)
‘ 64-29: 64, 63, 62, ... (count back)
Separation  right to left 28+35: 8+5=10+3, 20+30+10=60, 63
64-29: 60=50+10, 14-9=5, 50-20=30, 35
left to right 28+35: 20+30=50, 8+5=13, 63
64-29: 60-20=40, 40=30+10, 14-9=5, 35
Aggregation right to left 28+35:28+5=33, 33+30=63
64-29: 64-9=55, 55-20=35
left to right 28+35: 28+30=58, 58+5=63
64-29: 64-20=44, 44-9=35
Wholistic compensation 28+35: (28+2)+35=30+35=65, 65-2=63
64-29: 64-(29+1)=64-30=34, 34+1=35
levelling 28+35: 30+33=63
64-29: 65-30=35

Because mental strategies have been proposed as an alternative to pen-and-
paper algorithms, research has focused on differences between the right to left
separation strategy and other strategies. Research findings have indicated that: (1)
left to right separation, aggregation and wholistic strategies are more accurately
used than the right to left separation strategy (e.g., Ginsburg, Posner & Russell,
1981; Kamii, 1989); (2) left to right strategies produce more sensible answers than
right to left.(Carraher, Carraher, and Schliemann, 1987); and (3) left to right
separation , aggregation and wholistic strategies are preferred for simulated store
and word problems while right to left separation strategies (pen-and-paper
methods) are preferred for algorithmic exercises (Carraher, Carraher, and
Schliemann, 1987). Research has also indicated that instruction in pen-and-paper
algorithms interferes with the development of natural strategies and effects mental
computation performance (e.g., Ginsburg, Posner & Russell, 1981; Heirdsfield,
1995). Of particular interest is the study of Beishuizen (1993). He showed that, in
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a situation where pen-and-paper algorithms are not taught, separation strategies
were favoured by low achievers, but aggregation strategies were more powerful (in
terms of supporting correct mental computation for larger and more complex
numbers).

Exploring the effect of pen-and-paper algorithm instruction on mental
strategies was a major motivation for an ARC funded longitudinal study of
children's mental computation strategies for addition and subtraction was
undertaken by the authors. One hundred and four children remain in the study, and
are now in year 6. The children were interviewed at the beginning of year 2 and
then twice each year. The children were given 2 and 3 digit mental computation
tasks in: (1) word problem form (joining addition and separated, missing-addend
and comparison subtraction) and algorithmic exercise form (number computation)
form. The correct-response strategy use for 2 and 3 digit addition and subtraction
word problems (joining addition and separation subtraction only) for the 6
interviews in years 2 and 3 and the beginning of year 4 has been reported by
Cooper, Heirdsfield and Irons (in press). This paper reports on the results for 2
and 3 digit addition and subtraction algorithmic exercises (both vertical and
horizontal) in the same interviews and compares responses across the two types of
representation.  Years 2 and 3 were chosen because these are the years in which
Queensland schools teach the pen-and-paper algorithm. Cooper, Heirdsfield and
Irons (in press) argued that pen-and-paper algorithm instruction appeared to effect
students’ spontaneous strategies for word problems. The paper also compares
observed effect of pen-and-paper instruction on spontaneous strategies for
algorithmic exercises with that for story problems.

Method

Subjects. The subjects were 104 children of varying mathematical abilities
(one third each of above average, average, and below average) in 6 primary schools
(3 state and 3 Catholic) representing a variety of social backgrounds. They
participated in the study for 2 years (from the beginning of grade 2 to the
beginning of grade 4.

Instruments. The instrument used was Piaget’s revised clinical interview
technique. The interview questions consisted of 2 and 3 digit addition and
subtraction word problems and algorithmic exercises (presented in horizontal and
vertical form). Six different question types are being reported here: 2 digit
addition, no regroup; 2 digit addition, with regroup; 3 digit addition, with regroup;
2 digit subtraction, no regroup; 2 digit subtraction, with regroup; and 3 digit
subtraction, with regroup. Three presentation formats are also being reported
here: word problems (joining addition and separation subtraction); vertical
algorithm; and horizontal algorithm. The structure for each interview was to give
the questions for each question type and presentation form in increasing order of
difficulty until the children’s responses indicated they were unable to continue. The
previous responses (in the given or previous interview) assisted the interviewer find
appropriate starting levels.
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Procedure. For the purposes of this paper, the students were interviewed in
the beginning, middle, and end of year 2, the beginning and end of year 3, and the
beginning of year 4. The children were withdrawn from the classroom and
interviewed individually in a separate room. The interviews which lasted for a
maximum of 30 minutes were videotaped. The word problems were presented
visually in the form of pictures and words, and orally as the interviewer verbalised
the question. The algorithmic exercises (horizontal and vertical) were presented
visually. The questions were revised after interview 3 to take account of children’s
knowledge growth, to allow the interviewer to probe for the highest level
strategies, and yet limit the interview length to 30 minutes. As a consequence, the
some question types and presentation forms were not given in some interviews and
less students attempted the easier question-types. In particular, after interview 3,
the horizontal presentation form was not given and the vertical presentation form
was only given for restricted question types in interviews 5 and 6.

The teachers of the 104 children followed the primary Queensland
mathematics syllabus. In years 2 and 3, the syllabus focuses on developing basic
addition and subtraction facts and teaching the pen-and-paper algorithm for both
addition and subtraction. Thus, there was direct teaching of the pen-and-paper
algorithms and no teaching of