This paper describes the design, testing, and analyzing of a model to improve science teaching and student learning in the classroom. The model centers on empowering classroom teachers enrolled in a graduate course with knowledge of the research literature in a way that improves their ability to teach science and to bring the world of research and practice closer together. The paper describes how the model was implemented in a doctoral-level course, Advanced Science in the Elementary School (EDCI 683). The study involved pre-course interviews with K-12 teachers enrolled in the course, analysis of teachers' research papers, videotapes of presentations they made at the end of the course, post-course surveys, and post-course interviews. The results suggest that once the teachers see a connection between the research world and their classroom, research becomes of value to them, and they introduce changes into their classroom which improve student learning in science. Three appendixes present: information on EDCI 683, titles of research papers, and the post-course survey. (SM)
Changing Teaching Practices by Empowering Teachers with Research Knowledge

Dr. Evelyn White
Dean, School of Education
Jackson State University

and

Dr. Todd Gary
Associate Professor of Biology
Tennessee State University

Presented at:
MSERA Annual Conference
November 15 – 17, 2000
Table of Contents

I. Abstract... 1

II. Setting the Stage: Gap Between Research and Practice.. 2

III. Course Designed to Address this Problem... 8

IV. Methodology ... 11

V. Results ... 13
 A. Teachers prior knowledge about research
 B. Evidence for an increased understanding
 C. Evidence for classroom application

VI. Conclusions and New Model ... 20

VII. References ... 22

VIII. Appendix ... 23
 A. Information on TSU Graduate Course: EDCI 683
 B. Titles of Research Papers
 C. Post-course surveys
I. Abstract

Changing Teaching Practices by Empowering Teachers with Research Knowledge

Evelyn White
Jackson State University

Todd Gary
Tennessee State University

We have designed, tested, and analyzed a model to improve science teaching and student learning in the classroom. This model centers on empowering classroom teachers enrolled in a graduate course with knowledge of the research literature in a way that improves their ability to teach science and also to bring the world of research and practice closer together. This presentation will describe our model and how it was implemented in a doctoral level course, Advanced Science in the Elementary School (EDCI 683). Our analysis includes the work of twelve K-6 grade teachers enrolled in this course, videotapes of presentations they made at the end of the course, follow up responses and interviews. Our results suggest that once the teachers see a connection between the research world and their classroom, research becomes of value to them and they introduce changes into their classroom which imporves student learning in science. We anticipate that the positive changes documented in this study will spread to other classrooms since the teachers involved in this course have leadership roles in a NSF-funded K-6 hands-on science reform project involving 3,000 teachers in Middle Tennessee.
II. Setting the Stage:
A gap exist between research in education and the classroom.

Several reasons:

Research Side
- Research is not always relevant to a classroom teacher
- Funding and publications drive research
- Amount of Research published is immense
- Type and method utilized

Practice Side
Policy makers decisions
- not trained to separate good from bad research
- can implement policy without a research basis
- their decisions affect teachers

Classroom teacher
- few have good and consistent exposure to relevant research literature
- few posses the skills and time it takes to locate, examine and apply research to their classroom
- attitude towards research
"Teachers require the opportunity to study and engage in research on science teaching and learning, and to share with colleagues what they have learned." (Page 56)

Other Reasons:

- Education is a changing and evolving field
- Teachers need to keep current as professionals
- Teachers can become the sources of their own growth as well as supporters of the growth of others
"There is such a chasm that separates research from the field. My colleagues don't have a clue what's being done in the research field."

(Classroom teacher)
Current Model

Researcher Collects and Analysis Research

→

Presents and Publishes Findings

→

Relayed to teachers thru interactions with educators and administrators

→

Findings are applied in the classroom

→

Students Benefit
Are there any Solution?

- Professional Development
- Courses designed to incorporate relevant research
Model used to design Graduate Course EDCI 683 at TSU

Researcher
Collects and Analysis Research

Teacher identifies effective teaching strategy

Challenged to justify effective teaching

Searches literature and finds meaningful research

Presents and Publishes Findings

Findings are applied in the classroom

Students Benefit
III. Designed a Graduate Course at TSU to address this concern

- One goal of this course was to challenge teachers to make a meaningful connection between the research literature and effective classroom teaching strategies.

- This presentation will focus on our analysis this course
Information on the Course and Students

♦ 12 teachers

♦ Women in 40's with 15 years teaching experience in a leadership role in a K-6 hands on science reform project.

♦ Course was a semester long

Eight assignments including a research paper
TSU - NSF Hands On Science Project
or Schools for Tomorrow Project

- NSF-funded Systemic Reform project in Science Education in Middle Tennessee
- Converting from a text, lecture-based to a hands-on inquiry-based program
- Involves 128 K-6 schools in 4 counties (Each counties has 1 school district)
- Involves over 3,000 K-6 teachers and 80,000 students

Teacher Leadership

6 Teachers-in-Residence (full time)
128 School Facilitators (1 per school) (+ 5 PD Day/ year)

Teachers ~ 3,000 (100 hrs PD over 5 years)

PD = Professional Development which focuses on Hands-on Inquiry-based Science Education (Pedagogy, Content, and system wide change).
IV. Results gathered in 3 Different Areas

A. Teacher's prior knowledge about research

B. Teachers found research to be meaningful

C. Evidence for classroom application
Prior Knowledge

Increased Understanding

Application to the Classroom

1. Precourse interviews
2. First assignment:
 Identify effective teaching strategies (in science)

1. Analyzed research papers
2. Surveys
3. Videotaped presentation
4. Course evaluations

1. Post-course surveys
2. Post-course interviews
3. Videotaped presentation
4. Course evaluations
V. Results: A. Teacher's Prior Knowledge

1. Teachers were resistant to write research papers.

2. Teachers can identify effective teacher strategies but not the research basis.
Most teachers did not want to do a research paper. Only 1 expressed an interest.

Primarily too much work, not sure if worth their time, not sure what instructors wanted.

"Too much work."
"Too formal. What is APA?"
"Prefer to meet and discuss with other teachers."
"How many pages? How many references do we need?"
"I don't have time!!"
Teachers could identify effective teacher strategies, but not the research basis.

"What are effective teaching strategies in science education?"

1. The Learning Cycle
2. Cooperative Learning
3. Habits of the Mind
4. Authentic Assessment
5. Portfolios
6. KWL Strategy
7. Journal Writing
8. Process Skills
9. Inquiry-based learning
10. Constructivism

Note: These topics are important to both teachers and researchers

How were Teachers Aware of these Topics?

Personal Experience "They work in my classroom"
From Peers "They work in other teacher's classroom"
From Professional Development "These strategies were presented at the Hands-on Science Institutes."
V. Results: B. Teachers found Meaningful Research

1. Research Papers
2. Surveys: End of course and post-course
3. Videotapes of their presentations
4. Post-course Interviews
Topics Selected for Research Papers

Student Learning
- Bloom's Taxonomy
- Habits of the Mind
- Gender Bias

Assessment
- Portfolio Assessment
- Authentic Assessment
- Performance-Based Assessment
- Concept Mapping

Pedagogy
- Constructivism
- Cooperative Learning
- Less is More
- Inquiry-Based Instruction
- Race-Base

Some Examples of Titles

Inquiry Based Learning: What is it and why do we need it?

Authentic Assessment: Do we really want to go there?

Still Blooming After All These Years: Is Bloom's Taxonomy outdated?

Is Performance-Based Assessment a Sound Way to Assess Students in Hands-on Science Programs?

Is Less Really More: Will teaching fewer topics with greater depth improve student learning in science?

All titles are listed in the appendix.
V. Results: B. Teachers found Meaningful Research

2. Post-course surveys (10 of 12 returned)
 100% Considered research paper most relevant assignment
 (see appendix)

How?

"The research paper was beneficial to me. It forced me to do research and compile it. I often want to know more but find that there is limited time."

"It changed the way I teach!!"

3. Videotape of Classroom Presentations

A. Example: VH (Kindergarten Teacher)
 Describe what she has learned about Constructivism

Describes historical content.

Defines schemata and student understanding
Teachers must challenge the existing schemata of students.
Planning to implement this.

First time she has heard "Teachers must change from a sage on the stage to a guide on the side".

18 23
V. Results: C. Evidence for Classroom Application

1. Videotapes of their presentations

2. Post-course surveys and interviews
Conclusion:

1. If teachers see research as having meaning in the classroom they will embrace it.

2. A New Model for designing a course to bridge the gap between research and practice.

Model used to design Graduate Course EDCI 683 at TSU

Researcher
Collects and Analysis Research

Presents and Publishes Findings

Searches literature and finds meaningful research

Teacher identifies effective teaching strategy

challenged to justify effective teaching

Findings are applied in the classroom

Students Benefit
Appendix

Appendix A: Information on EDCI 683

Appendix B: Title of Research Papers

Appendix B. Post-Course Survey
Information of EDCI 683:
Advanced Science in the Elementary School

What is EDCI 683?
- A graduate course for teachers in leadership roles in the NSF hands on science program
- 3 graduate credit hours (doctoral level)

What are the Goals of this course:
To strengthen the leadership of NSF project by providing an opportunity for teachers
- to grow professionally and receive graduate credit
- to examine the research literature upon which effective teaching strategies are built
- to pursue a educational topic in-depth
- to analyze and critique the NSF project

Syllabus for EDCI 683

Introduction
Class #1 Science Content and Pedagogy
Class #2 Understanding How Learning Occurs
Class #3 Analyzing computer software for elementary science courses
Understanding and Applying Research to the Classroom

Assignments:

1 & 2. Take home Exams
Mid-term and Final (Each with 4 - 5 questions and 2 - 3 weeks to complete)
Sample Question: Based on your knowledge, experience and feedback from other teachers, make several suggestions or recommendations which will improve the TSU-NSF hands on science program and its changes for sustainability.

3. Research Paper
An 8 - 10 page paper examining a science education or teaching strategy topic such as cooperative groups, inquiry, and the learning cycle.

4. Classroom application assignment
Applying knowledge gained in the course to the classroom.

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Research Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Inquiry Based Learning: What is it and why do we need it?</td>
</tr>
<tr>
<td>LG</td>
<td>Is Less Really More: Will teaching fewer topics with greater depth improve student learning in science?</td>
</tr>
<tr>
<td>KG</td>
<td>Gender bias and its impact on teachers in the classroom.</td>
</tr>
<tr>
<td>PH</td>
<td>Is Performance-Based Assessment a Sound Way to Assess Students in Hands-on Science Programs?</td>
</tr>
<tr>
<td>MH</td>
<td>Still Blooming After All These Years: Is Bloom's Taxonomy outdated?</td>
</tr>
<tr>
<td>VH</td>
<td>Constructivism.</td>
</tr>
<tr>
<td>BJ</td>
<td>Is there race-bias in science education?</td>
</tr>
<tr>
<td>DP</td>
<td>Can Portfolio Assessment be Successful in a Primary Classroom?</td>
</tr>
<tr>
<td>TP</td>
<td>Utilizing Concept Maps in Science Education.</td>
</tr>
<tr>
<td>RS</td>
<td>Are Two Heads Better than One: Cooperative Learning: Why and how it works.</td>
</tr>
<tr>
<td>JT</td>
<td>Habits of the Mind.</td>
</tr>
<tr>
<td>PZ</td>
<td>Authentic Assessment: Do we really want to go there?</td>
</tr>
</tbody>
</table>
Post-course Survey for EDCI: 683
Advance Science in Elementary School

Please rate each of the following class assignments from 1 to 6 using the following scale:

4 = Very beneficial to you and your classroom teaching
3 = Beneficial and relevant to the course and classroom teaching
2 = A class assignment which had little benefit to classroom teaching
1 = Busy work and not relevant

<table>
<thead>
<tr>
<th>Course Assignment</th>
<th>Circle the appropriate number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology in the Classroom</td>
<td>1 (1) 2 (1) 3 (6) 4 (2)</td>
</tr>
<tr>
<td>Harry Wong Simulation</td>
<td>1 (0) 2 (3) 3 (4) 4 (1)</td>
</tr>
<tr>
<td>Lesson Plan</td>
<td>1 (7) 2 (1) 3 (1) 4 (0)</td>
</tr>
<tr>
<td>Evaluating Science Textbook</td>
<td>1 (2) 2 (4) 3 (3) 4 (0)</td>
</tr>
<tr>
<td>Sharing Resource Files</td>
<td>1 (1) 2 (0) 3 (3) 4 (5)</td>
</tr>
<tr>
<td>Edible Science Project</td>
<td>1 (1) 2 (1) 3 (3) 4 (5)</td>
</tr>
<tr>
<td>Mid-term and Final Exam</td>
<td>1 (0) 2 (4) 3 (6) 4 (0)</td>
</tr>
<tr>
<td>Research Paper</td>
<td>1 (0) 2 (0) 3 (4) 4 (6)</td>
</tr>
<tr>
<td>Overall EDCI 683 Course</td>
<td>1 (0) 2 (2) 3 (6) 4 (2)</td>
</tr>
</tbody>
</table>

1. Should a course like this be offered to classroom teachers? 9 yes 1 no
 Why or Why not?

 ♦ Science education is experiencing so many changes. Some teachers need to be retrained and
 for some attitudes towards science education need to be changed.

 ♦ Classroom teachers will benefit from additional information about science and its teaching.

 ♦ It would give new science teachers time saving information and more experienced teachers
 can acquire new ideas and resources.

 ♦ This course could inspire teachers to broaden their scope of knowledge.

 ♦ Teachers can benefit from learning more about teaching science.

2. What did you Like most about this course?
 (100%) Meeting with other teachers and sharing ideas. "Being with other teachers who love
 science, love teaching science & are committed to improving science education."

3. **How can this course be improved?**

- More focus on personal research
- More sharing of research and progress
- Make it more of a research course

4. **If you found the research paper beneficial, please comment on how it benefited you as a teacher.**

- We go to pick a topic that was meaningful to us.

- The research paper was beneficial to me. It "forced me to do research and compile it. I often want to know more but find that there is limited time.

- It introduced me to facts and information and stimulated my thinking and reasoning skills. It forced me to make judgements about concepts based on learning from the research. It exercised my skills involved in communicating both written and verbal. The process of research has never been something that I look forward to. The formality of it is a nuisance to me, but I have always know that I experience the most growth when I become involved with a project that involves research. This relates to the students that I teach also. They will experience more growth in learning if they are totally invested in the process.

- Allowed me to research topic I have been interested in and see history and data supporting theories.

- There were several articles that I read that enlightened me on my subject.

- I found out more about my selected topic.

- Basically it reaffirmed some things that I was already aware of. It also gave me justification for some of the changes I have made in the way I teach.
REPRODUCTION RELEASE

I. DOCUMENT IDENTIFICATION:

<table>
<thead>
<tr>
<th>Title:</th>
<th>Changing Teaching Practices by Empowering Teachers with Research Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s):</td>
<td>Evelyn White and Todd Gary</td>
</tr>
<tr>
<td>Corporate Source:</td>
<td></td>
</tr>
<tr>
<td>Publication Date:</td>
<td>11/18/00</td>
</tr>
</tbody>
</table>

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample sticker shown below will be affixed to all Level 1 documents:

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

The sample sticker shown below will be affixed to all Level 2A documents:

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY, HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.

The sample sticker shown below will be affixed to all Level 2B documents:

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Check here for Level 2B release, permitting reproduction and dissemination in microfiche only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: __________________________

Organization/Address: 730 10th Ave., N., Nashville, TN 37203

Printed Name/Position/Title: Todd Gary, Assoc. Professor of Biol.

TelephoneNumber: 615-963-7150 FAX: 615-963-7027

E-mail Address: 730 10th Ave., N., Nashville, TN 37203

Date: 11/16/00

Sign here, please.
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

ERIC CLEARINGHOUSE ON ASSESSMENT AND EVALUATION
UNIVERSITY OF MARYLAND
1129 SHRIVER LAB
COLLEGE PARK, MD 20742-5701
ATTN: ACQUISITIONS

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
4483-A Forbes Boulevard
Lanham, Maryland 20706

Telephone: 301-552-4200
Toll Free: 800-799-3742
FAX: 301-552-4700
e-mail: ericfac@inet.ed.gov
WWW: http://ericfac.piccard.csc.com