This paper describes new approaches to data collection and analysis utilizing technology-assisted methods that are now possible in online studies of reading. Two techniques are described in detail, one supporting a non-intrusive method for real-time data collection during online reading, and a second describing a new method for visualizing and assessing user navigation in hypertext. Results of applying the methods in a series of empirical studies will be described along with suggestions for other applications. Contains 2 tables and 2 figures of data. (Author/RS)
New approaches to data collection and analysis in online reading studies.

John E. McEneaney, Ph.D. - Oakland University
mceneane@oakland.edu

Orlando, FL

Paper available online: http://www.oakland.edu/~mceneane/nrc/conf99/index.html

Abstract - This paper describes new approaches to data collection and analysis utilizing technology-assisted methods that are now possible in online studies of reading. Two techniques are described in detail, one supporting a non-intrusive method for real-time data collection during online reading, and a second describing a new method for visualizing and assessing user navigation in hypertext. Results of applying the methods in a series of empirical studies will be described along with suggestions for other applications.
Introduction

Although there has been growing appreciation in the reading research community that online technologies are altering the nature of reading and the roles of readers, there has been only limited consideration of ways new technologies of reading are altering the materials, methods, and concepts employed in reading research. That is the purpose of this paper - to focus on the ways new reading technologies are contributing to reading research, particularly in online environments. Specifically, the presentation will describe experimental materials, procedures, and analytic techniques that have arisen because of new tools and perspectives created with the development of online reading environments.

The presentation will focus on two technology-based methods that have considerable potential in online reading research and have been successfully implemented in a series of empirical studies. One method involves real-time data collection during online reading utilizing scripts that run as background programs while readers access reading materials with web browsers. A second set of methods provides a means for analyzing the real-time navigational data that is collected using the first set of methods. After describing the methods, the paper will describe how they were implemented in a series of empirical studies and what the results of those studies suggest about the application of these kinds of technologies in reading research, particularly in studies examining web-based materials.

Real-time Data Collection

Real-time data collection (RDC) has a substantial history in reading research in the forms of read-aloud protocols, records of eye-movements, and brain-scan studies, but online reading environments significantly enhance the potential of RDC to contribute to investigations of reading. One reason the significance of RDC is heightened in online environments is that these environments almost invariably rely on computers to deliver reading material and the prodigious computing power of modern technology means there are enormous “reserves” to support a wide range of other activities in addition to the relatively minor demands imposed by text management. In an age of inexpensive but high-powered multi-tasking computers, a machine that delivers reading materials has plenty of processing power remaining to gather, sort, store, and even analyze data in real time.

Another reason to expect that real-time data collection and analysis has potential for our immediate and long-term study of reading is the fact that more and more readers are becoming familiar with the specialized needs and demands of online environments and opportunities for data collection are increasing explosively as more and more readers venture out onto the web. Moreover, with the gradual emergence of (relatively) stable web standards for stand-alone (Java) and scripting languages (Javascript, JScript, VBScript) the ease with which programs can be developed to support real-time data collection are greatly enhanced. And development of background code is further simplified by a wide range of built-in browser functions that can be accessed controlled using by and standardized the browser Javascript engine.

In a web-based environment the most difficult problem related to RDC has to do with recording data, usually as a result of web browser designs that intentionally prevent modification of hard disk files in order to avoid “infection” by web-borne computer viruses. There is, however, one significant exception to the general rule that “Browsers shall not write.” The exception is known as the browser “cookie file”, and while generally isolated from other files on a computer, this file can, in fact, be modified, and thus serves as a convenient and secure repository for data collected in online sessions, which is precisely how most commercial web sites use it.
An obvious choice, therefore, for a data file to record web-based activity is the cookie file and, fortunately, modifying this file is straightforward. This is especially true when the data of interest involves some kind of repeated measure of the same data “type” since, in this case, a session-long string of data values can be recorded to a single “cookie”. One example that is especially relevant in the context of web materials is a record of pages accessed, a data set that essentially consists of a sequence of pages visited in a browsing session. Another example of an “associated” variety of data set is a sequence of time durations that represent the amount of time spent on each page represented in the pages visited data set. These were, in fact, two kinds of data recorded in a series of studies exploring web-based reading (McEneaney, 1998; in press) with an example data file (Table 1) illustrating “path” (pages visited) and “time” (duration of page visits) cookies written by the Javascript function presented in Table 2.

| password 123456789
| tLast 919219463220
| pLast 6
| path 6,13,14,78,14,6,19,6,25,6
| time 5210,3570,2040,2740,990,...

Table 1: Cookie data recorded by the script in Table 2.

Figure 2. Less successful hypertext reader paths.

Figure 1. Successful hypertext reader paths.
Researchers familiar with event-driven languages like HyperTalk, associated with the HyperCard programming environment will note the similarity of the script presented in Table 2 but, even more importantly, Javascript code like that displayed in Table 2 can be built into a set of template pages that will allow even non-programmers to conduct RDC studies with little more technical expertise than that required to create web pages.

Analysis of real-time data

The data collected in online sessions does not always fit neatly into traditional analytic frameworks, particularly those that involve complex and sometimes circular sequences of data points, like those illustrated in Table 1. The usual solution has been to reduce the data sequence to a frequency count (Horney & Anderson-Inman, 1994; Schroeder & Grabowski, 1995). Unfortunately, this approach to analysis sacrifices a great deal of what is most important in the data by eliminating transitions between pages that capture user movement. In an effort to more adequately capture user movement, McEneaney (in press) has proposed methods that offer intuitively interpretable graphics and associated numerical measures that are empirically related to success in a hypertext reading task.

Specifically, results from a study examining the relationship of user navigation to success in a hypertext reading task associated distinctive graphic patterns of movement with successful and unsuccessful hypertext reading. Moreover these distinctive visual patterns were characteristic for both individuals in high and low achieving hypertext reading groups and held up when graphics were generated using data collapsed across subjects within groups. Examples of the resulting individual graphics are displayed in Figures 1 and 2.

Surprisingly, numerical measures reflecting the connectedness and linearity of these graphics (based on measures originally proposed by Botafogo, Rivlin, & Shneiderman, 1992) correlated significantly with success in the hypertext reading task although other measures of print reading ability and computing experience did not. This connection between user navigation and success in a hypertext reading task suggests that path data may be an important “window” on reading in online environments that could have implications both for research design in studies of online reading and hypertext design.

Conclusions

Although reading researchers seem to be aware that online reading requires new approaches to thinking about reading and literacy, these new ways of thinking have not often been generalized to include the ways we think about designing and conducting reading research, particularly in online environments. The evidence is mounting, however, that new technologies will transform reading research in ways that are every bit as dramatic as we have seen in reading practice.
The purpose of this session will be to familiarize NRC members with two ways new technologies are likely to influence reading research as ever larger numbers of readers turn to electronic media. Topics addressed in the session include real-time data collection and analytic techniques useful in displaying and characterizing user navigation in hypertext. After describing the general principles behind these topics, the presenter will report on a number of studies that employed these methods and indicate how these methods might be used in other ways. The session will conclude with an invitation to all participants to visit the online session web site associated with the roundtable presentation through links on the NRC web site (www.iusb.edu/~edud/EleEd/nrc/conf99). This online web site will provide participants an opportunity for further exploration of the methods described in the Orlando session and also allow participants to download software described in the presentation.

References

function setCookie2(page) {
 var t = new Date();
 var t0 = t.getTime();
 var pLast = getCookie("pLast");
 var tLast = getCookie("tLast");
 var pathList = getCookie("path");
 var timeList = getCookie("time");
 var duration;
 if (tLast == null) {duration = 0} else {duration = t0 - tLast};
 var pathEntry;
 if (pathList == null) {pathEntry = page} else {pathEntry = "+"+pathList+"","+page+"};
 var timeEntry;
 if (timeList == null) {timeEntry = duration} else {timeEntry = ""+timeList+"","+duration;"};
 var oneWeek = 7*24*60*60*1000;
 var expDate = new Date();
 expDate.setTime(expDate.getTime()+oneWeek);
 if (parseInt(page)! =78) {document.cookie="pLast="+page+";expires="+expDate.toGMTString();} else {true
 document.cookie = "tLast="+t0+";expires="+expDate.toGMTString();
 document.cookie = "path="+pathEntry+";expires="+expDate.toGMTString();
 document.cookie = "time="+timeEntry+";expires="+expDate.toGMTString();
 }
}

Table 2. JavaScript function that sets browser "cookies."
I. DOCUMENT IDENTIFICATION:

Title: New Approaches to Data Collection and Analysis in Online Reading Studies

Author(s): John E. McEnaney

Corporate Source: Publication Date: December 3, 1995

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign in the indicated space following.

The sample sticker shown below will be affixed to all Level 1 documents.

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY. HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 1

Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

Documents will be processed as indicated provided reproduction quality permits.

If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche, or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: John E. McEnaney, Associate Professor

Organization/Address:

Telephone: 248 370 4155 Fax: 248 870 4361

E-mail Address: McEnaney@oakland.edu

Date: MARCH 22, 2001

III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):
If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

ERIC/REC Clearinghouse
200 East 10th Street Suite 140
Bloomington, IN 47408-2608
Telephone: 812-855-5847
Toll Free: 800-759-4723
Fax: 812-855-5512
e-mail: erics@indiana.edu
WWW: http://eric.indiana.edu

EFF-088 (Rev. 9/97)