This document contains the proceedings of the National Educational Computing Conference (NECC) 2000. It includes the advance program and registration materials for the NECC. Major themes of NECC 2000 include: connecting technology to teaching and learning; staying connected with professional development; moving beyond the crossroads; teachers as agents for change; connected communities: schools, businesses, and resources; and beyond the crossroads: where do we go from here? The following information is provided: a schedule of events; profiles of keynote speakers; event highlights; descriptions of workshops; and the educational program, including concurrent sessions, papers and posters, and "make and take" sessions. Also listed are the NECC 2000 Conference Committee and Program Committee, exhibitors, tours, and National Educational Computing Association (NECA) board of directors, membership, and societies. Registration information, travel/transportation, and housing reservation materials, tours, workshops, sessions/breakouts, speaker index, NECC 2000 conference and program committees, NECA Board, member society representatives/staff, and special acknowledgments are also included. (AEP)
NECC 2000: "Connecting @ the Crossroads"
(Georgia World Congress Center, Atlanta, Georgia, June 26-28, 2000)
Introduction from NECC 2000 Chair

How profound that as the world embraces the 21st century we join together at the 21st National Educational Computing Conference (NECC 2000) at Atlanta's Georgia World Congress Center. These research proceedings of NECC 2000-Connecting @ the Crossroads project you in to multidimensional crossroads:

- Atlanta's existence is at a crossroads of transportation, air, rail, and highway, but most recently fiber.
- Fiber is providing a crossroads bringing together the world, communities, and schools.
- Schools are at a crossroads as they determine whether to continue as is, or to choose a new pathway.

And so, you as an individual become the profound nexus to all the others Connecting @ the Crossroads and to those you will return to at home.

Just as the information highway is fueled by data, we as educators will find in these proceedings the reports on the presentations, innovations, trends, and research that will assist education in becoming increasingly data-driven. The importance of credible cognitive research connected to pedagogical research connected to the integration of technology as an instructionally relevant and practical tool will propel us forward to engage each student in achieving success.

Connecting Technology to Teaching and Learning; Staying Connected with Professional Development; Moving Beyond the Crossroads: Teachers as Agents for Change; and Connected Communities: Schools, Businesses, and Resources are the major themes of NECC 2000, which will eventually lead us to the ultimate theme, Beyond the Crossroads: Where Do We Go From Here?

These themes demonstrated through general sessions, paper sessions, traditional and Internet poster sessions, workshops, and informal networking are the result of the deliberate diligence and expertise of numerous individuals and groups. All of these indomitable people join with me in encouraging you to select the most energizing pathway at NECC 2000-Connecting @ the Crossroads that may serve to provide you with the platform from which to launch your students in to success in the new millennium.

Paul Ohme
NECC 2000 Conference Chair
JUNE 26-28, 2000

EC FINAL PROGRAM

HOSTED BY
Georgia Institute of Technology's Center for Education Integrating Science, Mathematics, and Computing (CEISMC)

SPONSORED BY
National Educational Computing Association (NECA), Inc.

IN COOPERATION WITH
Georgia Department of Education
Georgia State University College of Education
Georgia Tech Research Institute
University of Georgia College of Education
Alabama State Department of Education
Georgia Educational Technology Conference
Georgia Association of Educators
Professional Association of Georgia Educators
National Education Association

JUNE 26-28, 2000

NECC
ATLANTA
2000
CONNECTING @ THE CROSSROADS

GEORGIA WORLD CONGRESS CENTER
ATLANTA, GA
As the world embraces the 21st century, we welcome you to the 21st National Educational Computing Conference (NECC 2000) at Atlanta's Georgia World Congress Center (GWCC). Three years ago, when our committee welcomed the chance to bring NECC to Atlanta, we recognized how profoundly appropriate it was that we come together at this Crossroads in place, time, and revolutionary transformation—the intersection of education, technology, and learning. NECC 2000 is truly a multidimensional Crossroads as:

- Atlanta is as a Crossroads of transportation: air, rail, highway, and most recently telecommunication technologies.
- Telecommunication technologies provide a Crossroads to bring together the world, communities, and schools.
- Schools are at a Crossroads as they determine whether to continue as is or choose among paths to engender excellence in learning.

And so, you, as an individual, become the profound conduit to all the others CONNECTING @ THE CROSSROADS and to those you will affect when you return home.

As you immerse yourself in many technological, intellectual, and social connections over the next few days, know that we are celebrating the educational opportunities that must be afforded all students in the new millennium. Each of us has been entrusted with the responsibility of educating the future workforce and ultimately the political, economic, spiritual, community, governmental, and educational leaders of the 21st century. We encourage you to use CONNECTING @ THE CROSSROADS as the platform for connecting to credible cognitive research, which is connected to pedagogical research, which is connected to the integration of technology as an instructionally relevant and practical tool that will propel us forward to help each student achieve success.

We join with you in reveling in the incredible behind-the-scenes magic accomplished by the indomitable energy, dedication, and vision of numerous volunteers we now call friends. We hope this conference will be the personal nexus of your future and the future of your students!

Paul Ohme, Conference Chair
CEISMC, Georgia Institute of Technology

Claudia Huff, Conference Co-Chair
GTRI, Georgia Institute of Technology

Lynne Schrum, Conference Co-Chair
University of Georgia-Athens

Kathy O'Neill, Program Chair
Georgia State University

Anita Best, Program Co-Chair
ISTE (International Society for Technology in Education)

John Richards, Program Co-Chair
Turner Learning
A second-to-none learning extravaganza awaits educators of all levels at NECC 2000. You’ll learn strategies and practical solutions for integrating and implementing technology into your educational experience. Get ready... get set... learn!

TABLE OF CONTENTS

NECC 2000 SCHEDULE OF EVENTS ... 2-3
KEYNOTES .. 4
EXHIBIT HOURS ... 5
HIGHLIGHTS ... 5-8
ON-SITE INFO & SERVICES ... 9-10
HOTELS & SHUTTLES ... 11
TOURS ... 12
WORKSHOPS .. 13-18
MAKE & TAKE SESSIONS ... 19
DAILY SESSIONS & BREAKOUTS .. 20-59
SPEAKER INDEX ... 60-63
NECC 2000 CONFERENCE COMMITTEE 64
NECC 2000 PROGRAM COMMITTEE ... 65
NECA BOARD, MEMBER SOCIETY REPRESENTATIVES, & STAFF 66
SPECIAL ACKNOWLEDGMENTS ... 68

BEST COPY AVAILABLE
SCHEDULE OF EVENTS

FRIDAY, JUNE 23, 2000
8 am-5 pm PT (by invitation), Sheraton Atlanta
5:30-7:30 pm Registration — GWCC

SATURDAY, JUNE 24, 2000
7 am-7 pm Registration — GWCC
8 am-5 pm ISTE Affiliates Meetings, Westin Peachtree Plaza
8 am-5 pm PT (by invitation), Sheraton Atlanta
8:30-11:30 am Morning Workshops*
9 am-1 pm Tour: A Taste of the Peach*
9 am-4 pm Education for a Sustainable Future Symposium* (preregistration only, seats may be available.)
9 am-4 pm Full-Day Workshops*
1:30-4:30 pm Afternoon Workshops*
6 pm-12 midnight Tour: Spectacular Stone Mountain Park*
7-10 pm Atlanta Braves Game*

SUNDAY, JUNE 25, 2000
7 am-7 pm Registration — GWCC
8 am-2 pm PT (by invitation), Sheraton Atlanta
8:30-11:30 am Morning Workshops*
9 am-3 pm Tour: Covington’s Mansions*
9 am-4 pm Full-Day Workshops*
9 am-4 pm Education for a Sustainable Future Symposium* (preregistration only, seats may be available.)
1 pm-5 pm Tour: Atlanta’s Famous Firsts*
1 pm-5 pm Tour: Georgia’s Stone Mountain*
1:30-4:30 pm Afternoon Workshops*
2:30-5:30 pm International Visitors’ Reception, & Special CNN Tours*, CNN/Omni Terrace
3-5 pm U.S. Dept. of Education (by invitation), GWCC, Room 366W
5-6 pm First Timers’ Session, GWCC, Ballroom IV
7-9 pm Opening Reception, GWCC West Concourse
Sponsored by NetSchools & Hewlett-Packard Company
Open to all NECC Registrants!

MONDAY, JUNE 26, 2000
7 am-6 pm Registration — GWCC
7:15-8:15 am First Timers’ Session, GWCC, Ballroom IV
8 am-4 pm Kids’ Aerospace Camp*
8:30-9:45 am Keynote: John Kuglin, GWCC, Hall G
Sponsored by Compaq Computer Corporation
8:30-11:30 am Morning Workshops*
9:45 am-5:30 pm Exhibit Halls D, E, F Open
9:45-10:45 am Continental Breakfast in Exhibit Hall
Sponsored by AOL school
10 am-12 noon Web Poster/Posters, GWCC, Room 367W
10 am-12 noon Make & Take Sessions*
10 am-12 noon Student Showcase, sponsored by HiFusion, GWCC Level 2, opposite Room 265W
10 am-1 pm Georgia Superintendents & School Board Members Meeting (by invitation), Omni, Mimosa & Rutherford Rooms
11 am-12 noon Concurrent Sessions 1
11 am-12 noon DeKalb County Meeting (by invitation), GWCC, Hall G
12:30-1:30 pm Concurrent Sessions 2
12:30-1:45 pm ISTE Membership Meeting, GWCC, Room 164W
1-3 pm Congressional Hearing on Web-Based Education (open), GWCC, Hall G
1-4 pm “Power to Lead” Simulation, BellSouth Foundation (by invitation), Omni, Mimosa Room
1:30-3:30 pm Web Poster/Posters, GWCC Room 367W
1:30-3:30 pm Make & Take Sessions*
1:30-3:30 pm Student Showcase, sponsored by HiFusion, GWCC Level 2, opposite Room 265W
1:30-4:30 pm Congressional Hearing on Web-Based Education (open), GWCC, Hall G
1:30-4:30 pm Afternoon Workshops*
2-3 pm Concurrent Sessions 3
3:30-4:30 pm Refreshment Break in Exhibit Hall
3:30-4:30 pm Concurrent Sessions 4
5-6 pm ”Thrashers”-of-a-Feather Sessions
5-6 pm Alabama Tech Coordinators Meeting (by invitation), GWCC, Room 364W
5-6 pm Atlanta Zoo Extravaganza*
Sponsored by Simplexis.com

* STARRED EVENTS REQUIRE A TICKET
AND/OR PREREGISTRATION. CHECK AT
ON-SITE REGISTRATION FOR TICKET AVAILABILITY.

GWCC = GEORGIA WORLD CONGRESS CENTER

BEST COPY AVAILABLE
TUESDAY, JUNE 27, 2000

6:45-8 am ... Fun Run/Walk
Sponsored by PowerSchool, Inc., Centennial Olympic Park
7 am–5:45 pm ... Registration — GWCC
7 am–8 am ... Volunteer Thank You Breakfast, GWCC, Level 1
7:15–8:15 am ... First Timers’ Session, GWCC, Ballroom IV
8 am–4 pm ... Kids’ Aerospace Camp*
8:30–10 am ... Keynote: Craig Barrett, GWCC, Hall G
with special presentation by U.S. Secretary of Education Richard W. Riley
8:30–11:30 am ... Morning Workshops*
9 am–1 pm ... Tour: A Taste of the Peach*
9:30 am–5 pm ... Exhibit Halls D, E, F Open
10–10:30 am ... Coffee Break, GWCC, West Meeting Room Levels
10 am–12 noon ... Web Posters/Posters, GWCC, Room 367W
10 am–12 noon ... Make & Take Sessions*
10 am–12 noon ... Student Showcase, sponsored by HiFusion, GWCC Level 2, opposite Room 265W
10:30–11:30 am ... Concurrent Sessions 1
11:45 am–1:15 pm ... Luncheon* & Keynote: Betty Siegel, GWCC, Ballrooms I–III
Sponsored by Cisco Systems, Inc.
12 noon–1 pm ... Concurrent Sessions 11
1:30–2:30 pm ... Refreshment Break, GWCC, West Meeting Room Levels
3–4 pm ... Concurrent Sessions 13
4:15–5 pm ... Closing Giveaways & NECC 2001 Preview
GWCC, Hall G

WEDNESDAY, JUNE 28, 2000

7 am–3 pm ... Registration — GWCC
7:15–8:15 am ... “Thrashers”-of-a-Feather Sessions
8 am–4 pm ... Kids’ Aerospace Camp*
8:30–9:45 am ... Keynote: Duane Ackerman, GWCC, Hall G
8:30–11:30 am ... Morning Workshops*
9 am–1 pm ... Tour: A Taste of the Peach*
9:30 am–2:30 pm ... Exhibit Halls D, E, F Open
10–10:30 am ... Coffee Break, GWCC, West Meeting Room Levels
10 am–12 noon ... Web Posters/Posters, GWCC, Room 367W
10 am–12 noon ... Make & Take Sessions*
10 am–12 noon ... Student Showcase, sponsored by HiFusion, GWCC Level 2, opposite Room 265W
10:30–11:30 am ... Concurrent Sessions 10
11:45 am–1:15 pm ... Luncheon* & Keynote: Betty Siegel, GWCC, Ballrooms I–III
Sponsored by Cisco Systems, Inc.
12 noon–1 pm ... Concurrent Sessions 11
1:30–2:30 pm ... Concurrent Sessions 12
2:30–3 pm ... Refreshment Break, GWCC, West Meeting Room Levels
3–4 pm ... Concurrent Sessions 13
4:15–5 pm ... Closing Giveaways & NECC 2001 Preview
GWCC, Hall G

TOURS
Tour participants are asked to meet inside the west entrance of the GWCC 15 minutes prior to the start time of each tour. Tours may be added to your registration through On-Site Registration. Guides will lead participants to the bus loading area.

WORKSHOPS
Seats in workshops may still be available! Stop by On-Site Registration for details. Costs are $70 for half-day and $140 for full-day. Buses will load at the Tours Departure/Return Area outside and to the west of the NECC Registration area between the Georgia International Plaza and the Georgia Dome.

MAKE & TAKE SESSIONS
Seats in Make & Takes may still be available! Stop by On-Site Registration for details. The cost is $10. Descriptions are on page 19.
JOHN KUGLIN
The Technology Puzzle:
Understanding and Connecting the Pieces
MONDAY, 8:30-9:45 AM

As classrooms transition into the new millennium, technology is a critical tool for schools. However, new developments are occurring at breakneck speeds. Educators find themselves staring into the box of a 5,000-piece technology puzzle. In this presentation, Kuglin will demonstrate the availability of the puzzle pieces and demystify the process for connecting them in a manner that leaves participants feeling comfortable. Kuglin will highlight current and emerging Internet, video, computer, and satellite technologies with suggestions for implementing these tools in a cohesive manner.

JOHN KUGLIN

DUANE ACKERMAN
Eye for Opportunity
WEDNESDAY, 8:30-9:45 AM

Duane Ackerman will focus on the enormous opportunities that the information economy and broadband technologies have created for students as learners and future employees, for educators as shapers of technology and technology use, and for communities as the standard-bearers for quality of life. His perspective arises from the breadth of BellSouth operations, which provide telecommunications, wireless communications, cable and digital television, advertising and publishing, and Internet and data services to more than 36 million customers in 20 countries worldwide.

DUANE ACKERMAN

CRAIG BARRETT
Computers, Connections, and Community:
Why We Care and Why It Matters
TUESDAY, 8:30-10 AM

Craig Barrett is President and Chief Executive Officer of the Intel Corporation.

SPECIAL PRESENTATION BY
U.S. SECRETARY
RICHARD W. RILEY
TUESDAY, 8:30-10 AM

Barrett's interactive presentation will include demonstrations onstage by teachers from around the country who have incorporated technology in meaningful ways into their classroom curricula, administrators who have used technology in innovative ways to get parents and their local community more involved in education, and a diverse group of students who are involved in making technology happen in their schools.

BETTY SIEGEL
Connecting for Success
WEDNESDAY LUNCHEON*, 11:45 AM-1:15 PM, GWCC, BALLROOMS I-III

Siegel will bring her remarkable sense of humor and perspectives on how we cope with change and the future to the NECC 2000 luncheon program. She has been instrumental in the inclusion of technology in the teacher preparation program in Georgia and is widely recognized for her vision and leadership.

Betty Siegel is the first woman to head an institution in the 34-unit University System of Georgia. She has been President of Kennesaw State University since 1981.

BETTY SIEGEL

* $25 ticket purchase required.
OPENING RECEPTION
Please join us Sunday night to celebrate NECC 2000’s crossroads extravaganza, “Connecting to the Future”! Held in the west concourse of the GWCC, this event will feature food, beverages, and four bands (from mellow jazz to swingin’ blues to toe-tapping Dixieland to rock ‘n’ roll) and is hosted by NetSchools and the Hewlett-Packard Company. Bring your dancing shoes if you like to party, or find a quiet spot to reunite with old friends. Attendance is complimentary with your registration—don’t forget to pick up your badge first!
Sunday, June 25, 7–9 pm, GWCC, West Concourse, Levels 1 & 2

SPECIAL FOR FIRST TIMERS
Join us in Ballroom IV to learn how to navigate through the city of Atlanta, the GWCC, the Exhibit Hall, and the conference program. Find out how you can make the most out of your premier NECC experience! Presented by Nancy Clark and Mindy DiSalvo, DeKalb County Schools, Georgia.
Sunday, June 25, 5–6 pm; repeats Monday, June 26, and Tuesday, June 27, 7:15–8:15 am, GWCC, Ballroom IV

INTERNATIONAL VISITORS’ RECEPTION AND CNN TOURS
NECC 2000 welcomes our international attendees to a reception at the Omni Terrace at CNN’s global headquarters! Right next to the GWCC, CNN develops and produces programming for 24 news and multiple non-news channels targeted to audiences around the world as well as programming and technology resources for education. The reception will feature presentations by Turner Learning and the CNN International Channel. A NECC First Timers’ video will also be presented.
In addition, for an extra fee, you may choose to preregister for one of the CNN Studio Tours set aside especially for NECC international participants during the reception. There are a limited number of slots for tours, so acceptance will be on a first-come, first-served basis. Tickets must be purchased at On-Site Registration prior to the Reception. No tour tickets will be sold at the Omni or at CNN.
The Standard Tour includes stops in the interactive exhibit area, digitally enhanced control room theater, and special effects studio. View the main newsrooms of CNN and Headline News from a glass overlook, one floor above. $8.
The VIP Tour is more in-depth and personalized than the Standard Tour and includes visits to the actual newsroom floors of CNN Headline News, CNN Sports Illustrated, CNN International, and CNN Interactive. $25.
Sunday, June 25, 2:30–5:30 pm, Omni Terrace, Omni Hotel. Tour start time is 4:30 pm.

THE NECC EXHIBIT HALL—LARGEST OF ITS KIND IN THE COUNTRY!
Be sure to visit the largest national education-technology exhibit in the country, featuring 1,200+ booths and more than 350 companies! Refer to the NECC 2000 Exhibit Guide (in your registration packet) for a complete listing of NECC 2000 Exhibitors and descriptions of each. Take your first stroll through this record-breaking exhibit during the Morning Continental Breakfast, and return for a relaxing ice cream, pretzel, popcorn, and refreshment break that same afternoon.
Continental Breakfast in Exhibit Halls D, E, F, Monday, June 26, 9:45–10:45 am; sponsored by AOL.school.
Refreshment Break in Exhibit Halls D, E, F, Monday, June 26, 3–3:30 pm
WHAT'S IN YOUR BAG?!

Check it out! Thanks to Apple for providing NECC with amazing tote bags for each attendee. Each bag contains the following goodies:

- National Educational Technology Standards (NETS) for Teachers, first edition
- Commemorative NECC 2000 CD-ROM
- ISTE Catalog
- CoSN Membership Brochure
- Clipboard (IBM Global Education, TIVOLI, and Lotus Development)
- Custom Note Pad (PowerSchool, Inc.)
- Day Planner (Edmark)
- 3-Color Highlighter (Intel Corporation)
- Pen (National Computer Systems)
- Post-It Note Pad (Knowledge Adventure)
- CD Caddy (LearningPays.Com)
- Name Badge Lanyards (Compaq Computer Corporation)
- Luggage Tag* (Follett Software Company)
- Screen Sweep (Follett Software Company)
- Pen (Riverdeep Interactive Learning)
- Mouse Pad (Palm, Inc.)
- Mouse Pad (Scholastic Internet Group)
- Name Badge Holder (TimeCruiser)

*TIP! SLIP YOUR BUSINESS CARD OR ID INSIDE AND ATTACH TO THE STRAP OF YOUR CONFERENCE TOTE BAG FOR EASY IDENTIFICATION DURING THE CONFERENCE...

WEB COMMISSION HEARING

The Web-Based Education Commission will hold a hearing on The Promise of the Internet to Empower K-12 Learners. Nebraska Senator Bob Kerrey is the chair, and Rep. Johnny Isakson of Georgia is the vice-chair. Witnesses will participate in a facilitated dialogue covering K-12 technology-related issues, including online schools, online courses, professional development, standards and assessment, accreditation, access for underserved populations, online privacy, and evaluation.

Monday, June 26, 1–3 pm, GWCC, Hall G

MONDAY NIGHT ZOO EXTRAVAGANZA

Get wild at our Monday night event at the Atlanta Zoo! Visit Yang Yang and Lun Lun, the zoo’s recently acquired giant pandas, along with a host of other marvelous animals. Join us for a delicious array of food and beverages while you visit Atlanta’s animal friends. $25 per person includes transportation to and from conference hotels and GWCC. Please check at On-Site Registration for ticket availability. Sponsored by Simplexis.com.

Monday, June 26, 5–8:45 pm. Shuttles will provide continuous service between hotels and the zoo, 5–9 pm.

TUESDAY FUN RUN/WALK

Start your morning off right with a brisk walk or run! Space is limited and will be on a first-come basis. Each participant will receive refreshments. The first 300 to register will also receive a commemorative T-shirt following the event. Sign up on-site at the NECC 2000 Information Booth located in the main registration area at the GWCC. Free to all NECC 2000 attendees. Sponsored by PowerSchool, Inc.

Tuesday, June 27, 6:45–8 am. Please confirm run location and busing schedule at the NECC 2000 Info Booth when signing up.

TUESDAY PREDANCE MINIMALL

Go on a shopping expedition hosted by a selection of NECC 2000 exhibitors at the Hyatt Regency Atlanta. No sales are allowed on the floor of the primary conference exhibit, so the NECC 2000 Minimall is your chance to purchase software, hardware, and materials to take home with you. Sack-sitting will be provided by the Hyatt for those attending the dance (fee applies). Entrance is free to all NECC 2000 attendees.

Tuesday, June 27, 6:30–9 pm, Hyatt Regency Atlanta, Regency Ballroom. Shuttles will provide continuous service between the Hyatt and other conference hotels, 6:30 pm–12 midnight.

TUESDAY DANCE/SOCIAL

NECC 2000 would not be complete without a dance-‘til-you-drop party! Our Microsoft- and Compaq-sponsored event will feature “Music in Motion,” one of Atlanta’s most popular dance bands. Each attendee will receive tickets good for two hosted drinks of his or her choice (including beer, wine, and call-brand drinks) and each is invited to indulge his or her late night sweet tooth at our sumptuous dessert buffet (French pastries, chocolate fruit fondue, and dessert cheeses) with gourmet coffees. Free to all NECC 2000 attendees.

Tuesday, June 27, 9–11 pm, Hyatt Regency Atlanta, Centennial Ballroom. Shuttles will provide continuous service between the Hyatt and other conference hotels, 6:30 pm–12 midnight.

BEST COPY AVAILABLE
WEDNESDAY CONFERENCE LUNCHEON WITH BETTY SIEGEL
The conference luncheon includes your choice of Mexican/chicken or Mediterranean/vegetarian wraps, coffee or tea, and a taste-tempting dessert. Our speaker will be Betty Siegel, President of Kennesaw State University in Georgia. $25 ticket purchase is required, and space is limited. Check with On-Site Registration for ticket availability.
Wednesday, June 28, 11:45 am–1:15 pm, GWCC, Ballrooms I–III

“THRASHERS” (BIRDS) - OF-A- FEATHER
Informal opportunities for those with common interests to gather and exchange ideas will be offered twice during the conference. Please see pages 33 and 48 for a listing of titles and room locations at the GWCC. Additional topics will be announced in the daily newsletter and at the NECC Information Booth.
Monday, June 26, 5–6 pm, and Tuesday, June 27, 5:45–6:45 pm

STUDENT SHOWCASE HIGHLIGHTS INNOVATIVE PROJECTS
All attendees will have an exciting opportunity to see examples of what schools are doing with technology. Students will present creative projects that use technology to facilitate learning. Questions will be answered and handouts will be provided. See great ideas successfully implemented!
Monday, June 26, and Tuesday, June 27, 10 am–12 noon and 1:30–3:30 pm;
Wednesday, June 28, 10 am–12 noon; GWCC, Level 2, opposite Room 265W
Student T-shirts and refreshment breaks sponsored by HiFusion, Inc.

AWARDS AND PRESENTATIONS
Each year at NECC, we are pleased to recognize and present a number of honored student and educator awards during the keynote sessions (8:30–9:45 am):
Monday, June 26, 2000
• Compaq Education Grants, sponsored by Compaq Computer Corporation.
Tuesdays, June 27, 2000
• Multimedia Mania, sponsored by ISTE’s HyperSIG. The winning teachers are presenting Multimedia Mania, Tuesday, 1:30–2:30 pm, Room 165W.
Congratulations, Mark Rice, Stringer, Michigan; Arnie Covey, Waterloo, Ontario, Canada; and Mary Sippel, Neufane, New York.
Wednesday, June 28, 1999
• Research Paper Award sponsored by ISTE’s SIGTE. The winners, Kara Dawson and Aileen Nonis, will present a session based on their paper, Preserve Teachers’ Experiences in a K-12/University Technology-Based Field Initiative: Benefits, Facilitators, Constraints, and Implications for Teacher Education, Wednesday, 10:30–11:30 am, Room 158W.
• 2000 Outstanding Technology-Using Educator Award sponsored by ISTE. Congratulations Sharon Dollice, Michigan Association for Computer-Related Technology Users in Learning, Grand Rapids, Michigan!
• Leadership in the Classroom Award, sponsored by Tech Corporation. Congratulations, Joan Kay Goble, Carmelton, Indiana, and Susan Hedlum Flentie, Lewiston, Montana!
INTEGRATING EDUCATION TECHNOLOGIES FOR A SUSTAINABLE FUTURE SYMPOSIUM

Attention K-12 Teachers & Administrators! Discover how you can be part of equipping students throughout the nation with the skills, knowledge, character, and vision they need to become productive citizens who contribute to a sustainable, information-rich future.

Seats may still be available in this two-day preconference event presented and organized by Education for a Sustainable Future, Cobb County’s Technology Innovation Challenge Grant, and The Center for a Sustainable Future (a division of Concord Consortium).

This event will showcase:

• the integration of technology into performance-based units on sustainability,
• leading-edge professional development opportunities, and
• Web-based dissemination strategies.

Participants will take part in:

• large-group sessions with input from leading educational technology specialists, software developers, pedagogical experts, and international leaders in sustainability;
• interactive presentations given by K-12 classroom teachers who have developed and implemented a variety of multidisciplinary units;
• opportunities to learn about exciting new netcourses for teachers and students that will be available as pilots for Fall 2000, and
• small group, hands-on lab sessions that will introduce participants to several new, freely-available software packages.

DATE/TIME: June 24-25, 9 am-4 pm (breaks included, lunch on your own);
LOCATION: Omni Hotel, $50.
Space is limited to 100 participants.

CEU AND SDU REGISTRATION

Continuing Education Units (CEUs) and Staff Development Units (SDUs) will be offered by the Georgia Staff Development Council and Georgia State University Continuing Education. Information and registration are available at On-Site Registration during the dates and times listed below.

CEU/SDU Registration Hours: Monday, June 26, 2-5 pm; Tuesday, June 27, 10 am-5 pm; Wednesday, June 28, 9 am-12 noon

(ISTE) INTERNATIONAL SOCIETY FOR TECHNOLOGY IN EDUCATION SOCIETY MEMBERSHIP / BUSINESS MEETINGS

For membership information, please visit ISTE’s Web site: www.iste.org

ISTE Affiliates Meeting
Saturday, June 24, 8am-5pm, Westin Peachtree Plaza

The following meetings will be held at the GWCC, Room 164W:

ISTE Membership Meeting
Monday, June 26, 12:30-1:45 pm

HyperSIG-Multimedia/Hypermedia
Monday, June 26, 3:30-4:45 pm

SIGTC-Technology Coordinators
Tuesday, June 27, 10:30-11:45 am

SIG/Telecommunications
Tuesday, June 27, 1:30-2:45 pm

SIGTE-Teacher Educators
Tuesday June 27, 3-4:15 pm

SIGCS-Computer Science
Wednesday, June 28, 10:30-11:45 am

NECC KIDS’ AEROSPACE CAMP AT GEORGIA TECH

This three-day, supervised science program for youth entering Grades 4-8 will take place on the Georgia Tech campus, 8 am-4 pm, June 26-28. Transportation to and from the GWCC will be provided. Please note that on-site registration for this event will not be available. See page 12 for more details.

CLOSING SESSION

Join us for a preview of Chicago’s NECC 2001: Building on the Future, and for a drawing of special prizes including hardware, software, and an airfare/registration package for NECC 2001! Must be present and have photo ID to win.

Wednesday, June 28, 4:15-5 pm, GWCC, Hall G

THANK YOU VOLUNTEERS!

IN ADDITION TO OUR CONFERENCE AND PROGRAM COMMITTEES, NEARLY 1,200 ADDITIONAL VOLUNTEERS HELP CREATE A TERRIFIC AND MEMORABLE NECC EXPERIENCE FOR PARTICIPANTS.
NECC EVENT TICKETS
Participants taking preregistered tours and events will receive event tickets along with their registration badges. For workshops, Make & Take sessions, the conference luncheon, tours, and the zoo, your event ticket is all you need to present at your event to gain admittance. Those attending the Saturday night Braves game need to exchange their badge ticket for a stadium ticket at the Event & Workshop Tickets Counter at On-Site Registration. Tickets may be available for some events, including workshops. Please check at On-Site Registration.

“ASK ME” INFORMATION VOLUNTEERS
Teams of NECC 2000 volunteers will be available during the conference to provide attendees with quick answers, directions, and other guidance as needed. Look for the purple “Ask Me” signs!

ATLANTA AMBASSADORS
Downtown Atlanta is a safer, cleaner place to visit because of the Downtown Improvement District’s Ambassador Force, a 50+ person hospitality/security group that helps the Atlanta Police Department patrol downtown and also assists visitors with helpful information about the city. Look for team members wearing white helmets in the downtown area—they are noted for their friendliness, hospitality, and concern for those who work, live, and visit Atlanta. The force covers two shifts per day on 16 walking beats in the 120-block Downtown Improvement District.

AUDIOTAPING
Many of the NECC 2000 Program Sessions are being recorded on audiotape and are available for sale to NECC 2000 attendees during and after the conference. Sales are located in the public space across from Room 160W (follow the signs!). In most instances, session material will be available within one hour of the session’s end. An order form for tapes has been included in each registration bag and will be available on the NECC Web site following the conference. Sessions that are being taped will be denoted with a 74 icon.

CAFÉ CONNECT & CREATE SOMETHING
Join us at the BellSouth Foundation’s Café Connect & Create Something, located beneath the escalators between the West lobby and the main registration area. This area will be available throughout the conference for attendees to check e-mail, surf the Web, plan their schedules using our online Web Conference Planner, and learn more about how the BellSouth Foundation is supporting teachers in the southeast United States.

E-MAIL STATIONS
NECC 2000 is happy to provide attendees with high-speed Internet, e-mail, and Web access from approximately 200 workstations located at the West meeting room levels. Access will be available beginning Saturday afternoon, June 24, and will continue throughout the conference. Connectivity and PC hardware is provided by Lightspan, Inc. and Gateway. Macintosh hardware is provided by Apple.

FOOD SERVICE
There are several food service options available within the GWCC and at the Omni Hotel’s Food Court. Food concessions are also offered in Exhibit Halls D, E, and F. Stop by the Restaurant Information Booth in the lobby for a listing of local eateries.

HOTEL SHUTTLE SERVICE
Shuttle service, sponsored in part by Sun Microsystems Computer Corporation, will be available between official NECC 2000 conference hotels and the GWCC. Please see the shuttle schedule on page 11 for hours of operation and boarding details. All conference shuttles will arrive at and depart from the main entrance of the GWCC. Shuttle fliers are available at the NECC 2000 Info Booth and at the Shuttle Info Booth in the transportation staging area. Inquire at your hotel lobby for the pickup location and times for your particular hotel.

LOST & FOUND
The NECC 2000 Information Booth, located in the main registration area, will maintain a Lost & Found box. Please bring all found items here, and check with the booth staff for items you may have lost or misplaced. Any unclaimed items will be shipped to the NECA Headquarters office in Oregon following the conference.

NON-SMOKING
We ask that NECC 2000 participants refrain from smoking within the conference facility. Your cooperation is appreciated!

BEST COPY AVAILABLE
WWW.NECCSITE.ORG
ON-SITE CONFERENCE PLANNER
The Conference Schedule Planner System, sponsored by Chancery Software, gives attendees the opportunity to use the Internet to view the conference schedule and plan their daily itinerary. Attendees can:
- see up-to-the-minute information on scheduled activities;
- query the system by time, date, topic, and presenter;
- store their itineraries on the system and revise them as needed;
- have the system identify schedule conflicts;
Access the planner through the NECC Web site (www.neccsite.org) using one of the many e-mail stations throughout the GWCC or in the BellSouth Foundation's Café Connect & Create Something.

DAILY NEWSLETTER
Be sure to pick up the NECC daily newsletter to find out about conference highlights and session changes. The newsletter is available each day at the registration counters, the keynote sessions, and the NECC 2000 Information Booth.

PRESS ROOM/LOUNGE
NECC 2000 will provide members of the national, regional, and local media with a multiactivity Press Room located in the GWCC, Room 163W. Local and long distance (using credit card) telephone service will be available, as will Ethernet and T-1 speed Internet access. The Press Room/Lounge will be open and staffed from 5–7 pm Sunday, 8 am–6 pm Monday and Tuesday, and 8 am–2 pm on Wednesday. For conference updates, a schedule of press-related events, access to equipment reserved specifically for the press, and other special requests, please show your press credentials in the Press Room.

SERVICES FOR PERSONS WITH DISABILITIES
If you require accommodations to attend or participate in NECC 2000, please ask for Jane Royall or Kim Hartsell at the NECC 2000 Information Booth. Real-time captioning and sign language interpreters will be available for each of the keynote sessions. For those sessions not captioned, interpreters participants who are deaf or hard of hearing will be provided on request. A limited number of wheelchairs and assistive listening devices will be available on request. Please note that it may not be possible to honor requests for accommodations that are made on-site.

SACK SITTERS, SHIPPING, AND STORAGE SERVICE
The Sack Sitters booth is located on the Exhibit Hall level, between Halls D and E in the connecting corridor. This service will provide:
- International Shipping;
- "Rent-A-Box" for session materials and exhibit goodies. A one-time fee buys overnight storage and continual accumulation for the duration of the conference;
- All packaging material purchase, including boxes, packing tape, and labels;
- A full-time Traces and Claims office to locate and resolve lost or damaged parcels;
- Sack Sitters accepts Visa, MasterCard, Amex, Diners Club, checks, and cash, and they can ship on UPS accounts.
Hours of operation are Monday, June 26, 9 am–6 pm; Tuesday, June 27, 9 am–5:30 pm; and Wednesday, June 28, 9 am–4:30 pm.

LAST-DAY LUGGAGE STORAGE
For your convenience, luggage storage services will be provided by the GWCC on Wednesday, June 28, in the On-Site Registration area, 7 am–6 pm. $1.50/bag or jacket.
SHUTTLE SERVICE (BETWEEN CONFERENCE HOTELS AND THE GWCC/EVENING EVENTS)

Friday, June 23 ... 5-8 pm
Saturday, June 24 ... 7 am-6 pm
Sunday, June 25 ... 7 am-10:30 pm
Monday, June 26 .. 7 am-7 pm
Continuous shuttle service will be provided between conference hotels and the Atlanta Zoo event from 5-9 pm
Tuesday, June 27 .. 7 am-7 pm
Continuous shuttle service will be provided between conference hotels and the Hyatt Regency Atlanta from 6 pm-midnight.
Wednesday, June 28 ... 7 am-6 pm

Unless otherwise noted, shuttles will depart from and return to the main entrance of the Georgia World Congress Center (GWCC) every 15-20 minutes (every 30 minutes Friday, June 23). This schedule is subject to revision and was accurate as of press time. Please do not forget to check the GWCC and your hotel lobbies for up-to-date frequency, dates, and changes! Though this schedule may also be affected by traffic conditions and other events taking place in the Atlanta downtown area, every effort is being made to ensure that your transportation service is timely, comfortable, and consistent. Please let our service providers, Atlanta Arrangements, know if your experience is otherwise.

Schedules are available at the transportation desk near the entrance to the west concourse and at the NECC 2000 Information Desk in the On-Site Registration area.

NECC 2000 transportation service is sponsored in part by Sun Microsystems Computer Corporation.

NECC 2000 HOTELS

Hyatt Regency Atlanta (HQ) 265 Peachtree Street, NE 404.577.1234
Atlanta Marriott Marquis 265 Peachtree Center Boulevard 404.521.0000
Courtyard by Marriott Downtown Atlanta 175 Piedmont Avenue, NE 404.659.2727
Days Inn Atlanta ... 300 Spring Street 404.523.1144
Embassy Suites .. 267 Marietta Street 404.223.2300
Fairfield Inn Downtown Atlanta 175 Piedmont Avenue, NE 404.659.7777
The Georgian Terrace (Midtown) 659 Peachtree Street 404.897.1991
Hampton Inn and Suites Atlanta Downtown 161 Spring Street 404.589.1111
Hilton Atlanta and Towers 255 Courtland Street, NE 404.659.2000
Holiday Inn Downtown Atlanta 101 International Boulevard 404.524.5555
Holiday Inn Midtown North............................. 1810 Howell Mill Road 404.351.3831
Omni Hotel at CNN 100 CNN Center 404.659.0000
Ramada Hotel Downtown 70 John Wesley Dobbs Avenue, NE 404.659.2660
Ramada Inn & Conference Center (Midtown) 418 Armour Drive, NE 404.873.4661
Renaissance Atlanta Hotel Downtown 590 West Peachtree Street 404.881.6000
Ritz Carlton Atlanta Hotel 181 Peachtree Street, NE 404.659.0460
Sheraton (Downtown) 165 Courtland Street 404.659.6500
Suite Hotel Underground 54 Peachtree Street 404.223.5555
Westin Peachtree Plaza 210 Peachtree Street, NW 404.659.1400
Wyndham Atlanta Hotel 160 Spring Street 404.688.8600

MORE HOTELS MAY HAVE BEEN ADDED AFTER PRESS TIME OF THIS PROGRAM. PLEASE CHECK WITH THE HOUSING DESK IN THE ON-SITE REGISTRATION AREA FOR MAPS, ADDITIONAL ADDRESSES, AND PHONE NUMBERS.
RI ECC 2000 TOURS

There is a lot to enjoy in Atlanta...from major league baseball to hikes to the Atlanta Zoo, to a number of historical and cultural landmarks. Atlanta and its surrounding region offer a unique variety of opportunities to make your visit memorable. Please join us on these specially selected treks that highlight Atlanta's many attractions and destinations. Tours require prepayment and advance reservations. Tickets for tours that still have space available may be purchased at On-Site Registration in the GWCC. Tour guides, with signs for each tour, will meet participants inside the west entrance to the GWCC 15 minutes prior to departure.

<table>
<thead>
<tr>
<th>DAY</th>
<th>NAME</th>
<th>TOUR TIME</th>
<th>BUS BOARDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday, June 24</td>
<td>A Taste of the Peach</td>
<td>9 am–1 pm</td>
<td>8:45 am</td>
</tr>
<tr>
<td></td>
<td>Spectacular Stone Mountain Park</td>
<td>6 pm–12 am</td>
<td>5:45 pm</td>
</tr>
<tr>
<td>Sunday, June 25</td>
<td>Covington's Mansions & Magnolias</td>
<td>9 am–3 pm</td>
<td>8:45 am</td>
</tr>
<tr>
<td></td>
<td>Atlanta's Famous Firsts</td>
<td>1 pm–5 pm</td>
<td>12:45 pm</td>
</tr>
<tr>
<td></td>
<td>Georgia's Stone Mountain</td>
<td>1 pm–5 pm</td>
<td>12:45 pm</td>
</tr>
<tr>
<td>Tuesday, June 27</td>
<td>Atlanta's Famous Firsts</td>
<td>1 pm–5 pm</td>
<td>12:45 pm</td>
</tr>
<tr>
<td>Wednesday, June 28</td>
<td>A Taste of the Peach</td>
<td>9 am–1 pm</td>
<td>8:45 am</td>
</tr>
</tbody>
</table>

TAKE YOURSELF OUT TO THE BALL GAME!

Atlanta Braves versus Milwaukee Brewers
Saturday, June 24, 7:10 pm, Turner Field

Those who have purchased tickets for Saturday night's Braves/Brewers game need to exchange the badge ticket received with their NECC 2000 registration for a stadium ticket at the Event & Workshop Tickets Counter at On-Site Registration during regular registration hours Friday, June 23, and Saturday, June 24. Some tickets will be available at On-Site Registration—please check. Transportation to and from Turner Field is not provided, but you can get directions at www.atlantabraves.com/braves_tfDirections/0,1640,13,00.html.

A seating chart for the stadium is available at www.atlantabraves.com/braves_schedule/0,1629,0,00.html.

NECC 2000 KIDS' AEROSPACE CAMP AT GEORGIA TECH

- Monday, June 26, $50
- Tuesday, June 27, $50
- Wednesday, June 28, $65

Fees include all materials and supplies, daily lunches, transportation, T-shirt, admission fees to Museum of Aviation (all days), and transportation to and from the Museum of Aviation in Warner Robins, GA (Wednesday only).

This three-day supervised science program for youth entering Grades 4–8 will take place on the Georgia Tech campus, 8 am–4 pm, June 26–28. Participants will explore flight and space by completing fun hands-on aviation/aerospace activities including construction of kites, hot-air balloons, gliders, rockets, and much more. Campers will receive free posters and software. A trip to the Museum of Aviation in Warner Robins, Georgia, is included on the third day.

Attendees may attend one, two, or three days of the program. Buses for the Kids' Camp will depart each day at 8 am and will drop students off in the bus loading/unloading area in front of the Georgia Dome each afternoon at 4 pm. Chaperones will stay with students until they have been picked up by their parents or legal guardians.
MORNING WORKSHOPS
8:30–11:30 am

AFTERNOON WORKSHOPS
1:30–4:30 pm

FULL-DAY WORKSHOPS
9 am–4 pm

WORKSHOP TRANSPORTATION
Transportation is provided to all off-site workshops. Buses will board in front of the Georgia Dome just west of the GWCC main entrance. Please check below for your workshop's exact bus loading and departure times.

IMPORTANT! Some buses depart as early as one hour prior to workshop start time, so you are advised to plan accordingly. Transportation will not be provided for participants who miss their buses.

OFF-SITE WORKSHOP BUS SCHEDULE

<table>
<thead>
<tr>
<th>Location</th>
<th>Morning Load/Depart</th>
<th>Full-Day Load/Depart</th>
<th>Afternoon Load/Depart</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEISMC</td>
<td>7:50 am/8 am</td>
<td>8:20 am/8:30 am</td>
<td>12:20 pm/12:30 pm</td>
</tr>
<tr>
<td>Clayton</td>
<td>7:20 am/7:30 am</td>
<td>7:50 am/8 am</td>
<td>11:50 am/12 noon</td>
</tr>
<tr>
<td>F3 Lab</td>
<td>7:50 am/8 am</td>
<td>8:20 am/8:30 am</td>
<td>12:20 pm/12:30 pm</td>
</tr>
<tr>
<td>GSU</td>
<td>7:20 am/7:30 am*</td>
<td>7:50 am/8 am*</td>
<td>12:20 pm/12:30 pm*</td>
</tr>
<tr>
<td>Lovett</td>
<td>7:35 am/7:45 am</td>
<td>8:05 am/8:15 am</td>
<td>12:05 pm/12:15 pm</td>
</tr>
<tr>
<td>Pace</td>
<td>7:35 am/7:45 am</td>
<td>8:05 am/8:15 am</td>
<td>12:05 pm/12:15 pm</td>
</tr>
<tr>
<td>Logosium (SUF249) @ UGA</td>
<td>7:50 am/8 am</td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Continuous shuttles between the GWCC and GSU starts at 7:30 am and runs until 4:30 pm; every 15–20 minutes.

WORKSHOP LOCATION ABBREVIATIONS

Clayton Clayton County Schools North
 Jonesboro Training Center
F3 Lab Foundations for the Future Forum
CEISMC Lab Georgia Institute of Technology's Center for Education
 Integrating Science, Mathematics and Computing
GWCC Georgia World Congress Center
GSU Georgia State University
 A&H = Arts and Humanities Building
 COE = College of Education
 CS = Classroom South Building
Lovett The Lovett School
Pace Pace Academy
UGA University of Georgia–Athens
SATURDAY MORNING

SAA100
Tips and Strategies for Enhancing Student and Teacher Multimedia Presentations
Lynell Burnmark, Lou Fournier
Seminar/Demo GWCC, Room 256W

SAA101
DVD Technology: Practical Applications for Every Classroom
Ann Cunningham, Sandra Benedetto, Karen Butler
(Sponsored by the Consortium for School Networking [CoSN])
Seminar/Demo GWCC, Room 264W

SAA102
Putting Total Cost of Ownership to Work
Sara Fitzgerald, Betty Van Dam, Marla Davenport
(Sponsored by the Consortium for School Networking [CoSN])
Seminar/Demo GWCC, Room 254W

* SAA103
Assessing Technology
Tricia Howell, Gates Hulme, Katie Lovett, Georgia Barnwell, Sandy Ewanowski, Tricia Howell
Seminar/Demo GWCC, Room 255W

SUNDAE AFTERNOON

SAP119
Imaging and Imagination: Visual Tools in the K–12 Classroom
Larry Johnson, Annette Lamb
Seminar/Demo GWCC, Room 254W

SAP118
PK–2? What’s Out There for You?
Gail Lovely
Seminar/Demo GWCC, Room 255W

SAP111
Module Maker—Web-Based Learning and Online Research Modules
Jamie McKenzie
Hands-On GWCC, Room 265W

SAP120
Responsible Use of the Internet in Schools: Local and Ethical Issues
Nancy Wiliard
Seminar/Demo GWCC, Room 257W

SATURDAY FULL-DAY

SAP124
Go Anywhere Multimedia: Digital Cameras in the Classroom
Molly Carbo, Mark Deiano, Nori Murphy, Greg Peck
Hands-On Clayton, Room 14

SAP125
Technology Grantseekers’ Toolkit for the New Millennium
Gary Carnow
Seminar/Demo GWCC, Room 260W

SAP126
Integrating Technology into the K–12 Classroom through Interactive Projects
Edna Gentry, Donna Cauiley, Jane Jones
Hands-On GSU, CS401

SAP129
In 3, in 2, in 1 ... We’re Live!
Virginia Jewell
Hands-On GWCC, Room 262W

SAP130
Online Learning for Teachers and Students
Krisen Johnson, Barbara Treacy, Susie Merrick
Hands-On GSU, CS403

SAP133
Why Did the Robot Cross the Road?
Steve Lintdass, Alison Wallace, Mary Beth Kelley-Lowe, Terry Feils
Hands-On Pace, Lab 2

SAP134
Query Power: Using Microsoft® Access in a Constructivist Classroom
John McGowan
Hands-On GWCC, Room 263W

SAP136
Helping Your Students Create Projects with Microsoft® Office and the Web
Tina Mondale
Hands-On GSU, COE100

SAP132
Is It Working? Designing a Technology Evaluation and Assessment Plan
Jeff Sun
Hands-On Pace, Lab 1

SAP140
Teachers Creating Classroom Web Pages
Jeff Thorpe
Hands-On GSU, COE252

SAP141
Putting It All Together: Technology, Teaching, Lessons and Learning
Lou Thoenberg
Hands-On Clayton, Room 4

SAP142
WebCT: The Complete Introductory Training Session
Anna Hiltman, David Wells
Hands-On GSU, COE130

SAP143
Standards-Based, Student-Centered, Sealable Professional Development
Art Wolinsky, Tom March
Hands-On GSU, CS403

SAP146
ThinkQuest®: The Coaches’ Workshop
Robert Sibley, David Warlick, Nancy Velez
(Sponsored by ISTE’s Organization Affiliate Executive Board)
Seminar/Demo GWCC, Room 261W

SUNDAY MORNING

SUA200
Using Multimedia to Enhance Learning and Motivate Students
Salvatore Angelica
Hands-On GSU, CS403

SUA202
American Memory Digital Primary Resources: Connect the Past, Present, and Future
Leni Donlan
(Sponsored by the National Council for the Social Studies [NCSS])
Hands-On GSU, COE130

SUA203
You Need a Little Inspiration* to Solve Your Problems!
Leslie Flanders
Hands-On Pace, Lab 1

SUA204
Staff Development for the Integration of Technology into Instructional Strategies
Terri Jenkins, Lynn Baber
Seminar/Demo GWCC, Room 256W

SUA205
WebQuests: Taming the Wild, Wild Web
Pamela Rock
Seminar/Demo GWCC, Room 269W
SUA206
Power Learning—Creating Student-Centered, Problem-Based Classrooms
Jamie McKenzie
Hands-On GWCC, Room 265W

SUA207
Power Learn:
Best Practice and New Trends in Technology Staff Development
Len Scrogan
Seminar/Demo GWCC, Room 362W

SUA208
Make It with Microsoft® Office
Vicki Sharp, Richard Sharp
Hands-On GSU, COE246

SUA209
Building Videoconferencing Activities for the K-12 Classroom
Stan Silverman, Gene Silverman, Fred Podowski, Paula Pizzano, Nancy Schempp
Seminar/Demo GWCC, Room 264W

SUA210
Creating Successful Proposals for Educational-Technology Projects
Jeff Sun, Heather Hurley
Seminar/Demo GWCC, Room 255W

SUA211
Understanding Digital Images
Sharon Yoder, Irene Smith
Seminar/Demo GWCC, Room 256W

SUP215
Weaving It All Together: A Professional Development Tapestry
Jackie Burniske, Joan Gil, Vicki Dimock
Seminar/Demo GWCC, Room 269W

SUP216
Gearing Up for Online Projects
Maria Daviesport, Rachel Brown, Lynne Motylinski
Hands-On GSU, COE246

SUP218
Power Learning—Creating Student-Centered, Problem-Based Classrooms
Jamie McKenzie
Hands-On GWCC, Room 265W

SUP219
Student Leadership, Technology, and Empowerment: A Program That Works
Rae Niles, Jayne James
Hands-On GSU, COE130

SUP221
Communicate, Collaborate, and Celebrate: Reaping the Benefits of the Internet
Ladd Shetye
Seminar/Demo GSU, CS5403

SUP222
Music in Education™: The First Music Classroom Network for Instruction
Michael Skinner, Shelly Fullerton
Seminar/Demo GWCC, Room 255W

SUP223
Animation with the HyperAnimaniacs
Kate Vanderhorst, Rick Rychniski
Hands-On Pace, Lab 1

SUP224
Framing the Grant: Teaching, Not Technology
Paola Williams, Watts Margit
(Sponsored by ISTE’s HyperSIG)
Seminar/Demo GWCC, Room 256W

SUP225
Create Your Own Electronic Teaching Portfolio
Helen Bennett
Hands-On Clayton, Room 4

SUP226
Technology Coordinators: Coping, Thriving, Sharing
Watts Bivander
(Sponsored by ISTE’s SIGTC)
Seminar/Demo GWCC, Room 254W

SUP228
Bytes, Camera, Action, MovieWorks!
Carolina Carrizo, Elian Robertson
Hands-On GWCC, Room 262W

SUP229
Creating Web-Based Courses with WebCT
Chris Clark
(Sponsored by ISTE’s SIG/Tei)
Hands-On GSU, CS305

SUP231
Every Child Can Learn to Read with Technology
Tricia Coating, Stacey Bennett
Hands-On GSU, COE106

SUP233
Creating Web-Based Lessons: WebQuests and Other Internet Projects
Miguel Gutierrez, Jim Baird
Hands-On GSU, COE116

SUP234
Planning for Success—Developing Effective Strategic Long-Range Plans
Ian Janes, Ted McClain
Seminar/Demo GWCC, Room 257W

SUP236
New and Emerging Competencies for Building-Level Technology Champions (formerly Improving Teaching and Learning through Technology at the Campus Level)
Keith Krueger
(Sponsored by the Consortium for School Networking [COSNJ] with support from BellSouth)
Seminar/Demo GWCC, Room 267W

SUP237
Creating Database-Backed Web Sites with FrontPage® 2000
Todd McIntire
Hands-On GSU, COE100

SUP238
Virtual Reality in and out of the Classroom
Jim McKeown, Roger Reed
Seminar/Demo GWCC, Room 268W

SUP239
Beginning Photoshop*
Bonnie Meitner
Hands-On GSU, A8H211

SUP240
The Classroom and Beyond: Integrating Handheld PCs and Digital Cameras
Gregory Peck, Mark Dettano, Melita Carbo, Nori Murphy
Hands-On Clayton, Room 14

SUP243
Staff Development and the Web: Making It Work for Teachers
Neal Strudler, Marianne Handler
(Sponsored by ISTE’s SIG/TE)
Hands-On GWCC, Room 263W

SUP244
Going Bananas over Dreamweaver*
Manorama Talaiver
Hands-On GSU, COE Open

SUP245
The Digital Camera in the Classroom
Andy Voss
Hands-On F3 Lab

SUP247
Class Webs: Cultivating the Internet for Learning
David Warrick
Hands-On GSU, COE252

SUP248
Professional Development Planning: Can You Succeed without It?
Cynthia Dunlap, Anne Knight
Seminar/Demo GWCC, Room 261W
SUNDAY
8:30 AM - 7 PM

SUF249
Logosium 2000 Full-Day Conference and Social Dinner
Gary Sager
(Sponsored by ISTE's SIGLogo)
Hands-On
UGA

MONDAY

MORNING

MA301
Are You Connected? Everyday Internet Use
Sheila Barnes, Lynne Purcell, Lisa Ciardulli
Hands-On
GSU, COE106

MA302
SCR*TEC's Profiler: Supporting Collaboration and Targeting Staff Development Needs
Christina Bauer
Hands-On
GWCC, Room 262W

MA303
Using the InTech Model in the Student-Centered Classroom
Melody Bonnette, Sandy Swartz
Hands-On
GSU, COE100

MA304
Web Tools
Laren Brooks, Lynnette Morrison
Hands-On
GSU, CS305

MA305
Use AppleWorks* with Elementary Kids
Janet Caughlin, Connie Baxter
Hands-On
Pace, Lab 2

MA306
3-D Graphics Kids Love!
Robert Frazier
Hands-On
Clayton, Room 4

MA307
Connecting Multiple Intelligences and Technology
Jeannie Heacock
Hands-On
Lovett, Lab C

MA310
From Digital to Analog: Videotaping Your PowerPoint* Presentations
Ginna Head, Glenda Miller
Hands-On
GSU, COE252

AFTERNOON

MA311
Technology-Assisted Project-Based Learning
Anthony Jongejan, Kathy Buchanan
Hands-On
Clayton, Room 14

MA312
Using Clay Animation in Your Classroom!
Melinda Koh, Nancy Smith, Mark Benno
(Exhibitor-sponsored workshop)
Hands-On
GWCC, Room 265W

MA313
Create and Manage Your Web Site Using Net Objects Fusion* 5.0
Keith Macks, Karen Mack
Hands-On
GWCC, Room 263W

MA314
Technology as a Tool for the Elementary Social Studies Classroom
LaRay Masson, Paulette Williams, Laurie Sartle, Michael Berson, Sue McGinnis
(Sponsored by the National Council for the Social Studies (NCSS))
Hands-On
GSU. COE100

MA315
PowerPoint*: Bringing Method to the Madness
Phyllis Snipes
Hands-On
GSU, COE116

MA318
Narrowing the Internet: Create a Web Page Directing Student Learning
Maria Narciso, Paul Tanenhaus
Hands-On
Lovett, Lab D

MA321
Learn How to Host a Collaborative Internet Project
Susan Silverman
Hands-On
GSU, CS403

MA347
Beginning Internet
John Richardson
Hands-On
GSU, A&H211

MA334
A Quest for the Crossroads: WebQuests, Thinking Skills, and Technology
Jeannie Heacock
Hands-On
Lovett, Lab C

SEPTEMBER 21, 2000...
WWW.NECCSITE.ORG
<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Instructor</th>
<th>Location</th>
<th>Hand-On Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUESDAY MORNING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA400</td>
<td>Creating a Digital Portfolio</td>
<td>Annette Abrams</td>
<td>GSU, COE116</td>
<td></td>
</tr>
<tr>
<td>TA402</td>
<td>Interactive, Dynamic Educational Web Sites</td>
<td>Teresa Bromley, Jo Lynn Allen, Linda Babb, Paula Duncan, Judy Parham</td>
<td>GWCC, Room 265W</td>
<td></td>
</tr>
<tr>
<td>TA403</td>
<td>Moving beyond Multimedia</td>
<td>Greg Butler, Kendy Starr</td>
<td>GSU, A&H211</td>
<td></td>
</tr>
<tr>
<td>TA404</td>
<td>Successful Curriculum Integration Strategies Based around Application Software</td>
<td>Greg Butler, Kendy Starr</td>
<td>GSU, A&H211</td>
<td></td>
</tr>
<tr>
<td>TA405</td>
<td>Use AppleWorks* with Middle- and High-School Kids</td>
<td>Janet Caughlin</td>
<td>Pace, Lab 2</td>
<td></td>
</tr>
<tr>
<td>TA407</td>
<td>Integrating Technology Successfully into K-12 Curriculum</td>
<td>Don Henderson, Sheila Hard, Jack Podell</td>
<td>GWCC, Room 262W</td>
<td></td>
</tr>
<tr>
<td>TA409</td>
<td>Typography: Artistry with Words</td>
<td>Carol Kelly, Davis Bock</td>
<td>GSU, COE106</td>
<td></td>
</tr>
<tr>
<td>TA410</td>
<td>Classroom Campfires:</td>
<td>Annette Lamb, Larry Johnson</td>
<td>GSU, COE100</td>
<td></td>
</tr>
<tr>
<td>TA412</td>
<td>Applying NASA Research to Project-Based and Problem-Based</td>
<td>Robert Myers, Laurie Rubing</td>
<td>GWCC, Room 262W</td>
<td></td>
</tr>
<tr>
<td>TA413</td>
<td>Create a WebCT Course!</td>
<td>Karen Oates</td>
<td>GSU, CS403</td>
<td></td>
</tr>
<tr>
<td>TA414</td>
<td>LEGO® MINDSTORMSTM®: Inexpensive, Easy Classroom Robotics</td>
<td>Timothy Phillips, Michael Phillips</td>
<td>GSU, COE252</td>
<td></td>
</tr>
<tr>
<td>TUESDAY AFTERNOON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP424</td>
<td>Help Students Learn from One Another: Collaborative Learning Tools in Action</td>
<td>Michelle Bader, Marge Cappo, Judith Levy Cohen</td>
<td>Lovett, Lab D</td>
<td></td>
</tr>
<tr>
<td>TP426</td>
<td>A Wild Ride: Technology Integration with Middle-School Classrooms@work</td>
<td>Warren Bucklester</td>
<td>GSU, COE100</td>
<td></td>
</tr>
<tr>
<td>TP427</td>
<td>Electronic Portfolios for Teachers and Students: An Introduction to Electronic Portfolios for Teachers and Students</td>
<td>Nancy Becker, Bobbie Welch</td>
<td>GSU, COE130</td>
<td></td>
</tr>
<tr>
<td>TP429</td>
<td>Software Evaluation 101</td>
<td>Warren Bucklester</td>
<td>GSU, COE130</td>
<td></td>
</tr>
</tbody>
</table>
TUESDAY AFTERNOON, CONT.

TP430 Piecing Together the Engaged Learning Puzzle
Constance Cassity, Louanne Smolin
Hands-On GWCC, Room 263W

TP431 Problem-Based Learning: Drawing from the Web Well
Hilerie Davis, Robert Myers
Hands-On GWCC, Room 265W

TP432 Getting your Database Online with FileMaker™ 5.0
Leslie Fisher
Hands-On Pace, Lab 2

TP433 Tap into Online Professional Development
Judi Fusco, Petri Schank, Mark Schnieger, Hunter Gehlbach
Hands-On Pace, Lab 1

TP434 Technology Tools for Administrators
Eileen Gallagher, Yvette Chisom
Hands-On GSU, COE116

TP435 Weave Your Own Web Site
Wendy Marshall
Hands-On GSU, COE106

TP436 Teaching with Primary Sources
Donna Miller
Hands-On GSU, COE252

TP437 Travel USA: Technology Integration with Elementary Classrooms@work
Amy Pearl
Hands-On GSU, COE246

TP438 Standards-Based Teaching and Assessment Strategies
Francesca Venning
(Exhibitor-sponsored workshop)
Hands-On GWCC, Room 262W

TP439 Creating Virtual Tours with QuickTime™ Virtual Reality
Denaya Wininger, Michael Wininger
Hands-On GSU, A&H211

WEDNESDAY MORNING

WA500 Web Publishing for Teachers
Danene Andre, Bruce Ansborn
Hands-On Pace, Lab 1

WA501 Global Challenge: Technology Integration with High School Classrooms@work
Anne Bates, Amy Pearl
Hands-On GWCC, Room 265W

WA502 Transforming Schools through Technology Integration
Kristin Ciesemier, Seymour Hanfling, Jim Nazworny, Bruce Hoffacker, Raynette Sanchez, Elizabeth Byrom
Hands-On GWCC, Room 263W

WA503 Creating Web Graphics Using Adobe® Photoshop® 5.5
Leslie Fisher
Hands-On Pace, Lab 2

WA504 Creating Electronic Stories
Sheri Herod, Diane Allen, DeNeene Henderson, Barbara Sanders
Hands-On GSU, A&H 211

WA505 Innovative Strategies to Enhance Learning with Mobile Technologies
Francesca Venning
(Exhibitor-sponsored workshop)
Hands-On GWCC, Room 262W

BEST COPY AVAILABLE

DON'T FORGET TO
FILL OUT YOUR
CONFERENCE
EVALUATION!
A FORM IS
INCLUDED IN EACH
CONFERENCE
REGISTRATION
TOTE BAG.
COMPLETE YOUR
EVALUATION
AND RETURN IT TO
THE NECC 2001
BOOTH!

SEATS MAY STILL BE AVAILABLE—CHECK @ ON-SITE REGISTRATION
MAKE & TAKE sessions are two hours long and have a hands-on component that results in participants leaving with a product such as a WebQuest, Web page, big book, or electronic presentation. The format is collaborative groups of three to a computer, except for the "Geographic Information Systems (GIS) for Educators" Make & Take Sessions, in which each participant has a laptop.

Make & Take sessions require preregistration and payment of a $10 fee. Check On-Site Registration for availability of these sessions.

MONDAY MORNING
10 AM - 12 NOON

MTM001
K-12 Videoconferencing for Teaching and Learning: Planning and Implementation
Kirk deFord

MTM002
Wanted: A Cross-Curricular Activity
Becky Firth

MTM003
Electronic Me-Books: Helping Students Develop Language Skills
Timothy Green, Jody Peerless

MTM004
Musical Crossroads: The Rhythm of Technology
Jeanne Muraz

MONDAY AFTERNOON
1:30 - 3:30 PM

MTM005
Take a Byte out of the Internet-Feeding Classrooms
Betty Higdon

MTM006
The Internet and the Primary Student
Emmett Mullins

MTM007
Create Web Graphics like the Professionals
Carol Swinski

MTM008
Making Your Teaching Portfolio a Teaching Tool: A Web-Based Approach
Hong (Carol) Yin Sun

MTM009
Geographic Information Systems (GIS) for Educators
John Kuglin, Chris Kuglin, Lauren Mackay

TUESDAY MORNING
10 AM - 12 NOON

MTT010
WWW.Creating Curriculum Web Pages with FrontPage Express
Sandy Beck, Kathy Adkins, Linda Spudic

MTT011
Supporting Problem-Based Learning Activities with Freeware
Mary Burns, Victoria Dinock

MTT012
Mouse or No Mouse
Tammy Donalson

MTT013
Tackling Technology Integration: No Athletic Gear Required
Carmen Gonzales, Susan Busmann, Katherine Martinez Graham, Susan Smith

MTT014
Geographic Information Systems (GIS) for Educators
John Kuglin, Chris Kuglin, Lauren Mackay

TUESDAY AFTERNOON
1:30 - 3:30 PM

MTT015
Virtual Reality for Real Learning
Mark Chrislas, Nancy Allen

MTT016
Playing with Matches: Teaching to Standards without Getting Burned
Terrie Gray, Brian Bridges, Mike Menshaka

MTT017
Create a Scavenger Hunt Web Site
Kathy Lincoln

WEDNESDAY MORNING
10 AM - 12 NOON

MTW020
Online Course Creation: Accessing Innovative Digitized Multimedia Resources
Lyn Swett Miller, Bert Ross, Ann Rose

MTW021
Nothin’ on the Net: Pointing Students to Research Sources
Vickie Seavers, Nancy Nielsen

MTW022
Geographic Information Systems (GIS) for Educators
John Kuglin, Chris Kuglin, Lauren Mackay

PARTICIPANTS WILL GET A ZIP DISK TO TAKE HOME THEIR CLASS PROJECTS!
NECA and the NECC 2000 Committee extend a special thanks to our speakers. Their willingness to take the time to prepare sessions and workshops and share their expertise means we can present an excellent program that covers the breadth and depth of the use of technology in education.

SESSION TYPES/THEMES
All sessions take place at the Georgia World Congress Center (GWCC).

General Sessions are identified under the following themes and strands:
- Beyond the Crossroads, Where Do We Go from Here
- Distance Learning
- Connecting Technology to Teaching & Learning
 - Instructional Strategies, Technology Integration, and Management of Technology in the Classroom
 - Project-Based Learning, Information, and Visual Literacy
 - Facilitating Learning in Teams
 - Assessing Student Learning and Connecting to Standards and Assessment
- Laptops
- Preschool and Elementary
- Language Arts and Social Studies
- Math and Science
- Computer Science
- Other Subject Areas
- Special Needs and Assistive Technology
- Internet/Web
- Multimedia
- Support and Maintenance
- Funding, Planning, and Implementation
- Evaluation
- Research
- Staying Connected with Professional Development
 - Staff Development
 - Preservice and Graduate Teacher Education
- Standards, Assessment, and Accountability:
 - Staying Connected
- Moving beyond the Crossroads:
 - Teachers as Agents of Change
- Connected Communities:
 - Schools, Businesses, and Resources
 - Social, Ethical, and Policy Issues

GENERAL SESSIONS are one hour long and may be presented by an educational practitioner(s) or by a NECC 2000 Exhibitor. Exhibitor presentations are an integral part of our conference program and are solicited and juried through our standard proposal recruitment process. NECA member societies sponsor sessions from their areas of expertise with admission open to all conference attendees.

Note: Following each session description, Grade Level is listed followed by Audience. Note that "coordinators" includes administrators, library/media specialists, staff developers, and curriculum specialists.

SPOTLIGHT SESSIONS are one hour long and are led by leaders in the field of educational technology. They are featured during each of the 13 concurrent session blocks.

PAPERS are original peer-juried research papers on the general theme of using technologies to enhance education. Two papers are presented in each general session time slot.

POSTERS are informal sessions that allow participants to engage in one-on-one or small-group discussions. Visuals may be in the form of "hard" media such as poster board or bulletin board displays, or they may be electronic. Poster sessions are located in room 367W in the GWCC.

INTERNET POSTERS have the enhancement of Internet connectivity. They are located in room 367W in the GWCC.

STUDENT SHOWCASE features students and teachers demonstrating projects that use technology to promote learning and student achievement. Student Showcase presentations are located on Level 2 of the GWCC, opposite room 265W.
are occurring at breakneck speeds. Educators for schools. However, new developments are occurring at breakneck speeds. Educators find themselves staring into the box of a 5000-piece technology puzzle. In this presentation, Kuglin will demonstrate the availability of the puzzle pieces and demystify the process for connecting them in a manner that leaves participants feeling comfortable. Kuglin will highlight current and emerging Internet, video, computer, and satellite technologies with suggestions for implementing these tools in a cohesive manner.

MONDAY, 10 AM-12 NOON

STUDENT SHOWCASE

Located on Level 2, opposite Room 265W.

Use Technology to Raise Student Test Scores in Reading, Language Arts, and Math
Carolyn Huff (CA), with students Cynthia Kuhlman, Annelie Netty, Darrell Finkes
Students from the Atlanta Public Schools will demonstrate how their district has incorporated a comprehensive technology-based curriculum resulting in dramatically higher student test scores in reading, language arts, and math.

K-12: Teachers, Coordinators

How to Create an Effective, Student-Run Technology Help Desk
Matthew Byars, East Jessamine Middle School, Jessamine County Schools (KY), with students Keryanne Sloan, Amanda Haggard, Kim Burge, Jessica King, Beau Murphy, Charles Young
The cure for your technology woes is right under your nose: your students! Learn how to create an effective, student-run help desk in your school or district.

K-12: Community College, University/College: Teachers, Coordinators, Postsecondary Educators

POSTERS

All posters take place in Room 367W.

The Technology Leadership Institute: It’s More than a Purple Shirt
Jim Dittmann (KY), Doug Reed (KY), Carolyn Ruic-Parkins (KY), Steve Brown (KY)
PS-M01-10, Table 3
Learn how Jefferson County Public Schools and the University of Louisville are collaborating to offer a master’s program for experienced teachers focused on instructional technology leadership.

General: Teachers, Coordinators, Postsecondary Educators

National Pet Census: A Collaborative Web-Based Project
Kathy Don (PA)
PS-M02-10, Table 1
Participating schools are counting pets! Data, ideas, and information resulting from the data collection experience are shared. Activities and links are included on the site.

Creating Preferred Futures: An Online Course In Futures Thinking
Seth Izaak (MA), Sandy Burchard (TX)
PS-M04-10, Table 12
The future is our only destination! Creating Preferred Futures links classes from around the globe in an interactive futures education curriculum. Explore scenarios, trends, and community involvement.

General: K-12: Teachers

Implementing the National Technology Goals 2000 into Classroom Instruction
Doris Johnson (OH)
PS-M05-10, Table 7
Get an overview of constructivism and technology usage in classrooms. Explore how computers, assistive technologies, and the Internet facilitate instruction.

General: K-12: Community College, University/College: Teachers, Teacher Educators, Postsecondary Educators: Coordinators

The Turtle School of Dance: Using MicroWorlds* to Meet State Mathematics Curriculum Standards
Michael Lipinski (MA), Kathleen Bridgewater (MA)
PS-M06-10, Table 9
Our Turtle School of Dance project demonstrates how creative use of MicroWorlds can help teachers create exceptional elementary geometry lessons that meet state mathematics goals.

4-8: Teachers, Teacher Educators, Coordinators

Cross-Curricular Units Develop Student Learning
Craig Manczy (NE), Glen Bierscher (NE), Neal Tipp (NE)
PS-M07-10, Table 4
See cross-curricular comprehensive units developed by teachers and students to bridge core content areas and implement recent technology strategies.

6-12: Teachers, Teacher Educators, Postsecondary Educators

Jumping into the Millennium with Students and Technology
Jane McClain (TX), Marjorie Villanueva (TX), Mari Utz (TX), Maria Munoz (TX)
PS-M08-10, Table 6
Three multilingual elementary teachers and the literacy leader demonstrate successful use of technology and the Web in the classroom and the work environment. They will also discuss their school district’s successful grantwriting initiative.

General: K-3, 4-6: Teachers, Postsecondary Educators, Coordinators, Teacher Educators

Change Teaching and Learning with Technology and Constructivism
Margaret Rice (AL), Elizabeth Wilson (AL), B. Joy Stullworth (AL), William Bagley (AL), Keith Rite (GA)
PS-M09-10, Table 10
Discover how activities using technology and constructivism can help transform your classroom from a direct-instruction, teacher-centered environment into a student-centered collaborative environment.

University/College: 6-12: Teachers, teacher educators

Promoting Spanish Language Learning Adventures with Computer-Based Technology
Chris Winters (MA), Victoria Munroe (MA), Carol Holtberg (MA)
PS-M10-10, Table 11
See the benefits of adding several technology-rich computer activities (including multimedia CD-ROMs, e-mail, and Internet research) to Swift River’s Spanish language curriculum.

General: K-12: K-6: Teachers, Teacher Educators, Coordinators

Assessment in and Evaluation of Online Learning
Jane Zelmer (CA)
PS-M11-10, Table 2
A year of study was distilled into a Web-based course. Take an in-depth look at assessment and evaluation of students, faculty, courses, and programs delivered online.

Community College, University/College: Postsecondary Educators, Coordinators

Online Testing for the Classroom
Joseph Zink (PA)
PS-M12-10, Table 8
Online testing provides unique opportunities for teachers to quickly and effectively assess student understanding of classwork and homework. Learn how to develop online tests.

General: Teachers, Teacher Educators, Postsecondary Educators
WEB POSTERS

All posters take place in Room 367W.

The Math Forum: How and Why Should You Use It?
Sheldon Berman (PA), Jody Underwood (PA)
IPS-M13-10, Table 18
Learn about the Math Forum, the hottest site on the Web for mathematics education. Explore Ask Dr. Math, Problems of the Week, Teacher2Teacher, and more!
K-12, Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators

NASA Online Resources:
Exploring Our World and Beyond
John Evans (VT)
IPS-M14-10, Table 17
Challenge facilitators share how to increase student achievement through telecommunications by addressing professional development, school readiness, parental involvement, school-to-work transition, and lifelong learning skills.
K-12, Teachers, Coordinators

The Internet: Bridging the Gaps among Schools, Assessment, and Parents
Susan Graham (MA), Jennifer Degnan (MA)
IPS-M15-10, Table 15
Explore a world of NASA Web-based resources for educators.
K-12, Teachers, Teacher Educators, Coordinators

The Internet: Connecting Schools and Parents in a Meaningful Way:
A Minneapolis District Project
Sheldon Ramnarine (MN)
IPS-M20-10, Table 21
Studies prove that increased parental involvement leads to higher student achievement, reduced absenteeism, and higher graduation rates. See how one large urban district is using the Web to get students, teachers, and parents involved and connected in a meaningful way to help students succeed.
General, Teachers

Jump-Start Integration with the Internet
Carol Swinski (PA)
IPS-M21-10, Table 13
Combine productivity applications and the varied tools of the Internet for successful curriculum integration. Explore Web publishing, online telecollaboration, and integrated lesson plans.
General, K-12, Teachers, Coordinators

History beyond the Classroom Walls: Virtual Field Trips
Sue Smolin (NY), Michele Bower (NJ), Mary Ann Bata (NJ)
IPS-M22-10, Table 20
Explore Virtual Field Trips, the Internet, and history—and leave the driving to us!
K-12, Teachers, Coordinators

The Good, the Biased, and the Ugly
Jana Tobie Hickey (KY), Laura Clifford (KY), Cathy Watson Pritman (KY)
IPS-M23-10, Table 24
Explore this Interactive Web-based project that investigates issues related to why Web information should be accessed only by an "informed" mind.
K-12, Teachers, Teacher Educators, Coordinators

INTERM: Integrating New Technology into the Methods of Education Using Online Video Best Practices
Katie Kruger (IA), Doreen Hayek (IA), Sharon Smaldino (IA)
IPS-M24-10, Table 14
This catalyst grant will generate videos on the Web showing PK-12 teachers integrating technology and components of quality education. The videos can be used in training preservice teachers.
K-12, University/College; Teacher Educators

SPOTLIGHTS

Education and Democracy: Technology for What?
Carl Glickman, University of Georgia (GA)
M002 Room: Ballroom IV
Examine the purpose of American education and how much of our education paradigm has coincided with decreases in ideals of democratic participation. However, technology can increase student achievement and participation.
K-12, Teachers, Teacher Educators, Coordinators

Reach the Reluctants: Strategies to Win the Participation of Late Adopters
Jamie McKenzie, From Now On—The Educational Technology Journal (WA)
M003 Room: Ballroom II/III
In bringing new technologies into schools, we have paid too little attention to those who are reluctant. Discuss strategies for getting everybody up to speed.
K-12, Coordinators

Switching Gears: Preparing Students for the Digital Economy
Alan Novenber, Educational Renaissance Planners (MA)
M004 Room: Ballroom I
Technology is important, but it only represents the digital plumbing; the real learning revolution is in information and communications. Find out why we must replace teacher-student dependency with student self-directed and self-motivated learning.
General, K-12, Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

The cassette icon (§) indicates the session will be audiotaped. Please see page 9 for details.
PAPERS
Two papers per one-hour session.

Information Technology in Teacher Education: A Closer Look
Talbot Biehleit (OR)

ISTE reports on recent firsthand research into how teacher education institutions achieve integration of technology into their programs. In the research reported here, 416 U.S. schools, colleges, and departments of education were surveyed, with focus placed on integration of technology, facilities and infrastructure, field experience opportunities, and the ability to use common software tools.

Community College: University/College: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

M005 Room: 268W

DISTANCE LEARNING
Violenceonferencing Innovations and Issues: Museums and Their K-12 Colleagues
Timothy Barthinger (WI)

M009 Room: 158W

Learn how videoconferencing is used in informal learning environments to connect to K-12 students. Discuss research that examines the technology’s use as an advanced organizer.

K-12: Teachers, Coordinators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Management of Technology in the Classroom

Jillian Copeland (MD), Patricia Daughtery (MD), Shira Leibowitz (MD)

M011 Room: 361W

Primary teachers, here’s your chance to discuss your issues and concerns about successfully integrating technology into your busy classroom. Learn management tips and model lesson plans, and create a network of problem solvers for long-term solutions.

K-6: Teachers, Coordinators

Health and Environmental Education

EnviroNet and HealthNet: Problem Based Learning Using Collaborative Data Collection
Kathleen Dunn (MA), Randi Lite (MA)

M012 Room: 364W

Engage your K-8 students in data collection, analysis, and interpretation by using student-generated health and environmental online data from HealthNet and EnviroNet.

K-8: Teachers, Teacher Educators, Coordinators

POSTSECONDARY EDUCATORS

eEducation:
Interdisciplinary Crossroads
Kathleen Mlcken (RI), Alan Cutting (RI)

Interdisciplinary Crossroads: eEducation:

K-12: Teachers, Coordinators

M006 Room: 268W

This paper presents a framework for activities as well as assistive and instructional technology for students with mild to moderate disabilities.

K-12: Teachers, Coordinators

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

Preparing Students and Teachers for Their Digital Worlds: Curriculum Evolution
Gordon Dahlby (IA)

M007 Room: 253W

Today’s students and teachers are not only experiencing the early implications of growing up in an Information Age society, but also are going to live in it and shape it. Learn how curriculum and teaching and learning strategies are changing to help our learners excel. (Sponsored by ISTE’s SIGTC)

K-12: University/College: Teachers, Postsecondary Educators

A Kid’s of View Chicago: A Web Project of Child-Created Content
Karen Percak (IL), Sherry Weinberg (IL), Elena Savoy (IL), Ornru Murray

M008 Room: 254W

Chicago Public School children welcome you to Chicago and NECC 2001 with this database-driven Web site. Explore how an entire learning community helped children create meaningful Web content.

General, K-12: University/College: Teachers, Postsecondary Educators, Coordinators

Learning for Constructivist Teachers

Brad Edwards (CA), Scott Stagg (CA), Jeanne Whiting (CA)

M009 Room: 255W

This paper presents a framework for activities as well as assistive and instructional technology for students with mild to moderate disabilities.

K-12: Teachers, Coordinators

POSTSECONDARY EDUCATORS

Fostering Critical Thinking, Empowering Students

ISTE K-12 Student Committee: Empowering Students in Education Reform
Marilyn Piper (WA), Al Rogers, Will Gage, Trung Pham, Emily McCarron, Ryan Powell

M013 Room: 360W

The ISTE K-12 Student Committee will host a panel discussion on how K-12 students are involved in ISTE projects and initiatives. This panel will offer suggestions for meaningful ways to include students in education reform. The discussion will present compelling reasons for encouraging the development of K-12 student educational technology leaders.

Sponsored by ISTE

K-12: Teachers, Coordinators

Logo’s Second Millennium
Gary Stager (CA), Jeff Richardson (Australia), Steve Casa (Australia), Caneta Lewis (NY), Cynthia Solomon, Scott Portnoff

M013a Room: 157W

Leading Logo-using educators will share their years of classroom experiences and insights on the role of computing in school reform. (A SIGLogo Society Session, sponsored by ISTE’s SIGLogo)

General: Teachers, Teacher Educators, Coordinators

Language Arts and Social Studies

Grammar for the E-Literate
Lindy Sayers (TN), Lisa Springman (TN), Karen Douse (TN)

M014 Room: 257W

Grammar is the linchpin of language arts teaching: technology can complement grammar instruction. Exchange the old, boring books for a dynamic and effective approach to grammar instruction.

K-12: Teachers, Coordinators

Math and Science

To "Excel" in the Classroom

Karen Douse (TN)

M015 Room: 260W

Use Microsoft® Excel to spread excitement, collect information, and organize data to create templates and graphs to enhance classroom instruction. Cross-curricular examples will be shared.

K-8: Teachers, Teacher Educators, Coordinators

WELCOME TO NECC 2000
WWW.NECCSITE.ORG
CONCURRENT SESSIONS

MON., 11 AM-12 NOON, CONT.

Computer Science
Teaching Programming with WebToTeach
David Arrow (NY), Gail Miles (NC), Susan Dean (AL), George Cocker (AL), Anne DeFrances (MT), Grant Witus (NY), Gordon Basen (NY)
M017 Room: 366W
CCSC members and others describe their experience using WebToTeach, an asynchronous learning network tool for introductory college and high school computer science. (CCSC Society Session)
Community College, University/College, 9-12; Teachers, Postsecondary Educators, Coordinators

Special Needs and Assistive Technology
08 Special Education Technology Applications for Students with Mild to Moderate Disabilities
J. Emmett Gardner (OK), Cheryl Wissick (SC), Dave Edyburn (WI), John Langone (GA)
M018 Room: 156W
Learn about strategies and resources that promote curriculum integration. Web-based instruction, multimedia and simulation activities, and assistive and Instructional technology for students with mild to moderate disabilities.
K-12, Teachers, Coordinators

Internet/Web
09 Children and Search Engines: What's the Big Deal?
Barbara Hallstrom (CA), Anne Wallace (CA)
M019 Room: 160W
Welcome to our version of Consumer Reports, where third- and fifth-grade students evaluate "children's" Internet search engines. The results may surprise you.
K-6, Teachers, Coordinators

Support and Maintenance
SWAT Teams: Students Working to Advance Technology
Chuck Drake (VA), Lucy Miller (NC)
M021 Room: 261W
Learn how a SWAT team can advance your school's technology program. SWAT teams can assist your school and the community with their technology needs.
4-12, Teachers, Coordinators

The Kids Are Running the School (Network, That Is)
Charlane Peak (KY), Barbara Barr (KY), Ginger Wittman (KY), Val Calautia (KY)
M022 Room: 256W
Spend some time with presenters from the Jessamine County Schools and learn how students run the network and train teachers. Discover how they get their training, what their jobs involve, and future plans.
K-12, Teachers, Coordinators

Funding, Planning, and Implementation
Implementing a Fiber-Optic Network in Schools
Debbie Haydock (MN), Jim Holland (GA)
M023 Room: 362W
Explore the use of fiber cabling for K-12 local area networks. Discuss how fiber cabling can provide a solid infrastructure for the future.
K-12, Community College, University/College; Coordinators

STAYING CONNECTED
WITH PROFESSIONAL DEVELOPMENT

Staff Development
07 Getting to Wow! Moving Toward the Constructivist Classroom
Mary Burns (TX), Sharon Adams (TX)
M024 Room: 264W
We know those "wow" classrooms: Students are excited, active, and learning! See best practices and strategies for getting to "wow," presented by teachers and staff developers.
General, K-12, Teachers, Coordinators

08 Teacher-Created Online Interactive Lessons: Tools and Training
Pamela Lowery (FL)
M025 Room: 257W
Discuss alternative methods of staff development and how these have enabled a greater number of teachers to be trained more effectively without disrupting normal school routines.
General, K-12, Teachers, Coordinators

Preserve and Graduate Teacher Education
Technology Innovations and Teacher Preparation through Partnerships and Grants
Gusta Ho (HI), Catherine Fullford (HI), Shuiquiang Zhang (HI), Annette Sherry (HI)
M026 Room: 269W
Through the leveraging of multiple grants and community partnerships, teacher education faculty have received training and support in redesigning their courses to address technology standards for preservice teachers.
K-12, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY: STAYING CONNECTED

Understanding and Supporting Effective Technology Integration
Debra Rein (CA)
M027 Room: 363W
Explore the attributes of effective technology integration. Emphasis is placed on support strategies and the evaluation of effective practices. (Exhibitor presentation)
K-12, Coordinators

The School Odyssey: Using Digital Portfolios for Assessment and Accountability
David Niguidula (RI), Hitarie Davis (RI)
M028 Room: 369W
Participate in live assessments of student and school digital portfolios. Learn how your school community can use Web technology to take control of assessment and accountability.
General, K-12, Teachers, Coordinators

MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE

SCR'TEC Presents: Kids Are Key to Integrating and Supporting Technology
Douglass Adams (KS), Christy Blau (KS)
M029 Room: 165W
Explore tools, models, and organizations that demonstrate how students and teachers can learn together. Students can be empowered as educational technology leaders and innovators.
General, K-12, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES

Connecting Families and Schools through Technology
Paula Jameson (OH), Russel Chaboudy (OH), Judy Ellrink (OH), Lisa Milford (OH), Dirk Dembosky (OH)
M030 Room: 161W
Believing that the key to school success is family involvement, we have developed a technological system that actively involves working families in classroom activities.
K-12, Teachers, Coordinators

WELCOME TO NECC 2000

WWW.NECCSITE.ORG

29
DISTANCE LEARNING

Quality in Distance Education Courses: A Case Study
Mary Wait (NJ), Joyce Grobman (NJ)
M036 Room: 158W
Learn practical, replicable strategies to assist schools in planning for and enhancing the delivery of distance education, both online and ITV. Receive workable plans to maximize resources, increase student access, and maintain quality in online course delivery.
General, Community College, University/College: 12; Teachers, Coordinators, Postsecondary Educators

Preschool and Elementary
Using Electronic Books to Promote Vocabulary Development
Norman Higgins (NY)
M040 Room: 257W
Electronic books are fast becoming exciting ways to promote elementary-level vocabulary development. Learn techniques for maximizing the power of these resources in the elementary classroom.
K-6; Teachers, Teacher Educators, Coordinators

Language Arts and Social Studies

Kids, Museums, and Technology: New Media to Enhance Field Experiences
Kari Smith (OR), Bonda Fritz (OR), Molly Smith (OR), Sherry Baxter (OR)
M041 Room: 254W
This session will take a closer look at the Trails Project, an Internet-based, U.S. government-funded project designed to integrate technology into the classroom. Develop online resources, and foster partnerships among historical sites and classrooms along the Santa Fe and Oregon Trails.
General, Teachers, Coordinators

Math and Science

Expressing Culture and Science through Technology and Community Links
Mary Beth Keets-Love (ND), Don Yellow Bird (ND), Pat Donahue (ND)
M042 Room: 166W
Explore technology collaboration between elders, educators, and implementers. Experience an Internet-based, culturally rich curriculum and student projects from conceptualization to implementation and revision.
General, 4-8; Teachers, Coordinators

Building the Future: Assembling Computers with Your Middle-School Students
Paul Williams (VA), Sherry Ward (VA), William Dilmaner (VA)
M043 Room: 260W
See how the Alexandria Country Day School has assembled an impressive collection of computers by teaching their middle schoolers to build them from scratch.
K-8, Coordinators

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

From Knowledge Reproduction to Knowledge Building
Alan Whitworth (KY)
M034 Room: 368W
Uncover a learning model employed in more than 100 Kentucky classrooms. In this model, students create their own understanding and build a collective knowledge base.
4-12; Teachers, Teacher Educators, Coordinators

Best Practices in the Use of Information and Communication Technology
Peter Wright (Canada)
M035 Room: 255W
See key findings and recommendations from a series of 10 projects to determine best practices in the use of information and communication technology in K-12 classrooms.
General, K-12, University/College: Teachers, Coordinators, Teacher Educators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Management of Technology in the Classroom
Next Steps for the One-, Two-, or Few-Computer Classroom
Anne Meyn (TX)
M037 Room: 361W
Maximize your resources. Learn tips and strategies to effectively integrate technology into the one-, two-, or few-computer classrooms with and without connectivity.
General, K-12; Teachers, Teacher Educators, Coordinators

Project-Based Learning

SMILE: Software Tools for Learning by Design and Project-Based Learning
Janet Kolodner (GA), Kristine Nagel (GA)
M038 Room: 364W
Experience a Supportive Multi-User Interactive Learning Environment (SMILE), developed to support collaboration, discussion, and reflection in project-based learning. Participants will use electronic whiteboarding, gallery walks, pinsups, and storyboarding.
4-12; Teachers, Coordinators

Fostering Critical Thinking

Finding It on the Net: Being a Digital Detective
David Wartick (NC)
M039 Room: 360W
Conducting research on the Internet involves asking the right questions and interpreting the most useful clues. Learn to maximize your effectiveness in finding information on the Web.
K-12, Community College, University/College: Teachers, Coordinators

GO FROM HERE?

CROSSROADS, WHERE DO WE

CONCURRENT SESSIONS

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

From Knowledge Reproduction to Knowledge Building
Alan Whitworth (KY)
M034 Room: 368W
Uncover a learning model employed in more than 100 Kentucky classrooms. In this model, students create their own understanding and build a collective knowledge base.
4-12; Teachers, Teacher Educators, Coordinators

Best Practices in the Use of Information and Communication Technology
Peter Wright (Canada)
M035 Room: 255W
See key findings and recommendations from a series of 10 projects to determine best practices in the use of information and communication technology in K-12 classrooms.
General, K-12, University/College: Teachers, Coordinators, Teacher Educators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Management of Technology in the Classroom
Next Steps for the One-, Two-, or Few-Computer Classroom
Anne Meyn (TX)
M037 Room: 361W
Maximize your resources. Learn tips and strategies to effectively integrate technology into the one-, two-, or few-computer classrooms with and without connectivity.
General, K-12; Teachers, Teacher Educators, Coordinators

Project-Based Learning

SMILE: Software Tools for Learning by Design and Project-Based Learning
Janet Kolodner (GA), Kristine Nagel (GA)
M038 Room: 364W
Experience a Supportive Multi-User Interactive Learning Environment (SMILE), developed to support collaboration, discussion, and reflection in project-based learning. Participants will use electronic whiteboarding, gallery walks, pinsups, and storyboarding.
4-12; Teachers, Coordinators

Fostering Critical Thinking

Finding It on the Net: Being a Digital Detective
David Wartick (NC)
M039 Room: 360W
Conducting research on the Internet involves asking the right questions and interpreting the most useful clues. Learn to maximize your effectiveness in finding information on the Web.
K-12, Community College, University/College: Teachers, Coordinators

GO FROM HERE?

CROSSROADS, WHERE DO WE

CONCURRENT SESSIONS
Funding, Planning, and Implementation

Ringmasters, Clowns, and Tightrope: Educational Technology Management and Leadership
Anne Losch (TX)

If you're supposed to be the ringmaster but feel more like a clown, this session will help you address 15 'biggie' educational-technology questions that teachers, parents, and school board members often ask.

Moving beyond Hidden Roadblocks to Successful Technology Programs
Caylen Takesen (CA)

Take a humorous, enlightening, and thought-provoking look at the typical roadblocks that are unwittingly erected to prevent instigation of a successful technology program.

Join this session if you want to jump into the fray of this difficult issue. Insights will be shared from a field project.

Preparing Digital Age Teachers: Connecting University Training and Staff Development
Curto Boberttt (MT), Arlene Borthwick (IL), Evelyn Waldman (MA), Jordan Dahlby (IA), Dale Niedener (UT), Wills Binnard

This panel will help participants compare and contrast successful practices of teacher training in schools of education with successful practices of staff development within school districts.

Discover how a partnership between Cablevision and the Bethpage, New York, community has created an environment for lifelong learning through its online education and professional development initiatives.

Web-Delivered Staff Development: Factors for Success
Scott Noon (CA)

Online professional development provides exciting teacher growth opportunities, but how do you determine which programs are effective and worth the costs involved?

Preserve and Graduate Teacher Education
New Teacher Technology Preparation: Applications or Philosophy?
Patrick Levens (CA)

Should new teacher induction provide preparation that focuses on mastering microcomputer applications or provide a philosophical framework of reference relative to the use of Technology as a curriculum tool?

Discover staff development models for the class, school, district, and state levels. Locate free online manuals for 23 classes ranging from computer literacy to classroom integration.

Factors for Success

What constitutes effective use of technology? Join this session if you want to jump into the fray of this difficult issue. Insights will be shared from a field project.

What do you address 15 'biggie' educational-technology questions that teachers, parents, and school board members often ask.

Prepare Digital Age Teachers: Connecting University Training and Staff Development

This panel will help participants compare and contrast successful practices of teacher training in schools of education with successful practices of staff development within school districts.

Discover how a partnership between Cablevision and the Bethpage, New York, community has created an environment for lifelong learning through its online education and professional development initiatives.

Prepare Digital Age Teachers: Connecting University Training and Staff Development

This panel will help participants compare and contrast successful practices of teacher training in schools of education with successful practices of staff development within school districts.

Discover how a partnership between Cablevision and the Bethpage, New York, community has created an environment for lifelong learning through its online education and professional development initiatives.

Prepare Digital Age Teachers: Connecting University Training and Staff Development

This panel will help participants compare and contrast successful practices of teacher training in schools of education with successful practices of staff development within school districts.

Discover how a partnership between Cablevision and the Bethpage, New York, community has created an environment for lifelong learning through its online education and professional development initiatives.
MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE
Power to the Teachers: The Technology Minigrant Approach
Pamela Livingston (PA), Louise Barrow (PA), Holly Perry (PA), Janet Malloy (PA), Christopher O'Neill (PA), Katie Myles (PA)
M057 Room: 165W
Find out how a public and a private school empowered their teachers to create, through the use of minigrants, a dynamic technology curriculum.
K-12; Teachers, Coordinators

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES
Funding Your Dreams: Grantwriting in the Information Age
Sheryl Abshire (LA), Glenn Johnson (NJ)
M058 Room: 161W
Need help obtaining funds to keep your school's technology program up-to-date? Explore grant development with a team of accomplished writers who will use your budget needs as examples in this active session.
General; Teachers. Teacher Educators. Postsecondary Educators. Coordinators

STUDENT SHOWCASE
Located on Level 2, opposite Room 265W.
Using Lab RATS to Create an After-School Technology Center
Debra Brown (TX), with students Rudy Singletary, TeLams, Valerie Porter, Linda Servert, Janie Strader, Asylake Oza. Raffy Dianiana, Brandy Fontaneaux, Yoran Martinez, Eliza Martinez, Ted Nguyen
Students are challenged, community members come to school, and the curriculum is transformed when you open an after-hours technology center. See how it's done!
General; Teachers, Coordinators
CATS: Computers as Tools for Students
Sue Campbell (WY), with students Chris Brown, Beth Lougee, Rhonda Schmidt
CATS pairs students with and without learning disabilities as Homework Buddies. Students, parents, and teachers learn to use computer-based study strategies to increase achievement.
General; K-12, Community College. University/College; Teachers, Coordinators

MONDAY, 1:30-3:30 PM
Let's Leaf through This
Cindy O'Sullivan (GA)
Integrated unit involving math, science, language arts, and technology using wireless laptop technology. This unit promotes cooperative learning, hands-on activities, research, application, and communication.
6-8; Teachers
SWAT Empowerment: Students Working to Advance Technology
Carmina Santiago, Jean Childs Young Middle School (GA), with students April Goeddy, Tamika Bell, Sade McLean, Christina Hartway, Alhina Dockett, Derrick Barker, Gary Cage, Elitina Early, Daniel Ajo, Nihando Thandwe, Derriia Devell, Brandon Simmons, Alexander Hightower
SWAT creates a vehicle for students to learn Web site design and construction using a community publishing system and Netscape Composer integrated with finding the meaningful mathematics that is within their world. Learn how the OJT and leadership component begin to empower our total learning community.
6-12; Teachers

POSTERS
All posters take place in Room 367W.
Discovery Channel School's Educator Workshop
Bob Andertan (MD)
PS-M25-1:30, Table 8
To complement its video products and Cable in the Classroom programming, Discovery Channel School offers educators access to free curricular resources online at DiscoverySchool.com. Learn to locate and adapt sample pages from the DCS library of lesson plans, teaching tips, and resource links.
K-12; Teachers, Coordinators
Develop Multimedia Tools to Support Functional and Community Training
Charles de Krafft (SC), Cheryi Wissetk (SC), John Langone (GA), Wendy Schneider (SC)
PS-M26-1:30, Table 7
Learn how educators and general education students worked with special education teachers to develop effective real-world activities for grocery shopping, positional concepts, cooking, sign recognition, and fast-food purchasing.
K-12; Teachers, Coordinators

Trails Projects Cyberneers: Integrating Technology with History
Joe Ghazbach (KS), Juden Busha (KS), Gordon Schmalt (KS), Sheila Lette (KS), Max Thomas (KS)
PS-M27-1:30, Table 11
Breathe life into history! Take old-fashioned activity cards to a new level with multimedia lesson plans.
K-12; Teachers, Coordinators

Linking Learning to Life: The Community as a Primary Source
Cindy Grabe (ND), Mark Grabe (ND), Jerry Peth (ND)
PS-M28-1:30, Table 10
Authentic activity can be defined as functioning in the role of a practitioner. This presentation provides two examples in which technology involves students in the roles of biologist and historian as they gather and interpret information.
General; K-12; Teachers. Teacher Educators, Postsecondary Educators
Teaching Technology Together
Julie Hamilton (NE)
PS-M29-1:30, Table 6
Understand how technology can be integrated across the curriculum rather than taught as a separate strand. Student projects, collaborative lesson plans, and evaluations will be exhibited.
K-12; Community College. University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators
Kentucky's Student Technology Leadership Program
Elaine Harrison (KY)
PS-M30-1:30, Table 3
Find out about STLP students' projects that have affected NETS and Kentucky Teacher Technology Standards. Projects include Instructional, technical, and community themes.
K-12; Teachers. Coordinators
The School of the 21st Century
Vicki Kajola (HI), Donna Shima (HI)
PS-M31-1:30, Table 4
If technology is the cultural signature of our future, let's invite our youth to join in its creation! To this end, the Hawaii Department of Education launched "E-School."
General; K-12; Teachers, Coordinators
Effective Integration of Technology into a K-4 Elementary School
Gallen Mitchell (NJ)
PS-M32-1:30, Table 12
How do you move teachers beyond basic technology skills to true integration? Discuss the best methods and strategies to solve all your dilemmas.
K-12; Teacher Educators, Coordinators

WWW.NECCSITE.ORG
TEAMS Distance Learning: Improve Instruction through Distributed Learning
Richard Nypol (CA). Gayle Perry (CA)
PS-M33-1:30, Table 5
TEAMS Distance Learning involves classrooms across America in a unique model based on hands-on, meaning-centered student instruction and teacher professional development.
K-8: Teachers, Coordinators

Facilitating Online Learning: Supporting Learning in Virtual Communities
Raymond Rote (MA). Sarah Huaenv (MA)
PS-M34-1:30, Table 1
Discover how to maximize the learning that takes place in online discussion groups by enhancing the skills of the group leader or moderator.
Community College, University/College: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

WEB POSTERS
All posters take place in Room 367W.

RUSDnet: Connecting Our Communities
Grace Borrer (CA)
IPS-M37-1:30, Table 23
This session highlights a district-wide Web site with special emphasis on instructional support, notably in "Especially for Teachers" curriculum resources. A number of state-of-the-art technologies are employed.
General, K-12: Community College, Teachers, Teacher Educators, Coordinators

Technology and the Modern Language Classroom
Maryanne Boeijt (PA)
IPS-M38-1:30, Table 24
Technology in the foreign-language classroom enhances students' knowledge of the world through opportunities to practice language skills. See sample projects, rubrics, templates, and student work.
General, K-12: Teachers, Teacher Educators

middleschool.com: Designed with the Middle-Level Educator in Mind
James Forde (CT). J. Howard Johnston (FL)
IPS-M39-1:30, Table 21
Join us for a discussion and demonstration of middleschool.com (produced by the Champion Middle School Partnership). It assists educators and administrators by providing content targeting their needs.
General, 6-8: Teachers, Teacher Educators, Coordinators

Weaving an Interdisciplinary Web: From Words on the Page to Multimedia on Stage
Susan Hunterling-Hofl (PA). Graham Martin (PA)
Phy Chauveau (PA)
IPS-M40-1:30, Table 14
Explore a dynamic, student-driven Web site rich in integrated technologies and interdisciplinary connections. This how-to session will inspire you to launch any class into cyberspace.
General, Teachers, Teacher Educators, Coordinators

Inventors and Inventions That Changed the World
Dianne Tuttle (CA). Linda Reynolds
PS-M36-1:30, Table 9
What makes DaVinci, Ford, and Fleming alike? How does mold turn into penicillin? Everything you want to know and more about inventors and inventions!
General, Teachers, Coordinators

Techs4Schools: An Online Tech Support Community
Sophia Mansari (MA). Karen Smith
IPS-M41-1:30, Table 15
Techs4Schools, a free service from TECH CORPS, connects technology coordinators with IT professional through a web-based mentoring program providing schools with tech support, advice, and resources.
General, Teachers, Teacher Educators, Coordinators

The Lexipedia Process: Creating Concept Maps with Web-Based Dictionary and Thesaurus Resources
Robert Parks (NY). Joan Callahan (NY)
Richard Kirby (NY)
IPS-M42-1:30, Table 19
Using the Wordsmyth Educational Dictionary-Thesaurus (www.wordsmyth.net), we demonstrate creation of computerized lexicons that open up conceptual and morphological pathways through dictionary, thesaurus, and media resources.
K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Odyssey Online: An Internet Resource for the Social Studies Classroom
Patricia Roderick (CA). Nancy Clark (GA)
IPS-M43-1:30, Table 20
The Odyssey Online Web site features ancient Mediterranean and African objects as a focus for document-based learning in world history.
K-12: Teachers, Teacher Educators, Coordinators

Road Scholars Online: Fostering Critical Thinking on Real-World Issues
Elizabeth Schwartz (MO)
IPS-M44-1:30, Table 17
Join Road Scholars Online with Jeeves as we explore different ecosystems and interview stakeholders in real-world debates about environment, economics, and demography.
4-12: Teachers, Teacher Educators, Coordinators

Bringing Teachers Online with Web-Enhanced Staff Development
Jana Slidkova (NY). Emily Haeker (NY)
IPS-M45-1:30, Table 16
How do you make Web resources accessible to overworked, computer-novice instructors? See models of successful Web-enhanced staff development combining online and in-person instruction.
General, Community College, University/College, Teachers, Teacher Educators, Coordinators

Achieve Technology Proficiency for Educators and Students
Ron Stevens (CA). Marita Spring (CA)
IPS-M46-1:30, Table 13
Discover how educators achieve proficiency in technology. Use the IMMEX assessment software to create snapshots of students' information use and problem-solving strategies.
General, K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Early Connections: Technology in Early Childhood Education
Judy Van Scoter (OR)
IPS-M47-1:30, Table 18
Learn what technology can—and can't—do for young children. Be introduced to new online, research-based information and resources.
K-2: Teachers, Coordinators

Quick Starts: Web Toolboxes to Support Technology Integration
Cheryl Wiswick (SC). Dave Ed burn (WI)
Jim Gardner (OR)
IPS-M48-1:30, Table 22
Receive Quick Starts to Web sites for models of technology integration, virtual field trips, thematic units, and interactive educational games.
K-12: Teachers, Teacher Educators, Coordinators
SPOTLIGHTS

Teach to Learn: Positive Practices in Professional Development

Susa Armstrong, *The George Lucas Educational Foundation (CA)*

M059

Room: Ballroom II/III

Dedicated to telling the stories of education. The George Lucas Educational Foundation shares current research and best practices from schools and programs across the country.

General: Teachers. Teacher Educators

Staff Development: A Key to Technology’s Effect on Learning

Stephen Barkley, Performance Learning Systems (CA)

M059

Room: Ballroom I

Technology can affect student learning in our schools as long as teachers are provided with effective teaching tools. Explore learning versus teaching, job-embedded staff development, and more.

General: Teachers. Teacher Educators. Postsecondary Educators. Coordinators

Identifying Some of the Best IT Projects in the United States

David Moursund, ISTE (International Society for Technology in Education) (OR)

M060

Room: 254W

The U.S. Department of Education periodically identifies promising and exemplary Information technology (IT) In education projects. Methods. criteria. and results for the first year will be presented.

General: Teachers. Teacher Educators. Coordinators

Snapshot Surveying Teachers and Administrators around the Country

Cathie Norris, University of North Texas; Neal Topp (NE); Elliott Sowby (MI)

M061

Room: Ballroom IV

Rather than guessing at the activities, beliefs and needs of teachers and administrators with respect to technology in education, we have been conducting snapshot surveys of educational professionals around the country. For example, we will report on a statewide survey of all teachers in Nebraska using our Web site (http://snapshotsurvey.org). Armed with the responses from these surveys, we make suggestions for how schools address professional development, technology purchases, and curriculum integration.

K-12. Coordinators

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

New Horizon on the Desktop: Thin Client Solutions for Educators

Karen Greenwood (CA)

M062

Room: 363W

Find out how thin clients marry the low-cost, easy-to-use interface of PCs with the power and security of mainframe computers to create a flexible, scalable solution for schools. (Exhibitor presentation)

General: Teachers. Coordinators

DVD: The New Communication Disease Everyone Wants to Catch!

Galt Wernersma (IA)

M063

Room: 257W

Witness the contagious excitement that DVD generates in the classroom. See specific examples of DVD in content application (including barcodes, video blackboard, etc.). Share curricular integration possibilities.

General: Teachers. Teacher Educators. Postsecondary Educators. Coordinators

DISTANCE LEARNING

Free Tools for Organizing Online Learning

Andrew Brayey (GA)

M064

Room: 368W

These online tools may not be fancy, but they are free! See and experience no-cost options for Web-based discussions. resource sharing, and assessment. (Community College. University-College. K-12: Teachers. Coordinators. Teacher Educators. Postsecondary Educators)

Online Teaching through Online Learning

Bruce Dietz (MA)

M065

Room: 362W

Virtual High School’s online Teacher’s Learning Conference (TLC) prepares educators for successful teaching in an online environment through instruction in online pedagogy, assessment, and standards. (Exhibitor presentation)

K-12. Teachers. Coordinators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Instructional Strategies and Technology Integration

Integrating Technology with Classroom Curriculum, Library, and Fine Arts

Judy Clark (TX). Barbara Cardon (TX), Sandy Whitney (TX)

M066

Room: 361W

Learn how research-based instruction integrates computer technology with curriculum. library research, and fine arts to create an enriching learning experience for students.

General: K-8. Teachers. Coordinators

Multimedia

New Models for School Collaboration: Multimedia Projects in the Classroom

Marie Skyls (CA). Ron Dack (CA). Susan Mahony (CA)

M067

Room: 364W

Talk about integration! Learn how one center piloted a collaboration with six schools to support multimedia projects integrating arts and technology into classroom curriculum.

K-12. Teachers. Coordinators

Promoting Interdisciplinary Learning

The Great Chocolate Experience

Gonda Bequette (IL)

M068

Room: 360W

Hear how your class, school, district. province, or state can be involved in this "chocolaty-good" project that integrates technology into any grade level, across all disciplines, and correlates with the Illinois Learning Standards and National Educational Technology Standards.

K-12: Teachers. Teacher Educators. Coordinators

Preschool and Elementary

K-3 Technomaniacs

Michelle Webb-Upham (AZ). Susan LaValley (AZ)

M069

Room: 255W

Technology is a tool for enhancing your curriculum. Find out about the appropriate use of software and the Internet in the K-3 classroom.

K-3: Teachers. Teacher Educators. Coordinators

THANK YOU, VOLUNTEERS!

In addition to our Conference and Program Committees, nearly 1,200 additional volunteers help create a terrific and memorable NECC experience for participants.

WWW.NECCSITEM.ORG
MONDAY, 2-3 PM CONT.

Math and Science
- Get the Picture- Visualization Tools for Science and Math
 Bob Kolvoord (VA)
 M070 Room: 166W
Visualization tools provide new avenues of exploration for science students. Discover software and curriculum for integrating computers in teaching and learning science skills and content.
 General: Teachers, Teacher Educators.
 Postsecondary Educators, Coordinators

Computer Science
- How to Improve Your Students’ Results in AP Computer Science
 Charles Rice (NY), Maria Livin. Debbie Carter, Joe Knobch
 M071 Room: 366W
A panel of experienced computer science teachers who are also AP exam readers will present fresh ideas on how you can improve the results of your students on their AP computer science tests. Learn what you and your students should focus on.
 K-12: Teachers, Postsecondary Educators.

Special Needs
- and Assistive Technology

- Project GENASYS (Generating Assistive Technology Systemically)
 Libby Cohen (ME), Dale Blanchard (ME), Deb Dimnick (ME), Nancy Lightbody (ME), Lorraine Spenciner
 M072 Room: 260W
By incorporating learner-centered principles to deliver support technology, specialized software, and Web accessibility, Project GENASYS stimulates powerful changes in how educators teach all students.
 Community College, University/College: Teacher Educators

Internet/Web
- Curriculum Tools for Your Imagination
 Laura Hunter (UT), Kathleen Webb (UT)
 M073 Room: 160W
Create a weather station. Create a curriculum-based Web site. Create a Web activity. Create an online class. Free online tools make it easy and fun!
 K-12, Community College, University/College: Teachers, Teacher Educators.

Support and Maintenance
- Computer, Heal Thyself!
 Helping End Users Become Technology Responsible
 Michael Hassell (Germany), Marcia Applegate (Germany), Tom Posey (Germany)
 M075 Room: 261W
Explore three topics that will help end users to work rationally and technology to operate flawlessly: (1) Steps to Computer Independence. (2) Calamity Avoidance. And (3) Crash! Yikes! What Now?
 General: Teachers, Coordinators

Funding, Planning, and Implementation
- eIntegration.com- Buying in to Technology Integration
 Margarette Hart (IN), Ruth Hoff (IN), Sandy Rogers (IN)
 M076 Room: 258W
This session will focus on how one district created an environment for using technology as a tool for teaching and learning. Leave with a plan you can replicate.
 K-12: Teachers, Teacher Educators.

Early Adoptions of Technology in a University Setting
- Kena Gates (CA)
 M077 Room: 158W
Review a recent research study of university faculty members who are considered to be early adopters of technology and consider the study’s effect on technology workshop development.
 Community College, University/College: Postsecondary Educators.

STAYING CONNECTED WITH PROFESSIONAL DEVELOPMENT
- Developing a School Networking Course
 Cathy Cavanaugh (FL), Terence Cavanaugh (FL)
 M078 Room: 156W
When schools become networked, who keeps the network operating? Help educators satisfy their need for networking by offering a course in networking. Learn how we created ours.
 General: Teachers, Postsecondary Educators.

Staff Development
- BUILT for the Bayou: Building Understanding & Instructional Leadership through Technology
 Felicia Coleman (LA), Sheryl Alsbury (LA)
 M079 Room: 264W
BUILT for the Bayou is a professional development catalyst for educational improvement in southwest Louisiana. Targeting preservice educators, district-level technology mentors, and university professors.
 General: K-12, University/College: Teachers, Teacher Educators.

Preservice and Graduate Teacher Education
- K-16 Technology Integration for Improved Learning
 Tim Brat (OH), Jennifer Muorman (OH), Bonnie Brownstein (NY), David Fletcher (NY)
 M080 Room: 258W
Using technology frameworks and planning tools, preservice and practicing teachers design classroom experiences that emphasize technology and align curriculum, instruction, and assessment.
 General: K-12, Community College, University/College: Teachers, Teacher Educators.

Integrating Technology into Teacher Education: Project Thread
- A Progress Report
 David Hefricht (NV), Neal Strudler, Donald Anderson
 M081 Room: 268W
A report on the progress of Project Thread, a federally funded attempt to fully integrate technology into the preparation of preservice teachers at UNLV.
 K-12, Community College, University/College: Teacher Educators.

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY: STAYING CONNECTED
- NETS for Teachers: Foundation Standards and Essential Conditions
 Lajean Thomas (LA), Peggy Kelly (CA), Gary Bitter (AZ), Heidi Rogers (ID), Carol Kruskopf (WV)
 M082 Room: 369W
Participants will have the opportunity to get more information about NETS for Teachers: Foundation Standards and Essential Conditions and understand how the latest release fits into broader NETS initiatives.
 General: K-12, University/College: Teachers.
MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE

Village Green: Facilitating Change in a Learning Community
Lori Mullen (SC), Laura Stanton (SC)

M083 Room: 165W
Examine the effect technology has had on the teachers and schools in Greenville, South Carolina. Find out how technology has been integrated across all grade levels and disciplines with a focus on the arts.
General, Teachers, Coordinators

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES

Peace Partners: Creative Expressions in a City of Violence
Elizabeth Moore Rhodes (LA), Lori Kennedy-Roark (LA), Loren Blanchard (LA)

M084 Room: 161W
Can creative expressions be used to transcend aggression among adolescents in the local culture? Look at a partnership for peace in New Orleans that uses technology as the primary medium for exploring this question.
K-12, University/College, Teachers, Teacher Educators, Coordinators

Spotlights

SPOTLIGHTS

© The Supreme Court Is In Session: Ask the Experts
Larry Anderson, Mississippi State University; Al Rogers (CA); Cheryl Lema (CA); Bonnie Bracey (VA); Margaret Hamz (NY); Andy Carvin (DC)

M086 Room: Ballroom I
Premier leaders of technology gather in one place so you can ask them your burning questions. Join us and discuss today's most critical issues!
General, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Preparing to Teach 21st Century Learners
Thomas Carroll, U.S. Department of Education (DC)

M087 Room: Ballroom IV
Preparing technology-proficient educators to meet the needs of 21st century learners is a critical issue for teacher preparation programs across the country. The panel will report on the progress of the Preparing Tomorrow's Teachers to Use Technology (PTT) grants and next steps in this rapidly growing initiative.
Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators

Thinking Visually with WebQuests
Bernie Dodge, San Diego State University (CA)

M088 Room: Ballroom II/III
WebQuests require learners to design, infer, create, and agree. Learn 10 ways to support thinking in a WebQuest with graphic organizers.
General, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

Student and Teacher Partnerships: Making It All Happen
Dennis Harper (WA), James Smith (WA), John Hardy (WA)

M089 Room: 254W
Learn how students are taking a lead in their own education. The Generation www.Y model trains K-12 students to partner with teachers to integrate technology into the curriculum. Forty states and more than 1,000 schools are using it.
K-12, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

INTERNET2: NETWORK REVOLUTION FOR THE NEW MILLENNIUM

Jiang Ian (AL)

M090 Room: 255W
Take a closer look at the All Roads Lead to Home Project and find out how this integrated technology project has touched the curriculum across all grade levels and united the entire educational community.
General, K-12, Teachers, Teacher Educators, Coordinators

DISTANCE LEARNING

Putting a Course Online: Teamwork, Creativity, and the Bottom Line
Nancy Bolding (MS), Shirley Smith (SC), Lucy Ferron (MS), Les Clawson (MS), Vicki Shirley (MS)

M091 Room: 368W
This session will emphasize the process of creating a "real" online school complete with interactive classroom, library, conference room, and student lounge. Developed for the Advanced Placement Calculus course offered by SERC (Satellite Educational Resource Consortium), it is used by the instructor and students to communicate, collaborate, and motivate each other in the learning process.
General, Teachers, Curriculum Specialists

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Instructional Strategies and Technology Integration
Paula Duncan (SC), Terre Bromley (SC), Judy Parham (SC), Jolyn Allen (SC), Linda Babie (SC)

M093 Room: 361W
Learn how you can use a variety of technology tools to change your teaching methods at the high-school level and empower your students to become active learners and presenters.
9-12, Teachers, Coordinators
M091 Room: 363W
Explore the barriers, challenges, and solutions to effectively delivering entrepreneurship education. Includes demonstration of GoVenture® Live the Life of an Entrepreneur software simulation program. (Exhibitor presentation)

General; Community College, University/College; 6-12; Teachers, Postsecondary Educators, Coordinators

From Cybraries to Electronic Postcards: K-12 Collaborative Environments on the Internet
Bonnie Thurber (IL), Bob Davis
M092 Room: 364W
See easy-to-develop online communities used by K-12 teachers that include Web pages and dynamically generated virtual libraries, online surveys, electronic postcards, and book reviews. K-12; teachers, Coordinators

Assessing Student Learning and Connecting to Standards and Assessment
Joyce Lin PalacioCayetano (CA), Jimmy Ikeda (CA)
M093 Room: 365W
Explore how can we better prepare our college and university students for the rapidly evolving data communications industry? Find out how one computer science department revamped its curriculum to address this issue.

Community College, University/College; Postsecondary Educators, Coordinators

Living the Life of an Entrepreneur
Entrepreneurship Education:
Project-Based Learning
Through Playful Online Classes
By supposing that students develop their own strategies and assessment software that generates real-time assessment of strategies using IMMEX while developing their own strategies, educators may feel apprehensive when faced with the task of adapting technology for children with special needs. See popular software that uses existing solutions to bridge this technology gap.
K-12; teachers, Teacher Educators, Coordinators

Internet/Web
Cultural Connections: Similarities in Technology, Teleresearch, and Classroom Practices
Dorothy Valcarcel Craig (TN), Alfonso Bustos Sanchez (Mexico), Jesi Stewart (TN)
M094 Room: 156W
Explore how educators are engaging students in problem solving and self-assessment of strategies using IMMEX assessment software that generates real-time snapshots of students’ problem solving.
K-12; Community College, University/College; Teachers, Postsecondary Educators, Coordinators

Language Arts and Social Studies
Cross-Cultural Understanding through Playful Online Class
Kenna Eriko (Japan), Obi Anie Chie (Japan), Kazuki Tatsutomi (Japan)
M095 Room: 157W
The Nippon Educational Computing Association (Japan) presents their research into the impact of online learning in an eighth-grade classroom. Including its promotion of cross-cultural understanding.
K-12; teachers

Shouting Out the Window: Students Publish Online
Susanna Lang (IL)
M096 Room: 257W
Publishing can build a young writer’s self-esteem in a variety of ways. Explore a variety of publishing options made possible by the Internet with authorities who have written extensively about writing workshops and the value of publication.
K-12; teachers, Teacher Educators, Coordinators

Evaluating Precedents, Setting Priorities
Addressing Prerequisite Deficits within the Curriculum to Improve Outcomes for Underprepared and Nontraditional Students
Helene Bergman (NY)
M097 Room: 366W
How can we better prepare our college and university students for the rapidly evolving data communications industry? Find out how one computer science department revamped its curriculum to address this issue.

Community College, University/College; Postsecondary Educators, Coordinators

Special Needs and Assistive Technology
Where the Crossroads Meet: Software Solutions for the Total Classroom
Lynne Cater (GA), Pam Zipperer (GA)
M098 Room: 260W
Evaluating Precedents, Setting Priorities
Addressing Prerequisite Deficits within the Curriculum to Improve Outcomes for Underprepared and Nontraditional Students
Helene Bergman (NY)
M099 Room: 366W
How can we better prepare our college and university students for the rapidly evolving data communications industry? Find out how one computer science department revamped its curriculum to address this issue.

Community College, University/College; Postsecondary Educators, Coordinators

Internet/Web
Cultural Connections: Similarities in Technology, Teleresearch, and Classroom Practices
Dorothy Valcarcel Craig (TN), Alfonso Bustos Sanchez (Mexico), Jesi Stewart (TN)
M100 Room: 160W
Evaluating Precedents, Setting Priorities
Addressing Prerequisite Deficits within the Curriculum to Improve Outcomes for Underprepared and Nontraditional Students
Helene Bergman (NY)
M101 Room: 180W
This panel presentation reveals significant findings from three student inquiry and teleresearch projects conducted in the United States and Mexico. Project results, classroom implications, and replication suggestions are discussed.
K-12; University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Funding, Planning, and Implementation
Common Experiences: Establishing District Priorities for Technology and Curriculum Integration
Mariele Palombo (MA), Rob Ramsdell
M102 Room: 256W
Get introduced to a model for establishing district and school priorities for technology and curriculum integration. Learn practical tools, ideas, and strategies.
K-12; teachers, Teacher Educators, Coordinators

Evaluation Mapping and Planning Tools for the Technology-Supported Classroom
John Cradler (CA), Betsy Goeltz (ID), Ruth Clady (CA)
M103 Room: 261W
This presentation provides educators with a new and tested process for planning and conducting credible evaluations of the effect of technology on student learning. The process not only provides evaluation information required by most state and federal funders but also gives teachers and administrators the information needed to help make ongoing improvements in the use of technology.
K-12; teachers, Teacher Educators, Postsecondary Educators

Research
Using Video to Document Technology Infusion in Our Schools
Maurice Bober (CA), Eille Lynch (CA)
M104 Room: 360W
Video tape is an underused resource for data analysis. If used creatively and studied thoroughly, it allows researchers and evaluators to conceptualize technology infusion from new angles and perspectives.
K-12; University/College; teachers, Postsecondary Educators, Coordinators

STAYING CONNECTED WITH PROFESSIONAL DEVELOPMENT
Strategies for Technology Leadership: Administrators as Models
Eileen Gallagher (IL), Yvette Chisom (IL)
M105 Room: 166W
Helping administrators become active users of technology and model its appropriate use can help your school in integrate technology. Get ideas from Chicago (Illinois) Public Schools on how to implement a professional development program targeted to administrators at your school.
K-12; coordinators

Staff Development
Only U: Teaching Teachers to Use Technology
Samantha Morris (NJ)
M106 Room: 267W
Learn about an exciting and unique year-long staff development program designed to empower teachers with the tools and skills necessary to successfully use technology.
K-12; coordinators

Welcome to Necc 2000
Www.neccsite.org
Georgia’s High School InTech: What Is It Like?
John Wiggins (GA). Mimi McGehee (GA). Diane Barron, Jeffrey White, Beausie Kim, Kim Nichols
M107 Room: 264W
If you wonder what all the excitement about Georgia’s InTech is about, or if you’re designing technology professional development for your school district or state, drop in!
University/College, 9–12; Teachers, Teacher Educators, Coordinators

Preservice and Graduate Teacher Education
M107 Build a Vision for Technology Integration
Ann McCoy (AK)
M109 Room: 269W
Using ISTE/NCATE Standards, faculty identified expectations for students’ technology use and barriers to technology integration. Faculty development models were created and evaluated for effectiveness.
General. University/College; Teacher Educators.

Video Streaming = Exemplary Teaching
Mimi McGehee (GA). Dwayne Trouille (GA)
M109 Room: 268W
For preservice and inservice teachers to gain insight into the impact of technology integration into the curriculum, Valdosta State University streams video of master teachers of technology integration.
K–12, University/College; Teachers. Teacher Educators

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY: STAYING CONNECTED
M110 The Clearinghouse Presents: Electronic Learning Resources for the New Millennium
Brian Bridges (CA)
M110 Room: 369W
Celebrate the best English/language arts, history/social science, mathematics, and science software evaluated by the Clearinghouse during the last year. Clearinghouse staff will demonstrate these programs, distribute Director’s Choice booklets, and explore the Clearinghouse Online Web site.
General: Teachers. Teacher Educators. Coordinators

MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE
M111 Internet Tools for Teachers!
David Dockterman (MA)
M111 Room: 362W
This session will assist teachers in learning about the tools and services available that can connect their work life at school to the work they carry home. It will also demonstrate how the Internet can help teachers prepare for the classroom and reach outside the school. (Exhibitor presentation)
K–8; Teachers. Teacher Educators. Coordinators

Getting Published: Sharing Technology Successes with Others
M112 Room: 165W
Editors and writers for school technology publications share tips and insights about writing and reviewing for publication. Learn what editors look for and how to submit your ideas.
K–12; Teachers. Coordinators

CONNECTED COMMUNITIES:
SCHOOLS, BUSINESSES, AND RESOURCES
M113 The Local Access Connection
Jerry Abraham (MN)
M113 Room: 161W
See how a local school district in Minnesota has contracted with the city to manage and operate its community local access channel. Watch samples of various programs and find out how you can establish a similar agreement.
General: Coordinators

Digital Portfolios for Students, Teachers, and Schools
David Niguidula, Helen Barrett, Hilarie Davis
Room: 156W
Using the Internet as an Educational Tool
Mary McNabb
Room: 360W
Connecting around the World with Compressed Video
Al Mizell
Room: 161W

CHECK THE DAILY NEWSLETTER FOR ADDITIONAL THRASHERS TOPICS!
with Special Presentation by
U.S. Secretary of Education, Richard W. Riley.

TUESDAY, 10 AM-12 NOON

STUDENT SHOWCASE
Located on Level 2, opposite room 255W.

Weaving Technology through Your Curriculum
Leslie Smith, Shallowford Falls Elementary-Cobb County Schools (GA), with students Amanda Ku, Kristin Hooper, Audrey Hall, Sean Hollman, Austin Freese, David Tatum
Fifth-grade students show how to use bookmarked sites on the Internet and programs such as Microsoft® Word, PowerPoint®, Microsoft Publisher, and Inspiration® to enhance their learning in all curriculum areas.
K-8; Teachers

Technology Fair: Students Preparing, Producing, and Presenting
Sherri Carr, Atton C. Crews Middle School (GA), with students Laura Bishop, Laura Wood
See projects that middle-school students presented at their school's instructional technology fair. Learn how the fair was organized, advertised, and supported by the community.
K-12; Teachers. Coordinators

Potter Mania
Karen Conner, Huntsville City Schools-Chapman Elementary (AL), with students Jared Brown, Chris Lovey, Katie Morring, Trevor Jones, Evan Wells, Amber Wilbourn
"Potter Mania" is a thematic unit based on the Harry Potter books by J. K. Rowling integrating the use of technology. The students produced a multimedia presentation as a culminating activity. It is an Alabama Council for Technology Education award-winning presentation.
General. K-12

Technology Across the Curriculum
Mark Rice, West Jasper School/William Carey College (MS)
See 10 years of state, national, and international award-winning projects (Grades 2-12) designed around HyperStudio®, simulations, and real-world across-the-curriculum student projects. See and learn how technology has reformed a rural school.
K-12; University/College: Teachers. Postsecondary Educators. Coordinators

Sports and Why It Matters
Dan LaFountain (MD), Gary Stager (CA)
Nancy Haas (CA), Sylvia Martinez (CA), Dan LaFountain (MD), Gary Stager (CA)

An Education in Online Learning
Nancy Haas (CA), Sylvia Martinez (CA), Dan LaFountain (MD), Gary Stager (CA)

Water: Running through the Curriculum
Sheila Kelly (MA)
PS-T56-10, Table 10
Water as a theme for science, ecology, and history, pervades our curriculum. Enhance students' understanding of the water cycle through satellite imaging and other technology.
General. K-12; Teachers. Coordinators

Student Work in a Problem-Based Learning Unit
Cindy Kovalik (OH)
PS-T57-10, Table 3
Problem-based learning invites alternative assessment strategies. This poster session showcases seventh-grade student work from a technology integration initiative using problem-based learning as an instructional strategy.
General. K-12; University/College: Teachers. Teacher Educators. Coordinators

Bridging the Gap between Communities and Schools through Technology
Sandy Elsen (AL)
PS-T52-10, Table 9
The Internet offers exciting possibilities for informing communities about what students are learning. Learn how to link community and schools through technology.
General. K-12; Teachers. Teacher Educators. Coordinators. Postsecondary Educators
Concurrent Sessions

The Educational Technologist as Curriculum Specialist
Kevin McGillivray (Germany), Elizabeth Walker (Germany), Grete Koetken (Germany), Oren Edie (Germany), Tara Bann (Germany), Bonnie Hopkins, Tom Perreault, Serja Bonier
PS-T58-10, Table 8
How can we best assist teachers to make the most effective connection between software tools and curriculum? Hessen Educational Technologists will share their model.
General. K-12: Teachers, Teacher Educators, Coordinators

Virtual Learning Interface for K-12 Education
Arthur Rocco (CA)
PS-T59-10, Table 7
Interactive with virtual characters as they demonstrate their ability to teach students and support classroom learning. Characters speak and have students solve problems.
K-12. Teachers, Teacher Educators, Coordinators

Videoconferenced Family Powwows with Native American Keypals: Online Culture Sharing
Agnes Zsore (NF)
PS-T60-10, Table 12
Videoconferenced family powwows with our Native American key pals will facilitate a 21st century style of the Native American "storyteller" oral tradition.
General. K-8: Teachers, Teacher Educators, Coordinators

WEB POSTERS
All posters take place in Room 367W.

Science, the Web, and a New Regionalism
Joseph Blessing (GA), Ann McCartney (GA)
IPS-T61-10, Table 15
Learn how to develop a Web site that integrates science and technology into the curriculum, uses the school district's network, and creates a community of learners.
K-12. Teachers, Coordinators

Step Up to 2000: Internet Reading Corner for Children
Joyce Cartwright (TX)
IPS-T62-10, Table 19
Visit the online reading corner for a variety of elementary-level children's stories. Read or listen to fairy tales, fables, poems, folktales, and nursery rhymes.
K-6. Teachers, Coordinators

Lessons and Links for Multicultural Resources
Ronald Hobbs (OH), Colleen Pinnegar (OH), Bonnie Mathies (OH)
IPS-T63-10, Table 21
Explore a cross-section of Internet multicultural resources that have been critically reviewed and sorted out for their effectiveness in promoting diversity education in the classroom.
K-12. Community College, University/College. Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Using Ecolonization to Teach Environmental Education: Bridging the Gap
Kris Kuchner (MN)
IPS-T64-10, Table 17
Looking for something to grab your students' attention and keep them motivated to learn? Explore the potential of Ecolonization and Shockwave.
General. Teachers, Postsecondary Educators, Coordinators

Using Student Web Presentations in Large-Enrollment College Courses
Matthew Laparara (GA)
IPS-T65-10, Table 22
Student Web presentations are a great way to integrate technology into college courses. But how do you use them in large classes? Find out here.
Community College, University/College, Teachers, Postsecondary Educators, Coordinators

Learning amidst a Sea of Information in the New Millennium
James Levin (IL), Dan Kauweit (IL), Young-Jin Lee (IL), Daniel Schill (IL)
IPS-T66-10, Table 24
The Internet has become a tremendous repository of information and holds much promise—but only if learners are provided the tools to make sense of it.
General. Teachers, Coordinators

Teaching Online: Trials and Tribulations, Sinkholes and Successes
Nancy McClure (WY)
IPS-T67-10, Table 16
This session details the steps taken to develop and teach online courses as well as to assess and compare resulting effectiveness of teaching and learning.
General. Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Promoting Professional Development Online
Sheryl Nye (AL), Ann Hensley (AL)
IPS-T68-10, Table 23
See a demonstration of online registration for professional development technology courses.
General. Coordinators

Get Tangled Up in the Web... Together!
Mary Robertson (KY), Jana Hickey (KY)
IPS-T69-10, Table 14
Learn about a new approach that gets staff members fired up about using WebQuests and online projects with their students!
K-12. Teachers, Coordinators

Please Steal This Idea: The K12 Internet Explorers Club
Theresa Turman (CA), Craig Liggett (CA), Joan Brown (CA), Jeff Hansen, Ellen Freedman
IPS-T70-10, Table 13
The K12 Internet Explorers Club is a teacher-driven project designed to empower educators in classroom technology use and to mentor others in this pattern.
General. K-12. Community College, University/College. Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Starship School: Creating Productive, Safe, Family-Oriented Educational Communities
Hazel Wagner (IL)
IPS-T71-10, Table 18
Technology is revolutionizing learning worlds. Learn how technology affects the thinking tools of disciplines (e.g., the scientific process) and supports integrated and independent self-directed learning.
K-8. Teachers. Teacher Educators, Coordinators

A Virtual Trip through the Civil Rights Movement
Elizabeth (Liza) Wilson (AL), Margaret Ritter (AL), Beverly Ray (AL), B. Joyce Stalworth (AL), Kathy Slane (AL), Kim Cauthen (AL)
IPS-T72-10, Table 20
Take a virtual trip through the Civil Rights movement while learning how to use technology for Interdisciplinary teaching.
University/College, 6-12. Teachers, Teacher Educators, Coordinators
This multimedia presentation takes you deeper into the wild and wired world of the Information Age. Learn what it will take to be a literate learner. Discover how to help students become productive, motivated, technologically literate learners. See demonstrations, examples, and hear from experts on how to integrate technology into the K-5 curriculum. Find out how to develop a high-school photography course using traditional 35mm cameras, digital photography, and darkroom techniques using the computer instead of a traditional darkroom.

SPOTLIGHTS

- Igniting and Inviting Student (and Teacher) High Performance with Technology
 - Bob Barnell, District 124, Arlington Heights (IL)
 - Room: Ballroom IV
 - T002

- Discover how to help students become responsible, motivated, technologically literate learners. Learn how to explicitly teach students five powerful strategies that will develop their learning-to-learn skills and accelerate learning.
 - K-12: Teachers. Teacher Educators. Coordinators

- It’s a brand new wild and wired world. However, educators and administrators have been ill prepared by an outdated system. Learn what it will take to be successful in a brave new world where mindset will rival machines.
 - General: Teachers. Teacher Educators. Postsecondary Educators. Coordinators

- This multimedia presentation takes you beyond the common vision of the Internet as “library” or “delivery system” by showing examples of effective Internet use in schools.
 - General: Teachers. Teacher Educators. Coordinators

- It’s a brand new wild and wired world. However, educators and administrators have been ill prepared by an outdated system. Learn what it will take to be successful in a brave new world where mindset will rival machines.
 - General: Teachers. Teacher Educators. Postsecondary Educators. Coordinators

- BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?
 - Providing Web Support for Online and On-Campus Instruction
 - Daring Chen (TX)
 - Room: Ballroom II/III

- Web-based instruction is becoming an important teaching tool. Learn how to develop a systematic and progressive approach to support a wide range of Web-based learning activities.
 - General: Teachers. Coordinators

- Georgia Learning Connections: We’ve Got Stuff!
 - Lisa Clardulli (GA), Lynne Purcell (GA), Sheila Barnes (GA)
 - Room: 255W

WEB Sessions

- **Laptops**
 - Laptops Level the Score for Urban Learners
 - Linda Gutierrez (NY), Brian Morrow (NY), Cindy Dell/Plaza (NY), Christine Mulgrave (NY), Steve Jaffe (NY), Brenda Mercado (NY)
 - Room: 261W
 - T011

- **Preschool and Elementary**
 - Connecting Fun and Educational Technology Activities with the K-5 Curriculum
 - Diane Judd (FL), Ines Hearn
 - Room: 363W
 - T012

- **Math and Science**
 - Students Blast Off: A Collaborative Learning Mission
 - Anne Davis (GA)
 - Room: 156W
 - T014

- **Laptops**
 - Laptops Level the Score for Urban Learners
 - Linda Gutierrez (NY), Brian Morrow (NY), Cindy Dell/Plaza (NY), Christine Mulgrave (NY), Steve Jaffe (NY), Brenda Mercado (NY)
 - Room: 261W
 - T011

- **Math and Science**
 - Students Blast Off: A Collaborative Learning Mission
 - Anne Davis (GA)
 - Room: 156W
 - T014

- **Language Arts**
 - An Odyssey through Technology in the English Class
 - Linda Belk (SC), Jo Lynn Alton (SC), Teresa Bromley, Paula Duvall, Judith Parham
 - Room: 257W
 - T013

- **Math and Science**
 - Students Blast Off: A Collaborative Learning Mission
 - Ann McGlone (WA)
 - Room: 156W
 - T014

- **Special Needs and Assistive Technology**
 - Technology Solutions That Work in the Academic Areas
 - Scott Marilus (WI), Diane Rozanski (WI)
 - Room: 156W
 - T014a

- **Math and Science**
 - Students Blast Off: A Collaborative Learning Mission
 - Ann McGlone (WA)
 - Room: 156W
 - T014

- **Special Needs and Assistive Technology**
 - Technology Solutions That Work in the Academic Areas
 - Scott Marilus (WI), Diane Rozanski (WI)
 - Room: 156W
 - T014a

- **Math and Science**
 - Students Blast Off: A Collaborative Learning Mission
 - Ann McGlone (WA)
 - Room: 156W
 - T014
Research

Brain-Based Research and Technologies: A Natural Fit?

David Williams (IN), Margot Williams (IN)

See how it fits! Explore the latest brain-based research and how instructional technologies can complement methods and strategies for learning.

General, K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators

Staff Development

The ITLP Program

Steve Baule (IL), Karei Arenson (IL)

Learn about the Individual Technology Learning Plan (ITLP) program, which pairs teachers with mentors to help them develop new technology skills and integrating them into their classrooms.

General, Teachers, Teacher Educators, Coordinators

4001: A Cyberspace Odyssey

Linda Dickerson (NE)

Learn how a large school district created more than 4,000 independent Internet users. Topics include innovative training, a comprehensive Web site, online staff development, and customized software CDs.

General, Teachers, Coordinators

Preservice and Graduate Teacher Education

Collaborative Teacher Education: An Online Case Study Shared Across Universities with Preservice Teachers

Cheryl Mason (VA), Kara Dawson (FL)

Find out how the presenters developed a cohort of social studies educators through online professional discourse with colleagues in geographically disparate locations.

General, Teachers, Teacher Educators, Coordinators

Preparing the Professors: Issues in Educational-Technology Doctoral Programs

Diane McGrath (KS), Trudy Abrahamson (FL), Arlene Borthwick (IL), Marianne Handter (IL), Ann Thompson (IA), Leigh Zetz (IA)

Educational-technology graduate faculty will lead a conversation focused on the challenges and future visions related to the design of educational-technology doctoral programs.

Sponsored by ISTE's SIGTE

General, University/College, Teachers, Teacher Educators, Postsecondary Educators

Creating a Culture That Supports Online Instruction

Catherine Thurston (IL), Gregory Waddoups (UT)

Learn about organizational structures, equipment, incentives, professional development opportunities, and technical support that optimize efforts in online course development.

General, Teacher Educators, Postsecondary Educators

MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE

Cultivating Powerful Visions of Classroom Integration

Peggy Ertmer (IN), Sangeetha Gopakrishnan (IN), Eva Rossi (IN)

Find out how one elementary, one middle-, and one high-school teacher integrated classroom technology. Their stories are conveyed on a CD-ROM that allows one to easily compare their findings.

K-12, Community College, University/College, Teachers, Coordinators

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES

Innovative, Green, and Free!

ETCEP: The Alternative to Technology Funding

Lauren Bonica (NJ), David Steffens (NJ)

Start collecting empty laser and inkjet cartridges today! Discover how thousands of schools are earning free computer technology through Educational Technology & Conservation Exchange Program (ETCEP).

(Exhibitor presentation)

K-12, Teachers, Coordinators

Picture This Century: An Interactive, Interdisciplinary Learning Experience

Sue Kudela (NY), John Schissel (NY), Carlo Schwab (NY), Barbara Manchee (NY)

Learn about Picture This Century, an exciting and fun interdisciplinary project in which students create an interactive Web site through cooperative learning, community partnerships, and professional development.

General, Community College, University/College, 4-8, Teachers, Teacher Educators, Coordinators

Internet/Web

WebCT: From Implementation to Success

Carolyn Gard (GA)

Support is a critical component of a successful Web-based instructional technology program. Learn about Georgia State University's support network for its WebCT courses.

Community College, University/College, 9-12, Postsecondary Educators, Coordinators

Multimedia

Turn Teens and Teachers on to Technology with HyperStudio

Lisa Boyd (AL)

Discover exciting, easy ways to incorporate HyperStudio into your lesson plans across the curriculum. See examples of technology incorporation in history projects.

4-12, Teachers, Coordinators

Funding, Planning, and Implementation

Schools Interoperability Framework

Patrick Plaat (MN), Barbara Andreamon, Javier Porto-Saeches, Sue Kamp (DC)

Learn about the "Schools Interoperability Framework" and current pilot schools. This new initiative uses XML (Extensible Markup Language) to solve a daunting education problem—how to share and report data across all K-12 administrative and curriculum applications.

K-12, General, Coordinators, teachers

Tips for New Computer Coordinators

Richard Smith (TX), Anthony Sisti (TX)

In this session, two highly experienced instructional technology directors will share what they have learned about implementing technology into the classroom and working within and around the system to achieve that goal.

K-12, Coordinators
TUESDAY, 12 NOON-1 PM

SPOTLIGHTS

Integrating Technology into Teacher Education - One Syllabus at a Time
Donna Baumhef, University of Central Florida: Gail West (FL), Mary Bird (FL)
T029 Room: Ballroom III/IV
Presenting the design and results of the SEI*TEC/SUNRAY Higher Education Institutes that focused on integrating technology into teacher education programs through modeling and online and hands-on activities.

Using Immersive Virtual Worlds in Real-World Classrooms
Chris Dede, George Mason University (VA); Doara Sprague (VA); Theresa Siggins (VA); Eliza Kelley (VA); R. Bowen Lotin (TX)
T030 Room: Ballroom IV
When high-end virtual reality systems are placed in elementary and secondary classrooms, students learn science more effectively. We'll discuss educational outcomes and their implications for the future.

Technology Training for 5,000 Teachers: The Intel* ACE and Power to Teach Programs
Robert Nolan, Institute of Computer Technology (CA); Kathy O'Neill; Kim Muley; Dan McBride; Dave Murdock; Pende Kunt; Jennifer Doberry
T031 Room: Ballroom I
Learn what it takes to educate classroom teachers to integrate technology into their existing curriculum to help students increase their learning and achievement.

Beyond the Crossroads, Where Do We Go from Here?
Making a Difference: New Tools for a Timeless Purpose
Lynne Buroeart (CA), Lou Fournier (CA)
T032 Room: 255W
The future of education is rushing headlong back to the heart. Learn how to reach the toughest kids through technology and a visionary approach.

DISTANCE LEARNING

Electronic Delivery of High-School Courses: Status, Trends, and Issues
William Thomas (GA)
T034 Room: 368W
Are Web-based courses for high-school students the long-sought "silver bullet" that will meet student academic needs? This presentation addresses some of the important policy, instructional, and management issues.

CONNECING TECHNOLOGY TO TEACHING AND LEARNING

Instructional Strategies
Creativity Extravaganza! Throwing Mud Pies in the Face of Tradition
John Perry (MS), Lacy Anderson (MS), Andy Carvin (DC), Chip Daley (NV), Peer Reynolds (MA)
T035 Room: 361W
Break out of your traditional mold! Enjoy a bevy of fun as experts reveal successful strategies that enable everyone to teach creatively with technologies.

Changing the Questions: Students, Information Literacy, and the Web
Joye Velinas (PA), Michael Wagner (PA)
T036 Room: 364W
This session will offer insight on how librarians and teachers can work together to change the questions they ask their students and to inspire their students to use information more meaningfully.

Fostering Critical Thinking
Heads Up: Automated Capture, Integration, and Access in the Classroom
Meghan Burke (GA), Gregory Abood (GA)
T037 Room: 158W
Automated capture is negating the need for classroom note taking, allowing students to focus more on the essence of discussions and classroom instruction.

Assessing Student Learning and Connecting to Standards and Assessment
Evaluating the Effects of Technology Projects: Challenges and Approaches
Vera Urybaha (ND), Terri Austin (IN), Coy Ison (UT)
T039 Room: 254W
The quest for evaluation lies at the heart of every new initiative. Several U.S. Department of Education Technology Innovation Challenge Grant projects share "lessons learned" in designing evaluation methods and outcome analyses.

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

Assessment Strategies - The Quest for Evaluation lies at the Heart of Every New Initiative
Joyce Valenza (PA), Michael Wagner (PA)
T036 Room: 364W
This presentation will focus on the essence of discussions and classroom interaction.

Math and Science

Exciting Teaching Adventures in Science with National Geographic Materials
Kathryn Bailey (GA)
T041 Room: 166W
Think quality and variety! Using a combination of print and technology-based materials, upper-elementary and middle-school teachers are creating terrific science-based and cross-curricular teaching units.

WELCOME TO NECC 2000
WWW.NECCSITE.ORG
Are Your Students Ready for Algebra I? Technology Can Help!
Robyn Silbery (MD)
T042 Room: 260W
Students succeed with a comprehensive, customizable middle-school math software program correlated to national standards. It addresses multiple intelligences as it diagnoses, prescribes, teaches, and assesses.
6-8; Teachers, Coordinators

Computer Science
Teaching Computer Programming Concepts Using Visual Basic*
Beth Brown (FL)
T043 Room: 363W
High school instructor and author of An Introduction to Programming Using Microsoft Visual Basic presents techniques for using Visual Basic to teach computer programming concepts.
Community College, University/College; 9-12: Teachers, Postsecondary Educators, Coordinators

Beowulf in High-School Computer Science
Cheri Burch (NM), Pachy Kaye (NM)
T044 Room: 366W
Beowulf entered our high-school computer science curriculum when students embraced a group project building a supercomputer from a cluster of parallel, low-cost, off-the-shelf processors.
9-12; Teachers, Teacher Educators

Internet/Web
SCR*TEC Presents: How the Internet Works- An Overview
Douglas Adams (KS)
T045 Room: 160W
Ever wonder how the Internet came about? Learn the answer to that question and many more in this introductory session. You’ll also learn the basics of networks and TCP/IP, routers, domains, and e-mail.
General; Teachers, Teacher Educators, Postsecondary Educators

Tips, Tricks, and Techniques: Teaching Educational Computer Technology Online
Laura Turner (SD)
T046 Room: 157W
Learn online educational technology teaching techniques that work. We will be employing WebCT and following ISTE standards. Software addressed: Office 97/2000, Windows® NT®, Netscape®, Composer®, AppleWorks® (formerly ClarisWorks®), and HyperStudio®.
K-12, Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators

Funding, Planning, and Implementation
Farragut Connected for Learning: Educational Foundation, Partnerships, Grants, and Funding
Bill Parker (TN), Lovada Ferguson (TN)
T047 Room: 261W
Find out how one high school partnered with local businesses, government, and higher education to help fund its technology needs. We will also look at grants and other sources of funding.
K-12; Teachers, Coordinators

Evaluation
Using Data to Plan and Assess the Effects of Technology
Bonnie Brownstein (NY), Tia Best (OH), Todd Helman (OH)
T048 Room: 256W
Learn about a case study of an Ohio effort to capture appropriate data for planning and assessment. The online instruments will be examined and results presented.
K-12; Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

STAYING CONNECTED WITH PROFESSIONAL DEVELOPMENT
Computer Applications for School Administrators
John Thompson (NY)
T049 Room: 156W
School administrators need to "walk the talk" in using computer applications to improve job performance. Get a solid overview of using computer technology in everyday administrative processes.
K-12: Coordinators

Staff Development
Empowering Teachers through a Technology Integration Academy
Karla Porter (TX), Barbara Hurl (TX), LaDonna Conner (TX), Jam Jaeger (TX)
T050 Room: 267W
Because of limited support, time, and training, technology integration often is slow to develop. Learn about one possible solution to this problem.
K-6; Teachers, Teacher Educators, Coordinators

Professional Development- A Comprehensive Approach
Lyodita Taylor (NV)
T051 Room: 264W
From a nonprofit education organization that has trained more than 5,000 educators and community members in West Virginia, learn step-by-step how to build training programs and develop tools to assist teachers in enhancing classroom instruction through technology.
General; Teachers, Postsecondary Educators, Coordinators

Preservice and Graduate Teacher Education
Jericho: University, Public Schools, and State Department- Future Teachers’ Technology Training
William (Bill) Pipk (SC), Lynn Nolan (SC)
T052 Room: 269W
K-16 innovation teams (language arts, science, math, social studies) match up technology skills and applications with state-mandated curriculum and develop technology-rich units for preservice teacher content, methods, and field experience classes.
K-12, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Preservice Professional Portfolios Using State and National Standards
Kristie Wasdor (FL), Susan Lynn (FL)
T053 Room: 268W
Investigate strategies for implementing online portfolios using state and national standards as well as techniques for teacher educators to assess preservice teacher progress.
K-12, Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY: STAYING CONNECTED
Technology and Teachers: Assessing Competencies, Assessing Programs
Lajean Thomas (LA), Peggy Kelly (CA), Leslie Conner (OR)
T054 Room: 369W
Following an overview of the extended four-phase NETS project by Project Director Lajean Thomas, participants will review and suggest enhancements to proposed assessment strategies and tools. This session provides attendees the opportunity to examine draft assessment strategies and instruments and to provide formative review in this important endeavor.
K-12, University/College, Teacher Educators, Coordinators

WELCOME TO NECC 2000
WWW.NECCSITE.ORG

CONCURRENT SESSIONS
Meeting Standards for Staff Development: Ensuring Quality
Jellen Kitten, National Staff Development Council (CO)
T058 Room: Ballroom II/III
Review the National Staff Development Council’s Standards for Staff Development with a member of the Council’s staff. Discuss how these standards relate to technology staff development.
K-12, Coordinators
Beyond Technology to the New Literacy
Ted McCain, Thornburg Center for Professional Development (Canada), Ian Jukes (Canada)
T059 Room: Ballroom I
Learn how we can integrate critical thinking, problem solving, information literacy, the principles of graphical design, and a myriad of other 21st century skills into the learning environment.
General, Teachers

CONNECTED COMMUNITIES:
SCHOOLS, BUSINESSES, AND RESOURCES
Virtual Museum Projects to Reclaim and Preserve Native Cultures
Paul Resta (TX), Shelly Vester (NM), Marty de Montano (NY), Mark Christal (TX)
T055 Room: 165W
Learn strategies developed over the past six years to foster constructivist learning and technology integration, facilitate national online and face-to-face professional development, and create leadership teams.
K-12, University/College: Teachers, Teacher Educators, Postsecondary Educators. Coordinators

SPOTLIGHTS
Human Motion, Mechanical Physics, Videography, and Animation: How the Science of Biomechanics Uses the Power of Today’s Computer Workstation
Ben Johnson, Georgia State University
T057 Room: Ballroom IV
A model of school and museum collaboration and culturally responsive curriculum is applied to the goal of preserving endangered Native American cultures.
General, Teachers, Postsecondary Educators

DISTANCE LEARNING
Balancing Face-to-Face and Online Experiences in Higher Education
Marsha Buhmister (FL), Charles Schlueter (FL)
T062 Room: 360W
The best of both worlds: a critical examination of the role of face-to-face instruction within the context of distance-delivered courses in higher education.
General, Community College, University/College: Teachers, Teacher Educators, Postsecondary Educators

FOCUSED SESSIONS
Prescriptions for Behavior Modification to Improve Success in Distance Learning
Cordelia Twomey (NJ), Trudy Abramson (FL)
T063 Room: 158W
Teachers in distance learning programs will learn to identify predictors for student success and ways to help students modify their behaviors. This session will look at the learner, the technology, and the curriculum design; the possible barriers to student success; and ways to enhance student success.
General, Teachers, Teacher Educators, Postsecondary Educators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING
Instructional Strategies and Technology Integration
Technology Projects That Make It Home!
Christopher Curdy (FL), Keith Kyker (FL)
T064 Room: 361W
Explore technology-based lessons and projects that are recorded in a format that students can easily take home and share with their parents. Setting is believing.
General, K-12; Teachers, Teacher Educators. Coordinators

Music
Music Education after 1999
Duane Duxbury (WA)
T065 Room: 364W
Get a close look at a MIDI environment where students learn music theory and keyboard skills for the purpose of writing music.
4-12; Teachers, Coordinators

Technology Education
Farragut Connected for Learning: Cisco Networking Academy
Danny Waters (TN), Bill Parker (TN)
T068 Room: 157W
Take a closer look at the Cisco Networking Academy, a technology-based curriculum course for teaching students about computer networks. Thanks to the academy, students are receiving a general education as well as preparation for the workforce.
Community College, University/College, 9-12; Teachers, Coordinators

Fostering Critical Thinking
Energized, Paperless Research Projects
James O’Neill (IL), Carleen Smith (IL)
T067 Room: 360W
Give your students a new challenge. Instead of having them write a research paper, have them create Web pages or slideshow presentations. They’ll become active researchers, publishers, and presenters.
9-12; Teachers, Coordinators
Laptops

Anywhere Now Learning: Universal Laptop Initiative
J. David Martin (VA), Janet Copenhaver (VA)

T068
Room: 369W
The governmental and educational systems in Henry County, Virginia, are providing more than 6,000 laptops for home and school use to students in Grades 4-12. Hear how this group overcame obstacles, how it received funding, and how the learning process changed as a result.

General, Teachers, Teacher Educators, Coordinators

Language Arts

These Are the Days of Their Lives: Students’ Author Presentations
Michael Lyons (GA), Louise Seitz (GA)

T069
Room: 257W
Join this entertaining and motivating session that combines reading, Web-based research, and computer technology. It also includes examples of student-produced PowerPoint presentations of authors and books.

4-8; Teachers, Teacher Educators, Coordinators

Math and Science

Problem Solving Our Way Back into Math
Pauline Bresnahan (WA), Nancy Wolk (WA)

T070
Room: 254W
What do you get when you combine staff development, technology, and math? Teachers who are ready to approach their math instruction in a new way.

General, 4-8; Teachers, Coordinators

SeaTrek: Implementation of Telementors in Middle-School Science
Mike Horan (FL), Barbara Kirkpatrick (FL)

T071
Room: 166W
Find out how the middle-school science curriculum in Sarasota, Florida, was enhanced with the implementation of a telementoring program linking scientists with students to promote student scientific inquiry.

4-12; Teachers, Coordinators

NASA Glenn Distance Learning Program
Ruth Petersen (OH)

T072
Room: 260W
Your students can get the scoop on current NASA research from the researchers and engineers themselves. Take virtual tours of NASA facilities through videoconferencing technologies.

General, K-12; Teachers, Teacher Educators, Coordinators

Computer Science

Cognitive Assessment of Students’ Problem-Solving and Programming Skills
Fadi Deek (NJ)

T073
Room: 366W
Find out about an assessment method devised for measuring students’ problem-solving and program development skills, knowledge perception, attitudes, and motivation toward problem solving and programming.

5-12; University/College, Community College, Teachers, Teacher Educators, Postsecondary Educators

Special Needs and Assistive Technology

Computer-Based Literacy Training for Adolescents and Adults
Judy Nantaau (IL)

T074
Room: 363W
Explore the scientific theories, principles, and training components of teaching phonological awareness, auditory processing, and decoding skills using computer-based training.

Community College, 6-12; Teachers

Internet/Web

HyperInternet: Creating Interactive Internet Activities
Jim Hirsch (TN)

T075
Room: 160W
Experience how the Internet can be a more integral part of student-centered classrooms. Learn how to use HyperStudio® as an authoring tool to create a wide variety of activities that can be accessed on the Internet for student use at school and home.

K-12; Teachers, Coordinators

Support and Maintenance

Real Help for the Help Desk: Students in Charge
Barbara Barr (KY), Charlanne Pook (KY)

T076
Room: 261W
Johnny's computer doesn't boot or The bookkeeper's balance doesn't compute! How do you keep computers humming on a shoestring? We put the students in charge!

K-12; Teachers, Coordinators

Preservice and Graduate Teacher Education

Integrating Technology into Preservice Teacher Instruction: A Collaborative Model
Mary Politi (FL), Dana Fredebaugh (FL), Denise Callwood-Brathwaite (FL), Peter Watson (MA), Margaret McDaniels (FL)

T081
Room: 268W
Representatives of various sectors of the educational community present different perspectives on a collaborative project being funded. In part, by a U.S. Department of Education Preparing Tomorrow's Teachers to Use Technology (PT3) Grant.

University/College, K-6; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Evaluation

Beyond Standards: What We Are Learning from Conducting TechAudits
Helen Stokota Janich (IN), Howard Melinger (IN)

T077
Room: 256W
Learn how Phi Delta Kappa and the Indiana University Center for Research on Technology and Learning launched TechAudits to provide consulting to school districts.

General, K-12; University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

NASA

Your students can get the scoop on current NASA research from the researchers and engineers themselves. Take virtual tours of NASA facilities through videoconferencing technologies.

Welcome to NECC 2000
WWW.NECCSITE.ORG
TUESDAY, 1:30-2:30 PM CONT.

Preparing Tomorrow's Teachers for Diversity-Responsive, Technology-Rich Learning
Kevin Rocap (CA), Maria Quezada (CA)
T082 Room: 269W
Learn about the Equity through Distributed Education Network, an online clearinghouse and virtual world providing professional development resources for preservice and inservice teachers.
K-12: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE
Multimedia Mania: Classroom Models of Technology Infusion
Caroline McCullin (NC), Paolo Williams (HI)
T083 Room: 165W
See winning projects from the international multimedia competition. Learn classroom tips, multimedia techniques, and integration strategies from teachers at all levels.
(Sponsored by ISTE’s HyperSIG)
General, K-12: Teachers, Teacher Educators, Coordinators

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES
NSF Funding Opportunities for High School and Undergraduate Computer Science, Math, and Science Faculty
Harris Taylor (VA), Dianne Martin (VA), Michael Haney (VA)
T084 Room: 161W
Don't miss this opportunity! National Science Foundation program directors will discuss funding opportunities and exemplary projects for computer science, mathematics, and science high school and undergraduate faculty.
9-12: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

TUESDAY, 1:30-3:30 PM

STUDENT SHOWCASE
Located on Level 2, opposite Room 365W.

Using Technology to Connect Students with the Community
Cindy Henderson, Pelham Road Elementary School (SC), with students Jennifer Pickens, Barbara Turner, Ellen Goldman
Elementary students describe and demonstrate the CD they designed, compiled, and created to spotlight the various facets of their community.
General, K-6: Teachers, Teacher Educators, Coordinators

Student Support Team to the Rescue
Patrick Hetzky, Brumley Elementary School (CA), with students Caroline St. John, Louis Lim, Kyle Manthe, Handsa Yang
Meet students helping teachers load programs. Instruct students for peer-to-peer teaching and learning, and help monitor computer labs.
K-6: Teachers

Under the Sea with Technology
Karen Roark, Withrow County Schools (GA), with students Joshua Ellis, April Rice, Emily Mantis, Sarah Mantis, Emily Rush, Josh Tucker, Molly Tucker, Susan Williams
Join us to find the answers to “Do dolphins surf the Web?” and “Can a whale e-mail?” as well as to discuss and track the message in the bottle and graph the ocean floor. Come see Save Our Oceans, a multimedia presentation and hidden treasure search.
K-12: Teachers

Preservice Teachers’ Technology Integration: Lessons from a PDS
B. Joyce Statonworth, The University of Alabama, with students Elizabeth Wilcox, Kim Caithorn, Kathy Shaver, Margaret Rice
See IT activities used by preservice teachers in a middle-school language arts class and lesson plans used at a professional development school (PDS).
University/College, 6-12: Teachers, Teacher Educators, Coordinators

POSTERS
All posters take place in Room 367W.

The Woodcliff School Travel Agency: Travel Projects by Students
Sharon Anderson (NJ)
PS-T73-1:30, Table 12
After learning word processing, databases, and drawing, elementary- and middle-school students complete a travel project that includes an itinerary, maps, and databases of restaurants, hotels, places of interest, and Web sites.
K-12: Teachers, Coordinators

Let’s Make It Real: Meaningful Integration for a New Millennium
Liz Behrend (SC), Anna Marie Bennett (SC), Libby Presley (SC), Jeannie Eskew (SC)
PS-T74-1:30, Table 4
Four primary-level teachers share successful strategies, lesson plans, and software for the integrating of technology into curriculum. Student work and projects are displayed.
K-3: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

How to Create an Internet Course in 10 Easy Steps
Susan Bukholtz (GA), Deborah Huntley (GA), Brenda Cherry (GA)
PS-T75-1:30, Table 1
Find out how educators at the Jefferson County Public Schools. See the interactive CD used in new teacher induction.
General: Teachers, Teacher Educators, Coordinators

Guiding New Teachers “Beyond 2000”
Raymond Febr (KY), Nancy Hack (KY), Rita Greer (KY)
PS-T76-1:30, Table 2
The new millennium has arrived in the Jefferson County Public Schools. See the interactive CD used in new teacher induction.
General: Teachers, Teacher Educators, Coordinators

Lighten Up! Color, Light, Optics, and Photography at Shutesbury Elementary
Carol Holdgen (MA), Bonnie Ray (MA), Ken Lindsay (MA), Jessica Harris (MA)
PS-T77-1:30, Table 5
See how Shutesbury Elementary kindergartners and fourth graders used computers, digital cameras, and Internet research to conduct scientific investigations of color, light, vision.
K-12: Teachers, Coordinators

Assessing Immediate and Long-Term Benefits of Interactive Studio Physics
Michael Kalisher (NY), Holly Traver (NY)
PS-T78-1:30, Table 8
A study reveals that Interactive courses do not produce better grade performance than lecture courses. However, students find interactive course collaboration beneficial for modeling real-world teamwork.
General, University/College: Teachers, Coordinators

SATeC: Integrating Mathematics and Technology
Thomas Ledöwowski (TX), Andrew Sorensen (TX)
PS-T79-1:30, Table 9
Learn how teachers are helping students build mathematical concepts through the use of video Imaging, data collection tools, spreadsheet software, and other technologies.
K-12: Teachers, Teacher Educators, Coordinators, Postsecondary Educators
Integrating Technology for the Needs of High-Achieving or Gifted Students
Lucia Mitchell (NJ). Galen Mitchell (NJ)
PS-T80-1:30, Table 3
Technology is a wonderful vehicle for meeting the needs of high-achieving and gifted students. Learn what is available and what will work for you!
K-8: Teachers, Teacher Educators, Coordinators

CyberGreening:
Technology and Environmental Education in the Urban School
Holly Shaw (PA). Valerie Adams (PA)
PS-T81-1:30, Table 10
We will share a comprehensive environmental project for middle schoolers that includes creating and maintaining an urban garden and using technological tools to enhance project-related presentations.
6-8: Teachers. Coordinators

Gifted Education in the Urban School
Kathleen Hage (NY)
PS-T83-1:30, Table 11
Learn what is available and what will work for you!
Gifted: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

PS-T82-1:30, Table 6
Discover ways to encourage active learning in fine art classrooms using a multimedia CD and the Internet. Hear integration tips to ensure effectiveness.
General: Community College, University/College, 9-12: Teachers, Teacher Educators, Postsecondary Educators, Coordinators
The Digital Camera and Its Uses in the Classroom
Andy Vincent (IL)
PS-T83-1:30, Table 10
Learn how to best use the digital camera (Casio QV8000SX) in your classroom. Take home handouts with sample activities.
General: Teachers, Teacher Educators. Postsecondary Educators, Coordinators

Little Village to Global Village
Marlene Woytonik (IL). Sue Sherman (IL)
PS-T84-1:30, Table 7
Discover how to plan and implement a multidisciplinary project in which students investigate the historical and cultural background of their communities.
K-12: Teachers, Teacher Educators, Coordinators

WEB POSTERS
All posters take place in Room 367W.
Creative Use of Cyberspace:
Training Teachers for Inclusion
Robin Burton (CA). Miki García (CA). Kim Simshauer (CA)
PS-T85-1:30, Table 18
Learn what goes into the development and use of online, multimedia modules for a Web-based course: Teaching and the Exceptional Child. The course addresses instructional strategies and special education law.
General: Community College, University/College: Teachers, Teacher Educators, Postsecondary Educators

Creating a Media Center Home Page
Shu-Hsien Chen (GA). Leticia Ekhani (GA)
IPS-T86-1:30, Table 19
Visit a middle-school media center home page. Hear the presenters' experiences designing it.
General: K-12: Coordinators

Digital Bridges: The K-12 Videoconferencing Web Resource
Kirk deFord (OR)
IPS-T87-1:30, Table 17
Visit the Digital Bridges Web Site and learn about the content and the basis for this Interactive and planning Web resource.
General: K-12: Teachers, Teacher Educators, Coordinators

CNN Student Bureau: Kids, Cameras, and Computers—Real-World Classroom Experiences
Sherri Garrett (GA). Alan Dukh (CA)
IPS-T88-1:30, Table 20
The CNN Student Bureau Web site puts authentic learning experiences in students' hands. Gain hands-on experience in writing, editing, and producing for a global audience.
Community College, University/College, 9-12: Teachers, Postsecondary Educators, Coordinators

Using a Class Web Site to Teach, Manage, and Motivate
Richard Haines (GA)
IPS-T89-1:30, Table 14
Learn ways to fully integrate a class Web site into your current curriculum and to facilitate your professional growth needs.
4-12: Teachers, Teacher Educators, Coordinators

42eXplore:
An Approach to Internet Integration
Larry Johnson (TX). Annette Lamb (TX)
IPS-T90-1:30, Table 13
Each week 42eXplore (http://eduscapes.com/42explore) focuses on an interesting topic, at least four supplementary Web site starting points, and lots of technology integration activities. Come explore!
General: K-12. Community College, University/College: Teachers, Teacher Educators. Postsecondary Educators, Coordinators

Technology for General Physics Courses
Gene Kuleshov (NY). Helene Bergman (NY). Isaac Herskowitz (NY)
IPS-T91-1:30, Table 15
The Web Course in the Box provides access to a wide range of resources: animated illustration software. virtual labs, computerized tests, and Web link tutorials.
University/College, Teachers, Coordinators

Integrating Technology with Standards in Mind:
A Preservice Approach
Susan Riddle (IN). Jane Rineh. Carl deCruaf
IPS-T93-1:30, Table 16
Teacher education students are effectively creating technologically rich language arts units based on newly adopted standards.
General: Teachers, Teacher Educators

What Is under the Covers of an Online Course?
Stan Silverman (NY). Gene Silverman (NY)
IPS-T94-1:30, Table 24
View the guts of an online course for teachers. See e-lectures, assignment rubrics, team activities, and student evaluations.
General: Teachers, Teacher Educators, Postsecondary Educators

Montclair Learning Interchange:
Where Teachers Create Content and Share Resources
IPS-T95-1:30, Table 23
Visit the Montclair Learning Interchange (http://ml.i.montclair.k12.nj.us), where teachers post projects and share Internet resources. The site can also be used as a staff development tool.
K-12: Teachers, Teacher Educators, Coordinators

Using Internet Technology as a Tool for Assessment and Reflection
Mary Richards (MS)
IPS-T96-1:30, Table 22
Maine school districts are using the Internet to assess student performance on key state standards. See how this process works and hear the benefits described by participants.
K-12: Teachers, Teacher Educators, Coordinators

Developing and Integrating Web-Based Resources for Curricular Support
Kesheng Yu (NY)
IPS-T97-1:30, Table 21
The goal of the curricular support group is to provide faculty members with the technology tools and support needed to enhance the curriculum.
General: University/College: Postsecondary Educators, Coordinators
SPOTLIGHTS

NetSchools - Transforming Education
Tom Graves, NetSchools Corporation (CA)

T085 Room: Ballroom II/III
The Study Pro laptop enables every student to have continuous broadband access to the Internet. Find out how connecting teachers and students to the Web, their parents and the community can generate as in achievement, assessment, accountability, alignment, and access equity. Includes a drawing for prizes.
K-12: Teachers, Teacher Educators, Coordinators

NECA LIGHTS: Extending Our Experience and Building a Web of Teachers
Nan Flaherty, James Lane, Mary West, Linda Woolhiser, and Julie Treti, Sandy Springs Middle School (GA); Elliot Soloway (Ml); Gretchen Hahn (Ml); Lauricia Burton (GA)

T086 Room: Ballroom I
Georgia's NECA LIGHTS 2000 teachers join past participants to tell stories of learning from one another as they embed technology into their best practices.
K-12: Teachers, Coordinators

T087 Room: Ballroom IV
As our schools enter the new millennium, technology will increasingly play a role in teaching and learning. Roberts will highlight the Clinton administration's strategies and accomplishments and provide a preview of next steps and future commitments contemplated for the next five-year national plan for technology.
K-12: Coordinators

PAPERS

Two papers per one-hour session.

Interactive Computer Models for Science Education
Huuban Al-Haddad (WV), Mike Little (WV)

T088 Room: 166W
The authors will illustrate the major role interactive learning and critical thinking play in high-school education, especially in the field of science. Teaching traditional science concepts in innovative ways helps increase students' knowledge and promote their interest in the basic sciences. See the models described in the paper and how high-school teachers are using them in a number of science classes.
9-12: Teachers

Wheatland: An Exercise in Systemic Change
Debra Duthen (C6); Major Donald Tharp

T089 Room: 166W
Hear the evaluation results of a rural school district's professional development Goals 2000-funding efforts to provide all teachers and administrators in the district with training and laptop computers.
K-12: University/College: Coordinators, Postsecondary Educators

Web-Based Extended Learning through Discussion Forums
Mary Jo Parker (TX)

T090 Room: 156W
AP biology labs create the focal discussion threads for an online forum between two campuses within one district. User tracking throughout the forum will be analyzed.
9-12: Teachers, Coordinators

Images of Teaching with Computer Technology: A Metaphorical Perspective
Karthigeyan Subramaniam (New Zealand)

T091 Room: 156W
Illuminating teachers' images of teaching with computer technology using metaphors: A perspective on teachers' language of practice with computer technology.
General, K-12: Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Beyond the Crossroads, Where Do We Go from Here?
Andrea Sage (New Zealand), Megan McDonald (New Zealand)

T092 Room: 255W
Discover how New Zealand's heritage of appreciating and successfully managing its natural resources, combined with a multimedia approach to education, inspired a profound learning experience for students that encouraged empathy, tolerance, and respect.
General: Teachers

Communicating a Strategic Vision of Education Technology to Key Decision Makers
Connie Statz (TX)

T093 Room: 254W
Discussions with key decision makers getting you down? Get EDvancenet tools that provide research-based information on technology and student achievement, educational equity, and workforce preparedness. (Sponsored by COSN)
K-12: Coordinators

Enriching the Learning Experience: The Value of a FirstClass Solution
Scott Weiss (ON)

T094 Room: 362W
Experience the power of a FirstClass educational community. This session will highlight FirstClass as the most effective solution for building a collaborative community of learners.
General, K-12: Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

DISTANCE LEARNING

Designing Courses with CLASS: Web-Based Courses for Distance Learning
Kathy Northrop (NE), Cindy Rain (NS)

T095 Room: 368W
CLASS™ award-winning Web-based courses are designed to maximize student learning using leading-edge technology. Learn what's involved in creating courses for a complete Web-based high school diploma sequence.
General: Teachers, Postsecondary Educators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Instructional Strategies and Technology Integration
Bring the World to Your Classroom through National Geographic School Publishing Educational Web Site Products
Dorothy Pérez (DC), Kathy Bailey

T096 Room: 369W
The new National Geographic Education Web Site provides teachers and students with materials for creating innovative projects and reports.
K-12: Teachers, Coordinators

Project K12-Search: Lessons and Search Interface for Electronic Information Literacy
David Raker (MA), Jamie Callan (PA)

T097 Room: 257W
What use is the Internet, if students can't use it effectively? K12-Search is a collaborative project that attempts to address the challenges and rectify the problems faced in many elementary school classrooms.
K-12: Teachers, Coordinators
Special Needs and Assistive Technology
Project DEVISE: Creating Virtual Reality Environments for Students with Learning Disabilities
Debra Saragee (VA), Chris Dekle (VA), John Castellani (VA), Mike Behrmann (VA), Jim Chen (VA)
T103 Room: 165W
Students with learning disabilities often have difficulty understanding abstract science concepts. We have developed and implemented three-dimensional virtual environments that enhance their learning and motivation.
General, 9-12; Teachers, Teacher Educators

Project-based Learning
Linking Learning to Life: Model, Tools, and Strategies Linking Electronic and Real Communities
Pat Donohue (ND), Vera Uyehara (ND), Jerry Feltis (ND), Mary Beth Kelley-Lowe (ND), Steve Lindas (ND), Allison Wallace (ND)
T09 Room: 364W
Extending technology experiences to real-world adventures gives learners an opportunity to construct personal understandings of new material, then use problem-solving skills to transfer understanding to new environments.
General, K-12; Community College, University/College, Teachers, Teacher Educators, Coordinators

Fostering Critical Thinking
Expand Student Research and Technology Skills with Spreadsheets
Jan Rader (CA)
T109 Room: 360W
Experience the fun of performing simple data collection activities and using electronic spreadsheets to easily record and brilliantly display the findings (in any content area).
General, K-12; Teachers, Teacher Educators, Coordinators

Language Arts and Social Studies
They Came to Ellis Island: Using the Computer to Study Immigration
Denise Gries (NY)
T101 Room: 281W
Learn how to use the power of technology to revitalize the immigrant experience.
4-8; Teachers, Teacher Educators, Coordinators

Computer Science
Teaching Computer Science with Java: The Good, the Bad, and the Ugly
Tom West (Canada)
T102 Room: 365W
Examine important issues such as student expectations, development environments, hardware requirements, teaching issues (objects first), and "questions such as "What about the AP?”
9-12; University/College; Teachers, Teacher Educators, Postsecondary Educators

Funding, Planning, and Implementation
You Want It to Do What?
When? Coordination in a Districtwide Network
Janet Melos (CA)
T106 Room: 256W
Learn the most effective steps in building the districtwide network you need.
General, K-12; Coordinators

Staff Development
Virtual Academy: An Online Staff Development and Community Project
Juli Gardner (WI), Louis Lofthier (WI), Kristine Dörner (WI), Susan Hodges (WI)
T107 Room: 267W
Learning occurs 24 hours a day at the Virtual Academy (http://www.stritch.edu/~techacad/virtual), where staff development is presented anytime, anywhere, and at any learning pace. Learn how to create effective online courses for your students.
General, K-12; Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators
SPOTLIGHTS

Evaluating Technology: The Quest for the Elusive "Best Way"
Michael Hannanin, University of Georgia

Explore research and evaluation findings on the effects of technology in K-12 settings. Identify problems and issues related to evaluating and identifying the characteristics of effective programs.

K-12, Teachers, Teacher Educators, Coordinators

Key Factors in Effective Staff Development
Jennie Weatherby, Georgia State University

Find out about strategies for staff development linked to student achievement. Hear important practices schools should consider when making staff development decisions.

General, K-12, Teachers, Coordinators

PAPER

Active Learning Strategies in Computer Graphics
Ronald Curtis (NJ), John Najarian (NJ)

Active learning models are applied to computer graphics. A progression of student activities builds on student contributions to the learning experience.

Community College, University/College, 9-12, Coordinators

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

Cincinnati Public Schools Wired for the Future
David Hickey (OH), Gurt Brough (OH)

Learn how Cincinnati Public Schools is providing Internet connectivity to more than 2,600 classrooms and 85 sites using the latest in network technologies: asynchronous transfer mode (ATM).

General, K-12, Community College, University/College, Teachers, Teacher Educators, Coordinators

Information Technology Enterprises: A Student Technology Support Business
Taylor Hill (OK), Regina Bartz (OK), Dana Mason (OK), Sara Schaeferfeldt (OK)

Learn how students earn credit by operating a PC repair shop that services the technology infrastructure of more than 80 district sites.

9-12, Teachers, Coordinators

Grow What You Know with Web-and-Flow
Thomas March (NSW)

How can you integrate the Web and still have a life? Use Web-and-Flow, Tom March's latest creation designed as a comprehensive tool, online community, and professional development coursework.

General, K-12, Teachers, Teacher Educators, Coordinators

Windows* 2000 in Education
David Tapang (WA), Don Kroek (MO)

Don't miss this opportunity to see a demonstration of the exciting new capabilities of Windows 2000 presented by Microsoft personnel.

General, K-12, Community College, University/College, Teachers, Coordinators

DISTANCE LEARNING

Online and On Target: Critical Issues for Effective Internet Courses
Raymond Ron (MA), Zahri Schonry (VA), Alice Smith (MA)

This panel will identify the critical issues such as structure, preparation, and intimacy that online course developers and consumers need to consider as they explore the universe of online courses.

General, Teachers, Teacher Educators, Postsecondary Educators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING

Technology-Assisted Project-Based Learning
Anthony Jongejan (WA), Kathy Buchanan (WA)

Learn effective use of technology in project-based learning for the elementary- and middle-school classroom through discussion and demonstration.

4-8, Teachers, Teacher Educators, Coordinators

Empowering Students
Coach Your Students to Take the Lead! RTÉC Presents Key Strategies
Christina Bleuer (KS)

Find out about a variety of models, tools, and organizations facilitating student leadership and support in the integration of new technologies in K-12 classrooms.

General, Teachers, Teacher Educators, Coordinators

WELCOME TO NECC 2000
WWW.NECCSITE.ORG
Assessing Student Learning and Connecting to Standards and Assessment

The Electronic Learning Marketplace: A Growing Resource to Support Standards-Based Curriculum and Assessment

Rebecca McInting (MD), Julie Elta

T125 Room: 156W
Explore the Electronic Learning Marketplace, funded by a U.S. Department of Education Technology Innovation Challenge Grant in Maine. Learn about the project's evolution, tour the Web site, and offer feedback on a published assessment. Then find out how the project is helping teachers align their work with state standards.

K-12; Teachers, Teacher Educators

Laptops

Ubiquitous Computing and Achievement: The Laptop Program's Third Year

Saul Rockman (CA), Melissa Chenler (CA)

T125a Room: 363W
In 1996, the Microsoft Corporation initiated a laptop program to explore how student learning was affected by access to personal laptop computers. Three years on, what changes have been observed?

General, K-12; Teachers, Teacher Educators, Coordinators

Preschool and Elementary

Technology Projects in the Elementary Classroom

Christine Beck (OR), Monica Wallace (OR)

T126 Room: 156W
Get lessons and ideas for integrating technology into the elementary classroom. See examples of actual uses of technology products and Web sites for teaching.

General, K-8; Teachers, Teacher Educators, Coordinators

Empower Students with Curriculum and Technology

Bob Smith (CA), Linda Reynolds (CA)

T127 Room: 363W
Join fourth and fifth graders on a successful journey integrating curriculum and technology as they develop their own informational CD-ROM: "The Mojave Desert—A Child's View."

K-12; Teachers, Coordinators

Language Arts and Social Studies

Bridges Across the Atlantic: Using Technology to Share Cultures

Margaret Thomas (RI), Jeanne Forger

T128 Room: 261W
Learn how fourth-grade students in Rhode Island connected with a Swedish class to share culture and knowledge using e-mail and the Internet.

General, K-12; Teachers, Teacher Educators, Coordinators

Multimedia

Powerful Pupil PowerPoint Presentations Produce Learning

Harry Tuttle (NV)

T134 Room: 157W
Learn how to make your students' PowerPoint presentations powerhouses of learning. See how to streamline the process while enlarging the depth of learning.

General, Teachers, Coordinators

Funding, Planning, and Implementation

Educational Technology Plans: Keys for Successful Implementation and Accountability

David Breithaupt (ID)

T135 Room: 256W
Uncover the keys to instilling an effective K-12 technology plan that connects technology use to the needs of the curriculum, curricular objectives, and the capabilities of the teacher and school.

K-12; Teachers, Coordinators

STAYING CONNECTED WITH PROFESSIONAL DEVELOPMENT

Staff Development

International Professional Development from a Local Perspective

Kitty Salinas (CA), Helen Coltrinari (Canada)

T136 Room: 257W
Internet technology enables video instruction to transcend political and cultural barriers. Find out how in this demonstration. Presenters will address cultural issues intrinsic in sharing wisdom across borders.

K-12; Teachers, Teacher Educators, Coordinators

Georgia to Louisiana: Connecting Technology, Teaching, and Learning Through InTech

Sheila Talamo (LA), Joana Dietersch (LA), Adrianne Hunt (LA), Linda Whitacre (GA)

T137 Room: 264W
From Georgia to Louisiana, teachers are integrating technology into their classroom. Discover Louisiana InTech and its successful replication of the Georgia InTech Professional Development Model.

General, K-12; University/College; Teachers, Teacher Educators, Coordinators

NECC WOULD LIKE TO THANK EACH OF ITS CORPORATE SPONSORS AND ORGANIZATIONAL PARTNERS

PLEASE SEE OUR LISTING ON PAGE 68

WELCOME TO NECC 2000
TUESDAY, 4:30-5:30 PM CONT.

Preservice and Graduate Teacher Education

ISTE’s PT³ Grant Initiatives:
NETS for Teachers and the National Center for PT³
Heidi Rogers (ID), Peggy Kelly (CA), Don Knezek (TX), LaJeane Thomas (LA)

T138 Room: 269W
Details of project activities, services, and products will be discussed by the leadership team and key partners of ISTE’s PT³ grant initiatives: NETS for Teachers and the National Center for Preparing Tomorrow’s Teachers to Use Technology (NCPT³).
Participants will learn specifically how they may benefit from and contribute to this and other important work of the International Society for Technology in Education. (Sponsored by ISTE)
K-12, University/College: Teacher Educators, Postsecondary Educators, Coordinators

Let’s Communicate!
Using Technology to Support Preservice teachers
Trena Wilkerson (TX)

T139 Room: 268W
How can technologies such as e-mail, videoconferencing, and multimedia be used to enhance communication with preservice teachers? One instructor shares her experiences and ideas.
University/College: Teacher Educators

CONNECTED COMMUNITIES:
SCHOOLS, BUSINESSES, AND RESOURCES

MarcoPolo Internet Content for the Classroom: Building Quality Partnerships within the Education Community
Todd Brokhus (VA), Lennie Walker, Dan Thorns

T140 Room: 161W
Explore the value of establishing lasting partnerships within the educational community for developing quality content, delivering professional development, and meeting the needs of K-12 teachers.
General: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Social, Ethical, and Policy Issues

Computer Camp: Effects on Girls’ Computer Attitudes and Skills
Sandra Madison (WI), Min Deng (WI)

T142 Room: 260W
Many middle-school girls view computing as a “nerdy” male activity and avoid taking advanced computer courses. Learn how a one-week computer camp changed their attitudes toward computers and increased their skill level.
General: Teachers, Postsecondary Educators

TUESDAY, 5:45-6:45 PM

U.S. DOE Session on Assistive Technology

Access to Information through Assistive Technology

Ballroom IV
The Assistive Technology Team from the U.S. Department of Education presents this session and demonstration addressing the use of computer-based assistive technology to bring information and information systems to the disabled. The requirements of Section 508 of the Rehabilitation Act of 1973, as amended, will be addressed. A Q & A period will follow the demonstration.
K-12, University/College: Teacher Educators, Postsecondary Educators, Coordinators

Critical Review: Two Models of an Online Course
Brenda Drexler

Certification Programs in High Schools
Room: 165W
Scott Horan

MidLink Magazine: How to Publish Meaningful Content with Students
Room: 368W
Caroline McCullen

Project Child
Room: 369W
Barbara Roule

Ozline.com
Room: 156W
Thomas March

Creating K-12 Educational Technology Coordinators
Room: 158W
Diane Smith

Beyond Nintendo: Technology Applications in the Elementary Classroom
Room: 363W
Charlene Woodham-Pace

CHECK THE DAILY NEWSLETTER FOR ADDITIONAL THRASHERS TOPICS!
POSTERS
All Web posters take place in Room 367W.

Building School and University Partnerships for Educational Reform
Ron Aust (KS), Larizte Ray (TX), Brian Newberry (KS)
PS-W97-10, Table 9
How can schools and universities be best partners to apply technology to curriculum reform? Four Directions partners describe successful collaborations across 4 universities and 19 schools.
K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

The Education Connection Grant, Southern Style
Debora Braylock (MS), Eva Guiter (MS), Pam Breivore (MS)
PS-W98-10, Table 4
See how Mississippi educators radically changed their teaching styles through a partnership with their local public television station and participation in a technology challenge grant.
K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

MetroLINC: An Urban/Suburban Collaboration for Technology Professional Development
Lisa Britis (MA), Alice Santiago (MA)
PS-W99-10, Table 8
Learn how MetroLINC is bringing 4,500 teachers up the technology learning curve to support statewide curriculum reform in Massachusetts through a unique urban/suburban collaboration.
K-12, Teachers, Teacher Educators, Coordinators

Wish You Were Here:
Vacation Vacations
Beverly Burks (TX), Sylvia Marshull (TX), Carol Sholes (TX)
PS-W100-10, Table 6
Students used digital cameras, scanned images, graphics, and text to record vacation memories. Learn how this motivating project can be implemented in your classroom.
K-12, Teachers, Teacher Educators, Coordinators

Just for Kids
Leotia Ekansi (GA), Shu-Hsien Chen (GA)
PS-W101-10, Table 7
Receive new classroom curriculum ideas derivable from the fascinating, valuable, and user-friendly resources found on Web pages designed for students by U.S. government agencies.
K-12, Teachers, Teacher Educators, Coordinators

WELCOME TO NECC 2000
WWW.NECCSITE.ORG
WEB POSTERS
All posters take place in Room 367W.

Professional Development to the Classroom: Foundations, Integration Institute, Administrator Academy
Kay-Abanwathy (TX), Jennifer Bogland, Linda VanNoy, Susan Pennington, Joyce Logan, David Wallace, Ted Hasselbring
IPS-W107-10, Table 20
The Brazos–Sabine Connection, a consortium of 15 noncontiguous school districts in Texas with funding from the Technology Literacy Challenge Fund by way of the Texas Education Agency, is addressing the challenge of educator professional development.

Learning Pathways: Internet-Style Curriculum Collaboration
Janet Arnett (TX), Karen Vander Molen (TX)
IPS-W108-10, Table 19
Learning Pathways is a Web resource for teachers, students, curriculum specialists, and instructional technologists. It merges Internet technology with a district curriculum to create communication, collaboration, and interaction-enhancing activities.
K–12; Teachers, Coordinators

Touring the Oasis
Teresa Gray (CA), Susan Hsu (NY), Kate Roberts (CA)
IPS-W109-10, Table 24
Need help finding what you’re looking for online? Explore ED’s Oasis, designed by teachers for teachers!
K–12; Teachers, Coordinators

Beyond Four Walls: Building an Elementary Classroom Web Site
Michelle Vielick (PA)
IPS-W110-10, Table 18
Find out how a well-constructed classroom home page functions on multiple levels to support curriculum, facilitate communication, and enhance teamwork within a wider educational community.
General, K–12; Teachers, Coordinators

Online Learning with Amazon River Dolphins
Saan Reitz (CA), Shelly Luke (CA), Tracy Annon Sosa (CA)
IPS-W111-10, Table 15
Learn how three educators traveled to Peru and created the Amazon River Dolphin Web site. Find out how you can use this site in your classroom.
4–8; Teachers, Coordinators

Selena on the Move: Bridging Internet Learning
Catherine Ritter (TX), Regina Woods (TX)
IPS-W112-10, Table 14
How do you integrate the Internet into your early childhood classroom? Presenters will discuss how. Learn about e-mail projects and how to implement a nationwide project.
K–3; Teachers, Coordinators

The Solution Site
David Sentner (WV)
IPS-W113-10, Table 22
This presentation will address the content and method of development for a teacher-created Web site (www.thesolutionsite.com) containing K–12 thematic units integrating technology into three curriculum areas.
K–12; Teachers, Teacher Educators, Coordinators

High-Tech Service Learning:
Joining School and Community
Pam Van Walleghen (IL), Laura Hobe (IL), Evangeline Fiscetti (IL)
IPS-W114-10, Table 23
Educators model technology-rich projects that move the nexus of learning from the classroom to the community and help students act as agents of positive change.
K–12; University/College; Teachers, Teacher Educators, Coordinators

Technology Competencies in Teacher Education:
An e-Showcase of Best Practices
Pam Wanga (MN), Barbara Ann Henneman (MN), Joanne Hines (MN), Bryan Miyagishima (MN), Tim Harna, Lee Gray, Jim Reineke
IPS-W116-10, Table 16
Join the Minnesota State Colleges and Universities team for an interactive Web showcase of best practices in Technology Competencies in Teacher Education (TCTE).
General, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

WebQuests: Powerful, Safe Classroom Use of the Internet
Maureen Yoder (MA), Angeline Ferris (MA)
IPS-W117-10, Table 17
Find out how WebQuests motivate both teachers and students and promote responsible use of the Internet.
K–12; Teachers, Teacher Educators, Coordinators

SPOTLIGHTS

Life beyond Technology Audits:
Turning Advice into Action
Christopher Moersch, National Business Education Alliance (OR)
W002 Room: Ballroom IV
Technology use profiling in schools has become a major fad. But what effect is it having on classroom pedagogy? Learn specific strategies to transform advice into systemic action.
General, K–12; Teacher Educators, Postsecondary Educators, Coordinators

Finding the $300 Billion and Writing Quality Proposals
Allen Schneider, JDL Technologies, Inc. (MN)
W003 Room: 157W
Revealed: Secrets and wisdom gained from the review of more than 10,000 proposals. You'll learn to identify resources, develop a long-range funding strategy, and write the effective proposals you need to get the funding you want.
General, K–12; Teachers, Coordinators

Lights, Camera, Learning!
What's New from Apple for Education
Tony Lee, Apple (CA)
W003a Room: 160W
Whether it's connecting schools to their community with desktop movies or extending the reach of their network with Airport wireless networking, Apple is helping schools get the most from their investment in technology. This session will focus on the latest Apple tools, products, and solutions for education and provide compelling examples of their application in schools.
K–12; General, Coordinators

Beyond the Crossroads, Where Do We Go from Here?
Capturing Digital Television's Power to Educate
Carl Leidt (VA), Sharna McNeil (CA)
W004 Room: 165W
The television in your classroom is changing: It is combining great video and online content to form a new kind of digital programming.
K–12; Teachers, Teacher Educators, Coordinators
DISTANCE LEARNING
Developing an Online Course Program: Things to Consider
Wendy Burns (CA)
W005 Room: 166W
You need to answer some basic questions before developing online K-12 courses. Explore those questions and answers and explain different models of online offerings.
K-12: Coordinators

Online Science Explorations from the American Museum of Natural History
Gentle Nobei (NY); Francine Milman (NY)
W005a Room: 161W
See an overview of innovative new technology projects that connect people of all ages to real science and real scientists.
WELCOME TO NECC 2000:
Coordinators

W007 Room: 267W
Create a dynamic and effective, multilevel world language classroom through the use of technology and other resources.
9-12: Teachers, Teacher Educators, Coordinators

Facilitating Learning in Teams, Fostering Critical Thinking, Promoting Interdisciplinary Learning, and Empowering Students
W009 Room: 260W
Learn how students at a California elementary school became video stars while creating a current events show. Explore a strategy for integrating reading, writing, and research through video technology.
General: K-12: Teachers, Coordinators

Preschool and Elementary
Using Reality-Based Learning with Primary Students
Joyce Fitch (IL)
W010 Room: 255W
Learn how primary students used technology to solve a problem for a community partner. Technology discussed includes cameras, charts, databases, spreadsheets, slideshows, and Web pages.
K-12: Teachers, Teacher Educators, Coordinators

Language Arts and Social Studies
Postcard Geography: A Crossroad for Technology and Geography
Laurie Hriklia (OH); Leni Dantion (DC); Jon Carr (OH); Terri Genter (OH)
W011 Room: 254W
Integrate your geography curriculum with reading, writing, mathematics, and technology, including exchanging and designing postcards and collecting statistics about the United States and the world.
K-6: Teachers, Teacher Educators

Critical Thinking and Technology: Revolutionizing Vocabulary Acquisition
Ogden Mone (ME)
W012 Room: 269W
Discover an entirely new approach to vocabulary acquisition and reading comprehension employing critical thinking and multimedia software to enhance student learning and teacher instruction.
Community College: 4-12: Teachers, Coordinators

Math and Science
Technology Makes Individualized Basic Mathematics Possible
Rebecca Gies (AL); Matt Akin
W013 Room: 168W
Learn about technology-based, individualized instruction in basic mathematics. Computerized diagnostic tests and computerized learning systems individualize and instruct students who need a nonlecture learning format.
Community College: 6-12; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

NASA Math, Science, and Engineering Education Using Robotics
Jeffrey Seaton (VA); John Evans
W015 Room: 256W
Find out how NASA Langley's Learning Technologies Project is enabling K-12 students to apply math, science, and computer technology skills to real-world problems through a variety of robotics-based programs.
General: Teachers, Teacher Educators, Coordinators

Special Needs and Assistive Technology
Using Technology to Engage Students with Disabilities: A Teacher's Guide
Christy Johnson (NC)
W016 Room: 169W
Technology can be accessible to every child in your classroom. Simple tips and tricks using personal computers, Macintosh™ OS, and Internet browsers help you become savvy in adaptive technology.
K-12: Teachers, Teacher Educators, Coordinators

Internet/Web
Web Site Design Using a Systems Approach
Michael Ruffini (PA)
W017 Room: 364W
Designing a Web site? Get all the basic design principles you need to get started. Learn how to use a systems approach and ensure a comprehensive and quality site.
General: K-12: Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Multimedia
Video Jammin: Video Projects across the Curriculum
Floyd Brown (CA)
W018 Room: 257W
Discover how, with very little video equipment, teachers can help students create exciting and meaningful videos for classroom projects. See student poetry and journals make the leap to video.
General: K-12: Teachers, Coordinators

CONNECTING TECHNOLOGY TO TEACHING AND LEARNING
Technology Integration
Using the Internet to Integrate the Arts with Other Disciplines
Lyne Clement (OC)
W006 Room: 264W
In this session, teachers will learn how to integrate arts across the curriculum through the creative application of technology. They will become familiar with the wealth of interdisciplinary, standards-based resources on the Web sites of the Marco Polo partners. Teachers will also acquire skills necessary to find resources appropriate for planning multidisciplinary lessons.
K-12: Teachers, Teacher Educators

Computer Labs and Classroom Technology Working Together
Barbara Miglioni (NJ); Berry Johnson (NJ)
W007 Room: 261W
There has been a move toward phasing out computer labs and placing all technology in the classrooms. Learn why we should maintain the K-8 computer lab as a viable curriculum-infused learning environment.
K-8: Teachers, Coordinators

Room: 261W

Poster: Change the Traditional High School World Language Classroom through Technology
Robert Morrey (CA)

Room: 267W

Create a dynamic and effective, multilevel world language classroom through the use of technology and other resources.
9-12: Teachers, Teacher Educators, Coordinators

Room: 260W

Learn how students at a California elementary school became video stars while creating a current events show. Explore a strategy for integrating reading, writing, and research through video technology.
General: K-12: Teachers, Coordinators

Room: 255W

Learn how primary students used technology to solve a problem for a community partner. Technology discussed includes cameras, charts, databases, spreadsheets, slideshows, and Web pages.
K-12: Teachers, Teacher Educators, Coordinators

Room: 254W

Integrate your geography curriculum with reading, writing, mathematics, and technology, including exchanging and designing postcards and collecting statistics about the United States and the world.
K-6: Teachers, Teacher Educators

Room: 269W

Discover an entirely new approach to vocabulary acquisition and reading comprehension employing critical thinking and multimedia software to enhance student learning and teacher instruction.
Community College: 4-12: Teachers, Coordinators

Room: 257W

Discover how, with very little video equipment, teachers can help students create exciting and meaningful videos for classroom projects. See student poetry and journals make the leap to video.
General: K-12: Teachers, Coordinators

ROOM: 161W

See an overview of innovative new technology projects that connect people of all ages to real science and real scientists.

ROOM: 264W

In this session, teachers will learn how to integrate arts across the curriculum through the creative application of technology. They will become familiar with the wealth of interdisciplinary, standards-based resources on the Web sites of the Marco Polo partners. Teachers will also acquire skills necessary to find resources appropriate for planning multidisciplinary lessons.

ROOM: 261W

There has been a move toward phasing out computer labs and placing all technology in the classrooms. Learn why we should maintain the K-8 computer lab as a viable curriculum-infused learning environment.

ROOM: 267W

Create a dynamic and effective, multilevel world language classroom through the use of technology and other resources.

ROOM: 255W

Learn how primary students used technology to solve a problem for a community partner. Technology discussed includes cameras, charts, databases, spreadsheets, slideshows, and Web pages.

ROOM: 254W

Integrate your geography curriculum with reading, writing, mathematics, and technology, including exchanging and designing postcards and collecting statistics about the United States and the world.

ROOM: 269W

Discover an entirely new approach to vocabulary acquisition and reading comprehension employing critical thinking and multimedia software to enhance student learning and teacher instruction.
Multimedia, Continued

Creating Interactive Lessons with PowerPoint
Terence Cavanaugh (FL), Cathy Cavanaugh (FL)
W019 Room: 360W
PowerPoint is highly effective for classroom presentations. Learn all the tricks, including navigation buttons, hyperlinks, web links, multimedia elements, and visual Basic for applications.

Support and Maintenance
Help! Where Did My File Go?
Ann Harris (MD)
W020 Room: 268W
Do your students or teachers have problems with computer files? Join us to discuss file management and see a demonstration of Teknimedia's exciting new multimedia training solution.

Research
SIGTE Presents: Annual Research Award on Technology in Teacher Education
Dale Niederhauser (UT), Mariande Handler (IL), with winners Kara Dawson, Aileen Nonis
W021 Room: 158W
Hear the winners of this year's ISTE SIGTE Research Award on Technology in Teacher Education present leading-edge research on the role of technology in teacher education. Their paper is titled "Preservice Teachers' Experiences in a K-12/University Technology-Based Field Initiative: Benefits, Facilitators, Constraints, and Implications for Teacher Education." (Sponsored by ISTE's SIGTE)

General, K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Preserve and Graduate Teacher Education
Teacher Education and Technology at the Crossroads
Carolyn Cox (GA), Addie Ducharme (GA), Minnie McGalite (GA)
W024 Room: 156W
Teacher education reform through the infusion of technology produces a learner-centered, technology-empowered classroom that improves student achievement. See how a collaborative effort is used to build this new model.

Community College, University/College, 6-8; Teacher Educators, Coordinators

Assessment of Distance Learning
Eric Knutsen (NY), Sandra Flank (NY)
W025 Room: 362W
A rationale and proposed scheme for evaluating the learning that results from technology infusion in teacher preparation distance learning classes will be presented.

Community College, University/College; Teacher Educators, Postsecondary Educators

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY: STAYING CONNECTED

Training, Curriculum Standards, and Technology: Cooking Up a Great Recipe
Glenda Gunter (FL), Janie Phelps (FL)
W026 Room: 363W
Find out how to form a partnership blending curriculum standards, instructional strategies, and technology to improve teacher training and student achievement.

K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Staff Development
Put the Right Tools in the Right Hands to Do the Right Things
Larry McNally (TX), Bryan Johnston (TX)
W023 Room: 361W
Technology is only a tool, but the right tool enables a skillful artisan to create a masterpiece. Lubbock ISD's system empowers teachers with the right tools for effective teaching.

K-12, University/College; Postsecondary Educators, Coordinators

MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE

Students' Curriculum-Based Telecomputing as Teachers Authentic Professional Development
Judi Harris (TX), Lynda Abbott (TX), Courtney Glaser (TX)
W027 Room: 369W
What do teachers learn as they help their students learn? How can we document and amplify this "authentic professional development" by collaborating with other educators?

K-12, Teachers, Postsecondary Educators, Coordinators

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES

It Takes a Village: Preparing Technology-Proficient Teachers through Partnerships
Mary Simeone (OR), Lois Cohen (OR), Dan Dunham (OR)
W028 Room: 368W
Join this discussion of a U.S. government-funded project uniting K-12 schools, high-tech corporations, and higher education to create a technology-rich teacher preparation program in Portland, Oregon.

K-12, Community College, University/College; Teacher Educators, Coordinators

LUNCHEON & KEYNOTE

Connecting for Success
Betty Siegel, President, Kennesaw State University (GA)
W028 Room: Ballrooms I-III
Siegel will bring her remarkable sense of humor and perspectives on how we cope with change and the future to the NECC 2000 luncheon program. She has been instrumental in the inclusion of technology in the teacher preparation program in Georgia and is widely recognized for her vision and leadership. As Kennesaw State University President, Siegel is focused on the potential of technology to improve and affect education, specifically its effect on the university. She recently hired a Chief Information Officer to ensure that KSU is moving forward to meet the needs of its students and faculty.

$25 ticket purchase is required.
The Changing Face of Education
Dan O'Shea (FL)
W033 Room: 366W
Find out how Generation Y will use
technology in the near future inside and
outside the classroom and how universities
can meet the next generation's needs.
General, K-12, College, Teacher Educators,
Coordinators

DISTANCE LEARNING
Videoconferences in Learning
Karl Selor (MI), James Watkins (OH), Robert Fox (MI)
W034 Room: 269W
Explore the challenges of implementing a
fully integrated videoconferencing solution
and discover how videoconferencing is
transforming today's learning environment.
General, Teachers, Teacher Educators,
Postsecondary Educators, Coordinators

Connecting Technology to Teaching and Learning
World Languages
Technology and the Modern Language Classroom
Maryanne Boltier (PA)
W035 Room: 264W
Technology in the foreign-language
classroom enhances students' knowledge of
the world through opportunities to practice
language skills. Sample projects, rubrics,
templates, and student work are presented.
General, K-12, Teachers, Teacher Educators,
Coordinators

Project-Based Learning
Connections along the Crossroads
John Gudzke (WI), Shannon McCoy (OK)
W036 Room: 267W
Learn how two teachers came together to
work on the JSTE/NETS writing team for
technology standards and built student
partnerships in interactive learning.
General, K-12, Teachers, Teacher Educators,
Coordinators

Assessing Student Learning and Connecting to Standards and Assessment
How to Design Technology-Rich Lesson Plans in 15 Minutes or Less
Steve Thompson (CA), Judith Stein (FL), Steve
Thompson (CA)
W038 Room: 268W
Save significant time creating lesson plans
that correlate to state standards and
assessment tests by using Mind's state-of-the-art
intranet and Internet technology.
K-12, Teachers, Coordinators

Preschool and Elementary
What's Out There for You?
Gail Lovely (CA)
W039 Room: 165W
Buckle up and get ready for a wild ride
as you explore the best technological tools
available for the youngest of learners.
Computers belong beside tempera paints—
see it for yourself.
K-3, Teachers, Teacher Educators, Coordinators

Language Arts and Social Studies
Civil War Perspective:
A Technology-Connected Lesson
David Edgy (GA), Carol Grainger (GA), Kay Harrell
(GA), Angela Morris (GA), Tami Murphy (GA), Jane
Tamburin (GA), Laurel Warren (GA)
W040 Room: 165W
Through the example of a technology-
connected lesson on the Civil War, learn
how to make technology work effectively
in the classroom.
General, 4-12, Teachers, Coordinators

Overcome Fear of Writing: The "Write" Strategies and Tools
Joanne Norton (CA)
W041 Room: 255W
Help students of all ages overcome their fear
of writing through the use of the computer.
Read student-written papers developed
under the program.
General, Community College, Teacher Educators,
4-12, Teachers, Postsecondary Educators,
Coordinators

Math and Science
Discover the Environment Online
Shelby Cooper (VA), Jana Jones
W042 Room: 161W
Learn about a variety of Internet-based
activities and resources for students and
educators interested in bringing nature and
conservation topics to the classroom.
General, K-12, Teachers, Teacher Educators,
Coordinators
Math and Science, Continued

Graphic Visualization in Multivariable Calculus
Using MATLAB
Joshua Du (GA), Martine Shua (GA), Kirk Shanks (GA)
W043 Room: 156W
Learn about a package of high-quality graphic illustrations designed to increase students' understanding of underlying mathematical concepts in calculus. Take the graphs back to your classroom for demonstration.

Community College, University/College, 9-12; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Internet/Web
SIG/Tel's Online Learning Awards: Project Presentations
Susan Silverman (NY), Betsy Frederick (NM)
W044 Room: 168W
Teachers in Grades K-16 will showcase successful projects and discuss how they organize their classroom curricula to maximize student opportunities to learn using telecommunication networks. (ISTE's SIG/Tel Society Session)

K-12; Teachers, Coordinators, Teacher Educators

Multimedia
Teacher Teams Create Desktop and Web-Based Courseware
Gertrude (Trudy) Abrahamson (FL), George Foroshlet (FL)
W045 Room: 364W
Examine team-created Web courseware, discuss the collaborative process, and learn how authentic experiences prepare teachers to mentor collaborative multimedia-based explorations with their students. (Sponsored by ISTE)

General, K-12; Teachers, Teacher Educators, Coordinators

Support and Maintenance
Tech Coordinator Secrets: Hot Links for All
Martha Savage (LA), Daisy Rowland (LA), Aliek Anthony (LA)
W047 Room: 257W
Ever wonder how your technology coordinator knows all the best Web sites? Join us, and we'll share our secrets.
K-8, Teachers, Coordinators

Evaluation
Improving Evaluations of Technology Integration and Distributed Learning
Shesta Cusby (CA), Mary Cadeau Drexler, Cheryl Carnette
W048 Room: 254W
Learn strategies for improving evaluations of technology integration and distributed learning activities. Get recommendations for improving capacity, focus, conduct, and support for quality evaluations.
K-12, General, University/College; Coordinators

STAYING CONNECTED
WITH PROFESSIONAL DEVELOPMENT
Captured Wisdom: Adult Literacy Educators' Stories of Integrating Technology
Lynda Ginsburg (FL)
W049 Room: 169W
Watch adult literacy teachers and learners share innovative, replicable technology-rich activities and discuss how to fully use "virtual classroom visits."

General, Community College, Teachers, Teacher Educators, Postsecondary Educators

Staff Development
Tear Down the Walls: Taking Teacher Training to New Heights
Tara Norris (SC), Robert Cole (SC), Lynn Nolan (SC)
W050 Room: 158W
With assistance from two federal grants, Greenville County Schools have initiated an innovative teacher training model to integrate technology with curriculum standards.

General, K-12, University/College; Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Celebrating the Century: An Interdisciplinary Unit for Professional Development
Kendra Pomenster (IL), Sri Hartsfield (IL), Karen Thompson (IL), Sue Ruff (IL), Cindy Hustin (IL)
W051 Room: 361W
Learn how development of a multimedia, student-centered, interdisciplinary project about the 20th century engages adult learners participating in summer professional development.
K-12, Teachers, Coordinators

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY:
STAYING CONNECTED
Developing Assessment Strategies for Technology Integration: Three Diverse Case Studies
Abbie Brown (WI), Koh Hering (NC), Thomas Cuskey (NY), Timothy Norton (Canada)
W052 Room: 360W
Hear from three inservice educators about their success stories in assessing technology integration. Topics include the use of laptop computers in a private K-12 school; schoolwide integration of computers in a K-8 rural school; and an Internet-based discussion forum in a high-school social studies class.

General, K-12, University/College; Teachers, Teacher Educators, Coordinators

MOVING BEYOND THE CROSSROADS: TEACHERS AS AGENTS OF CHANGE
Innovation from the Source: A Professional Development Model
Christina Devitt (NY), Tim Flannery
W054 Room: 389W
Learn about a professional development model that puts teachers and curriculum in charge of technological innovation by encouraging faculty to work collaboratively to create meaningful, technology-rich projects.

General, K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators
CONCURRENT SESSIONS

CONNECTED COMMUNITIES:
SCHOOLS, BUSINESSES, AND RESOURCES
Teacher-Initiated, Museum-Based Curriculum Development: A Case Study
Craig Cunningham (IL), Jodie Blue (IL), Michele Warden (IL)
W055 Room: 368W
Imagine developing engaging Web-based curriculum with access to the resources of world-class museums. You can. Hear presenter experiences and future plans for this collaborative project.
General: Teachers, Coordinators
Social, Ethical, and Policy Issues
Are You Guilty Of ? Copyright Issues on the Internet
Kimberly McCoy (OH)
W056 Room: 256W
Explore, in-depth, current copyright law, works covered, works not covered, fair use, and how copyright is applied to the Internet.
General: K-12, Community College, University/College: Teachers, Teacher Educators, Coordinators

WEDNESDAY, 1:30-2:30 PM
SPOTLIGHTS
NASA Science-Here's to the Dreamers
David P. Wens. NASA (MS)
W056a Room: 160W
Here’s to the dreamers. Who help us see Beyond our blindness to what can be Imagination to see beyond the wall Here’s to the dreamers, we need them all Dreamers is a dynamic past/present/future sensory experience. Enticing the senses through sight, sound and song, the Dreamers “live” presentation challenges and encourages participants to dream.
K-12: Teachers, Teacher Educators, Coordinators
BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?
There’s Something about Movies: QuickTime® 4.0 Exposed
Gerald Cress (NY), Koo Hooi (NY)
W057 Room: 160W
Take two! Grab your director’s chair and join us on a fascinating look at the latest classroom video editing technologies.
General: K-12: Teachers, Teacher Educators, Coordinators

DISTANCE LEARNING
Implementing Distance Education Programs in K-12 Schools: Opportunities and Challenges
Joseph Scherer (PA), Lyne Schrum (GA)
W059 Room: 362W
Learn about Germantown Academy's progress toward successful phased-in implementation of distance education programs (ITV and online) supporting both curricular enrichment and faculty professional development.
K-12: Teachers, Coordinators
CONNECTING TECHNOLOGY TO TEACHING AND LEARNING
Project-Based Learning
Ellis Island/Chicago: Breaking Ranks with the Teacher-Centered Classroom
Susanne Hemminger (IL), Donna Caselli (IL), George Smith (IL), Wanda Williams (IL), Gail Tommiil (IL), Kevin Waller (IL)
W060 Room: 264W
Break ranks with tradition by using technology to empower students as learners. Students can’t embrace technology if their teachers won’t, so find out how technology is changing the way veteran teachers teach.
6-12: Teachers, Teacher Educators, Coordinators
Gender Equity
Alternative Technology: How to Keep Adolescent Girls Interested in Technology
Marilyn Piper (WA), Craig Castello (WA)
W061 Room: 267W
Find out how this 1999 Intel Innovations in Teaching Award-winning course is addressing the issue of gender imbalance in technology. Participating girls are learning technology skills using topics like women’s self-defense, eating disorders, and career exploration.
General: K-12, Community College, University/College: Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Empowering Students
Seven Cyber trends in the Classroom That Will Define Your Future
Viki Lawrence (BOP), Andrew King (New Zealand)
W062 Room: 280W
E-business puts the world’s information at one’s fingertips. See how children can become savvy in the ways of e-business.
General: Teachers
Assessing Student Learning and Connecting to Standards and Assessment
NETS for Students: Connecting Curriculum and Technology
Peggy Kelly (CA), James Wiebe (CA), Joyce Friese (OK)
W063 Room: 261W
Hear the authoring teachers and the managing editor of the National Educational Technology Standards (NETS) Project describe how the document was developed, how it’s being used, and why it is such an important resource. (Sponsored by ISTE)
K-12, University/College: Teachers, Teacher Educators, Coordinators
Laptops
Distributed Learning Environments: Mobile Laptop Labs
Jill Habaan (GA), Kim Head (GA)
W064 Room: 363W
Create a mobile computer lab that puts technology into the hands of students without tying up Instructional space. Hear how Forsyth County School System has re-engineered the traditional computer lab.
General: Teachers, Coordinators
Preschool and Elementary
International Multimedia Connections Enhance Young Children’s Learning
Jacqueline K. Bowman (CT), June L. Wright (CT), James Strauss (CT), Piotr Kamillo (Finland), Jarri Hakist (Finland)
W065 Room: 255W
See how integrating multimedia technology improves learning by looking at shared electronic books produced by children in Connecticut and Finland.
K-3: Teachers, Teacher Educators, Coordinators
Language Arts and Social Studies

Potent Partners:
- Poetry and Technology
 - Sally Humble (NC)

W066 Room: 269W
SAS InSchool's Visualizing Poetry product series offers a radical new approach to reading and writing instruction, using technology to bring poetry to life and stimulate every student.

Exhibitor presentation
- Community College, 6-12, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

W067 Room: 157W
History projects about the Oregon and Sante Fe trails provide a prime example of classroom technology incorporation. See examples of projects and learn what has worked and what has not.

- K-6: Teachers, Teacher Educators, Coordinators

Math and Science
Enhancing the Teaching of Mathematics with Scientific Notebook

W068 Room: 158W
See how Scientific Notebook can revolutionize the teaching of mathematics. You'll even learn how to use the program as a "whiteboard" and then load your notes to your own Web site! This session is a great introduction for those without experience creating Web sites.

- Community College, University/College, 9-12, Teachers, Postsecondary Educators

Farragut Connected for Learning: Flexible Approaches with Science Technology Tools

W069 Room: 161W
From AP to zoology, our science teachers and students find that a flexible arrangement of mobile computer carts provides versatility and variety when using technology tools.

- 6-12: Teachers

Computer Science
Practical Computing: A Survey Computing Course

W070 Room: 168W
Learn about a team-taught, project-based course encompassing word processing, spreadsheets, graphics, database development and use, multimedia, programming, and Web site design.

- Community College, 6-12, Teachers, Teacher Educators, Coordinators

Special Needs and Assistive Technology
- From Concrete to Abstract: Developing Inquiring Learners
 - Carol Shields (TX)
 - Room: 386W
 - View projects used with students in an at-risk program. Find out how the program gave students a better understanding of technology as a tool and the ability to demonstrate practical applications of mathematics in real life.

- K-12: Teachers

Internet/Web

- 101 Ways to Use the Internet in Your Classroom
 - Carine Burton (CA)
 - Room: Ballroom IV
 - Learn ways to maximize the effectiveness of the Internet in your elementary- or middle-school classroom! Address general Internet integration, use of the Internet as a tool for demonstration and interaction, and Internet navigation.

- K-5: Teachers, Teacher Educators, Postsecondary Educators

- The *Ize* Have It: Creating Curriculum-Based Web Pages
 - Keith Pyke (FL)
 - Christopher Curby (FL)
 - Room: 364W
 - See your students' best efforts on the Web. Learn how to create a successful curriculum-based Web site with your students. Topics include software, planning, organization, and common pitfalls.

- General, K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

Multimedia

- Managing and Assessing the Development of Multimedia Projects
 - Karen Iverson (CA)
 - Ann Barron (FL)
 - Etona Tinley (CA)
 - Room: 165W
 - Learn to manage the development and assessment of multimedia projects. See rubrics, organization charts, and more.

- K-12, Community College, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators

- Rev It Up! Racing Across the Curriculum
 - Mark Rice (MS)
 - Perry Bowes
 - Room: 360W
 - Learn about Racing Across the Curriculum, an effort that uses technology and racing as a teaching and learning tool. The project uses HyperStudio®, NASCAR 3, the Internet, laserdisc and DVD technology, and Photoshop® along with major racing teams.

- K-12, University/College, Teachers, Teacher Educators, Postsecondary Educators

Support and Maintenance

- Top 10 Printer Troubleshooting Tips
 - Len Scrogan (CO)
 - Room: 257W
 - Ever feel like throwing your printer out the window? Find out the top 10 causes of printer frustration and how to solve them.

 - K-12, Teachers, Coordinators

Evaluation

- Of Methods and Madness: Design Considerations for Educational-Technology Evaluation
 - Kirk Vandersall (CA), David Quinn (IL)
 - Room: 254W
 - Review research design and methodological considerations for assessing the effect of educational technology on student achievement at the district level or higher.

- General, K-12, Community College, University/College, Coordinators

STAYING CONNECTED WITH PROFESSIONAL DEVELOPMENT

- Travel + Live Chats + Internet = Better Teaching in History and Social Studies
 - Ben Swecker (VA), Beverly Thurston (VA)
 - Room: 169W
 - WorldNet: Virginia allows teachers traveling in foreign countries to post journal entries and pictures to the Web and to participate in live chats. What better way to expose your students to the world's riches?

- General, K-12, University/College, Teachers, Postsecondary Educators, Coordinators

Staff Development

- Teaching Teachers with Advanced Learning Technologies
 - James Levin (IL), Ray Rose (MA), Linda Palm (CA)
 - Margaret Nancy (NY), Sandy Levin (IL), Greg Woodhouse (IL), Juli Fauzio, Michael Waugh (CA)
 - Room: 361W
 - Join this panel of experts as they discuss the process of developing and conducting online education for K-12 teachers. If you're interested in using new technologies for ongoing teacher learning and development, this session is for you.

- General, K-12, University/College, Teachers, Teacher Educators, Postsecondary Educators, Coordinators
Spotlight

Lessons for the Millennium:
From the Journals of Lewis and Clark
Warren Buckleitner, *Children’s Software Revue (NJ)*

Using Satellite Delivery as a Bridge for the Digital Divide:
Janie Smith, *Georgia Public Broadcasting (GA)*

Learning in the Age of Creativity:
David Thornburg, *Thornburg Center for Professional Development*

Beyond the Crossroads, Where Do We Go From Here?
Nancy Godru Dredex (MA), Sheila Castledy (CA), Cheryl Carnette (DC)

“North Star Dreaming”: Presenting Student Dreams for the Future
David Wagner (CA), Peter Reynolds (MA)

“Pair-It”; Pairing Literacy and Technology
Jan Whelan (TX)

Applying Technology-Connected Units to Achieve State Standards
Lee Grafile (CA), Diane Kline (CA)

American Frontiers: Using Laptops to Experience Multicultural History
LeAnn Niedermus (FL), Lill Beinrenee (FL)

Transforming Teacher Education
Elizabeth Holmes (GA), Polly Adams (GA)

The Myth and Reality of Educational Technology in Botswana
Krishan Lulu Kumar (Botswana), Tony Morrison (Botswana), Paul Neya (Botswana)

The Transforming Teacher Education (TTE) Project partners three Georgia universities and 10 PK-12 partner schools to restructure teacher education programs using technology as a catalyst for change.
Community College, University/College; Teachers, Teacher Educators, Postsecondary Educators

Preservice and Graduate Teacher Education

CONNECTED COMMUNITIES:

SCHOOLS, BUSINESSES, AND RESOURCES

Social, Ethical, and Policy Issues

Distance/Distributed Education’s Role in Bridging the Digital Divide
Nancy Godru Dredex (MA), Sheila Castledy (CA), Cheryl Carnette (DC)

BEYOND THE CROSSROADS, WHERE DO WE GO FROM HERE?

WELCOME TO NECC 2000
Math and Science

A Learning Community: Using Technology to Enhance Student Success
Betty Ambrasey (MI), Julie Brown (IN), Martin Maguire (IL), Rob Osterman (MI), Mike Harmon (IN), MaryKay Marks (MI), Jeezy Zielinski (IL)

W094 Room: 161W

Learning the basics of simulation.

Most educational software uses some form of simulation. Learn the basics of simulation, what it is, how and why it is used. (Sponsored by the Society for Computer Simulation (SCS), International)

General; Community College, University/College; Teacher Educators, Postsecondary Educators

Computer Science

Cyber Careers for the Net Generation
Allen Parrish (AL), Peer Salfund (WA), Manjarini Wijenase (WA)

W095 Room: 264W

Learn about the results of the Cyber Careers project, which is designed to provide information on IT careers to middle- and high-school students. (Sponsored by the IEEE Computer Society)

K-12; Community College, University/College; Teacher Educators

Special Needs and Assistive Technology

Internet Textbooks: Helping Students Learn More!
Mark Horrey (OR), Lynn Anderson-Inman (OR), Carol Kennedy (NY)

W100 Room: 368W

Learn to evaluate digital textbooks. See examples of novels and history and science textbooks infused with resources to help at-risk students read and learn more!

K-12; Teachers, Teacher Educators, Coordinators

Internet/Web

Managing the Web Site
Leslie Fisher (CA)

W102 Room: 364W

Learn how to effectively organize your Web site, allow people to update the site without HTML, and make fast-loading Web pages.

General, K-12; Community College, University/College; Teacher Educators, Coordinators

What Is Simulation, and How Can It Make You Rich?
Charles Shub (CO)

W097 Room: 156W

Most educational software uses some form of simulation. Learn the basics of simulation, what it is, how and why it is used.

General, Community College, University/College, 9-12; Teachers, Teacher Educators, Postsecondary Educators

Multimedia

The Classroom of Tomorrow: Today
Edward Benedict (WI)

W103 Room: 257W

Learn how to design an effective multimedia classroom through examples of multimedia tests, student authored CDs, animation, charts and graphs, and teacher presentations on India, Japan, and China.

General; Teachers, Teacher Educators, Coordinators

Positively Pix-illating! Multimedia Creativity with Kid Pix
Tisha Swab (CA)

W104 Room: 268W

Discover how to create effective multimedia slideshows and reports quickly and easily with Kid Pix Studio 3rd Edition and Kid Pix Activity Kits.

K-6; Teachers, Teacher Educators, Coordinators

Funding, Planning, and Implementation

Writing a Solid Infrastructure Bid Specification
Fred D'Andrea (RI)

W105 Room: 254W

Writing bid specs can be a drag. All too often, the product is a shopping list that favors the vendor, not the customer! There are better ways to stretch your dollars so you can maximize your connectivity, but you have to know "the art of the possible."

General; Coordinators

STAYING CONNECTED

WITH PROFESSIONAL DEVELOPMENT

Staff Development

Needs- and Site-Based Professional Development: Inquiry and Technology Learning
Catherine Price (GA), Brian Gerber (GA), Andrew Brovey (GA)

W106 Room: 360W

Simulate and discuss sample successful teacher staff development projects, including discussion of unique features and key elements for effective future projects.

K-12; University/College; Teachers, Postsecondary Educators, Coordinators

Workshops That Work
Jean Sindhusara (NJ)

W107 Room: 361W

Discover a workshop format that entices teachers into future computer use by providing skills that enhance teaching in immediate and purposeful ways.

K-12; Teachers, Coordinators
Preservice and Graduate Teacher Education
Teaching Online: Opportunities and Pitfalls
Jan LaForge (OH), Bonnie Mathlits
W108 Room: 362W
Find out about the interactive nature of online teaching and practical methods for overcoming the problems and challenges in putting a professional graduate degree program online.
University/College: Postsecondary Educators, Coordinators

Teachers Communicating for Success: nschool.com Shows Schools the Free Way!
Lynne Schrum (GA)
W112 Room: 361W
Learn about a free product to create communications among teachers, parents, and students. nschool.com offers educational resources, lesson plan development, shared calendars, and full e-mail.
K-12: Teachers, Coordinators

STANDARDS, ASSESSMENT, AND ACCOUNTABILITY: STAYING CONNECTED
K-12 Educational Technology Update
Jeanne Hayes (CO)
W109 Room: 368W
Get to the heart of educators' real use of technology through QED's annual survey results relating directly to technology use in the classroom. Also find out how your state or district fares on purchasing plans, technology budgets and per-pupil expenditures. (Exhibitor presentation)
K-12: Teachers, Coordinators

CLOSING GIVEAWAYS & NECC 2001 "BUILDING ON THE FUTURE" PREVIEW
GWCC, Hall G
Join us for a preview of Chicago's NECC 2001: Building on the Future, and for a drawing of special prizes including hardware, software, and an airfare/registration package for NECC 2001!
Must be present and have photo ID to win.

CONNECTED COMMUNITIES: SCHOOLS, BUSINESSES, AND RESOURCES
The Birth of a Distance Education Consortium
Chuck Chuivick (NJ)
W110 Room: 268W
The session provides a description of how the New Jersey Virtual Community College Consortium was founded and how it is now operating in its first full year of operation.
(Sponsored by SIGUCCS)
General: Community College, University/College: Postsecondary Educators, Coordinators

Project VBugs:
Teaching Visual Basic Internationally
Anthony Malone (OH), Joan Pryce
W111 Room: 366W
This session will describe in detail the necessary steps to successfully market and deliver an existing technology training course abroad in a global initiative.
General: Community College, University/College: Teachers, Postsecondary Educators, Coordinators
SPEAKER INDEX

A

Abernathy, Kay........... IPS-W107-10, Table 20
Abraham, Jerry......... M113
Abrams, Arnie.......... TA400
Abramson, Trudy....... W045
Abshire, Sheryl........ M058
Ackerman, Duane....... W001
Adams, Douglas........ T045
Adams, Douglas........ MP324, M029
Adkins, Kathy.......... M015
Adie, Melissa........... T074
Adler, Steve........... MP325
Al-Haddad, Hisham..... T088
Ambrose, Bette........ W094
Amos, Steve............ M046
Anderle, Sharon........ PS-T13-1:30, Table 12
Anderson, Bob......... PS-M25-1:30, Table 8
Anderson, Larry...... M086
Andre, Darlene........ WA500
Angelica, Salvatore... SUA200
Armstrong, Sara....... M099a
Arnott, Janet......... IPS-W108-10, Table 19
Arnold, David.......... M017
Aust, Ron.............. PS-W97-10, Table 9

B

Babbs, Linda.......... T013
Bailey, Kathryn....... T041
Baker, Michelle....... TP424
Barkley, Stephen..... M059
Barnes, Sheila......... MA301
Baron, Barbara........ T076
Barrett, Helen........ SAP112, SUF225, T010
Barrett, Craig........ T001
Barshinger, Timothy... M009
Barton, Robin......... IPS-T85-1:30, Table 18
Bates, Anne........... TP426, WA501
Baule, Steve.......... T021
Baumbach, Donna...... T029
Bench, Mark........... M051
Beck, Sandy........... MTT010
Beck, Christine....... T126
Becker, Nancy......... TP427
Becker, John.......... M031
Behrend, Lisa......... PS-T17-1:30, Table 4
Benedict, Edward...... W103
Bequette, Gienda...... M068

Bergman, Helene........ M099
Berman, Sheldon....... IPS-M13-10, Table 18
Best, Tim............. M080
Bieletzki, Taibot...... M005
Bingham, Margaret.... W088
Binnard, Willis....... SUF226
Bjork, Kristen........ M327
Blauer, Christina...... MA302, T124
Blaylock, DeAnna...... PS-W98-10, Table 4
Blessing, Joseph....... IPS-T61-10, Table 15
Bloom, Linda.......... MP328
Bobbitt, Curtis....... M050
Bober, Marcie......... M104
Boerner, Grace........ IPS-M37-1:30, Table 23
Boeijer, Maryanne...... IPS-M38-1:30, Table 24, W035
Boling, Nancy......... M092
Bonica, Lauren........ T027
Bonnelle, Melody...... M0303
Borning, Marsha....... PS-T49-10, Table 11
Bowen, Kari............ PS-T50-10, Table 5
Bowlin, Karla.......... IPS-M14-10, Table 17
Bouman, Jacqueline.... W065
Boyd, Lisa........... T017
Braids, Floyd.......... W018
Breit, Lisa........... PS-W99-10, Table 8
Breilhaupt, David.... T135
Brekhus, Todd......... MP325, T140
Brennenman, Joy....... PS-T51-10, Table 6
Bresnaham, Pauline.... T070
Bridges, Brian........ M110
Bromley, Teresa....... TA402
Brooks, Linn......... MA304
Brovey, Andrew....... M064
Brown, Abbie.......... W053
Brown, Beth........... T043
Brownstein, Bonnie.... T048
Buchholz, Susan....... PS-T75-1:30, Table 1
Buckley, Warren...... W084, TP429
Burch, Cheri.......... T044
Burke, Meghan......... T037
Burks, Beverley...... TA403, PS-W100-10, Table 6
Burmark, Lynell...... SAA100, SAP113, T032
Burnitske, Jackie..... SUP215
Burns, Mary........... MTT011, M024
Burns, Wendy.......... W005
Burton, Corrine....... W072
Burton, Laureta...... T086
Butler, Greg........... MP330, TA404

C

Carbo, Molly........... SAF124
Carnow, Gary......... SAF125
Carriero, Corinne.... SUF228
Carroll, Thomas....... M087
Cartwright, Joyce..... IPS-T62-10, Table 19
Casey, Nate........... M045
Cassidy, Sheila....... W048
Cassidy, Constance... TP430
Cater, Lynne.......... M100
Caughlin, Janet....... MA305, TA405
Cavanaugh, Terrence.. W019
Cavanaugh, Cathy..... M078
Chen, Daxing.......... T005
Chen, Shu-Hsien....... IPS-T86-1:30, Table 19

Christal, Mark......... MTT015
Christensen, Robin.... MP336
Chruwick, Chuck....... W110
Cicardi, Lisa......... T006
Ciesemier, Kristin.... WA502
Clark, Judy........... M066
Clark, Chris.......... SAP114, SUF229, T132
Clement, Lynne....... W006
Cohen, Libby.......... M072
Coelman, Felicia...... M079
Cooling, Tricia....... SUF231
Cooper, Shelby........ W042
Copeland, Jillian..... M011
Cox, Carolyn.......... W024
Cradler, John.......... M103
Craig, Dorothy Varcarel.. M101
Crisi, Gerald......... W057
Crisi, Denise.......... T101
Crockett, Tom.......... MP331
Cunningham, Craig..... W055
Cunningham, Ann....... SAA101
Curry, Christopher... T064
Curtis, Ronald........ T117

WELCOME TO NECC 2000 WW.W.NECCSITE.ORG

GENERAL SESSION CODES

M001
M = Monday
T = Tuesday
W = Wednesday

POSTER SESSION CODES

PS-M01-10-Table 1
Numerical order by last name of main speaker
Start time of the presentation

WORKSHOP CODES

SUA = Saturday AM
SUP = Sunday AM
SAP = Saturday PM
SUF = Sunday PM
SAF = Saturday Full-day
MA = Monday AM
MP = Monday PM

BEST COPY AVAILABLE
<table>
<thead>
<tr>
<th>Name</th>
<th>Table Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seavers, Vickie</td>
<td>MTW021</td>
</tr>
<tr>
<td>Seiler, Karl</td>
<td>W034</td>
</tr>
<tr>
<td>Senkner, David</td>
<td>IPS-W113-10, Table 22</td>
</tr>
<tr>
<td>Sharp, Vicki</td>
<td>SUA208</td>
</tr>
<tr>
<td>Shaw, Holly</td>
<td>PS-T81-1:30, Table 10</td>
</tr>
<tr>
<td>Shields, Carol</td>
<td>IPS-W113-10, Table 23</td>
</tr>
<tr>
<td>Sharp, Vicki</td>
<td>SUA208</td>
</tr>
<tr>
<td>Shaw, Holly</td>
<td>PS-T81-1:30, Table 10</td>
</tr>
<tr>
<td>Shiffman, Samuel</td>
<td>MP344</td>
</tr>
<tr>
<td>Shin, Young</td>
<td>T113</td>
</tr>
<tr>
<td>Shub, Charles</td>
<td>W097</td>
</tr>
<tr>
<td>Silbey, Robert</td>
<td>SAF146</td>
</tr>
<tr>
<td>Siegel, Betty</td>
<td>W028a</td>
</tr>
<tr>
<td>Silbey, Robyn</td>
<td>T042</td>
</tr>
<tr>
<td>Silverman, Susan</td>
<td>MA321, W044</td>
</tr>
<tr>
<td>Silverman, Stan</td>
<td>SUA209, IPS-T94-1:30, Table 24</td>
</tr>
<tr>
<td>Simeone, Mary</td>
<td>W028</td>
</tr>
<tr>
<td>Simpson, Carol</td>
<td>M112</td>
</tr>
<tr>
<td>Sindharika, Jean</td>
<td>W107</td>
</tr>
<tr>
<td>Siwinski, Carol</td>
<td>MTM007, IPS-M21-10, Table 13</td>
</tr>
<tr>
<td>Skelly, Ladd</td>
<td>SUP221</td>
</tr>
<tr>
<td>Skinner, Michael</td>
<td>SUP222</td>
</tr>
<tr>
<td>Srdakova, Jane</td>
<td>IPS-M45-1:30, Table 2</td>
</tr>
<tr>
<td>Smith, Richard</td>
<td>T019</td>
</tr>
<tr>
<td>Smith, Kerri</td>
<td>M041</td>
</tr>
<tr>
<td>Smith, Bob</td>
<td>T127</td>
</tr>
<tr>
<td>Smith, Misty</td>
<td>IPS-M35-1:30, Table 2</td>
</tr>
<tr>
<td>Smith, Scott</td>
<td>W070</td>
</tr>
<tr>
<td>Smith, Janie</td>
<td>W085</td>
</tr>
<tr>
<td>Smooin, Susan</td>
<td>IPS-M22-10, Table 20</td>
</tr>
<tr>
<td>Snipes, Phyllis</td>
<td>MA316</td>
</tr>
<tr>
<td>Sprague, Debra</td>
<td>T103</td>
</tr>
<tr>
<td>Stabler, Hank</td>
<td>T114</td>
</tr>
<tr>
<td>Stager, Gary</td>
<td>SUF249, M013a, W102a</td>
</tr>
<tr>
<td>Starr, Kelly</td>
<td>T109</td>
</tr>
<tr>
<td>Stackelberg, Allen</td>
<td>TA418</td>
</tr>
<tr>
<td>Stainheus, Kurt</td>
<td>T093</td>
</tr>
<tr>
<td>Staphans, Tammy</td>
<td>W098</td>
</tr>
<tr>
<td>Stawens, Ron</td>
<td>IPS-M46-1:30, Table 13</td>
</tr>
<tr>
<td>Stawert, Emily</td>
<td>W037</td>
</tr>
<tr>
<td>Studier, Neal</td>
<td>SUF243</td>
</tr>
<tr>
<td>Subramaniam, Karthigeyer</td>
<td>T091</td>
</tr>
<tr>
<td>Sun, Jeff</td>
<td>SAF139, SUA210</td>
</tr>
<tr>
<td>Sun, Yan</td>
<td>PS-T82-1:30, Table 6</td>
</tr>
<tr>
<td>Swaib, Trisha</td>
<td>W104</td>
</tr>
<tr>
<td>Swecker, Ben</td>
<td>W078</td>
</tr>
<tr>
<td>Talaiver, Manorama</td>
<td>SUF244</td>
</tr>
<tr>
<td>Taiamo, Sheila</td>
<td>T137</td>
</tr>
<tr>
<td>Tapang, David</td>
<td>T121</td>
</tr>
<tr>
<td>Tarantiles, Paul</td>
<td>IPS-T95-1:30, Table 23</td>
</tr>
<tr>
<td>Taylor, Lydota</td>
<td>T051</td>
</tr>
<tr>
<td>Taylor, Harriet</td>
<td>T084</td>
</tr>
<tr>
<td>Therpe, Jeff</td>
<td>SAF140</td>
</tr>
<tr>
<td>Thomas, William</td>
<td>T034</td>
</tr>
<tr>
<td>Thomas, LaJean</td>
<td>M082, T054</td>
</tr>
<tr>
<td>Thoms, Margaret</td>
<td>T128</td>
</tr>
<tr>
<td>Thompson, John</td>
<td>T049</td>
</tr>
<tr>
<td>Thompson, Steve</td>
<td>W038</td>
</tr>
<tr>
<td>Thorneburg, David</td>
<td>W085e</td>
</tr>
<tr>
<td>Thorneburg, Lois</td>
<td>SAF141</td>
</tr>
<tr>
<td>Thruber, Bonnie</td>
<td>M095, TMT018</td>
</tr>
<tr>
<td>Thurston, Catherine</td>
<td>T025</td>
</tr>
<tr>
<td>Tichener, Caylen</td>
<td>M049</td>
</tr>
<tr>
<td>Toppe Hickey, Jana</td>
<td>IPS-M23-10, Table 24</td>
</tr>
<tr>
<td>Toleston, Thomas</td>
<td>TA419</td>
</tr>
<tr>
<td>Turner, Therese</td>
<td>IPS-T70-10, Table 13</td>
</tr>
<tr>
<td>Turner, Laura</td>
<td>T046</td>
</tr>
<tr>
<td>Tuttle, Harry</td>
<td>T134</td>
</tr>
<tr>
<td>Tuttle, Dianne</td>
<td>IPS-M36-1:30, Table 9</td>
</tr>
<tr>
<td>Twomey, Cordelia</td>
<td>T063</td>
</tr>
<tr>
<td>Uyehara, Vera</td>
<td>T039</td>
</tr>
<tr>
<td>Veliezno, Joyce</td>
<td>T036</td>
</tr>
<tr>
<td>Velizuela, Linda</td>
<td>T078</td>
</tr>
<tr>
<td>Van Scoter, Judy</td>
<td>IPS-M47-1:30, Table 18</td>
</tr>
<tr>
<td>Van Williehen, Pam</td>
<td>IPS-W114-10, Table 23</td>
</tr>
<tr>
<td>Vanderhorst, Kate</td>
<td>SUP223</td>
</tr>
<tr>
<td>Vandersall, Kirk</td>
<td>W077</td>
</tr>
<tr>
<td>Venning, Francesca</td>
<td>TP439, WAS057</td>
</tr>
<tr>
<td>Ventress, Andy</td>
<td>SUF245, PS-T83-1:30, Table 11</td>
</tr>
<tr>
<td>Vicki, Kajika</td>
<td>M010</td>
</tr>
<tr>
<td>Vailhe, Billie</td>
<td>IPS-W110-10, Table 18</td>
</tr>
<tr>
<td>Wagner, Hazel</td>
<td>IPS-T71-10, Table 18</td>
</tr>
<tr>
<td>Wagner, David</td>
<td>W087</td>
</tr>
<tr>
<td>Wall, Mary</td>
<td>M036</td>
</tr>
<tr>
<td>Weldorf, Kristie</td>
<td>T053</td>
</tr>
<tr>
<td>Wells, Jennifer</td>
<td>T098</td>
</tr>
<tr>
<td>Weng, Pam</td>
<td>IPS-W116-10, Table 16</td>
</tr>
<tr>
<td>Warrick, David</td>
<td>SUF247</td>
</tr>
<tr>
<td>Warrick, David</td>
<td>M039</td>
</tr>
<tr>
<td>Waters, Daniel</td>
<td>T066</td>
</tr>
<tr>
<td>Weathersby, Jeannie</td>
<td>T116</td>
</tr>
<tr>
<td>Webb, Kathleen</td>
<td>M053</td>
</tr>
<tr>
<td>Webb-Upham, Michelle</td>
<td>M069</td>
</tr>
<tr>
<td>Welch, Scott</td>
<td>T094</td>
</tr>
<tr>
<td>Weiler, B. Jan</td>
<td>TA421</td>
</tr>
<tr>
<td>West, Tom</td>
<td>T102</td>
</tr>
<tr>
<td>Wester, Nancy</td>
<td>M034</td>
</tr>
<tr>
<td>Willard, Nancy</td>
<td>SAP120</td>
</tr>
<tr>
<td>Williams, Richard</td>
<td>IPS-W105-10, Table 10</td>
</tr>
<tr>
<td>Williams, David</td>
<td>T020</td>
</tr>
<tr>
<td>Williams, Paula</td>
<td>SUP224</td>
</tr>
<tr>
<td>Wilson, Liza</td>
<td>IPS-T72-10, Table 20</td>
</tr>
<tr>
<td>Wininger, Denaya</td>
<td>TP441</td>
</tr>
<tr>
<td>Wisick, Cheryl</td>
<td>IPS-M48-1:30, Table 22</td>
</tr>
<tr>
<td>Willick, Nancy</td>
<td>W069</td>
</tr>
<tr>
<td>Wolinsky, Art</td>
<td>SAF143</td>
</tr>
<tr>
<td>Woodell, Jim</td>
<td>TA422</td>
</tr>
<tr>
<td>Wrothman, Gail</td>
<td>M063</td>
</tr>
<tr>
<td>Woytonik, Marlene</td>
<td>PS-T84-1:30, Table 7</td>
</tr>
<tr>
<td>Wright, Peter</td>
<td>M035</td>
</tr>
<tr>
<td>Yln Sun, Hong (Carol)</td>
<td>MTM008</td>
</tr>
<tr>
<td>Yoder, Sharon</td>
<td>SUA211</td>
</tr>
<tr>
<td>Yoder, Maureen</td>
<td>IPS-W117-10, Table 17</td>
</tr>
<tr>
<td>Yohe, Paula</td>
<td>T129</td>
</tr>
<tr>
<td>Yu, Kesheng</td>
<td>IPS-W118-10, Table 13</td>
</tr>
<tr>
<td>Zahn, Mario</td>
<td>IPS-M11-10, Table 2</td>
</tr>
<tr>
<td>Zaorski, Agnes</td>
<td>PS-T60-10, Table 12</td>
</tr>
<tr>
<td>Zhang, Yixin</td>
<td>IPS-W106-10, Table 1</td>
</tr>
<tr>
<td>Zisk, Joseph</td>
<td>PS-M12-10, Table 8</td>
</tr>
</tbody>
</table>
Thank you to each of the dedicated professionals and their families for the long hours and irreplaceable knowledge and expertise they have given to NECC 2000. NECC relies on its volunteer committee members each year, and without their commitment and professional interest in giving back to the field of educational technology, we would not be able to bring you such an outstanding conference.

—Cathleen Norris, NECA President
NECA's mission is to advance educational philosophies, practices, policies, and research that focus on the appropriate use of current and emerging technologies to empower all individuals to reach their full potential. Its primary vehicle is NECC, an annual conference for those interested in improving teaching and learning with technology in K-12 and teacher education.
1999-2000
NECA BOARD
OF DIRECTORS
Cathleen Norris, President
University of North Texas-Denton
Judy Robb, Vice President
University of New Hampshire-Durham
James Kerlin, Treasurer
Pennsylvania State University-University Park
Sally Sloan, Secretary
Winona State University (MN)
David Brittain, Past-President
MGT of America (FL)
Peggy Kelly, Director-at-Large
California State University-San Marcos
Paul Ohme, Director-at-Large
CEISMC, Georgia Institute of Technology-Atlanta
Harriet Taylor, Director-at-Large
Louisiana State University-Baton Rouge

SOCIETY REPRESENTATIVES
Chuck Chulwick,
ACM/SIGUCCS
Raritan Valley Community College (NJ)
Steve Gilbert,
AAHE/TLT Group
American Association for Higher Education/TLT Group (DC)
Karen Gould,
ACM/SIGCUE
Metro School District of Wayne Township (IN)
Robert Harrell,
AECT
Georgia Perimeter College
Brian Hawkins,
EDUCAUSE
EDUCAUSE (CO)
Bonnie Marks,
ISTE SIGTC
Alameda County Office of Education (CA)
Dianne Martin,
ACM/SIGCAS,
George Washington University (VA)
Gail Miles,
CCSC
Leslie-Knox College (NC)
Allen Parrish,
IEEE Computer Society
The University of Alabama
Lynne Schrum,
ISTE
The University of Georgia-Athens
Charlie Shub,
SCS
University of Colorado-Coloardo Springs
Neal Strudler,
ISTE SIGTE
University of Nevada-Las Vegas
Harriet Taylor,
ACM/SIGCSE
Louisiana State University-Baton Rouge
Cheryl Williams,
CoSN
National School Boards Association (VA)

NECA/NECC OFFICE
John Vaille,
Executive Director
Donella Ingham,
Director, Conference Services
Vincent Fain,
Director, Association Services
Barbara Hewick,
Office Manager
ISTE
John Vaille,
Chief Executive Officer
Anita Best,
Program Co-Chair
Leslie Conery,
Workshop Co-Chair
Diana Sturm,
NECC Contract Manager
Laurie Thornley,
Workshop Manager
Malori Novak,
Publications/Program Assistant
Dave Moursund,
NECA Advisor

UNIVERSITY OF OREGON
Paul Katz,
Exhibits/Registration Manager
June Seegert, Caitlin Snyder, & Lisa Sorenson,
Exhibits Staff
Linda Smith, Lynn Black, Ariel Burleson, & Kirstin Hamilton
Registration Staff
Eliza Drummond & Tom Pargeter,
Web Development

BEST COPY AVAILABLE
MANY THANKS TO THE FOLLOWING SCHOOLS, COMPANIES, AND ORGANIZATIONS WHO HAVE WORKED WITH US TO CREATE THE NECC 2000 EXPERIENCE

Event, Promotional, Transportation, and Registration Bag Sponsors

TIER ONE
(20k or greater; in order of contribution value)
Apple
NetSchools
Hewlett-Packard Company
Compaq Computer Corporation
Lightspan, Inc.
Microsoft Corporation
IBM Global Education, TIVOLI, and Lotus Development
Edmark
Sun Microsystems Computer Corporation
Simplexis.com
Cisco Systems, Inc.
Intel Corporation
BellSouth Foundation
PowerSchool, Inc.
Follett Software Company
AOL.School

TIER TWO
(in alpha order)
Chancery Software, Ltd.
Georgia Public Broadcasting
HiFusion
Knowledge Adventure
LearningPays.com
National Computer Systems
Public Broadcasting Atlanta
Riverdeep Interactive Learning
Scientific Learning Corporation
THE Journal
TimeCruiser
Tom Snyder Productions

Software Licensing
Apple, Inc.
Microsoft Corporation

Hardware Donations
Apple, Inc.
Gateway
Lexmark, Inc.
Lightspan, Inc.
Philips Consumer Electronics
Showgear, Inc.

Please thank these folks by letting them know that their contribution is valuable ... without their support, we would not be able to provide the quality of conference that NECC participants have grown to expect!

If your organization or company is interested in contributing to NECC 2001, please contact NECA’s Executive Director, John Vaille, at 541.346.6322 or necc@oregon.uoregon.edu. Please include “Sponsorship” in the subject line of your message.

NECC IS PRIVILEGED TO WORK WITH THE FOLLOWING CONTRACTED COMPANIES & ORGANIZATIONS:

CHAMPION EXPO SERVICES
(Official Conference Decorator)
CONFERON, INC.
(Housing)
CONFERON, INC.
(On-Site Logistics Support & Space Management)
ISTE
(Workshops)
ISTE
(Program & Publications Support)
SHOWGEAR, INC.
(Generic Session Set, Staging, & AV)
SHOWGEAR, INC.
(Internet Support, Session Equipment, & Session AV)

UNIVERSITY OF OREGON CONTINUATION CENTER
(Exhibit Sales & Management)

UNIVERSITY OF OREGON CONTINUATION CENTER
(Registration Services)
HOSTED BY
Georgia Institute of Technology's Center for Education Integrating Science, Mathematics and Computing (CEISMC)

SPONSORED BY
National Educational Computing Association (NECA), Inc.

IN COOPERATION WITH
Georgia Department of Education
Georgia State University College of Education
Georgia Tech Research Institute
University of Georgia College of Education
Alabama State Department of Education
Georgia Educational Technology Conference
Georgia Association of Educators
Professional Association of Georgia Educators
National Education Association
A totally integrated wireless learning environment

WOW!

With one standard electrical outlet and one standard Ethernet connection you have a wireless computer lab for up to 32 students.

10262 Battleview Pkwy Manassas, VA 20109
www.earthwalk.com sales@earthwalk.com
toll free 888-213-4900
WELCOME!
Your roadmap to Exhibits at NECC 2000

CONTENTS

Advertiser's Index ... 2
About the Conference 4
NECC 2000 Conference Committee 6
NECC 2000 Program Committee 8
Future NECCs .. 9
NECA Board & Members 12
NECA Societies ... 13
NECC 2000 Minimall 14, 15
Exhibitor Index by Company Name 18
Exhibitor Index by Booth Number 26
Exhibitor Product Classification 34
Exhibitor Directory .. 48
NECC 2001 Exhibit Hall Floor Plan 161
NECC 2000 Call for Participation 164

EXHIBIT HOURS
Monday, 9:45 am–5:30 pm
Continental Breakfast in the Exhibit Hall, 9:45–11 am
Refreshment Break in the Exhibit Hall, 3–3:30 pm
Tuesday, 9:30 am–5 pm
Wednesday, 9:30 am–2:30 pm
ADVERTISER’S INDEX

The NECC 2000 Conference Committee would like to express their appreciation to the following organizations for their advertisements in the NECC 2000 Exhibit Guide.

<table>
<thead>
<tr>
<th>Advertiser/Media</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>EarthWalk Communications, Inc.</td>
<td>Inside Front Cover</td>
</tr>
<tr>
<td>National Semiconductor Corporation</td>
<td>3, 5</td>
</tr>
<tr>
<td>Compaq Computer Corporation</td>
<td>9</td>
</tr>
<tr>
<td>Lightspan, Inc.</td>
<td>10-11</td>
</tr>
<tr>
<td>Turner Learning, Inc.</td>
<td>13, 15</td>
</tr>
<tr>
<td>SMARTdesk Ltd.</td>
<td>16</td>
</tr>
<tr>
<td>Advantage Learning Systems, Inc.</td>
<td>51</td>
</tr>
<tr>
<td>Adventus Incorporated</td>
<td>52</td>
</tr>
<tr>
<td>Centrinity</td>
<td>63</td>
</tr>
<tr>
<td>EDMIN.com</td>
<td>75</td>
</tr>
<tr>
<td>Apex Learning</td>
<td>81</td>
</tr>
<tr>
<td>Classroom Connect, Inc.</td>
<td>82-83</td>
</tr>
<tr>
<td>Edmark Corporation</td>
<td>86-87</td>
</tr>
<tr>
<td>Boxlight Corporation</td>
<td>91</td>
</tr>
<tr>
<td>Course Technology/South-Western</td>
<td>92-93</td>
</tr>
<tr>
<td>PowerSchool</td>
<td>95</td>
</tr>
<tr>
<td>ePALS Classroom Exchange</td>
<td>96</td>
</tr>
<tr>
<td>Sun Microsystems, Inc.</td>
<td>100</td>
</tr>
<tr>
<td>Teknimedia Corporation</td>
<td>102</td>
</tr>
<tr>
<td>EBSCO Publishing</td>
<td>109</td>
</tr>
<tr>
<td>AbleSoft, Inc.</td>
<td>110</td>
</tr>
<tr>
<td>textHELP Systems Ltd.</td>
<td>112</td>
</tr>
<tr>
<td>National School Boards Association</td>
<td>119</td>
</tr>
<tr>
<td>Sagebrush Corporation</td>
<td>133</td>
</tr>
<tr>
<td>Steck-Vaughn</td>
<td>142</td>
</tr>
<tr>
<td>The College Board</td>
<td>145</td>
</tr>
<tr>
<td>MuseumNetwork.com</td>
<td>146</td>
</tr>
<tr>
<td>Greenwood Publishing Group</td>
<td>151</td>
</tr>
<tr>
<td>bigchalk.com, Inc.</td>
<td>159</td>
</tr>
<tr>
<td>Meridian Creative Group</td>
<td>165</td>
</tr>
<tr>
<td>Knowledge Adventure</td>
<td>166, Inside Back Cover</td>
</tr>
<tr>
<td>AlphaSmart, Inc.</td>
<td>Outside Back Cover</td>
</tr>
</tbody>
</table>

INTERNET TRAINING INITIATIVE for teachers

To keep pace with the high-tech revolution, you need the right connections. Now, those connections are at your fingertips with National Semiconductor's Global Connections Online - a free, web-based training program offering teachers first-hand experience with emerging Internet technologies and ways to integrate them into the classroom. Tap into the teaching power of the Internet and join the thousands of educators worldwide who are participating in this program. Visit Global Connections Online at www.national.com/training today.

www.national.com/training
The National Educational Computing Conference (NECC) is celebrating its twenty first year of providing K–12 and university-level educational professionals with an annual forum to learn, exchange, and survey the leaps and bounds being made in the field of educational technology.

Through preconference hands-on and discussion-based workshops, lectures and interactive sessions, discussions with key industry speakers, and the largest vendor exhibition of its kind, participants have the unique opportunity to discover and share what they need to develop the appropriate use of technology in their classrooms, districts, and universities.

NECC is sponsored each year by the National Educational Computing Association (NECA) and is hosted by one or more local institutions such as a university or non-profit educational organization. Previous NECCs have been held in Atlantic City, NJ (‘99); San Diego, CA (‘98); Seattle, WA (‘97); Minneapolis, MN (‘96); Baltimore, MD (‘95); and Boston, MA (‘94). Thank you for joining us for NECC 2000 at the Georgia World Congress Center, Atlanta, GA, June 26-28, 2000.

ABOUT YOUR HOST
The Center for Education Integrating Science, Mathematics and Computing (CEISMC) is a dynamic change agent for K–12 education, leveraging Georgia Tech’s human, scientific, and technological resources throughout the State of Georgia. CEISMC serves communities in three fundamental ways: generation and dissemination of innovative programs and materials, operation of ongoing programs, and through the catalyzing of collaborative partnerships.

While CEISMC’s efforts always focus on the improvement of student mathematics, science, and technological understandings and skills, CEISMC has programs for teachers as well. CEISMC also provides products and services to state and community agencies as well as school districts. CEISMC’s partnerships involve teachers, university/college faculty, business/industry leaders, and policy makers at the local, state, and national levels. Specific information about CEISMC’s activities can be found at www.ceismc.gatech.edu.

Teachers should teach, not have to deal with crashes, upgrading applications, and general trouble-shooting. Thin clients provide a centralized computing solution that frees the school and teachers from the problems of maintenance, upkeep and upgrades. National’s Thin-Client Guide provides the information you need to implement a thin-client solution in your school now. For more information on thin-client technology and a copy of the Thin Client @ School Guide, please visit our website today.
PROGRAM CHAIRS
Kathy O'Neill, Chair
Georgia State University
John Richards, Co-chair
Turner Learning (GA)
Anita Best, Co-chair
International Society for Technology in Education (OR)

WORKSHOP CHAIRS
Curt Cearley, Co-chair
State University of West Georgia
Leslie Conery, Co-chair
International Society for Technology in Education (OR)

PROGRAM COMMITTEE
Laurreta Burton,
Posters Chair
Georgia State University
Nancy Clark,
First Timers' Co-chair
DeKalb County Schools (GA)
Anne Davis,
Web Posters Chair
Rockdale County Schools (GA)
Mindy DiSalvo,
First Timers' Co-chair
DeKalb County Schools (GA)
Marianne Handler,
NECC 2001 Committee
National Louis University (IL)
Janette Hill,
Papers Chair
University of Georgia
Patrick Hlavaty,
Make & Take Sessions
Cobb County Schools (GA)

Sandra Joyner,
Georgia Student Showcase
Atlanta Public Schools
Jon Newnan,
"Thrashers"- of-a Feather
Atlanta Public Schools (GA)
Joyce See, Presidents
Georgia State University
Mary Wall,
NECC '99 Co-chair
Atlantic Cape Community College (NJ)

PROPOSAL REVIEW CHAIRS
Donna Baumbach
University of Central Florida
Tony Bellon
North Georgia College and State University
Cheryl Dunbar
Dudul Heights High School (GA)
Deborah Eaton
North Carolina Central University
Sanji Glass
Gwinnett County Schools (GA)
Betty Higdon
University of Alabama at Birmingham
Mary Ann Hines
Georgia State University
Claudia Huff
Georgia Tech Research Institute
Olga Jarrett
Georgia State University
Ann Jenkins
Georgia State University
Susan Lynn
Florida State University
Nancy McClure
Fairmont State College (WV)
Ann McCay
University of Alaska
Tim Merritt
Georgia State University
Gail Miles
Lenoir-Rhyne College (NC)
Jim Neale
Georgia Southwestern University
Charlotte Owens
The University of Louisiana at Monroe
Sarah Sanford
Rockdale County Schools (GA)
Joyce See
Georgia State University
Mary Shoffner
Georgia State University
Edith Slaton
Southeastern Louisiana University
Chris Stephenson
Computer Systems Research Institute (ON, Canada)
Manorama Talker
Chesterfield Virginia Public Schools
Julie Trel
 Fulton County Schools (GA)

Peter Welshough
St. Pius School (GA)
Trena Wiltzner
Baylor University (TX)

WORKSHOP PROPOSAL REVIEWERS
Donna Ashmus
SEIR*TEC (SC)
Stacey Bennett
Macon State College (GA)
Shirley Berry
Chicago Public Schools (IL)
Lindy Bingham
Carlee High School (TX)
Margaret Bingham
SEIR*TEC (NC)
O. P. Cooper
Carrollton City Schools (GA)
Amy Daniels
Tuscaloosa County School System (GA)
Vicki Dimock
SEDL (TX)
Linda Espey
Heartland Area Education Agency 11 (IA)
Clint Fisher
University of New Mexico
Leslie Flanders
Scott County Schools (KY)
Terri Gaspierik
Fayette County Board of Education (GA)

Jeanne Guerrero
SERVE/SEIR*TEC (MD)
Rita Harris-Watts
Whiteville City Schools (NC)
Crill Head
State University of West Georgia
Kathy Hicks
River Road Independent School District (TX)
Michael Martin
SERVE/SEIR*TEC (GA)
Patricia Medlin
Whiteville City Schools (NC)
Brenda Scott
Booneville Middle School (MS)
Kelli Spearman
Riverside Elementary (CA)
Mariee Tice
Giffen-Spaulding County Schools (GA)
Carol Utay
Total Learning Centers (PA)
Linda Valenzuela,
SERVE/SEIR*TEC (FL)
Dale von Kohr
Coweta County Schools (GA)
Joe Williams
Clayton County Public Schools (GA)
Paola Williams
Johns Hopkins University (MD)
Regina Wooden Ernie
Pyle Middle School (NM)

Future NECCs
NECC2001
Chicago, IL
McCormick Place
June 25-27, 2001
Hosted by Illinois Computing Educators (ICE) and Northwestern University

NECC2002
San Antonio, TX
San Antonio Convention Center
June 17-19, 2002
Hosted by the National Educational Computing Association (NECA), Inc.

BEST COPY AVAILABLE
Every child has a million questions.

It's not your job to have all the answers. But you can help transform their boundless curiosity into positive academic results.

Lightspan Achieve Now
Interactive curriculum software program proven to increase student achievement.

| National results from 342 schools using Lightspan Achieve Now | +24% READING | +47% MATH |

Indicates the increase in the number of students who scored at or above the 50th percentile after using Lightspan Achieve Now in the 1998-99 school year.

If you're seeking a proven solution for helping your students achieve more, look to Lightspan. For more information, call 1-888-ALL-KIDS. www.lightspan.com

Come to Booth #528, and enter to win a Gateway computer.
1999-2000 NECA BOARD OF DIRECTORS
Cathleen Norris, President
University of North Texas-Denton
Judy Robb, Vice President
University of New Hampshire-Durham
James Kerlin, Treasurer
Pennsylvania State University-University Park
Sally Sloan, Secretary
Winston State University (MN)
David Brittain, Past-President
MGT of America (FL)
Peggy Kelly, Director-at-Large
California State University-San Marcos
Paul Ohme, Director-at-Large
CEISMC, Georgia Institute of Technology-Atlanta
Harriet Taylor, Director-at-Large
Louisiana State University-Baton Rouge

SOCIETY REPRESENTATIVES
Chuck Chulwick, ACM/SIGUCCS
Raritan Valley Community College (NJ)
Steve Gilbert, AAHE/TLT Group
American Association for Higher Education/TLT Group (DC)
Karen Gould, ACM/SIGCUE
Metro School District of Wayne Township (IN)
Robert Harrell, AECT
Georgia Perimeter College

1999-2000 NECA OFFICE
John Vaille, Executive Officer
NECA/NECC OFFICE
John Vaille, Executive Officer
Donella Ingham, Director, Conference Services
Vincent Fain, Director, Association Services
Barbara Hewick, Office Manager
ISTE
John Vaille, Chief Executive Officer
Anita Best, Program Co-Chair
Leslie Conery, Workshop Co-Chair
Diana Sturm, NECC Contract Manager
Laurie Thornley, Workshop Manager
Malori Novak, Publications/Program Assistant
Dave Moursund, NECA Advisor

UNIVERSITY OF OREGON
Paul Katz, Exhibits/Registration Manager
June Seegert, Caitlin Snyder, & Lisa Sorenson, Exhibits Staff
Linda Smith, Lynn Black, Ariel Burleson, & Kirstin Hamilton
Registration Staff
Eliza Drummond & Tom Pargeter, Web Development

NECA SOCIETIES
International Society for Technology in Education (ISTE)
www.iste.org
ISTE Special Interest Groups for:
- Technology Coordinators (SIGTC)
- Teacher Educators (SIGTE)
- Higher Education/TLT Group (AAHE/TLT Group)
American Association for Higher Education/TLT Group (AAHE/TLT Group)
www.itlgroup.org

Association for Computing Machinery (ACM) Special Interest Groups on:
- Computers and Society (SIGCAS)
 www.acm.org/sigcas
- Computer Science Education (SIGCSE)
 www.acm.org/sigcse
- Computer Science Education (SIGCSE)
 www.acm.org/sigcse
- University and College Computing Services (SIGUCCS)
 www.acm.org/siguccs

EDUCAUSE
www.educause.edu
IEEE Computer Society (IEEE-CS)
www.computer.org
Society for Computer Simulation (SCS)
www.scs.org

What If the Internet Really Did Make Teaching Easier?
What Would You Call That?
Join us for the third annual NECC Minimall, Tuesday, June 27 from 6:30-9 pm, immediately preceding the Conference Social and Dance, sponsored by Microsoft Corporation and Compaq Computer Corporation.

Please visit the following Minimall Sponsors, Tuesday evening from 6:30-9 pm in the Hyatt Regency Ballroom.

Exhibitor Name	Booth Number(s)
Classroom Connect, Inc. | 13,14
Fonts4Teachers—Down Hill Publishing | 11
Forest Technologies | 3,6,9
Hewlett-Packard Company | 16
IDE Corp.—Innovative Designs for Education | 1
ISTE—International Society for Technology in Education | 2
Learning Services, Inc. | 15
Library Video Company | 8
NECC 2000 | 4
Software Express, Inc. | 7
Spectrum Industries | 10
VR Toolbox—Classource | 23,24
WorldWide Computer Supplies & Accessories | 5

Introducing the ultimate student and teacher news and information Web site...

Now you have a reliable, safe and educationally sound site in which your students can get...News. Knowledge. Now!

WWW.NECCSITE.ORG • NECC2000
Plan your road trip around the Exhibit Hall—who should you visit first?

What about the Minimall?

WWW.NECCSITE.ORG • NECC2000
<table>
<thead>
<tr>
<th>Exhibitor Name</th>
<th>Booth Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-ha! Interactive, Inc.</td>
<td>2544</td>
</tr>
<tr>
<td>ABC-CLIO</td>
<td>2744</td>
</tr>
<tr>
<td>AbieSoft, Inc.</td>
<td>2825, 2827</td>
</tr>
<tr>
<td>Academic Distributing, Inc.</td>
<td>2546, 2548, 2550</td>
</tr>
<tr>
<td>Academic Software</td>
<td>468, 470</td>
</tr>
<tr>
<td>AccuNet™/AP® Photo Archive</td>
<td>1256, 1258</td>
</tr>
<tr>
<td>Acer America Corporation</td>
<td>2824</td>
</tr>
<tr>
<td>Adobe Systems Inc.</td>
<td>648</td>
</tr>
<tr>
<td>Advantage Learning Systems, Inc.</td>
<td>2549, 2551</td>
</tr>
<tr>
<td>Adventus Incorporated</td>
<td>2758</td>
</tr>
<tr>
<td>AIMS Multimedia</td>
<td>2862</td>
</tr>
<tr>
<td>Aladdin Knowledge Systems</td>
<td>2861, 2863</td>
</tr>
<tr>
<td>Alcatel Corporation</td>
<td>365, 464</td>
</tr>
<tr>
<td>Alexandria/COMPanion Corporation</td>
<td>2430, 2432</td>
</tr>
<tr>
<td>AlphaSmart, Inc.</td>
<td>2620</td>
</tr>
<tr>
<td>Aliris</td>
<td>2747</td>
</tr>
<tr>
<td>Amer.com</td>
<td>2763</td>
</tr>
<tr>
<td>Amera Computers, Inc.</td>
<td>2669</td>
</tr>
<tr>
<td>America Online, Inc.</td>
<td>2062</td>
</tr>
<tr>
<td>American Education Corporation</td>
<td>2643, 2645</td>
</tr>
<tr>
<td>American Power Conversion</td>
<td>2742</td>
</tr>
<tr>
<td>American School Directory</td>
<td>2355, 2357, 2359</td>
</tr>
<tr>
<td>Animated Communications</td>
<td>2565</td>
</tr>
<tr>
<td>ANTEC/Educational Technology Associates & Neufeld Learning Systems</td>
<td>2627, 2629</td>
</tr>
<tr>
<td>Apex Learning</td>
<td>1568</td>
</tr>
<tr>
<td>Apple</td>
<td>1620</td>
</tr>
<tr>
<td>Applied Technologies</td>
<td>2262</td>
</tr>
<tr>
<td>APTE, Inc.</td>
<td>563, 565</td>
</tr>
<tr>
<td>Ask Jeeves/The Evergreen Project</td>
<td>944, 946</td>
</tr>
<tr>
<td>AT&T Learning Network</td>
<td>2422, 2424</td>
</tr>
<tr>
<td>Aurbach & Associates, Inc.</td>
<td>2420</td>
</tr>
<tr>
<td>Barnum Software</td>
<td>2833</td>
</tr>
<tr>
<td>Bell Atlantic</td>
<td>1636</td>
</tr>
<tr>
<td>BellSouth</td>
<td>1336</td>
</tr>
<tr>
<td>bigchalk.com, Inc.</td>
<td>1262</td>
</tr>
<tr>
<td>Blackboard, Inc.</td>
<td>501, 600</td>
</tr>
<tr>
<td>Bogen Communications, Inc.</td>
<td>941, 943</td>
</tr>
<tr>
<td>Bonus.com the SuperSite for Kids</td>
<td>2048</td>
</tr>
<tr>
<td>Book Systems, Inc.</td>
<td>2642</td>
</tr>
<tr>
<td>Boxer Learning, Inc.</td>
<td>2426, 2428</td>
</tr>
<tr>
<td>Boxlight Corporation</td>
<td>2469</td>
</tr>
<tr>
<td>Brainium.com</td>
<td>354</td>
</tr>
<tr>
<td>Britannica Education</td>
<td>2455, 2457</td>
</tr>
<tr>
<td>Brother International Corporation</td>
<td>330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhibitor Name</th>
<th>Booth Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes of Learning</td>
<td>1454</td>
</tr>
<tr>
<td>Cable in the Classroom</td>
<td>2362, 2364</td>
</tr>
<tr>
<td>CalcuScribe</td>
<td>2360</td>
</tr>
<tr>
<td>Canon USA Visual Communication Systems</td>
<td>1648</td>
</tr>
<tr>
<td>Cantor & Associates, Inc.</td>
<td>1645</td>
</tr>
<tr>
<td>Casio, Inc.</td>
<td>1964</td>
</tr>
<tr>
<td>CCV Software</td>
<td>620</td>
</tr>
<tr>
<td>CDW+G</td>
<td>2468</td>
</tr>
<tr>
<td>Centrinity</td>
<td>322, 324, 326</td>
</tr>
<tr>
<td>Centurion Technologies, Inc.</td>
<td>2837, 2839</td>
</tr>
<tr>
<td>Chancery Software Ltd.</td>
<td>1854</td>
</tr>
<tr>
<td>Children's Software Press</td>
<td>242</td>
</tr>
<tr>
<td>ChildU, Inc.</td>
<td>2841</td>
</tr>
<tr>
<td>Cisco Systems, Inc.</td>
<td>754</td>
</tr>
<tr>
<td>Classroom Connect, Inc.</td>
<td>1836</td>
</tr>
<tr>
<td>ClassroomDirect.com</td>
<td>420</td>
</tr>
<tr>
<td>Cnetics Technologies</td>
<td>2662</td>
</tr>
<tr>
<td>Co-NECT Schools</td>
<td>2855</td>
</tr>
<tr>
<td>Cognitive Concepts, Inc.</td>
<td>2526, 2528</td>
</tr>
<tr>
<td>College Broadband</td>
<td>2570</td>
</tr>
<tr>
<td>Compaq Computer Corporation</td>
<td>1120</td>
</tr>
<tr>
<td>CompassLearning</td>
<td>1554</td>
</tr>
<tr>
<td>Compu-Teach Educational Software</td>
<td>246, 248</td>
</tr>
<tr>
<td>CompUSA Inc.</td>
<td>2136</td>
</tr>
<tr>
<td>Computer Curriculum Corporation</td>
<td>1246</td>
</tr>
<tr>
<td>Computer Learning Foundation</td>
<td>1050</td>
</tr>
<tr>
<td>Computer Literacy Press, Inc.</td>
<td>1650</td>
</tr>
<tr>
<td>Computrac</td>
<td>2864</td>
</tr>
<tr>
<td>Course Technology/South-Western</td>
<td>1444</td>
</tr>
<tr>
<td>CrossTec Corporation</td>
<td>2454</td>
</tr>
<tr>
<td>CTB/McGraw-Hill</td>
<td>1154, 1156</td>
</tr>
<tr>
<td>Cubic Science, Inc.</td>
<td>1560, 1562</td>
</tr>
<tr>
<td>Curriculum Administrator Magazine</td>
<td>1644, 1646</td>
</tr>
<tr>
<td>Curriculum Associates, Inc.</td>
<td>430, 432</td>
</tr>
<tr>
<td>CyberPatrol, Unit of The Learning Company</td>
<td>2100, 2101</td>
</tr>
<tr>
<td>Daly Computers</td>
<td>770</td>
</tr>
<tr>
<td>Data Projections, Inc.</td>
<td>940, 942</td>
</tr>
<tr>
<td>Data Recognition, Inc.</td>
<td>2556</td>
</tr>
<tr>
<td>DataServ, Inc.</td>
<td>2590</td>
</tr>
<tr>
<td>DDC Publishing</td>
<td>2261, 2263</td>
</tr>
<tr>
<td>Dell Computer Corporation</td>
<td>836</td>
</tr>
<tr>
<td>Discourse Technologies Inc.</td>
<td>562</td>
</tr>
<tr>
<td>Discovery Channel School</td>
<td>2541, 2543</td>
</tr>
<tr>
<td>Diskover Educational Systems</td>
<td>443</td>
</tr>
<tr>
<td>DK Interactive Learning</td>
<td>2536</td>
</tr>
<tr>
<td>Exhibitor Name</td>
<td>Booth Number(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>DreamWriter—NTS Computers</td>
<td>2036</td>
</tr>
<tr>
<td>Dukane Corporation</td>
<td>1654</td>
</tr>
<tr>
<td>DynaVox Systems Inc.</td>
<td>864</td>
</tr>
<tr>
<td>e-Tutor, Inc.</td>
<td>2269</td>
</tr>
<tr>
<td>EarthWalk Communications, Inc.</td>
<td>2442</td>
</tr>
<tr>
<td>EBSCO Publishing</td>
<td>868</td>
</tr>
<tr>
<td>Edmark Corporation</td>
<td>2120</td>
</tr>
<tr>
<td>EDmin.com</td>
<td>236</td>
</tr>
<tr>
<td>Education Networks of America</td>
<td>348</td>
</tr>
<tr>
<td>Education Week</td>
<td>2537, 2636</td>
</tr>
<tr>
<td>Educational & Business Systems, Inc.</td>
<td>2561</td>
</tr>
<tr>
<td>Educational Insights</td>
<td>226, 228, 230</td>
</tr>
<tr>
<td>Educational Resources</td>
<td>2320, 2321, 2323, 2325, 2327, 2329, 2331, 2333</td>
</tr>
<tr>
<td>Educational Software Institute</td>
<td>2237, 2239</td>
</tr>
<tr>
<td>eHomeRoom.com, Inc.</td>
<td>2702</td>
</tr>
<tr>
<td>Eiki International</td>
<td>2630, 2632</td>
</tr>
<tr>
<td>Electronic Classroom Furniture Systems, L.C.</td>
<td>2354</td>
</tr>
<tr>
<td>ELLIS by CAU, Inc.</td>
<td>2402</td>
</tr>
<tr>
<td>Encore Software, Inc.</td>
<td>763</td>
</tr>
<tr>
<td>Enova Software Inc.</td>
<td>1768</td>
</tr>
<tr>
<td>Enterasys Networks</td>
<td>542</td>
</tr>
<tr>
<td>Entrex Software</td>
<td>2601</td>
</tr>
<tr>
<td>ePALS Classroom Exchange</td>
<td>1746</td>
</tr>
<tr>
<td>Epson America</td>
<td>1063</td>
</tr>
<tr>
<td>Ericsson Web Com, Inc.</td>
<td>1754</td>
</tr>
<tr>
<td>Excelteq Software, Inc.</td>
<td>1944, 1946</td>
</tr>
<tr>
<td>Fairfield Language Technologies</td>
<td>1368</td>
</tr>
<tr>
<td>Family Education Network</td>
<td>1549, 1551</td>
</tr>
<tr>
<td>Faralton Communications</td>
<td>2657</td>
</tr>
<tr>
<td>Fiberworks, Inc.</td>
<td>2870</td>
</tr>
<tr>
<td>FOCUS Enhancements, Inc.</td>
<td>336</td>
</tr>
<tr>
<td>Follett Software Company</td>
<td>2948</td>
</tr>
<tr>
<td>Fonts4Teachers—Down Hill Publishing</td>
<td>2948</td>
</tr>
<tr>
<td>Forest Technologies</td>
<td>846</td>
</tr>
<tr>
<td>Fortres Grand Corporation</td>
<td>2721, 2723</td>
</tr>
<tr>
<td>FSCreations, Inc.</td>
<td>2659</td>
</tr>
<tr>
<td>Funds for Learning</td>
<td>2944</td>
</tr>
<tr>
<td>FUTUREKIDS, Inc.</td>
<td>2169, 2171</td>
</tr>
<tr>
<td>Gamco/Orchard Software</td>
<td>837, 839</td>
</tr>
<tr>
<td>Gateway</td>
<td>1544</td>
</tr>
<tr>
<td>GCC Technologies</td>
<td>2271</td>
</tr>
<tr>
<td>Geist Manufacturing, Inc.</td>
<td>2859</td>
</tr>
<tr>
<td>Georgia Educational Technology Conference (GaETC)</td>
<td>701</td>
</tr>
<tr>
<td>Get a Clue Software & Services (Lyceum Communications)</td>
<td>2265</td>
</tr>
<tr>
<td>Glencoe/McGraw-Hill</td>
<td>1155, 1157, 1159</td>
</tr>
<tr>
<td>GlobaLearn.com</td>
<td>269</td>
</tr>
<tr>
<td>GPN/University of Nebraska-Lincoln</td>
<td>2942</td>
</tr>
<tr>
<td>Grafco, Inc.</td>
<td>2829, 2831</td>
</tr>
<tr>
<td>Greenwood Publishing Group</td>
<td>2769</td>
</tr>
<tr>
<td>Grolier Educational</td>
<td>1861, 1863</td>
</tr>
<tr>
<td>Heartsoft</td>
<td>262, 264</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
<td>2168</td>
</tr>
<tr>
<td>Highsmith, Inc.</td>
<td>2829, 2831</td>
</tr>
<tr>
<td>HighWired.com</td>
<td>448</td>
</tr>
<tr>
<td>Howard Computers</td>
<td>2942</td>
</tr>
<tr>
<td>Hyper Technologies</td>
<td>2769</td>
</tr>
<tr>
<td>IBM Corporation</td>
<td>2020</td>
</tr>
<tr>
<td>IDE Corp.—Innovative Designs for Education</td>
<td>1536</td>
</tr>
<tr>
<td>IDG Books Worldwide</td>
<td>2268</td>
</tr>
<tr>
<td>imind education systems</td>
<td>2920, 2922</td>
</tr>
<tr>
<td>INET Library</td>
<td>258, 260</td>
</tr>
<tr>
<td>Ingenuity Works, Inc./Corel Corporation</td>
<td>2448</td>
</tr>
<tr>
<td>Inspiration Software, Inc.</td>
<td>1954</td>
</tr>
<tr>
<td>Intel Corp.</td>
<td>860, 862</td>
</tr>
<tr>
<td>InteliTools, Inc.</td>
<td>669, 671</td>
</tr>
<tr>
<td>Interactive Products Division—Numonics</td>
<td>1845, 1847</td>
</tr>
<tr>
<td>Internet Products, Inc.</td>
<td>1561, 1563</td>
</tr>
<tr>
<td>ISTE—International Society for Technology in Education</td>
<td>1845, 1847</td>
</tr>
<tr>
<td>iTeach.com</td>
<td>2768</td>
</tr>
<tr>
<td>Jackson Software</td>
<td>1461, 1463</td>
</tr>
<tr>
<td>Jay Klein Productions</td>
<td>733, 832</td>
</tr>
<tr>
<td>JDL Technologies</td>
<td>320</td>
</tr>
<tr>
<td>Jungsoft USA, Inc.</td>
<td>2668</td>
</tr>
<tr>
<td>K'NEX Education Division</td>
<td>2648, 2650</td>
</tr>
<tr>
<td>K-12 MicroMedia Publishing</td>
<td>2836</td>
</tr>
<tr>
<td>Key Curriculum Press</td>
<td>2063</td>
</tr>
<tr>
<td>Keytec, Inc.</td>
<td>1064</td>
</tr>
<tr>
<td>Knowledge Adventure</td>
<td>2320</td>
</tr>
<tr>
<td>Knowvation, Inc.</td>
<td>1864</td>
</tr>
<tr>
<td>Lawrenceville Press</td>
<td>320</td>
</tr>
<tr>
<td>LCSI</td>
<td>1081, 1150</td>
</tr>
<tr>
<td>Leading Technology Micro, Inc.</td>
<td>2563</td>
</tr>
<tr>
<td>Learn.com</td>
<td>2638</td>
</tr>
<tr>
<td>Learning Advantage</td>
<td>227</td>
</tr>
<tr>
<td>Learning in Motion</td>
<td>2720, 2722</td>
</tr>
<tr>
<td>Learning Pays.com</td>
<td>2762</td>
</tr>
<tr>
<td>Learning Services, Inc.</td>
<td>1220, 1320, 1820</td>
</tr>
<tr>
<td>Learning Tools International</td>
<td>1569</td>
</tr>
</tbody>
</table>
96

WWW.NECCSITE.ORG

NCS
NEC Systems, Inc

MultiMedia Schools/Information Today, Inc.
N2H2, Inc.
NASA Education Program
National Geographic School Publishing
National School Boards Association
National Science Foundation
National Semiconductor Corporation
National Wildlife Federation

MSCS

McGraw-Hill Learning Technologies
Media & Methods Magazine
MediaSmith, Inc
MediaSpark IT Solutions Inc.
Meridian Creative Group
Micro Warehouse, Inc.
MICRO-INTEL International
Micrograms Software
Micron Government Computer Systems, Inc.
Microsoft Corporation
Milliken Publishing Co.
Miramar Systems, Inc.
Misty City Software, Inc

Lintor Publishing Center
LittleFingers by Datadesk
Logic Extension Resources
Logical Choice Technologies
Long's Electronics Inc
Lucent Technologies
Macromedia, Inc.
Main Xchange, Inc.
Market Data Retrieval
Math.com
MathResources Inc.
MathXpert
McGraw-Hill Companies

LIGHTWARE

Lernout & Hauspie, Kurzweil Education Group
Lexia Learning Systems, Inc.
Lexmark International
Library Vided Company
Lightspan, Inc.

Lea rnSta r, L.P

. Exhibitor Name

NECC2000

2524
1949
2054
954,956,958
1346,1348,1350
1254
2527
2728,2730
2270
2254
633,732

761

2938
364
2569
554
2400,2401
265
1948,1950
2500
244
1668,1670
1154,1155,1156,1157,
1158,1159,1160
1158,1160
1744
1545,1547
2458
2820,2822
855,857,859
345
2530,2532
1059,1061
820
841,843
2542

2501
2502

2102,2200
845,847
426,428,528
2660

561

2860

Booth Ntimber(s)
1462,1464

WWW.NECCSITE.ORG

Nova Solutions, Inc.
Nova Southeastern University, Programs in
Instructional Technology & Distance Education
Nova Southeastern University, SCIS
Novell, Inc
nschool.com
Optimum Resource, Inc.
PAR Technologies, Inc.
Pasco Scientific
Pepperdine University
Perfect Solutions
Peter Li Education Group
Philips Consumer Electronics
Phoenix Multimedia, Inc.
Phoenix/BFA/Coronet
PhoneMastera Division of US Telecom
Pinnacle Systems, Inc.
Pioneer New Media Technologies, Inc
Pitsco LEGO Dacta
PLATO' Education/TRO Learning, Inc.
Polaroid Education Program
Power On Software
PowerQuest Corporation
PowerSchool
Pre-Owned Electronics, Inc.
Premio Computer, Inc.
Principia Products, Inc
Proxim, Inc.
Proxima Corporation
Quality Education Data
Quick Course° Books/OTSI
QuickPAD by H45 Technology, Inc.
Rainbow Educational Media
Rauland-Borg Corporation
Regional Technology in Education Consortium

N oteSys

NetSchools Corporation
NetSupport
Network Data Services, Inc.
New Forum Publishers, Inc
NewDeal, Inc.
NewsBank, Inc
Nippon Educational Computing Association
Nordex International
Norte! Networks

NECTAR Foundation

Exhibitor Name

97

NECC2000

601

2749,2751
1247,1249
2545

2061

2520
1268
768
2821,2823
1565,1664
1960,1962
1947
851,950
2443,2445,2447
2946
2602,2700
2433
2724,2726
.936,938
2436
2743,2745
1362
660,662
2842
2560
1065
1760
263
361,363
2940
937,939

2241

1162
2449,2451
2336,2338,2340
1951,2050
445

1251

2626,2628
2639,2641

Booth Number(s)
2533
1054
1468
371
2670


<table>
<thead>
<tr>
<th>Exhibitor Name</th>
<th>Booth Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverdeep Interactive Learning</td>
<td>536</td>
</tr>
<tr>
<td>Sagebrush Corporation</td>
<td>568</td>
</tr>
<tr>
<td>SAS inSchool</td>
<td>640</td>
</tr>
<tr>
<td>Schepp Turner Productions LLP</td>
<td>2654</td>
</tr>
<tr>
<td>Scholastic Inc.</td>
<td>1136</td>
</tr>
<tr>
<td>School Center</td>
<td>2600</td>
</tr>
<tr>
<td>School Improvement.Net</td>
<td>2201,2300</td>
</tr>
<tr>
<td>School Reform News—The Heartland Institute</td>
<td>344</td>
</tr>
<tr>
<td>SchoolOnline.com</td>
<td>238,240</td>
</tr>
<tr>
<td>SchoolOne.com</td>
<td>2936</td>
</tr>
<tr>
<td>SCI Technologies</td>
<td>2568</td>
</tr>
<tr>
<td>Security Software Systems, Inc.</td>
<td>460</td>
</tr>
<tr>
<td>SecurTech Company</td>
<td>343</td>
</tr>
<tr>
<td>Sharp Electronics Corp./LCD Products Group</td>
<td>2425,2427</td>
</tr>
<tr>
<td>SIRS Mandarin, Inc.</td>
<td>2621</td>
</tr>
<tr>
<td>SMART Technologies Inc.</td>
<td>548</td>
</tr>
<tr>
<td>SMARTdesks Ltd.</td>
<td>462</td>
</tr>
<tr>
<td>SMARTer Kids Foundation</td>
<td>544</td>
</tr>
<tr>
<td>SmartStuff Software</td>
<td>1436</td>
</tr>
<tr>
<td>Smith System</td>
<td>2655,2754</td>
</tr>
<tr>
<td>Society for Computer Simulation International</td>
<td>965</td>
</tr>
<tr>
<td>Software Express, Inc.</td>
<td>537,628,636</td>
</tr>
<tr>
<td>Sonic Desktop Software</td>
<td>2770</td>
</tr>
<tr>
<td>Sonnet Technologies, Inc.</td>
<td>2640</td>
</tr>
<tr>
<td>Sony Electronics, Inc.</td>
<td>1600</td>
</tr>
<tr>
<td>Sorenson Vision, Inc.</td>
<td>1662</td>
</tr>
<tr>
<td>South Central Regional Technology in Education Consortium</td>
<td>700</td>
</tr>
<tr>
<td>Spectrum Industries, Inc.</td>
<td>1945,2044,2046</td>
</tr>
<tr>
<td>Steck-Vaughn</td>
<td>442,444</td>
</tr>
<tr>
<td>Sun Microsystems, Inc.</td>
<td>2344</td>
</tr>
<tr>
<td>SUNBURST Technology</td>
<td>1844</td>
</tr>
<tr>
<td>Surpass Software</td>
<td>2740</td>
</tr>
<tr>
<td>Symantec Corporation</td>
<td>1354</td>
</tr>
<tr>
<td>Symbol Technologies, Inc.</td>
<td>2160,2162</td>
</tr>
<tr>
<td>T.H.E. Journal</td>
<td>1860,1862</td>
</tr>
<tr>
<td>Tangle Computer, Inc.</td>
<td>2748</td>
</tr>
<tr>
<td>Teacher Created Materials, Inc.</td>
<td>2154</td>
</tr>
<tr>
<td>Teacher Support Software</td>
<td>1164</td>
</tr>
<tr>
<td>Teacher Universe, Inc.</td>
<td>2930,2832</td>
</tr>
<tr>
<td>TeacherEducation.com-Teacher Education Institute</td>
<td>2824</td>
</tr>
<tr>
<td>teachersroom.com, Inc.</td>
<td>2857</td>
</tr>
<tr>
<td>Teaching K-8 Magazine</td>
<td>327</td>
</tr>
<tr>
<td>TeachMaster Technologies</td>
<td>1465</td>
</tr>
<tr>
<td>Tech4Learning, Inc.</td>
<td>1057</td>
</tr>
<tr>
<td>TechLAN</td>
<td>2471</td>
</tr>
<tr>
<td>Technology & Learning</td>
<td>1849,1851</td>
</tr>
<tr>
<td>Teknimedia Corporation</td>
<td>2738</td>
</tr>
<tr>
<td>Terrapin Software</td>
<td>1055</td>
</tr>
<tr>
<td>Test University</td>
<td>2847,2849</td>
</tr>
<tr>
<td>Texas Instruments Incorporated</td>
<td>331,333</td>
</tr>
<tr>
<td>textHELP Systems Ltd.</td>
<td>2765</td>
</tr>
<tr>
<td>The Bureau for At-Risk Youth</td>
<td>1564</td>
</tr>
<tr>
<td>The College Board</td>
<td>2644,2646</td>
</tr>
<tr>
<td>The FundingFactory</td>
<td>2236</td>
</tr>
<tr>
<td>The Gale Group</td>
<td>2761</td>
</tr>
<tr>
<td>The Knowledge Tree Inc.</td>
<td>2623,2625</td>
</tr>
<tr>
<td>The Learning Company</td>
<td>1820</td>
</tr>
<tr>
<td>The LearningStation.com</td>
<td>2144</td>
</tr>
<tr>
<td>The New York Times Learning Network</td>
<td>2554</td>
</tr>
<tr>
<td>The Princeton Review Online</td>
<td>760</td>
</tr>
<tr>
<td>The Wright Group</td>
<td>245</td>
</tr>
<tr>
<td>thinNK4inc.com</td>
<td>1660</td>
</tr>
<tr>
<td>ThinkQuest</td>
<td>1865</td>
</tr>
<tr>
<td>Tom Snyder Productions</td>
<td>254,256,854</td>
</tr>
<tr>
<td>TopTutors.com</td>
<td>945,947</td>
</tr>
<tr>
<td>Toshiba America</td>
<td>654</td>
</tr>
<tr>
<td>Turner Learning, Inc.</td>
<td>454</td>
</tr>
<tr>
<td>Tyndal Stone Media</td>
<td>2164</td>
</tr>
<tr>
<td>U.S. Department of Education</td>
<td>702</td>
</tr>
<tr>
<td>U.S. Geological Survey</td>
<td>2928</td>
</tr>
<tr>
<td>U.S. News & World Report</td>
<td>2456</td>
</tr>
<tr>
<td>USA TODAY</td>
<td>223,225</td>
</tr>
<tr>
<td>Vernier Software & Technology</td>
<td>329</td>
</tr>
<tr>
<td>Virco Mfg. Corporation</td>
<td>962</td>
</tr>
<tr>
<td>Virtual Ink Corp.</td>
<td>668</td>
</tr>
<tr>
<td>Virtual Learning Technologies</td>
<td>1571</td>
</tr>
<tr>
<td>Vision Database Systems</td>
<td>2843,2845</td>
</tr>
<tr>
<td>Vista Associates, Inc.</td>
<td>2926</td>
</tr>
<tr>
<td>VTEL Corporation</td>
<td>1460</td>
</tr>
<tr>
<td>Walden University</td>
<td>2664</td>
</tr>
<tr>
<td>Waters Network Systems</td>
<td>1761,1763,1765</td>
</tr>
<tr>
<td>WCCE 2001 (World Conference on Computers in Education)</td>
<td>2065</td>
</tr>
<tr>
<td>Welsh Products, Inc.</td>
<td>2851</td>
</tr>
<tr>
<td>WIN Laboratories, Ltd.</td>
<td>2671</td>
</tr>
<tr>
<td>Winnebago Spectrum/Athena</td>
<td>568</td>
</tr>
<tr>
<td>World Book School and Library</td>
<td>2529,2531</td>
</tr>
<tr>
<td>WorldWide Computer Supplies & Accessories</td>
<td>951</td>
</tr>
<tr>
<td>Yamaha Corporation of America</td>
<td>765</td>
</tr>
<tr>
<td>Youthline USA</td>
<td>2756</td>
</tr>
<tr>
<td>ZapMe! Corporation</td>
<td>368</td>
</tr>
<tr>
<td>Zenith Electronics Corporation</td>
<td>436</td>
</tr>
<tr>
<td>Exhibitor Name</td>
<td>Booth Number(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>USA TODAY</td>
<td>223,225</td>
</tr>
<tr>
<td>Educational Insights</td>
<td>226,228,230</td>
</tr>
<tr>
<td>Learning Advantage</td>
<td>227</td>
</tr>
<tr>
<td>EDRmin.com</td>
<td>236</td>
</tr>
<tr>
<td>SchoolComputer.com</td>
<td>238,240</td>
</tr>
<tr>
<td>Children's Software Press</td>
<td>242</td>
</tr>
<tr>
<td>MathResources Inc.</td>
<td>244</td>
</tr>
<tr>
<td>The Wright Group</td>
<td>245</td>
</tr>
<tr>
<td>Compu-Teach Educational Software</td>
<td>246,248</td>
</tr>
<tr>
<td>Tom Snyder Productions</td>
<td>254,256,654</td>
</tr>
<tr>
<td>INET Library</td>
<td>258,260</td>
</tr>
<tr>
<td>Heartsoft</td>
<td>262,264</td>
</tr>
<tr>
<td>Principia Products, Inc.</td>
<td>263</td>
</tr>
<tr>
<td>Main Xchange, Inc.</td>
<td>265</td>
</tr>
<tr>
<td>Lawrenceville Press</td>
<td>320</td>
</tr>
<tr>
<td>Centrinity</td>
<td>322,324,326</td>
</tr>
<tr>
<td>Teaching K–8 Magazine</td>
<td>327</td>
</tr>
<tr>
<td>Vernier Software & Technology</td>
<td>329</td>
</tr>
<tr>
<td>Brother International Corporation</td>
<td>330</td>
</tr>
<tr>
<td>Texas Instruments Incorporated</td>
<td>331,333</td>
</tr>
<tr>
<td>Follett Software Company</td>
<td>336</td>
</tr>
<tr>
<td>SecurTech Company</td>
<td>343</td>
</tr>
<tr>
<td>School Reform News—The Heartland Institute</td>
<td>344</td>
</tr>
<tr>
<td>MICRO-INTEL International</td>
<td>345</td>
</tr>
<tr>
<td>Education Networks of America</td>
<td>348</td>
</tr>
<tr>
<td>Brainium.com</td>
<td>354</td>
</tr>
<tr>
<td>Proxim, Inc.</td>
<td>361,363</td>
</tr>
<tr>
<td>Logical Choice Technologies</td>
<td>364</td>
</tr>
<tr>
<td>Alcatel Corporation</td>
<td>365,464</td>
</tr>
<tr>
<td>Zap/Me Corporation</td>
<td>368</td>
</tr>
<tr>
<td>Network Data Services, Inc.</td>
<td>371</td>
</tr>
<tr>
<td>ClassroomDirect.com</td>
<td>420</td>
</tr>
<tr>
<td>Lightspan, Inc.</td>
<td>426,428,528</td>
</tr>
<tr>
<td>Curriculum Associates, Inc.</td>
<td>430,432</td>
</tr>
<tr>
<td>Zenith Electronics Corporation</td>
<td>436</td>
</tr>
<tr>
<td>Steck-Vaughn</td>
<td>442,444</td>
</tr>
<tr>
<td>Discovery Educational Systems</td>
<td>443</td>
</tr>
<tr>
<td>Nova Southeastern University, Programs in Instructional Technology & Distance Education</td>
<td>445</td>
</tr>
<tr>
<td>Inspiration Software, Inc.</td>
<td>448</td>
</tr>
<tr>
<td>Turner Learning, Inc.</td>
<td>454</td>
</tr>
<tr>
<td>Security Software Systems, Inc.</td>
<td>460</td>
</tr>
<tr>
<td>SMARTdesks Ltd</td>
<td>462</td>
</tr>
<tr>
<td>Academic Software</td>
<td>468,470</td>
</tr>
<tr>
<td>Blackboard, Inc.</td>
<td>501,600</td>
</tr>
<tr>
<td>Riverdeep Interactive Learning</td>
<td>536</td>
</tr>
<tr>
<td>Software Express, Inc.</td>
<td>537,628,636</td>
</tr>
<tr>
<td>Entrex Software</td>
<td>542</td>
</tr>
<tr>
<td>SMARTer Kids Foundation</td>
<td>544</td>
</tr>
<tr>
<td>SMART Technologies Inc.</td>
<td>548</td>
</tr>
<tr>
<td>Lucent Technologies</td>
<td>554</td>
</tr>
<tr>
<td>Lexia Learning Systems, Inc.</td>
<td>561</td>
</tr>
<tr>
<td>Discourse Technologies Inc.</td>
<td>562</td>
</tr>
<tr>
<td>APTE, Inc.</td>
<td>563,565</td>
</tr>
<tr>
<td>Sagebrush Corporation</td>
<td>568</td>
</tr>
<tr>
<td>Regional Technology in Education Consortium</td>
<td>601</td>
</tr>
<tr>
<td>CCE Software</td>
<td>620</td>
</tr>
<tr>
<td>NEC Systems, Inc.</td>
<td>633,732</td>
</tr>
<tr>
<td>SAS iSchool</td>
<td>640</td>
</tr>
<tr>
<td>Adobe Systems Inc.</td>
<td>648</td>
</tr>
<tr>
<td>Toshiba America</td>
<td>654</td>
</tr>
<tr>
<td>Power On Software</td>
<td>660,662</td>
</tr>
<tr>
<td>Virtual Ink Corp.</td>
<td>668</td>
</tr>
<tr>
<td>Interactive Products Division—Numonics</td>
<td>669,671</td>
</tr>
<tr>
<td>South Central Regional Technology in Education Consortium</td>
<td>700</td>
</tr>
<tr>
<td>Georgia Educational Technology Conference (GaETC)</td>
<td>701</td>
</tr>
<tr>
<td>U.S. Department of Education</td>
<td>702</td>
</tr>
<tr>
<td>Jay Klein Productions</td>
<td>733,832</td>
</tr>
<tr>
<td>JDL Technologies</td>
<td>746</td>
</tr>
<tr>
<td>Cisco Systems, Inc.</td>
<td>754</td>
</tr>
<tr>
<td>The Princeton Review Online</td>
<td>760</td>
</tr>
<tr>
<td>Misty City Software, Inc.</td>
<td>761</td>
</tr>
<tr>
<td>Enova Software Inc.</td>
<td>763</td>
</tr>
<tr>
<td>Yamaha Corporation of America</td>
<td>765</td>
</tr>
<tr>
<td>Optimum Resource, Inc.</td>
<td>768</td>
</tr>
<tr>
<td>Daly Computers</td>
<td>770</td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td>820</td>
</tr>
<tr>
<td>Dell Computer Corporation</td>
<td>836</td>
</tr>
<tr>
<td>Gamco/Orchard Software</td>
<td>837,839</td>
</tr>
<tr>
<td>Milliken Publishing Co.</td>
<td>841,843</td>
</tr>
<tr>
<td>Library Video Company</td>
<td>845,847</td>
</tr>
<tr>
<td>Forest Technologies</td>
<td>846</td>
</tr>
<tr>
<td>Peter Li Education Group</td>
<td>851,950</td>
</tr>
<tr>
<td>Micro Warehouse, Inc.</td>
<td>855,857,859</td>
</tr>
<tr>
<td>IntelliTools, Inc.</td>
<td>860,862</td>
</tr>
<tr>
<td>DynaVox Systems Inc.</td>
<td>864</td>
</tr>
<tr>
<td>EBSCO Publishing</td>
<td>868</td>
</tr>
<tr>
<td>Pioneer New Media Technologies, Inc.</td>
<td>936,938</td>
</tr>
<tr>
<td>Quality Education Data</td>
<td>937,939</td>
</tr>
<tr>
<td>Data Projections, Inc.</td>
<td>940,942</td>
</tr>
<tr>
<td>Exhibitor Name</td>
<td>Booth Number(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>Bogen Communications, Inc.</td>
<td>941, 943</td>
</tr>
<tr>
<td>Ask Jeeves/The Evergreen Project</td>
<td>944, 946</td>
</tr>
<tr>
<td>TopTutors.com</td>
<td>945, 947</td>
</tr>
<tr>
<td>WorldWide Computer Supplies & Accessories</td>
<td>951</td>
</tr>
<tr>
<td>NASA Education Program</td>
<td>954, 956, 958</td>
</tr>
<tr>
<td>Virco Mfg. Corporation</td>
<td>962</td>
</tr>
<tr>
<td>Society for Computer Simulation International</td>
<td>965</td>
</tr>
<tr>
<td>Computer Learning Foundation</td>
<td>1050</td>
</tr>
<tr>
<td>LCSI</td>
<td>1051, 1150</td>
</tr>
<tr>
<td>NetSchools Corporation</td>
<td>1054</td>
</tr>
<tr>
<td>Terrapin Software</td>
<td>1055</td>
</tr>
<tr>
<td>Tech4Learning, Inc.</td>
<td>1057</td>
</tr>
<tr>
<td>Micron Government Computer Systems, Inc.</td>
<td>1059, 1061</td>
</tr>
<tr>
<td>Ericsson Web Com, Inc.</td>
<td>1063</td>
</tr>
<tr>
<td>Keytec, Inc.</td>
<td>1064</td>
</tr>
<tr>
<td>Pre-Owned Electronics, Inc.</td>
<td>1065</td>
</tr>
<tr>
<td>Compaq Computer Corporation</td>
<td>1120</td>
</tr>
<tr>
<td>Scholastic Inc.</td>
<td>1136</td>
</tr>
<tr>
<td>McGraw-Hill Companies</td>
<td>1154, 1156, 1156, 1157, 1158, 1159, 1160</td>
</tr>
<tr>
<td>Nordex International</td>
<td>1162</td>
</tr>
<tr>
<td>Teacher Support Software</td>
<td>1164</td>
</tr>
<tr>
<td>Learning Services, Inc.</td>
<td>1220, 1320, 1820</td>
</tr>
<tr>
<td>Computer Curriculum Corporation</td>
<td>1246</td>
</tr>
<tr>
<td>Rainbow Educational Media</td>
<td>1247, 1249</td>
</tr>
<tr>
<td>Nippon Educational Computing Association</td>
<td>1251</td>
</tr>
<tr>
<td>National School Boards Association</td>
<td>1254</td>
</tr>
<tr>
<td>AccuNet™/AP® Photo Archive</td>
<td>1256, 1258</td>
</tr>
<tr>
<td>bigchalk.com, Inc.</td>
<td>1262</td>
</tr>
<tr>
<td>nschool.com</td>
<td>1268</td>
</tr>
<tr>
<td>BellSouth</td>
<td>1336</td>
</tr>
<tr>
<td>National Geographic School Publishing</td>
<td>1346, 1348, 1350</td>
</tr>
<tr>
<td>Symantec Corporation</td>
<td>1354</td>
</tr>
<tr>
<td>Polaroid Education Program</td>
<td>1362</td>
</tr>
<tr>
<td>FamilyEducation Network</td>
<td>1368</td>
</tr>
<tr>
<td>SmartStuff Software</td>
<td>1436</td>
</tr>
<tr>
<td>Course Technology/South-Western</td>
<td>1444</td>
</tr>
<tr>
<td>Bytes of Learning</td>
<td>1454</td>
</tr>
<tr>
<td>VTEL Corporation</td>
<td>1460</td>
</tr>
<tr>
<td>Jackson Software</td>
<td>1461, 1463</td>
</tr>
<tr>
<td>LearnStar, L.P.</td>
<td>1462, 1464</td>
</tr>
<tr>
<td>TeachMaster Technologies</td>
<td>1465</td>
</tr>
<tr>
<td>NetSupport</td>
<td>1468</td>
</tr>
<tr>
<td>IDE Corp.—Innovative Designs for Education</td>
<td>1536</td>
</tr>
<tr>
<td>Gateway</td>
<td>1544</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhibitor Name</th>
<th>Booth Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MediaSmith, Inc.</td>
<td>1545, 1547</td>
</tr>
<tr>
<td>Farallion Communications</td>
<td>1549, 1551</td>
</tr>
<tr>
<td>CompassLearning</td>
<td>1554</td>
</tr>
<tr>
<td>Cubic Science, Inc.</td>
<td>1560, 1562</td>
</tr>
<tr>
<td>Internet Products, Inc.</td>
<td>1561, 1563</td>
</tr>
<tr>
<td>The Bureau for At-Risk Youth</td>
<td>1564</td>
</tr>
<tr>
<td>Pasco Scientific</td>
<td>1565, 1566</td>
</tr>
<tr>
<td>Apex Learning</td>
<td>1568</td>
</tr>
<tr>
<td>Learning Tools International</td>
<td>1569</td>
</tr>
<tr>
<td>Virtual Learning Technologies</td>
<td>1571</td>
</tr>
<tr>
<td>Sony Electronics, Inc.</td>
<td>1600</td>
</tr>
<tr>
<td>Apple</td>
<td>1620</td>
</tr>
<tr>
<td>Bell Atlantic</td>
<td>1636</td>
</tr>
<tr>
<td>Curriculum Administrator Magazine</td>
<td>1644, 1646</td>
</tr>
<tr>
<td>Canon USA Visual Communication Systems</td>
<td>1648</td>
</tr>
<tr>
<td>Computer Literacy Press, Inc.</td>
<td>1650</td>
</tr>
<tr>
<td>Dukane Corporation</td>
<td>1654</td>
</tr>
<tr>
<td>Waters Network Systems</td>
<td>1761, 1763, 1765</td>
</tr>
<tr>
<td>Enterasys Networks</td>
<td>1768</td>
</tr>
<tr>
<td>Classroom Connect, Inc.</td>
<td>1836</td>
</tr>
<tr>
<td>SUNBURST Technology</td>
<td>1844</td>
</tr>
<tr>
<td>ISTE—International Society for Technology in Education</td>
<td>1845, 1847</td>
</tr>
<tr>
<td>Technology & Learning</td>
<td>1849, 1851</td>
</tr>
<tr>
<td>Chancery Software ltd.</td>
<td>1854</td>
</tr>
<tr>
<td>T.H.E. Journal</td>
<td>1860, 1862</td>
</tr>
<tr>
<td>Grolier Educational</td>
<td>1861, 1863</td>
</tr>
<tr>
<td>Knowvation, Inc.</td>
<td>1864</td>
</tr>
<tr>
<td>ThinkQuest</td>
<td>1865</td>
</tr>
<tr>
<td>Fairfield Language Technologies</td>
<td>1944, 1946</td>
</tr>
<tr>
<td>Spectrum Industries, Inc.</td>
<td>1945, 2044, 2046</td>
</tr>
<tr>
<td>Perfect Solutions</td>
<td>1947</td>
</tr>
<tr>
<td>Market Data Retrieval</td>
<td>1948, 1950</td>
</tr>
<tr>
<td>MultiMedia Schools/Information Today, Inc.</td>
<td>1949</td>
</tr>
<tr>
<td>Nova Solutions, Inc.</td>
<td>1951, 2050</td>
</tr>
<tr>
<td>Intel Corp.</td>
<td>1954</td>
</tr>
<tr>
<td>Pepperdine University</td>
<td>1960, 1962</td>
</tr>
<tr>
<td>Casio, Inc.</td>
<td>1964</td>
</tr>
<tr>
<td>Exhibitor Name</td>
<td>Booth Number(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>IBM Corporation</td>
<td>2020</td>
</tr>
<tr>
<td>DreamWriter—NTS Computers</td>
<td>2036</td>
</tr>
<tr>
<td>Bonus.com the SuperSite for Kids</td>
<td>2048</td>
</tr>
<tr>
<td>N2H2, Inc.</td>
<td>2054</td>
</tr>
<tr>
<td>Quick Course* Books/OTSI</td>
<td>2061</td>
</tr>
<tr>
<td>America Online, Inc.</td>
<td>2062</td>
</tr>
<tr>
<td>Key Curriculum Press</td>
<td>2063</td>
</tr>
<tr>
<td>WCCE 2001 (World Conference on Computers in Education)</td>
<td>2065</td>
</tr>
<tr>
<td>CyberPatrol, Unit of The Learning Company</td>
<td>2100, 2101</td>
</tr>
<tr>
<td>Lexmark International</td>
<td>2102, 2100</td>
</tr>
<tr>
<td>Edmark Corporation</td>
<td>2120</td>
</tr>
<tr>
<td>CompUSA Inc.</td>
<td>2136</td>
</tr>
<tr>
<td>The LearningStation.com</td>
<td>2144</td>
</tr>
<tr>
<td>Teacher Created Materials, Inc.</td>
<td>2154</td>
</tr>
<tr>
<td>Symbol Technologies, Inc.</td>
<td>2160, 2162</td>
</tr>
<tr>
<td>Tyndall Stone Media</td>
<td>2164</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
<td>2168</td>
</tr>
<tr>
<td>FUTUREKIDS, Inc.</td>
<td>2169, 2171</td>
</tr>
<tr>
<td>School Improvement.Net</td>
<td>2201, 2300</td>
</tr>
<tr>
<td>The Gale Group</td>
<td>2236</td>
</tr>
<tr>
<td>Educational Software Institute</td>
<td>2237, 2239</td>
</tr>
<tr>
<td>Nova Southeastern University, SCIS</td>
<td>2241</td>
</tr>
<tr>
<td>NCS</td>
<td>2254</td>
</tr>
<tr>
<td>DDC Publishing</td>
<td>2261, 2263</td>
</tr>
<tr>
<td>Applied Technologies</td>
<td>2262</td>
</tr>
<tr>
<td>Get a Clue Software & Services (Lyceum Communications)</td>
<td>2265</td>
</tr>
<tr>
<td>IDG Books Worldwide</td>
<td>2268</td>
</tr>
<tr>
<td>e-Tutor, Inc.</td>
<td>2269</td>
</tr>
<tr>
<td>National Wildlife Federation</td>
<td>2270</td>
</tr>
<tr>
<td>GCC Technologies</td>
<td>2271</td>
</tr>
<tr>
<td>Educational Resources</td>
<td>2320, 2321, 2323, 2325, 2327, 2329, 2331, 2333</td>
</tr>
<tr>
<td>NoteSys</td>
<td>2336, 2338, 2340</td>
</tr>
<tr>
<td>Sun Microsystems, Inc.</td>
<td>2344</td>
</tr>
<tr>
<td>Electronic Classroom Furniture Systems, L.C.</td>
<td>2354</td>
</tr>
<tr>
<td>American School Directory</td>
<td>2355, 2357, 2359</td>
</tr>
<tr>
<td>CalcuScribe</td>
<td>2360</td>
</tr>
<tr>
<td>Cable in the Classroom</td>
<td>2382, 2364</td>
</tr>
<tr>
<td>eBoard.com</td>
<td>2370</td>
</tr>
<tr>
<td>Macromedia, Inc.</td>
<td>2400, 2401</td>
</tr>
<tr>
<td>Encore Software, Inc.</td>
<td>2402</td>
</tr>
<tr>
<td>Aurbach & Associates, Inc.</td>
<td>2420</td>
</tr>
<tr>
<td>AT&T Learning Network</td>
<td>2422, 2424</td>
</tr>
<tr>
<td>Sharp Electronics Corp./LCD Products Group</td>
<td>2425, 2427</td>
</tr>
<tr>
<td>Boxer Learning, Inc.</td>
<td>2426, 2428</td>
</tr>
<tr>
<td>Alexandria/COMPanion Corporation</td>
<td>2430, 2432</td>
</tr>
<tr>
<td>PhoneMaster—a Division of US Telecom</td>
<td>2433</td>
</tr>
<tr>
<td>Pitsco LEGO Dacta</td>
<td>2436</td>
</tr>
<tr>
<td>EarthWalk Communications, Inc.</td>
<td>2442</td>
</tr>
<tr>
<td>Philips Consumer Electronics</td>
<td>2443, 2445, 2447</td>
</tr>
<tr>
<td>Ingenuity Works, Inc./Corel Corporation</td>
<td>2448</td>
</tr>
<tr>
<td>Nortel Networks</td>
<td>2449, 2451</td>
</tr>
<tr>
<td>CrossTec Corporation</td>
<td>2454</td>
</tr>
<tr>
<td>Britannica Education</td>
<td>2455, 2457</td>
</tr>
<tr>
<td>U.S. News & Word Report</td>
<td>2456</td>
</tr>
<tr>
<td>MediaSpark IT Solutions Inc.</td>
<td>2458</td>
</tr>
<tr>
<td>HighWired.com</td>
<td>2462</td>
</tr>
<tr>
<td>CDW+G</td>
<td>2468</td>
</tr>
<tr>
<td>Boxlight Corporation</td>
<td>2469</td>
</tr>
<tr>
<td>TechLAN</td>
<td>2471</td>
</tr>
<tr>
<td>Math.com</td>
<td>2500</td>
</tr>
<tr>
<td>Lintor Publishing Center</td>
<td>2501</td>
</tr>
<tr>
<td>LittleFingers by Datadesk</td>
<td>2502</td>
</tr>
<tr>
<td>Novell, Inc.</td>
<td>2520</td>
</tr>
<tr>
<td>MCS</td>
<td>2524</td>
</tr>
<tr>
<td>Cognitive Concepts, Inc.</td>
<td>2526, 2528</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>2527</td>
</tr>
<tr>
<td>World Book School and Library</td>
<td>2529, 2531</td>
</tr>
<tr>
<td>Micrograms Software</td>
<td>2530, 2532</td>
</tr>
<tr>
<td>NECTAR Foundation</td>
<td>2533</td>
</tr>
<tr>
<td>DK Interactive Learning</td>
<td>2536</td>
</tr>
<tr>
<td>Education Week</td>
<td>2537, 2536</td>
</tr>
<tr>
<td>GPN/University of Nebraska-Lincoln</td>
<td>2539</td>
</tr>
<tr>
<td>Discovery Channel School</td>
<td>2541, 2543</td>
</tr>
<tr>
<td>Miramar Systems, Inc.</td>
<td>2542</td>
</tr>
<tr>
<td>A-hal Interactive, Inc.</td>
<td>2544</td>
</tr>
<tr>
<td>Rauland-Borg Corporation</td>
<td>2545</td>
</tr>
<tr>
<td>Academic Distributing, Inc.</td>
<td>2546, 2548, 2550</td>
</tr>
<tr>
<td>Advantage Learning Systems, Inc.</td>
<td>2549, 2551</td>
</tr>
<tr>
<td>The New York Times Learning Network</td>
<td>2554</td>
</tr>
<tr>
<td>Data Recognition, Inc.</td>
<td>2556</td>
</tr>
<tr>
<td>PowerSchool</td>
<td>2560</td>
</tr>
<tr>
<td>Educational & Business Systems, Inc.</td>
<td>2561</td>
</tr>
<tr>
<td>Leading Technology Micro, Inc.</td>
<td>2563</td>
</tr>
<tr>
<td>Animated Communications</td>
<td>2564</td>
</tr>
<tr>
<td>SCI Technologies</td>
<td>2565</td>
</tr>
<tr>
<td>Long's Electronics Inc.</td>
<td>2569</td>
</tr>
<tr>
<td>College Broadband</td>
<td>2570</td>
</tr>
<tr>
<td>ELLIS by CALL, Inc.</td>
<td>2571</td>
</tr>
<tr>
<td>School Center</td>
<td>2600</td>
</tr>
<tr>
<td>Exhibitor Name</td>
<td>Booth Number(s)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>ePALS Classroom Exchange</td>
<td>2601</td>
</tr>
<tr>
<td>Phoenix/BFA/Coronet</td>
<td>2602,2700</td>
</tr>
<tr>
<td>AlphaSmart, Inc.</td>
<td>2620</td>
</tr>
<tr>
<td>SIRS Mandarin, Inc.</td>
<td>2621</td>
</tr>
<tr>
<td>The Knowledge Tree Inc.</td>
<td>2623,2625</td>
</tr>
<tr>
<td>NewDeal, Inc.</td>
<td>2626,2628</td>
</tr>
<tr>
<td>ANTEC/Educational Technology Associates & Neufeld Learning Systems</td>
<td>2627,2629</td>
</tr>
<tr>
<td>K'NEX Education Division</td>
<td>2630,2632</td>
</tr>
<tr>
<td>Grafcio, Inc.</td>
<td>2637,2736</td>
</tr>
<tr>
<td>Learn.com</td>
<td>2638</td>
</tr>
<tr>
<td>NewsBank, Inc.</td>
<td>2639,2641</td>
</tr>
<tr>
<td>Sonnet Technologies, Inc.</td>
<td>2640</td>
</tr>
<tr>
<td>Book Systems, Inc.</td>
<td>2642</td>
</tr>
<tr>
<td>American Education Corporation</td>
<td>2643,2645</td>
</tr>
<tr>
<td>The Funding Factory</td>
<td>2644,2646</td>
</tr>
<tr>
<td>Schepp Turner Productions LLP</td>
<td>2654</td>
</tr>
<tr>
<td>Smith System</td>
<td>2655,2754</td>
</tr>
<tr>
<td>Fiberworks, Inc.</td>
<td>2657</td>
</tr>
<tr>
<td>FSCreations, Inc.</td>
<td>2659</td>
</tr>
<tr>
<td>LIGHTWARE</td>
<td>2660</td>
</tr>
<tr>
<td>Cnetics Technologies</td>
<td>2662</td>
</tr>
<tr>
<td>Walden University</td>
<td>2664</td>
</tr>
<tr>
<td>Jungsoft USA, Inc.</td>
<td>2668</td>
</tr>
<tr>
<td>Amera Computers, Inc.</td>
<td>2669</td>
</tr>
<tr>
<td>New Forum Publishers, Inc.</td>
<td>2670</td>
</tr>
<tr>
<td>WIN Laboratories, Ltd.</td>
<td>2671</td>
</tr>
<tr>
<td>eHomeRoom.com, Inc.</td>
<td>2702</td>
</tr>
<tr>
<td>Learning in Motion</td>
<td>2720,2722</td>
</tr>
<tr>
<td>Fortes Grand Corporation</td>
<td>2721,2723</td>
</tr>
<tr>
<td>Pinnacle Systems, Inc.</td>
<td>2724,2726</td>
</tr>
<tr>
<td>National Semiconductor Corporation</td>
<td>2728,2730</td>
</tr>
<tr>
<td>Teknimedia Corporation</td>
<td>2738</td>
</tr>
<tr>
<td>Surpass Software</td>
<td>2740</td>
</tr>
<tr>
<td>American Power Conversion</td>
<td>2742</td>
</tr>
<tr>
<td>PLATO® Education/TRO Learning, Inc.</td>
<td>2743,2745</td>
</tr>
<tr>
<td>ABC-CUO</td>
<td>2744</td>
</tr>
<tr>
<td>Altiris</td>
<td>2747</td>
</tr>
<tr>
<td>Tangent Computer, Inc.</td>
<td>2748</td>
</tr>
<tr>
<td>QuickPAD by H45 Technology, Inc.</td>
<td>2749,2751</td>
</tr>
<tr>
<td>Youthese USA</td>
<td>2756</td>
</tr>
<tr>
<td>Adventus Incorporated</td>
<td>2758</td>
</tr>
<tr>
<td>The Keyboard Instructor by AKT Inc.</td>
<td>2761</td>
</tr>
<tr>
<td>Learning Pays.com</td>
<td>2762</td>
</tr>
<tr>
<td>textHELP Systems Ltd.</td>
<td>2763</td>
</tr>
<tr>
<td>iTeach.com</td>
<td>2765</td>
</tr>
<tr>
<td>Hyper Technologies</td>
<td>2766</td>
</tr>
<tr>
<td>Sonic Desktop Software</td>
<td>2767</td>
</tr>
<tr>
<td>Meridian Creative Group</td>
<td>2769</td>
</tr>
<tr>
<td>PAR Technologies, Inc.</td>
<td>2820,2822</td>
</tr>
<tr>
<td>Acer America Corporation</td>
<td>2823</td>
</tr>
<tr>
<td>AbleSoft, Inc.</td>
<td>2824</td>
</tr>
<tr>
<td>Highsmith, Inc.</td>
<td>2825,2827</td>
</tr>
<tr>
<td>Barnum Software</td>
<td>2828</td>
</tr>
<tr>
<td>K-12 MicroMedia Publishing</td>
<td>2830</td>
</tr>
<tr>
<td>Centurion Technologies, Inc.</td>
<td>2833</td>
</tr>
<tr>
<td>ChildU, Inc.</td>
<td>2834</td>
</tr>
<tr>
<td>PowerQuest Corporation</td>
<td>2835</td>
</tr>
<tr>
<td>Vision Database Systems</td>
<td>2836</td>
</tr>
<tr>
<td>The College Board</td>
<td>2840,2846</td>
</tr>
<tr>
<td>Test University</td>
<td>2847,2849</td>
</tr>
<tr>
<td>Welsh Products, Inc.</td>
<td>2851</td>
</tr>
<tr>
<td>Co-NECT Schools</td>
<td>2855</td>
</tr>
<tr>
<td>teachersroom.com, Inc.</td>
<td>2857</td>
</tr>
<tr>
<td>Geist Manufacturing, Inc.</td>
<td>2859</td>
</tr>
<tr>
<td>Lernout & Hauspie, Kurzweil Education Group</td>
<td>2860</td>
</tr>
<tr>
<td>Aladdin Knowledge Systems</td>
<td>2861,2863</td>
</tr>
<tr>
<td>AIMS Multimedia</td>
<td>2862</td>
</tr>
<tr>
<td>Computrac</td>
<td>2864</td>
</tr>
<tr>
<td>Greenwood Publishing Group</td>
<td>2866</td>
</tr>
<tr>
<td>GlobaLearn.com</td>
<td>2868</td>
</tr>
<tr>
<td>FOCUS Enhancements, Inc.</td>
<td>2870</td>
</tr>
<tr>
<td>imind education systems</td>
<td>2920,2922</td>
</tr>
<tr>
<td>TeacherEducation.com-Teacher Education Institute</td>
<td>2924</td>
</tr>
<tr>
<td>Vista Associates, Inc.</td>
<td>2926</td>
</tr>
<tr>
<td>U.S. Geological Survey</td>
<td>2928</td>
</tr>
<tr>
<td>Teacher Universe, Inc.</td>
<td>2930,2932</td>
</tr>
<tr>
<td>SchoolOne.com</td>
<td>2936</td>
</tr>
<tr>
<td>Logic Extension Resources</td>
<td>2938</td>
</tr>
<tr>
<td>Proxima Corporation</td>
<td>2940</td>
</tr>
<tr>
<td>Howard Computers</td>
<td>2942</td>
</tr>
<tr>
<td>Funds for Learning</td>
<td>2944</td>
</tr>
<tr>
<td>Phoenix Multimedia, Inc.</td>
<td>2946</td>
</tr>
<tr>
<td>Fonts4Teachers-Down Hill Publishing</td>
<td>2948</td>
</tr>
<tr>
<td>DataServ, Inc.</td>
<td>2950</td>
</tr>
<tr>
<td>Category</td>
<td>Companies</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ADVANCE AUGMENTATIVE</td>
<td>DynaVox Systems Inc.</td>
</tr>
<tr>
<td>COMMUNICATION SOLUTIONS</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td>Aurbach & Associates, Inc.</td>
</tr>
<tr>
<td></td>
<td>Logic Extension Resources</td>
</tr>
<tr>
<td>ASSESSMENT AND CURRICULUM</td>
<td>Teacher Universe, Inc.</td>
</tr>
<tr>
<td>INTEGRATION</td>
<td></td>
</tr>
<tr>
<td>ASSOCIATION</td>
<td>ISTE—International Society for Technology in Education</td>
</tr>
<tr>
<td></td>
<td>National School Boards Association</td>
</tr>
<tr>
<td></td>
<td>Nippon Educational Computing Association</td>
</tr>
<tr>
<td></td>
<td>Society for Computer Simulation International</td>
</tr>
<tr>
<td></td>
<td>WCCE 2001 (World Conference on Computers in Education)</td>
</tr>
<tr>
<td>AUDIO/VISUAL PRODUCTS</td>
<td>Long's Electronics Inc.</td>
</tr>
<tr>
<td>BUSINESS SOFTWARE</td>
<td>Academic Software</td>
</tr>
<tr>
<td></td>
<td>Animated Communications</td>
</tr>
<tr>
<td></td>
<td>Ask Jeeves/The Evergreen Project</td>
</tr>
<tr>
<td></td>
<td>Discovery Educational Systems</td>
</tr>
<tr>
<td></td>
<td>Educational Software Institute</td>
</tr>
<tr>
<td></td>
<td>ELLIS by CAI, Inc.</td>
</tr>
<tr>
<td></td>
<td>Fonts4Teachers—Down Hill Publishing Services, Inc.</td>
</tr>
<tr>
<td></td>
<td>MediaSpark IT Solutions Inc.</td>
</tr>
<tr>
<td></td>
<td>Microsoft Corporation</td>
</tr>
<tr>
<td></td>
<td>Phoenix Multimedia, Inc.</td>
</tr>
<tr>
<td></td>
<td>Power On Software</td>
</tr>
<tr>
<td></td>
<td>PowerQuest Corporation</td>
</tr>
<tr>
<td></td>
<td>Principia Products, Inc.</td>
</tr>
<tr>
<td></td>
<td>Quick Course® Books/OTSI</td>
</tr>
<tr>
<td></td>
<td>Security Software Systems, Inc.</td>
</tr>
<tr>
<td></td>
<td>Software Express, Inc.</td>
</tr>
<tr>
<td></td>
<td>Sonic Desktop Software</td>
</tr>
<tr>
<td></td>
<td>Sorenson Vision, Inc.</td>
</tr>
<tr>
<td></td>
<td>Sun Microsystems, Inc.</td>
</tr>
<tr>
<td>CALCULATORS</td>
<td>Texas Instruments Incorporated</td>
</tr>
<tr>
<td></td>
<td>CD-ROM PUBLISHER</td>
</tr>
<tr>
<td></td>
<td>ABC-CLIO</td>
</tr>
<tr>
<td></td>
<td>Adventus Incorporated</td>
</tr>
<tr>
<td></td>
<td>AIMS Multimedia</td>
</tr>
<tr>
<td></td>
<td>APTE, Inc.</td>
</tr>
<tr>
<td></td>
<td>Ask Jeeves/The Evergreen Project</td>
</tr>
<tr>
<td></td>
<td>Barnum Software</td>
</tr>
<tr>
<td></td>
<td>Boxer Learning, Inc.</td>
</tr>
<tr>
<td></td>
<td>Britannica Education</td>
</tr>
<tr>
<td></td>
<td>College Broadband</td>
</tr>
<tr>
<td></td>
<td>Compu-Teach Educational Software</td>
</tr>
<tr>
<td></td>
<td>Cubic Science, Inc.</td>
</tr>
<tr>
<td></td>
<td>Curriculum Associates, Inc.</td>
</tr>
<tr>
<td></td>
<td>DDC Publishing</td>
</tr>
<tr>
<td></td>
<td>Discovery Channel School</td>
</tr>
<tr>
<td></td>
<td>DK Interactive Learning</td>
</tr>
<tr>
<td></td>
<td>Fairfield Language Technologies</td>
</tr>
<tr>
<td></td>
<td>Forest Technologies</td>
</tr>
<tr>
<td></td>
<td>Get a Clue Software & Services</td>
</tr>
<tr>
<td></td>
<td>(Lyceum Communications)</td>
</tr>
<tr>
<td></td>
<td>GPN/University of Nebraska-Lincoln</td>
</tr>
<tr>
<td></td>
<td>Golter Educational</td>
</tr>
<tr>
<td></td>
<td>Heartsoft</td>
</tr>
<tr>
<td></td>
<td>IDE Corp.—Innovative Designs for Education</td>
</tr>
<tr>
<td></td>
<td>Ingenuity Works, Inc./Corel Corporation</td>
</tr>
<tr>
<td></td>
<td>K-12 MicroMedia Publishing</td>
</tr>
<tr>
<td></td>
<td>Learning in Motion</td>
</tr>
<tr>
<td></td>
<td>Lexia Learning Systems, Inc.</td>
</tr>
<tr>
<td></td>
<td>Lightspan, Inc.</td>
</tr>
<tr>
<td></td>
<td>Lintor Publishing Center</td>
</tr>
<tr>
<td></td>
<td>MathResources Inc.</td>
</tr>
<tr>
<td></td>
<td>MICRO-INTEL International</td>
</tr>
<tr>
<td></td>
<td>Micrograms Software</td>
</tr>
<tr>
<td></td>
<td>Miliken Publishing Co.</td>
</tr>
<tr>
<td></td>
<td>National Geographic School Publishing</td>
</tr>
<tr>
<td></td>
<td>Phoenix Multimedia, Inc.</td>
</tr>
<tr>
<td></td>
<td>Quick Course® Books/OTSI</td>
</tr>
<tr>
<td></td>
<td>Rainbow Educational Media</td>
</tr>
<tr>
<td></td>
<td>Riverdeep Interactive Learning</td>
</tr>
<tr>
<td></td>
<td>Scholastic Inc.</td>
</tr>
<tr>
<td></td>
<td>SIRS Mandarin, Inc.</td>
</tr>
<tr>
<td>Steck-Vaughn</td>
<td>SUNBURST Technology</td>
</tr>
<tr>
<td></td>
<td>TeachMaster Technologies</td>
</tr>
<tr>
<td></td>
<td>Tech4Learning, Inc.</td>
</tr>
<tr>
<td></td>
<td>Teknimedia Corporation</td>
</tr>
<tr>
<td></td>
<td>The Gale Group</td>
</tr>
<tr>
<td></td>
<td>Tom Snyder Productions</td>
</tr>
<tr>
<td></td>
<td>Turner Learning, Inc.</td>
</tr>
<tr>
<td></td>
<td>Tyndal Stone Media</td>
</tr>
<tr>
<td></td>
<td>U.S. News & World Report</td>
</tr>
<tr>
<td>COLLABORATIVE TOOLS</td>
<td>Centrality</td>
</tr>
<tr>
<td></td>
<td>COMPASSLearning</td>
</tr>
<tr>
<td></td>
<td>ELLIS by CAI, Inc.</td>
</tr>
<tr>
<td></td>
<td>COMPUTER ASSISTED INSTRUCTION & TRAINING</td>
</tr>
<tr>
<td></td>
<td>COMPUTER FURNITURE/FURNITURE</td>
</tr>
<tr>
<td></td>
<td>Electronic Classroom Furniture Systems, I.C.</td>
</tr>
<tr>
<td></td>
<td>Grafco, Inc.</td>
</tr>
<tr>
<td></td>
<td>Highsmith, Inc.</td>
</tr>
<tr>
<td></td>
<td>Nova Solutions, Inc.</td>
</tr>
<tr>
<td></td>
<td>SMARTdesks Ltd.</td>
</tr>
<tr>
<td></td>
<td>Smith System</td>
</tr>
<tr>
<td></td>
<td>Spectrum Industries, Inc.</td>
</tr>
<tr>
<td></td>
<td>Virco Mfg. Corporation</td>
</tr>
<tr>
<td></td>
<td>COMPUTER INTERFACE</td>
</tr>
<tr>
<td></td>
<td>SCI Technologies</td>
</tr>
<tr>
<td></td>
<td>COMPUTER NETWORKS: HARDWARE</td>
</tr>
<tr>
<td></td>
<td>Acer America Corporation</td>
</tr>
<tr>
<td></td>
<td>Amer.com</td>
</tr>
<tr>
<td></td>
<td>Bell Atlantic</td>
</tr>
<tr>
<td></td>
<td>BellSouth</td>
</tr>
<tr>
<td></td>
<td>Brother International Corporation</td>
</tr>
<tr>
<td></td>
<td>CDW+G</td>
</tr>
<tr>
<td></td>
<td>Cisco Systems, Inc.</td>
</tr>
<tr>
<td></td>
<td>Computrac</td>
</tr>
<tr>
<td></td>
<td>Daly Computers</td>
</tr>
<tr>
<td></td>
<td>Data Recognition, Inc.</td>
</tr>
<tr>
<td></td>
<td>DataServ, Inc.</td>
</tr>
<tr>
<td></td>
<td>Discovery Educational Systems</td>
</tr>
<tr>
<td></td>
<td>DreamWriter—NTS Computers</td>
</tr>
<tr>
<td></td>
<td>Dukane Corporation</td>
</tr>
<tr>
<td></td>
<td>EarthWalk Communications, Inc.</td>
</tr>
<tr>
<td></td>
<td>Education Networks of America</td>
</tr>
<tr>
<td></td>
<td>Educational & Business Systems, Inc.</td>
</tr>
<tr>
<td></td>
<td>Enterasys Networks</td>
</tr>
<tr>
<td></td>
<td>Ericsson Web Com, Inc.</td>
</tr>
<tr>
<td></td>
<td>Fiberworks, Inc.</td>
</tr>
<tr>
<td></td>
<td>Forest Technologies</td>
</tr>
<tr>
<td></td>
<td>Gateway</td>
</tr>
<tr>
<td></td>
<td>Hewlett-Packard Company</td>
</tr>
<tr>
<td></td>
<td>IBM Corporation</td>
</tr>
<tr>
<td></td>
<td>Intel Corp.</td>
</tr>
<tr>
<td></td>
<td>Interactive Products Division—Numonics</td>
</tr>
<tr>
<td></td>
<td>JDL Technologies</td>
</tr>
<tr>
<td></td>
<td>Junsoft USA, Inc.</td>
</tr>
<tr>
<td></td>
<td>Leading Technology Micro, Inc.</td>
</tr>
<tr>
<td></td>
<td>Logical Choice Technologies</td>
</tr>
<tr>
<td></td>
<td>Lucent Technologies</td>
</tr>
<tr>
<td></td>
<td>Micro Warehouse, Inc.</td>
</tr>
<tr>
<td></td>
<td>N2H2, Inc.</td>
</tr>
<tr>
<td></td>
<td>NetSchools Corporation</td>
</tr>
<tr>
<td></td>
<td>Network Data Services, Inc.</td>
</tr>
<tr>
<td></td>
<td>Nortel Networks</td>
</tr>
<tr>
<td></td>
<td>NoteSys</td>
</tr>
<tr>
<td></td>
<td>PAR Technologies, Inc.</td>
</tr>
<tr>
<td></td>
<td>Philips Consumer Electronics</td>
</tr>
<tr>
<td></td>
<td>Premio Computer, Inc.</td>
</tr>
<tr>
<td></td>
<td>Proxim, Inc.</td>
</tr>
<tr>
<td></td>
<td>SCI Technologies</td>
</tr>
<tr>
<td></td>
<td>SIRS Mandarin, Inc.</td>
</tr>
<tr>
<td></td>
<td>Sonnet Technologies, Inc.</td>
</tr>
<tr>
<td></td>
<td>Sun Microsystems, Inc.</td>
</tr>
<tr>
<td></td>
<td>Symbol Technologies, Inc.</td>
</tr>
<tr>
<td></td>
<td>Tangent Computer, Inc.</td>
</tr>
<tr>
<td></td>
<td>TechLAN</td>
</tr>
<tr>
<td></td>
<td>Toshiba America</td>
</tr>
<tr>
<td></td>
<td>Waters Network Systems</td>
</tr>
<tr>
<td></td>
<td>WIN Laboratories, Ltd.</td>
</tr>
<tr>
<td></td>
<td>Zenith Electronics Corporation</td>
</tr>
<tr>
<td>COMPUTER NETWORKS: SOFTWARE</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Academic Distributing, Inc.</td>
<td></td>
</tr>
<tr>
<td>Academic Software</td>
<td></td>
</tr>
<tr>
<td>Altriris</td>
<td></td>
</tr>
<tr>
<td>Barnum Software</td>
<td></td>
</tr>
<tr>
<td>CDW•G</td>
<td></td>
</tr>
<tr>
<td>CrossTec Corporation</td>
<td></td>
</tr>
<tr>
<td>Curriculum Associates, Inc.</td>
<td></td>
</tr>
<tr>
<td>Daly Computers</td>
<td></td>
</tr>
<tr>
<td>Data Recognition, Inc.</td>
<td></td>
</tr>
<tr>
<td>DataServ, Inc.</td>
<td></td>
</tr>
<tr>
<td>Diskovery Educational Systems</td>
<td></td>
</tr>
<tr>
<td>DK Interactive Learning</td>
<td></td>
</tr>
<tr>
<td>DreamWriter—NTS Computers</td>
<td></td>
</tr>
<tr>
<td>EarthWalk Communications, Inc.</td>
<td></td>
</tr>
<tr>
<td>ELLIS by CALI, Inc.</td>
<td></td>
</tr>
<tr>
<td>Enterasys Networks</td>
<td></td>
</tr>
<tr>
<td>Ericsson Web Com, Inc.</td>
<td></td>
</tr>
<tr>
<td>Excelsior Software, Inc.</td>
<td></td>
</tr>
<tr>
<td>Fairfield Language Technologies</td>
<td></td>
</tr>
<tr>
<td>Fiberworks, Inc.</td>
<td></td>
</tr>
<tr>
<td>Forest Technologies</td>
<td></td>
</tr>
<tr>
<td>Fortes Grand Corporation</td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td></td>
</tr>
<tr>
<td>Get a Clue Software & Services</td>
<td></td>
</tr>
<tr>
<td>(lyceum Communications)</td>
<td></td>
</tr>
<tr>
<td>IBM Corporation</td>
<td></td>
</tr>
<tr>
<td>IDE Corp.—Innovative Designs for Education</td>
<td></td>
</tr>
<tr>
<td>imind education systems</td>
<td></td>
</tr>
<tr>
<td>Inspiration Software, Inc.</td>
<td></td>
</tr>
<tr>
<td>Intel Corp.</td>
<td></td>
</tr>
<tr>
<td>JDL Technologies</td>
<td></td>
</tr>
<tr>
<td>KNER Education Division</td>
<td></td>
</tr>
<tr>
<td>K-12 MicroMedia Publishing</td>
<td></td>
</tr>
<tr>
<td>LearnStar, L.P.</td>
<td></td>
</tr>
<tr>
<td>Lexia Learning Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Lightspan, Inc.</td>
<td></td>
</tr>
<tr>
<td>Lintor Publishing Center</td>
<td></td>
</tr>
<tr>
<td>Logical Choice Technologies</td>
<td></td>
</tr>
<tr>
<td>MathXPert</td>
<td></td>
</tr>
<tr>
<td>MediaSmith, Inc.</td>
<td></td>
</tr>
<tr>
<td>Micro Warehouse, Inc.</td>
<td></td>
</tr>
<tr>
<td>Microsoft Corporation</td>
<td></td>
</tr>
<tr>
<td>MSCS</td>
<td></td>
</tr>
<tr>
<td>NECTAR Foundation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER PERIPHERALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Distributing, Inc.</td>
</tr>
<tr>
<td>Acer America Corporation</td>
</tr>
<tr>
<td>Adventus Incorporated</td>
</tr>
<tr>
<td>AlphaSmart, Inc.</td>
</tr>
<tr>
<td>Amera Computers, Inc.</td>
</tr>
<tr>
<td>American Power Conversion</td>
</tr>
<tr>
<td>ANTEC/Educational Technology Associates & Neufeld Learning Systems</td>
</tr>
<tr>
<td>Brother International Corporation</td>
</tr>
<tr>
<td>CalcuScribe</td>
</tr>
<tr>
<td>Canon USA Visual Communication Systems</td>
</tr>
<tr>
<td>CDW•G</td>
</tr>
<tr>
<td>ClassroomDirect.com</td>
</tr>
<tr>
<td>CompUSA Inc.</td>
</tr>
<tr>
<td>Computrac</td>
</tr>
<tr>
<td>Daly Computers</td>
</tr>
<tr>
<td>Data Recognition, Inc.</td>
</tr>
<tr>
<td>Diskovery Educational Systems</td>
</tr>
<tr>
<td>EarthWalk Communications, Inc.</td>
</tr>
<tr>
<td>Ericsson Web Com, Inc.</td>
</tr>
<tr>
<td>FOCUS Enhancements, Inc.</td>
</tr>
<tr>
<td>Forest Technologies</td>
</tr>
<tr>
<td>Gateway</td>
</tr>
<tr>
<td>GCC Technologies</td>
</tr>
<tr>
<td>Geist Manufacturing, Inc.</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
</tr>
<tr>
<td>IBM Corporation</td>
</tr>
<tr>
<td>Interactive Products Division—Numonics</td>
</tr>
<tr>
<td>Jungsoft USA, Inc.</td>
</tr>
<tr>
<td>Keytec, Inc.</td>
</tr>
<tr>
<td>Leading Technology Micro, Inc.</td>
</tr>
<tr>
<td>Learning Services, Inc.</td>
</tr>
<tr>
<td>Lexmark International</td>
</tr>
<tr>
<td>LittleFingers by Datadisk</td>
</tr>
<tr>
<td>Logical Choice Technologies</td>
</tr>
<tr>
<td>Micro Warehouse, Inc.</td>
</tr>
<tr>
<td>Network Data Services, Inc.</td>
</tr>
<tr>
<td>PAR Technologies, Inc.</td>
</tr>
<tr>
<td>Philips Consumer Electronics</td>
</tr>
<tr>
<td>Pinnacle Systems, Inc.</td>
</tr>
<tr>
<td>Polaroid Education Program</td>
</tr>
<tr>
<td>Pre-Owned Electronics, Inc.</td>
</tr>
<tr>
<td>Principia Products, Inc.</td>
</tr>
<tr>
<td>Proxim, Inc.</td>
</tr>
<tr>
<td>QuickPAD by H45 Technology, Inc.</td>
</tr>
<tr>
<td>Sagebrush Corporation</td>
</tr>
<tr>
<td>SchoolComputer.com</td>
</tr>
<tr>
<td>SCI Technologies</td>
</tr>
<tr>
<td>SMART Technologies Inc.</td>
</tr>
<tr>
<td>Software Express, Inc.</td>
</tr>
<tr>
<td>Sorenson Vision, Inc.</td>
</tr>
<tr>
<td>Sun Microsystems, Inc.</td>
</tr>
<tr>
<td>Symbol Technologies, Inc.</td>
</tr>
<tr>
<td>Tangent Computer, Inc.</td>
</tr>
<tr>
<td>Terrapin Software</td>
</tr>
<tr>
<td>Virtual Ink Corp.</td>
</tr>
<tr>
<td>Welsh Products, Inc.</td>
</tr>
<tr>
<td>WIN Laboratories, Ltd.</td>
</tr>
<tr>
<td>Zenith Electronics Corporation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandria/CMPAnion Corporation</td>
</tr>
<tr>
<td>Amera Computers, Inc.</td>
</tr>
<tr>
<td>Book Systems, Inc.</td>
</tr>
<tr>
<td>Brother International Corporation</td>
</tr>
<tr>
<td>CalcuScribe</td>
</tr>
<tr>
<td>CDW•G</td>
</tr>
<tr>
<td>CompUSA Inc.</td>
</tr>
<tr>
<td>Daly Computers</td>
</tr>
<tr>
<td>Data Recognition, Inc.</td>
</tr>
<tr>
<td>DataServ, Inc.</td>
</tr>
<tr>
<td>Dell Computer Corporation</td>
</tr>
<tr>
<td>EarthWalk Communications, Inc.</td>
</tr>
<tr>
<td>Enterasys Networks</td>
</tr>
<tr>
<td>Gateway</td>
</tr>
<tr>
<td>Hewlett-Packard Company</td>
</tr>
<tr>
<td>Howard Computers</td>
</tr>
<tr>
<td>IBM Corporation</td>
</tr>
<tr>
<td>Leading Technology Micro, Inc.</td>
</tr>
<tr>
<td>LearnStar, L.P.</td>
</tr>
<tr>
<td>Logical Choice Technologies</td>
</tr>
<tr>
<td>Micro Warehouse, Inc.</td>
</tr>
<tr>
<td>Micron Government Computer Systems, Inc.</td>
</tr>
<tr>
<td>Network Data Services, Inc.</td>
</tr>
<tr>
<td>NoteSys</td>
</tr>
<tr>
<td>PAR Technologies, Inc.</td>
</tr>
<tr>
<td>Perfect Solutions</td>
</tr>
<tr>
<td>Pre-Owned Electronics, Inc.</td>
</tr>
<tr>
<td>Premio Computer, Inc.</td>
</tr>
<tr>
<td>SCI Technologies</td>
</tr>
<tr>
<td>Sun Microsystems, Inc.</td>
</tr>
<tr>
<td>Toshiba America</td>
</tr>
<tr>
<td>WIN Laboratories, Ltd.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhoneMaster—a Division of US Telecom</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER TELEPHONY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teknimedia Corporation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER SUPPLIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>WorldWise Computer Supplies & Accessories</td>
</tr>
</tbody>
</table>
CONFERENCES
EBSCO Publishing
Georgia Educational Technology Conference (GaETC)
National School Boards Association
SCI Technologies
Society for Computer Simulation International
WCCE 2001 (World Conference on Computers in Education)

CONSULTING SERVICES
Co-NECT Schools
Funds for Learning
IDE Corp.—Innovative Designs for Education
TeachMaster Technologies

EDUCATION CONTENT ONLINE
New Forum Publishers, Inc.

DATABASE MARKETING
Quality Education Data

DATABASE SERVICES
Quality Education Data

DESIGN SERVICES
SMARTdesks Ltd.

DIGITAL IMAGING PRODUCTS
Sony Electronics, Inc.

DISTANCE LEARNING
Canter & Associates, Inc.
TeacherEducation.com—Teacher Education Institute
TopTutors.com

DISTANCE LEARNING SERVICES
Bell Atlantic

EDUCATIONAL SOFTWARE:

AbleSoft, Inc.
Academic Distributing, Inc.
AccuNet™/AP® Photo Archive
Albion/COMpanion Corporation
Altiris
American Education Corporation
Blackboard, Inc.
Boxer Learning, Inc.
CCV Software
Chancery Software Ltd.
Cognitive Concepts, Inc.
College Broadband
Compass Learning
Comp-Teach Educational Software
Computer Curriculum Corporation
CrossTec Corporation
Cubic Science, Inc.
Curriculum Associates, Inc.
Daily Computers
DDC Publishing
Discourse Technologies Inc.
Discovery Educational Systems
Dukane Corporation
EDmin.com
Educational Resources
Enova Software Inc.
Ericsson Web Com, Inc.
Excelsior Software, Inc.
Follett Software Company
Forest Technologies
FSCreations, Inc.
Funds for Learning
IBM Corporation
IDE Corp.—Innovative Designs for Education
Inspiration Software, Inc.
Jackson Software
Jay Klein Productions
K-12 MicroMedia Publishing
Learning in Motion
Learning Services, Inc.
Learning Tools International
Logic Extension Resources
Logical Choice Technologies
Meridian Creative Group
Micro Warehouse, Inc.
MSCS
NCS
NetSupport
Nordex International
Phoenix Multimedia, Inc.
PhoneMaster—a Division of US Telecom
Power On Software
PowerSchool
Principia Products, Inc.
Regional Technology in Education Consortium
Sagebrush Corporation
Schep Turner Productions LLP
SchoolComputer.com
Software Express, Inc.
South Central Regional Technology in Education Consortium
Sun Microsystems, Inc.
Surpass Software
Symbol Technologies, Inc.
Teacher Created Materials, Inc.
teachersroom.com, Inc.
TeachMaster Technologies
TechLan
Virtual Learning Technologies
Vista Associates, Inc.
Winnebago Spectrum/Athena
Walden University

EDUCATIONAL SOFTWARE:

CONTENT

A-hal Interactive, Inc.
Academic Distributing, Inc.
Academic Software
AccuNet™/AP® Photo Archive
Advantage Learning Systems, Inc.
Adventus Incorporated
AIMS Multimedia
Altiris
American Education Corporation
Animated Communications
ANTEC/Educational Technology Associates & Neufeld Learning Systems
Apex Learning
Applied Technologies
APTE, Inc.
Ask Jeeves/The Evergreen Project
Aurbach & Associates, Inc.
Barnum Software
Blackboard, Inc.
Brainium.com
Bytes of Learning
Casio, Inc.
CCV Software
Centrinity
College Broadband
Compass Learning
Computec Educational Software
Computer Curriculum Corporation
CrossTec Corporation
Cubic Science, Inc.
Curriculum Associates, Inc.
Daily Computers
DDC Publishing
Discourse Technologies Inc.
Discovery Educational Systems
EarthWalk Communications, Inc.
Edmark Corporation
Educational Resources
Educational Software Institute
ELLIS by CALL, Inc.

WWW.NECCSITE.ORG • NECC2000
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Website/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encore Software, Inc.</td>
<td></td>
</tr>
<tr>
<td>Entrex Software</td>
<td></td>
</tr>
<tr>
<td>Ericsson Web Com, Inc.</td>
<td></td>
</tr>
<tr>
<td>Fairfield Language Technologies</td>
<td></td>
</tr>
<tr>
<td>Forest Technologies</td>
<td></td>
</tr>
<tr>
<td>Gamco/Orchard Software</td>
<td></td>
</tr>
<tr>
<td>Get a Clue Software & Services</td>
<td></td>
</tr>
<tr>
<td>Lyceum Communications</td>
<td></td>
</tr>
<tr>
<td>GPN/University of Nebraska-Lincoln</td>
<td></td>
</tr>
<tr>
<td>Grolier Educational</td>
<td></td>
</tr>
<tr>
<td>Heartsoft</td>
<td></td>
</tr>
<tr>
<td>IBM Corporation</td>
<td></td>
</tr>
<tr>
<td>IDE Corp.—Innovative Designs</td>
<td></td>
</tr>
<tr>
<td>for Education</td>
<td></td>
</tr>
<tr>
<td>imind education systems</td>
<td></td>
</tr>
<tr>
<td>Ingenuity Works, Inc./Cori</td>
<td></td>
</tr>
<tr>
<td>Corel Corporation</td>
<td></td>
</tr>
<tr>
<td>Inspiration Software, Inc.</td>
<td></td>
</tr>
<tr>
<td>IntelliTools, Inc.</td>
<td></td>
</tr>
<tr>
<td>K'NEX Education Division</td>
<td></td>
</tr>
<tr>
<td>K-12 MicroMedia Publishing</td>
<td></td>
</tr>
<tr>
<td>Key Curriculum Press</td>
<td></td>
</tr>
<tr>
<td>LCSI</td>
<td></td>
</tr>
<tr>
<td>Learn.com</td>
<td></td>
</tr>
<tr>
<td>Learning in Motion</td>
<td></td>
</tr>
<tr>
<td>Learning Services, Inc.</td>
<td></td>
</tr>
<tr>
<td>Learning Tools International</td>
<td></td>
</tr>
<tr>
<td>LearnStar, L.P</td>
<td></td>
</tr>
<tr>
<td>Lexia Learning Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Library Video Company</td>
<td></td>
</tr>
<tr>
<td>Lightspan, Inc.</td>
<td></td>
</tr>
<tr>
<td>Lintor Publishing Center</td>
<td></td>
</tr>
<tr>
<td>Logic Extension Resources</td>
<td></td>
</tr>
<tr>
<td>Logical Choice Technologies</td>
<td></td>
</tr>
<tr>
<td>Macromedia, Inc.</td>
<td></td>
</tr>
<tr>
<td>Main Xchange, Inc.</td>
<td></td>
</tr>
<tr>
<td>Math.com</td>
<td></td>
</tr>
<tr>
<td>MathResources Inc.</td>
<td></td>
</tr>
<tr>
<td>MathXpert</td>
<td></td>
</tr>
<tr>
<td>McGraw-Hill Learning Technologies</td>
<td></td>
</tr>
<tr>
<td>Micro Warehouse, Inc.</td>
<td></td>
</tr>
<tr>
<td>Micrograms Software</td>
<td></td>
</tr>
<tr>
<td>Milliken Publishing Co.</td>
<td></td>
</tr>
<tr>
<td>National Geographic School Publishing</td>
<td></td>
</tr>
<tr>
<td>NCS</td>
<td></td>
</tr>
<tr>
<td>NEC Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>NECTAR Foundation</td>
<td></td>
</tr>
<tr>
<td>NetSupport</td>
<td></td>
</tr>
<tr>
<td>NewDeal, Inc.</td>
<td></td>
</tr>
<tr>
<td>Nortel Networks</td>
<td></td>
</tr>
<tr>
<td>NoteSys</td>
<td></td>
</tr>
<tr>
<td>Optimum Resource, Inc.</td>
<td></td>
</tr>
<tr>
<td>Phoenix Multimedia, Inc.</td>
<td></td>
</tr>
<tr>
<td>Pitcso LEGO Dacta</td>
<td></td>
</tr>
<tr>
<td>PLAT® Education/TRO Learning, Inc.</td>
<td></td>
</tr>
<tr>
<td>Quick Course® Books/OSI</td>
<td></td>
</tr>
<tr>
<td>Rainbow Educational Media</td>
<td></td>
</tr>
<tr>
<td>Regional Technology in Education</td>
<td></td>
</tr>
<tr>
<td>Consortium</td>
<td></td>
</tr>
<tr>
<td>SAS iSchool</td>
<td></td>
</tr>
<tr>
<td>Scholastic Inc.</td>
<td></td>
</tr>
<tr>
<td>SchoolComputer.com</td>
<td></td>
</tr>
<tr>
<td>SCI Technologies</td>
<td></td>
</tr>
<tr>
<td>SMART Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td>Software Express, Inc.</td>
<td></td>
</tr>
<tr>
<td>Sonic Desktop Software</td>
<td></td>
</tr>
<tr>
<td>South Central Regional Technology</td>
<td></td>
</tr>
<tr>
<td>in Education Consortium</td>
<td></td>
</tr>
<tr>
<td>Steck-Vaughn</td>
<td></td>
</tr>
<tr>
<td>Sun Microsystems, Inc.</td>
<td></td>
</tr>
<tr>
<td>SUNBURST Technology</td>
<td></td>
</tr>
<tr>
<td>T.H.E. Journal</td>
<td></td>
</tr>
<tr>
<td>Teacher Created Materials, Inc.</td>
<td></td>
</tr>
<tr>
<td>Teacher Support Software</td>
<td></td>
</tr>
<tr>
<td>Teacher Universe, Inc.</td>
<td></td>
</tr>
<tr>
<td>teachersroom.com, Inc.</td>
<td></td>
</tr>
<tr>
<td>Teknimedia Corporation</td>
<td></td>
</tr>
<tr>
<td>Terrapin Software</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments Incorporated</td>
<td></td>
</tr>
<tr>
<td>textHELP Systems Ltd.</td>
<td></td>
</tr>
<tr>
<td>The LearningStation.com</td>
<td></td>
</tr>
<tr>
<td>The Princeton Review Online</td>
<td></td>
</tr>
<tr>
<td>The Wright Group</td>
<td></td>
</tr>
<tr>
<td>ThinkQuest</td>
<td></td>
</tr>
<tr>
<td>Tom Snyder Productions</td>
<td></td>
</tr>
<tr>
<td>TopTutors.com</td>
<td></td>
</tr>
<tr>
<td>Turner Learning, Inc.</td>
<td></td>
</tr>
<tr>
<td>Tyndal Stone Media</td>
<td></td>
</tr>
<tr>
<td>U.S. News & World Report</td>
<td></td>
</tr>
<tr>
<td>Vernier Software & Technology</td>
<td></td>
</tr>
<tr>
<td>Virtual Learning Technologies</td>
<td></td>
</tr>
<tr>
<td>Winnebago Spectrum/Athena</td>
<td></td>
</tr>
<tr>
<td>Yamaha Corporation of America</td>
<td></td>
</tr>
<tr>
<td>EDUCATIONAL TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>K'NEX Education Division</td>
<td></td>
</tr>
<tr>
<td>Knowvation, Inc.</td>
<td></td>
</tr>
<tr>
<td>ELECTRONIC LEARNING AID</td>
<td></td>
</tr>
<tr>
<td>Educational Insights</td>
<td></td>
</tr>
<tr>
<td>Learning Advantage</td>
<td></td>
</tr>
<tr>
<td>EMERGING EDUCATIONAL TECHNOLOGIES PRODUCTS & SERVICES</td>
<td></td>
</tr>
<tr>
<td>DataServ, Inc.</td>
<td></td>
</tr>
<tr>
<td>FOUNDATIONS</td>
<td></td>
</tr>
<tr>
<td>Computer Learning Foundation</td>
<td></td>
</tr>
<tr>
<td>SMARTer Kids Foundation</td>
<td></td>
</tr>
<tr>
<td>FUNDRAISING</td>
<td></td>
</tr>
<tr>
<td>The FundingFactory</td>
<td></td>
</tr>
<tr>
<td>GOALS, STANDARDS & BENCHMARKS</td>
<td></td>
</tr>
<tr>
<td>ACHIEVEMENT TRACKING</td>
<td></td>
</tr>
<tr>
<td>Learning Tools International</td>
<td></td>
</tr>
<tr>
<td>GOVERNMENT</td>
<td></td>
</tr>
<tr>
<td>U.S. Geological Survey</td>
<td></td>
</tr>
<tr>
<td>GOVERNMENT SERVICES</td>
<td></td>
</tr>
<tr>
<td>National Science Foundation</td>
<td></td>
</tr>
<tr>
<td>GRAPHIC DESIGN</td>
<td></td>
</tr>
<tr>
<td>Adobe Systems Inc.</td>
<td></td>
</tr>
<tr>
<td>GRAPHING CALCULATORS</td>
<td></td>
</tr>
<tr>
<td>Casio, Inc.</td>
<td></td>
</tr>
<tr>
<td>HARD DRIVE PROTECTION</td>
<td></td>
</tr>
<tr>
<td>Centurion Technologies, Inc.</td>
<td></td>
</tr>
<tr>
<td>HARD-DISK UTILITIES</td>
<td></td>
</tr>
<tr>
<td>PowerQuest Corporation</td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONAL HARDWARE</td>
<td></td>
</tr>
<tr>
<td>The Keyboard Instructor by AKT Inc.</td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONAL TRAINING AND</td>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT SERVICES</td>
<td></td>
</tr>
<tr>
<td>Bell Atlantic</td>
<td></td>
</tr>
<tr>
<td>INTELLIGENT KEYBOARD</td>
<td></td>
</tr>
<tr>
<td>CalcuScribe</td>
<td></td>
</tr>
<tr>
<td>INTERACTIVE WHITEBOARDS</td>
<td></td>
</tr>
<tr>
<td>Interactive Products Division—Numonics</td>
<td></td>
</tr>
<tr>
<td>SMART Technologies Inc.</td>
<td></td>
</tr>
<tr>
<td>INTERCOM</td>
<td></td>
</tr>
<tr>
<td>Dukane Corporation</td>
<td></td>
</tr>
<tr>
<td>INTERNET PRODUCTS/SERVICES</td>
<td></td>
</tr>
<tr>
<td>A-ha! Interactive, Inc.</td>
<td></td>
</tr>
<tr>
<td>Academic Distributing, Inc.</td>
<td></td>
</tr>
<tr>
<td>America Online, Inc.</td>
<td></td>
</tr>
<tr>
<td>American Education Corporation</td>
<td></td>
</tr>
<tr>
<td>American School Directory</td>
<td></td>
</tr>
<tr>
<td>Apex Learning</td>
<td></td>
</tr>
<tr>
<td>APTE, Inc.</td>
<td></td>
</tr>
<tr>
<td>AT&T Learning Network</td>
<td></td>
</tr>
<tr>
<td>Ask Jeeves/The Evergreen Project</td>
<td></td>
</tr>
<tr>
<td>Bell Atlantic</td>
<td></td>
</tr>
<tr>
<td>BellSouth</td>
<td></td>
</tr>
<tr>
<td>bigchalk.com, Inc.</td>
<td></td>
</tr>
<tr>
<td>Bonus.com the SuperSite for Kids</td>
<td></td>
</tr>
<tr>
<td>Boxer Learning, Inc.</td>
<td></td>
</tr>
<tr>
<td>Brainium.com</td>
<td></td>
</tr>
<tr>
<td>Britannica Education</td>
<td></td>
</tr>
<tr>
<td>CVC Software</td>
<td></td>
</tr>
<tr>
<td>Centrinity</td>
<td></td>
</tr>
<tr>
<td>ChildU, Inc.</td>
<td></td>
</tr>
<tr>
<td>Classroom Connect, Inc.</td>
<td></td>
</tr>
<tr>
<td>College Broadband</td>
<td></td>
</tr>
<tr>
<td>Computer Curriculum Corporation</td>
<td></td>
</tr>
<tr>
<td>Computer Learning Foundation</td>
<td></td>
</tr>
<tr>
<td>CyberPatrol, Unit of The Learning Company</td>
<td></td>
</tr>
<tr>
<td>Daly Computers</td>
<td></td>
</tr>
<tr>
<td>DataServ, Inc.</td>
<td></td>
</tr>
<tr>
<td>Discovery Channel School</td>
<td></td>
</tr>
<tr>
<td>Discover Educational Systems</td>
<td></td>
</tr>
<tr>
<td>e-Tutor, Inc.</td>
<td></td>
</tr>
<tr>
<td>EarthWalk Communications, Inc.</td>
<td></td>
</tr>
</tbody>
</table>
INTERNET PRODUCTS/SERVICES
(CONTINUED)
eBoard.com
EBSCO Publishing
EDmin.com
Educational Software Institute
eHomeRoom.com, Inc.
Enova Software Inc.
ePALS Classroom Exchange
Excelsior Software, Inc.
FamilyEducation Network
Follett Software Company
Forest Technologies
Fortres Grand Corporation
Get a Clue Software & Services
(lyceum Communications)
GPN/University of Nebraska-Lincoln
Grolier Educational
Heartsoft
Hewlett-Packard Company
HighWired.com
IBM Corporation
IDE Corp.—Innovative Designs for Education
imind education systems
INET Library
Ingenuity Works, Inc./Corel Corporation
Intel Corp.
Internet Products, Inc.
iteach.com
JDL Technologies
K-12 MicroMedia Publishing
Leading Technology Micro, Inc.
Learn.com
Learning in Motion
Learning Pays.com
Learning Services, Inc.
Learning Tools International
LearnStar, L.P.
Lightspan, Inc.
Lintor Publishing Center
Logic Extension Resources
Logical Choice Technologies
Main Xchange, Inc.
Math.com
Micro Warehouse, Inc.
Microsoft Corporation
N2H2, Inc.
NASA Education Program
National Geographic
School Publishing
NCS
NECTAR Foundation
NetSchools Corporation
New Forum Publishers, Inc.
NewDeal, Inc.
NewsBank, Inc.
Novell, Inc.
Philips Consumer Electronics
Phoenix Multimedia, Inc.
Phoenix/BFA/Coronet
PLATO® Education/TRO Learning, Inc.
Principia Products, Inc.
Proxim, Inc.
Quick Course® Books/OTSI
Regional Technology in Education Consortium
Riverdeep Interactive Learning
Sagebrush Corporation
Scholastic Inc.
School Center
School Improvement.Net
SchoolOne.com
SCl Technologies
Security Software Systems, Inc.
SIRS Mandarin, Inc.
SmartStuff Software
Software Express, Inc.
Sonic Desktop Software
Sorenson Vision, Inc.
South Central Regional Technology in Education Consortium
Surpass Software
MAGAZINE
Teaching K-8 Magazine
MAILING LIST COMPILED OF
EDUCATION MAILING LISTS
Market Data Retrieval
MANAGED INTERNET
New Forum Publishers, Inc.
MANUFACTURER
National Semiconductor Corporation
MARKET RESEARCH
Quality Education Data
MEDIA
CompUSA Inc.
MEDIA RETRIEVAL
Rauland-Borg Corporation
MONTHLY NEWSPAPER
School Reform News—The Heartland Institute
MULTIMEDIA
Pioneer New Media Technologies, Inc.
MULTIMEDIA AUTHORING SOFTWARE
MediaSmith, Inc.
MULTIMEDIA PROCESSING
MediaSmith, Inc.
MUSIC EDUCATION HARDWARE & SOFTWARE
Yamaha Corporation of America
NETWORK MANAGEMENT SERVICES
Bell Atlantic
NETWORK MANAGEMENT SYSTEM
MSCS
ON-LINE RETRIEVAL SERVICES
Bogen Communications, Inc.
Boxer Learning, Inc.
Classroom Connect, Inc.
Dukane Corporation
Follett Software Company
NewsBank, Inc.
Phoenix Multimedia, Inc.
The LearningStation.com
Zenith Electronics Corporation
ONE-TO-ONE ONLINE TUTORING
TopTutors.com
ONLINE COMPUTER-RELATED DEGREE PROGRAMS
Nova Southeastern University, SCIS
PC TO TV SCAN CONVERTERS
FOCUS Enhancements, Inc.
PHOTO ID SYSTEM
Vision Database Systems
TRAINING
CompUSA Inc.

TRAINING MATERIALS
Computer Literacy Press, Inc.
Quick Course® Books/OTS

UPGRADE PRODUCTS
Sonnet Technologies, Inc.

UTILITY
Power On Software

VIDEO
Pioneer New Media Technologies, Inc.

VIDEO PROGRAMS
SUNBURST Technology

VIDEO-NETWORKING SYSTEMS
Bell Atlantic
BellSouth
Bogen Communications, Inc.
Cnetics Technologies
Daly Computers
DataServ, Inc.
Dukane Corporation
Educational & Business Systems, Inc.
Inte1 Corp.
Le Figueroa Technology Micro, Inc.
Nortel Networks
Rauland-Borg Corporation
TEL Corporation

VIDEODESICS
AIMS Multimedia
College Broadband
Leading Technology Micro, Inc.
Learning in Motion
National Geographic
School Publishing
Phoenix Multimedia, Inc.
Phoenix/BFA/Coronet
Rainbow Educational Media
Tom Snyder Productions

WEB DESIGN 101 KIT
Macromedia, Inc.

WEB FILTERING
Internet Products, Inc.

WINDOWS SECURITY SUPPORT
Hyper Technologies

WIRELESS COMPUTER LAPTOPS
EarthWalk Communications, Inc.

WORD PROCESSORS
DreamWriter—NTS Computers

WORKSHOPS
Polaroid Education Program

WORLD WIDE WEB
PRODUCTS/SERVICES
Academic Distributing, Inc.
Academic Software
Adobe Systems Inc.
American School Directory
Apex Learning
Ask Jeeves/The Evergreen Project
Bell Atlantic
BellSouth
Blackboard, Inc.
Boxer Learning, Inc.
Brainium.com
Bytes of Learning
Centrinity
ChildU, Inc.
Classroom Connect, Inc.
Cnetics Technologies
College Broadband

Compu-Teach Educational Software
Daly Computers
DataServ, Inc.
Discovery Channel School
e-Tutor, Inc.
eBoard.com
EDmin.com
Education Networks of America
Educational Software Institute
eHomeRoom.com, Inc.
ePALS Classroom Exchange
Follett Software Company
Gateway
GlobalLearn.com
Hearts1d
HighWired.com
IBM Corporation
IDE Corp.—Innovative Designs
for Education
INET Library
Intel Corp.
Internet Products, Inc.
iTeach.com
Learn.com
Learning in Motion
Learning Services, Inc.
Learning Tools International
Lightspring, Inc.
Lintor Publishing Center
Macromedia, Inc.
Main Xchange, Inc.
Math.com
MediaSpark IT Solutions Inc.
Micro Warehouse, Inc.
NASA Education Program
National Geographic
School Publishing
National Semiconductor Corporation
NetSchools Corporation
New Forum Publishers, Inc.
PAR Technologies, Inc.
Phoenix Multimedia, Inc.
Polaroid Education Program
Principia Products, Inc.
Quick Course® Books/OTS
Regional Technology in
Education Consortium
Scholastic Inc.
School Center
SCI Technologies
Security Software Systems, Inc.
SIRS Mandarin, Inc.
Software Express, Inc.
Sonic Desktop Software
South Central Regional Technology in
Education Consortium
Sun Microsystems, Inc.
Symantec Corporation
Teacher Created Materials, Inc.
teachersroom.com, Inc.
Teknimedia Corporation
Texas Instruments Incorporated
The Funding Factory
The Gale Group
The New York Times Learning Network
The Princeton Review Online
TopTutors.com
U.S. News & World Report
Virtual Learning Technologies
Vista Associates, Inc.
ZapMe! Corporation
Zenith Electronics Corporation
A-ha! is a developer and publisher of productivity software and educational content for school and home use. Our flagship product, Teacher's Toolbox, is an easy-to-use and affordable classroom management software system for teachers, sold at retail in single units, and through site licenses to schools and school districts. See our ad on page 110.

Academic Software specializes in education software and CD-ROMs at discount prices. When it comes to price, it's all "Academic!"

Academic Distributing (ADI) specializes in wholesaling academically discounted computer products to over 2,000 authorized academic and government resellers in North America (U.S. & Canada). We invite end-users looking for exciting new titles, vendors looking to strengthen their academic presence, resellers looking to increase their overall sales to stop by our booth or contact us today. ADI also annually publishes the National Academic Reseller Directory that lists over 1,000 Authorized Academic Resellers in North America. Buyers, faculty, and students are encouraged to stop by our booth and pick up their FREE copy today.

Acer America Corporation is a technology company that successfully completed a pilot of its first product, Wolf Recovery, in April. Wolf Recovery is an Internet-based biology unit for grades 7-10. Wolf Recovery is a technology-enabled learning environment that integrates the latest technologies with powerful learning strategies. Wolf Recovery allows students to be mini-scientists, who use the scientific inquiry model to solve problems. Students are placed in roles (wildlife biologists, ecological activists, and ranchers) and work together to research and resolve problems related to wolves that have been reintroduced to National Parks.

Acer America's commitment to the education market in the 21st century is Acer's Empowered Classroom. This program is best described as an architecture that provides a common theme for the development of hardware and software solutions for a wide range of learning environments. Acer is currently offering two solutions that fill different needs in the education community. These solutions include Safe Harbor by Acer, an Internet access management tool and EduCart by Acer, an interactive presentation station. Find out how Acer's Education Solutions Division is partnering with the learning community to enhance the education experience through collaborative technology solutions.

Adobe Systems Inc. displays its latest products.

ABC-CLIO looks forward to the NECC conference to continue our tradition of combining scholarship and technology to develop innovative ways of bringing knowledge within reach. Visit our booth and examine our social studies and reference CD-ROM collection, now with more than 20 titles.

EXEGY, The Source for Current World Information, is the flagship product of ABC-CLIO Interactive Media. This CD-ROM provides a single source for interactive information on all the countries of the world.

For more than 40 years, ABC-CLIO has been an industry leader, publishing reference sources on high-interest topics. The company enjoys an international reputation for providing high-quality and electronic reference products, both CD-ROM and online.
Booths 2549, 2551
Advantage Learning Systems, Inc.
PO Box 8036
Wisconsin Rapids, WI 54495-8036
Telephone: 800.338.4204
Fax: 715.424.4242
E-mail: answers@advlearn.com
Web: http://www.advlearn.com
Learn what more than 45,000 schools in the U.S. and Canada already know about the new technology of learning information systems! Educators worldwide use our software to help improve student performance. Our systems provide immediate, individualized constructive feedback to K–12 students and teachers.

Accelerated Reader®, the flagship product of Advantage Learning Systems, is the number one reading management software in American schools. Research shows that children who use this award-winning program achieve higher test scores not only in reading, but also in writing, math, and social studies. Other innovative products are also available for math and writing, as well as professional development training. See our ad on page 51.

Booth 2758
Adventus Incorporated
200 Logan Road, Unit 5
Bridgewater, NS B4V 3J8
Canada
Telephone: 888.999.6434 or 902.543.4134
Fax: 902.543.4127
E-mail: sales@adventus.com
Web: http://www.adventus.com
Turn your students on to music with Adventus Software: Piano Suite, Kodály Composer and Opus 1: Challenger.

Increase Interest Using Piano Suite:
• Introduce, and expand on music theory.
• Develop and assess beginner to advanced instrumental skills.
• Create, import and modify musical pieces.

Kodály Composer: The Perfect Partner for Composition
• based on the elements of music presented in the Kodály method of instruction.
• Three composers in one package: Easy, Intermediate and Advanced.

Opus 1: Challenger: Master Musical Motifs, and Interval Theory!
• An enjoyable, challenging game which will have your students creating musical motifs in no time!
• Beginner, Intermediate and Advanced levels.
See our ad on page 52.

Booth 2862
AIMS Multimedia
9710 DeSoto Avenue
Chatsworth, CA 91311-4409
Telephone: 818.773.4300
Fax: 818.341.6700
E-mail: info@aims-multimedia.com
Web: http://www.aims-multimedia.com
Aims Multimedia is leading curriculum CD-ROM publisher K–12. Interactive and linear QuickTime movies, interactive quiz, test and teacher editable features.

Booths 2861, 2863
Aladdin Knowledge Systems
1094 Johnson Drive
Buffalo Grove, IL 60089
Telephone: 847.808.0300
Fax: 847.808.0313
Aladdin Knowledge Systems will display its latest products.
Get your students started with Piano Suite.

"Piano Suite stands alone as the best value in music education technology today." -Curt Humpf, President of MFTA (Music Education Technology Association)

- Interactive Learning Methods
 Instant, intuitive feedback helps your students learn quickly without frustration.

- 400 Musical Pieces for 5 Skill Levels

- Complete, 2-Year Music Theory Course
 100's of lessons and practice examples. Learn at your own pace with helpful illustrations and videos in this narrated program.

- Full-featured Composer and Editor
 Create, edit, and print your own music. Add pictures, lyrics, and fingering, and save it for others to hear and learn to play.

- 9 Great Musical Games & Much More
 100's of biographies, animations, song recordings, practice reports, and more.

Booths 365, 464
Alcatel Corporation
26801 West Agoura Road
Calabasas, CA 91301
Telephone: 818.878.4778
Fax: 818.880.3505
Web: http://www.xylan.cn
Alcatel Corporation will display its latest products.

Booths 2430, 2432
Alexandria/COMPanion Corporation
1831 Fort Union Blvd.
Salt Lake City, UT 84121
Telephone: 800.347.6439
Fax: 888.515.3893
E-mail: info@compansioncorp.com
Web: http://www.companioncorp.com
See Alexandria for the Mac OS and Windows-library automation for schools and districts.

Booth 2620
AlphaSmart, Inc.
20400 Stevens Creek Blvd., Suite 300
Cupertino, CA 95014
Telephone: 888.274.0680 or 408.252.9400
Fax: 408.252.9409
E-mail: info@alphasmart.com
Web: http://www.alphasmart.com
Come see a simple, durable word processor that is fun, facilitates teaching and learning, and is compatible with virtually any writing software. This smart keyboard has spell check and can transfer to a Macintosh, PC, or directly to a printer. See our ad on the outside back cover.

Booth 2747
Altiris
387 South 520 West
Lindon, UT 84042
Telephone: 801.226.8500
Fax: 801.226.8506
E-mail: info@altiris.com
Web: http://www.altiris.com
Altiris will display its latest products.

Booth 2763
Amer.com
7259 Bryan Dairy Road
Largo, FL 33777
Telephone: 888.711.AMER or 727.540.0505
Fax: 727.540.0405
E-mail: sales@amer.com
Web: http://www.amer.com
Amer.com is a manufacturer of work group data networking products.

Booth 2669
Amera Computers, Inc.
2785 Peterson Place
Norcross, GA 30071
Telephone: 888.824.2077
Fax: 770.242.3818
Web: http://www.amerapc.com
Manufacturer-computer systems.

Booth 2062
America Online, Inc.
22000 AOL Way
Dulles, VA 20166-9323
Telephone: 703.265.1000
Fax: 703.265.2135
Web: http://www.aol.com
America Online, Inc. will display its latest products.
Booths 2643, 2645
American Education Corporation
7506 North Broadway Extension
Oklahoma City, OK 73116
Telephone: 800.222.2811 or 405.840.6031
Fax: 405.848.3660
E-mail: christie@amered.com
Web: http://www.amered.com
The American Education Corporation is one of the oldest developers and publishers of educational software in the U.S. AEC's flagship product is A+dvanced Learning System®, a comprehensive curriculum for grade levels 1-12. A+LS is sold by titles in the content areas of language arts, writing, science, history, social studies, and mathematics. Written by certified teachers, A+LS offers immediate student feedback, personalized education plans, full multimedia authoring of all lessons, and detailed reports. A+LS is correlated to over 70 state and national standardized tests. Supplemental products include a companion student assessment tool, A+SSESP, as well as an off-line educational Internet authoring tool, A+NETTM.

Booth 2355, 2357, 2359
American School Directory
180 Freedom Avenue
Murfreesboro, TN 37129
Telephone: 615.896.3800
Fax: 615.896.7677
E-mail: sflick@asd.com
The Online Payment Center is available at no charge on your school's ASD Web site.

Booths 2742
American Power Conversion
132 Fairgrounds Road
West Kingston, RI 02892
Telephone: 800.877.4080 or 401.789.5735
Fax: 401.788.2739
E-mail: info@apcc.com
Web: http://www.apcc.com
Founded in 1981, American Power Conversion is a worldwide leader in the designing, manufacturing, and marketing of power protection and management solutions for Nonstop Networking. APC's comprehensive range of products include surge suppressers, uninterruptible power supplies (UPS), power conditioning equipment, and related software for computer and computer-related equipment. Additional information about APC and its global end-to-end solutions can be found by accessing APC's World Wide Web site at www.apcc.com or by calling 1.800.877.4080.

Booth 2565
Animated Communications
PO Box 16907
Chapel Hill, NC 27516
Telephone: 800.949.4559
Fax: 919.933.9503
E-mail: info@3dchor.com
Web: http://www.3dchor.com
Animated Communications presents 3d Choreographer, a Windows animation program, designed for students and teachers. A course of study is available for grades 6-12. Students can use the animations (AVIs) in PowerPoint presentations, for Web pages, to tell stories, or illustrate reports. Imagination is all that is required. The program comes with a library of actors with built-in commands to make them move. Every actor has an extensive library of predefined actions including a wide range of emotional expressions. For example, a person can dance, wave, and smile—personality at the click of a mouse.

Booths 2627, 2629
ANTEC/Educational Technology Associates & Neufeld Learning Systems
1 Perry Road
East Brunswick, NJ 08816
Telephone: 722.828.9276
Fax: 722.828.9276
The TVator Remote Teaching System from ANTEC/Educational Technology Associates provides a unique tool for teachers who need to share their computer screen with a class or lab full of students. Macintosh and PC compatible, it does not require any software and installs externally in five minutes. Connected to any television, its ZOOM feature magnifies the computer's image so that even small text can be read from the back of the room. Video loop-through keeps the teacher's monitor functioning at all times. Its NTSC-standard output can also be recorded on any VCR. This affordable and flexible teaching tool is already in use in thousands of classrooms and labs throughout the United States.

Neufeld Learning Systems is a mathematics educator as well as creator and author of the Understanding Math series of interactive software for grades 5-10. Since 1985 we have integrated technology into mathematics as a learning tool to embrace, enhance and expand existing curriculum. We provide support to educators with workshops for teachers as well as with online lesson plans and worksheets on our Website...www.neufeldmath.com.

Booth 1568
Apex Learning
110 110th Avenue Northeast, Suite 210
Bellevue, WA 98004
Telephone: 800.453.1454
Fax: 425.468.6501
E-mail: inquiries@apexlearning.com
Web: http://www.apexlearning.com
Expand your Advanced Placement program with Internet-based learning services from Apex Learning. We offer AP exam review, online courses, and ClassTools to connect teachers and students to AP curriculum and teaching tools in ten subject areas. See our ad on page 81.

Booth 1620
Apple
1 Infinite Loop, M/S 303-4CE
Cupertino, CA 95014
Telephone: 408.974.0210
Fax: 408.974.7740
Web: http://www.apple.com/education/
Apple will display its latest products.
titles include Internet Coach for Netscape Communicator and for Microsoft Internet Explorer, Internet Coach for Net Safety, Internet Coach Puzzle Builder, Liftoff to Lizard Island, Search for the Black Rhino and Field Trap APTE's Early Learning Series of Internet Coach debuted this year.

Booths 944, 946
Ask Jeeves/The Evergreen Project
500 South Ewing, Suite C
Saint Louis, MO 63103
Telephone: 314.531.1100
Fax: 314.531.1080
E-mail: sjensen@askjeeves.com
Web: http://www.evergreenproject.com
The Evergreen Project produces Web-based programs in life science and geography for students in grades K-8. Five Partners For Growing units introduce grades 1-4 to concepts in plant science. The lessons were developed in collaboration with five major public gardens, with funding from the National Science Foundation. Road Scholars, a series of directed WebAdventures for grades 4-8, builds on foundations laid in the introductory units and challenges students to analyze economic issues in light of environmental concerns. WebWorkShops, with optional college credit, assist teachers in integrating the Internet and computer application into the curriculum.

Booths 2422, 2424
AT&T Learning Network
295 North Maple Avenue, Room 2327F2
Basking Ridge, NJ 07920
Telephone: 908.221.3844
Fax: 908.221.6737
Web: http://www.att.com/learningnetwork
Come see the AT&T Learning Network, where education and technology e-merge. When it comes to using technology in the classroom, many educators are finding and creating exciting and innovative applications. The key to successful integration is understanding how these tools can enhance learning. AT&T is committed to providing teachers, parents and schools with the resources they need to use technology effectively to help improve teaching and learning.

Booth 2420
Aurbach & Associates, Inc.
9378 Olive Street Road, Suite 102
Saint Louis, MO 63132
Telephone: 314.432.7072
Fax: 314.432.7072
E-mail: aurbach@aol.com
Web: http://www.aurbach.com
Writing and assessment resources for K-20.

Booth 2833
Barnum Software
3450 Lake Shore Avenue, Suite 200
Oakland, CA 94610
Telephone: 510.652.9155
Fax: 510.652.9156
E-mail: mail@TheQuarterMile.com
Web: http://www.TheQuarterMile.com
With the award-winning Quarter Mile programs, every student is a winner. Students learn at their maximum rate. Uniquely well-suited for all kinds of students—general population, Special Ed., GATE, Title I. Programs give constant positive reinforcement for even the smallest improvements—improvements which would not be detectable in any other format. They are perfect for girls, boys—all ages. They build confidence quickly, maintain motivation and have the most fun and challenging format of their kind. See an ongoing demonstration of the programs at our booth. Try our math tournament and win a free program!

Booth 1636
Bell Atlantic
125 High Street, Room 1237
Boston, MA 02117
Telephone: 617.743.7617
Fax: 617.743.8816
Web: http://www.bell-atl.com/
largebiz/education.htm
Bell Atlantic is the leading telecommunications carrier serving the Northeast and Mid-Atlantic region from Maine to Virginia. Bell Atlantic serves K-12 education customers by providing two-way interactive video distance learning services, Internet services, data communications services, LAN/WAN equipment and network integration, network management services, and school telephone networks. Bell Atlantic and its partner, Educational Video Conferencing, Inc., have teamed to deliver Remote Learning Solutions, a distance learning service primarily for teacher and administrator training staff development. Bell Atlantic sponsors the Educational Enterprise Zone, a distance learning initiative coordinated by the New York Institute of Technology that includes world famous museums, cultural institutions, research centers and other business and government enterprises that deliver two-way interactive video programming in support of K-12 learning standards.
Booth 1336
BellSouth
2400 Century Parkway, Suite 600
Atlanta, GA 30345
Telephone: 404.471.0088
Fax: 404.471.0401
Providing more network connections to
schools throughout its region than any
other telecommunications provider,
BellSouth is the one company with a clear
vision for the future in education.
Multimedia networking delivers tools that
open the possibilities to think differently
about the way we teach and administer
schools. These approaches provide paths
to rise to the challenges of education
today. Providing a live connection to
learning, to professional development, to
safety in schools, and to more open
dialogue between schools and homes, the
network is mission critical for the future
of education.

Booth 1262
bigchalk.com, inc.
900 West Valley Road, Suite 1000
Wayne, PA 19087
Telephone: 800.304.3542
Fax: 800.209.1132
Web: http://www.bigchalk.com
bigchalk.com is one of the leading K-12
Internet learning destinations that
supports the entire education community.
Students and teachers across the country
receive the resources they need to conduct
thorough research, collaborate with peers,
and access strong instructional tools for
curriculum integration.
bigchalk.com's primary mission is to
make a difference in education by
providing librarians, teachers, students,
parents, and their surrounding commu-
nity with the very best applications,
products, and services available that are
appropriate, accessible, and easy to use.
For more information about
bigchalk.com, call 1.800.304.3542 or visit
www.bigchalk.com. See our ad on page 159.

Booths 501, 600
Blackboard, Inc.
1111 19th Street Northwest, Suite 600
Washington, DC 20036
Telephone: 202.463.4860
Fax: 202.463.4863
Web: http://www.Blackboard.com/company
Blackboard, Inc. is an online education
company that provides one of the world's
most popular and effective platforms for
teaching and learning over the Internet.
Blackboard is the only company to
provide "Universal Learning Solutions™,
"a roadmap for educators to host single
course Web sites with Blackboard.com,
multiple courses with Blackboard
CourseInfo, and entire online campuses
with Blackboard Campus. Blackboard
customers include more than 250 learning
institutions such as Arizona State
University, Cornell University,
Georgetown University, Maricopa
Community College, the University of
Tennessee, and the College of William &
Mary. Additional information about
Blackboard can be found at

Booth 941, 943
Bogen Communications, Inc.
50 Spring Street
Ramsey, NJ 07446
Telephone: 201.934.8500
Fax: 201.934.9832
E-mail: info@bogen.com
Web: http://www.bogen.com
Bogen Communications, Inc. provides
system integration for internal communi-
cations for schools, digital video service,
and information delivery systems to
manage video and Internet distribution to
the classroom television.

Booth 2048
Bonus.com the SuperSite for Kids
824 North San Antonio Road, 2nd Floor
Palo Alto, CA 94303
Telephone: 650.813.0100
Fax: 650.813.0101
E-mail: kim@bonus.com
Web: http://www.bonus.com
Bonus.com the SuperSite for Kids
(http://www.bonus.com) offers 2,000+
free, fun and enriching activities for kids
of all ages. Choose online "field trips"
from captivating categories (Under the
Sea, Homework Help, Brain Games, The
Earth and more!) to supplement your
curriculum and engage your students.

Booth 2642
Book Systems, Inc.
721 Clinton Avenue, Suite 11
Huntsville, AL 35801
Telephone: 800.219.6571
Fax: 800.230.4183
• Imagine the most organized and efficient
library your students have ever used.
• Imagine doing automated searching,
circulation, inventory, and book labels.
• Imagine providing online access with
quick and easy Internet publishing.
• Imagine doing it all with one
company.

Booths 2426, 2428
Boxer Learning, Inc.
105 West Main Street
Charlottesville, VA 22902
Telephone: 804.817.5900
Fax: 804.817.5910
E-mail: hello@boxerlearning.com
Web: http://boxerlearning.com
Boxer Learning is an Internet education
company committed to developing supe-
rior instructional programming that takes
advantage of new and promising tech-
ologies. Boxer creates interactive,
self-paced, instructional software,
designed to meet new standards of excel-
ence by combining solid educational
pedagogy with leading edge technology.
Offerings include the online
BOXERmath.COM as well as four award-
winning CD-ROM titles: Boxer
Introductory Algebra, Boxer Intermediate
Algebra, Geometry, and Boxer
Trigonometry. Boxer Learning creates and
distributes its high quality instructional
content to schools and homes in the U.S.
and abroad.
Booth 1454
Bytes of Learning
60 Renfrew Drive, Suite 210
Markham, ONT L3R 0E1
Canada
Telephone: 800.465.6428 or 905.947.4646
Fax: 905.475.8650
E-mail: custservice@bytesoflearning.com
Web: http://www.bytesoflearning.com
At Bytes of Learning's Booth:
You will want to make sure you don't miss
MP EXPRESS - the easy-to-use multimedia presentation tool. This multiple
award winning multimedia presentation tool and curriculum theme resource
collections, redefine the term entry level multimedia for grades 3–adult.
Get to know the best selling
keyboarding tutor ULTRAKEY® - the no. 1
teachers' choice. Version 4.0 - major new
upgrade - is now available featuring incredible
new 3D animation graphics,
emphasizing keyboarding safety, providing
access to Bytes of Learning's
Keyboarding Center and in-service for
first time or inexperienced keyboarding
teachers. Primary-adult.

Booths 2362, 2364
Cable in the Classroom
1800 North Beauregard Street, Suite 100
Alexandria, VA 22311
Telephone: 703.845.1400
Fax: 703.845.1409
E-mail: cic@ciconline.org
Web: http://www.ciconline.org
Cable in the Classroom, a public service of
the cable communications industry,
provides commercial-free educational
programs and curriculum support mate-
rals at no cost to schools.
Booth 1645
Canter & Associates, Inc.
1553 Euclid Street
Santa Monica, CA 90404
Telephone: 800.262.4347
Fax: 310.394.6017
E-mail: inquiry@educate.com
Web: http://www.canter.net
Distance Learning Graduate Courses and Professional Development Solutions. For over 25 years, Canter's professional development programs have proven effective in classroom after classroom. Topics include Technology and Internet, Reading, Safe Schools, Assessment, Classroom Management and Teaching Strategies. New for 2000: Reading for Secondary Teachers, New Teacher Induction Program, Online courses and more. Call Canter at 800.669.9011 or visit us on the Web at www.canter.net.

Booth 1964
Casio, Inc.
570 Mt. Pleasant Avenue
Dover, NJ 07801
Telephone: 973.361.5400
Fax: 973.537.8964
Web: http://www.casio.com
Casio has a wide variety of technology for the classroom. Stop by our booth to find the technology right for you.

Booth 620
CCV Software
PO Box 5388
Vero Beach, FL 32961
Telephone: 561.978.0603
Fax: 561.978.4409
E-mail: ccv@ccvsoftware.com
Web: http://www.ccvsoftware.com
CCV Software will display its latest products.

Booth 2468
CDW•G
14701 Willard Road, Suite A
Chantilly, VA 20151
Telephone: 800.808.4239
Fax: 847.419.6200
Web: http://www.CDWG.com
CDW Government, Inc. serves the unique needs of federal, state and local government, K–12, and higher education customers. At CDW•G your dedicated account manager is highly trained and knowledgeable of your procurement cycles, contract options, and special levels of pricing. CDW•G is able to meet all of your IT needs by providing more than 50,000 products from the leading manufacturers. With our ability to deliver overnight, you get what you need when you need it. Visit www.CDWG.com, or call us at 800.808.4CDW.

Booths 322, 324, 326
Centrinity
100 Allstate Parkway
Markham, ONT L3R 6H3
Canada
Telephone: 905.415.7000
Fax: 905.415.7151
E-mail: info@centrinity.com
Web: http://www.centrinity.com
Centrinity is showcasing Zebu and FirstClass, the unique collaborative online tools designed for education. Zebu provides a secure, web-based environment for creating projects and sharing resources. FirstClass helps create shared spaces where teachers and students can communicate, post information and documents, and publish internally or on the Web. Together, Zebu and FirstClass bring educators powerful tools for building dynamic learning communities. Visit Centrinity's booth to see exciting examples of how these tools have been used to enhance online communication and collaboration in classrooms worldwide. See our ad on page 63.
Booth 242
Children's Software Press
720 Kuhlman Road
Houston, TX 77024
Telephone: 713.467.8866
Fax: 713.467.2172
E-mail: csft@childsoftpress.com
Web: http://www.childsoftpress.com
Children's Software Press, long time publisher of the newsletter Children's Software, is pleased to announce the expansion of its how-to inexpensive brochure series for students, teachers, and parents. The very popular Student Guide to Citing Electronic Sources and Student Guide to Detecting Misinformation on the World Wide Web titles are available to students 24 hours a day, 365 days a year. On-going assessment tests help you monitor each student's progress. ChildU's professional development staff will train teachers in the use and implementation of the product.

Booth 754
Cisco Systems, Inc.
170 West Tauman Drive
San Jose, CA 95134
Telephone: 408.526.4000
Fax: 408.525.3185
Web: http://www.cisco.com
Cisco Systems, Inc. will display its latest products.

Booth 1836
Classroom Connect, Inc.
2221 Rosecrans Avenue, Suite 237
El Segundo, CA 90245
Telephone: 800.638.1639
Fax: 310.725.0899
E-mail: mail@classroom.com
Web: http://www.classroom.com
Classroom Connect is an Internet company focused on providing innovative, thought-provoking and interactive products that help teachers create memorable learning experiences in the K-12 classroom. Through the power of the Web, Classroom Connect delivers online curriculum materials, student-focused learning expeditions, teacher-focused educational resources and proprietary educational content and learning tools. In total, Classroom Connect offers more than 155 products across more than 75 product-specific Web sites, all of which are accessible through the Classroom Connect homepage, www.classroom.com. See our ad on page 82-83.

Booth 2662
Cnetics Technologies
7076 Peachtree Industrial Blvd., Suite 200
Norcross, GA 30092
Telephone: 770.864.7230
Fax: 770.409.3112
Video networking solution providing distance learning access or VTC equipment in the classroom. World Wide Web publishing technology from Tegrity. Mobile lab technology.
ware program, store their work, and continue to revise their essays as many times as they need to. At a higher per password cost, schools can gain access for their students and guidance counselors to chat rooms (both English and Spanish) while College Broadband products and services will benefit all students applying to college, the company has specifically included products and services that meet the needs of urban schools and students.

Booth 1120
Compaq Computer Corporation
20555 SH 249 M/S 590306
Houston, TX 77070
Telephone: 800.88.TECH
Fax: 281.927.8495
E-mail: support@COMPAQ.com
Web: http://www.compaq.com/education
Compaq Computer Corporation will display its latest products. See our ad on page 9.

Booth 1554
CompassLearning
9920 Pacific Heights Blvd., Suite 500
San Diego, CA 92121
Telephone: 800.521.8538
Fax: 619.622.5081
Web: http://www.compasslearning.com
CompassLearning, a leading publisher of research-based, digital products aligned to national standards, provides technology to help teachers manage student performance, personalize learning, and connect communities.

Booths 246, 248
Compu-Teach Educational Software
16541 Redmond Way, Suite 137C
Redmond, WA 98052
Telephone: 800.448.3224
Fax: 425.883.9169
E-mail: info@compu-teach.com
Web: http://www.compu-teach.com
Compu-Teach Educational Software will display its latest products.

Booth 2136
CompUSA Inc.
14951 North Dallas Parkway
Dallas, TX 75240
Telephone: 972.982.4057
Fax: 972.982.5280
CompUSA Education is dedicated to meeting the personal computer needs of the educational customer nationwide. These customers include all facets from K–12 to community colleges and universities.

CompuUSA's goal is to support each school's technology directive by assessing, developing, and delivering the ideal combination of products, training, and technical support. Our menu of technical support and training options ensures each school receives the highest return on its technology investment.

CompuUSA also provides mobile computing solutions to schools. We have implemented projects with product, asset management, training, network administration, help desk support, and creative financing—a total solution for your school.

Booth 2570
College Broadband
30 West 60th Street, #8H
New York, NY 10023
Telephone: 212.582.9301
Fax: 212.582.8532
E-mail: eosrum@collegebroadband.com
Web: http://www.collegebroadband.com
College Broadband provides college guidance counseling on the Internet. As an applications service provider to schools, the company offers software that teaches students to write the college essay, at a per student cost of less than a textbook. Schools purchase passwords for their students, who can then return to the software program, store their work, and continue to revise their essays as many times as they need to. At a higher per password cost, schools can gain access for their students and guidance counselors to chat rooms (both English and Spanish), moderated by college guidance professionals; to databases of scholarships and other enrichment opportunities for students; and to online audio, video, and chat presentations on college admissions. Most areas of the Web site are bilingual (English/Spanish) while College Broadband products and services will benefit all students applying to college, the company has specifically included products and services that meet the needs of urban schools and students.

Booth 2526, 2528
Cognitive Concepts, Inc.
990 Grove Street, Suite 300
Evanston, IL 60201
Telephone: 847.328.8099
Fax: 847.328.5881
E-mail: cciP0cogcon.com
Web: www@cogcon.com
Cognitive Concepts, Inc. will display its latest products.

Booth 2570
College Broadband
30 West 60th Street, #8H
New York, NY 10023
Telephone: 212.582.9301
Fax: 212.582.8532
E-mail: eosrum@collegebroadband.com
Web: http://www.collegebroadband.com
College Broadband provides college guidance counseling on the Internet. As an applications service provider to schools, the company offers software that teaches students to write the college essay, at a per student cost of less than a textbook. Schools purchase passwords for their students, who can then return to the software program, store their work, and continue to revise their essays as many times as they need to. At a higher per password cost, schools can gain access for their students and guidance counselors to chat rooms (both English and Spanish), moderated by college guidance professionals; to databases of scholarships and other enrichment opportunities for students; and to online audio, video, and chat presentations on college admissions. Most areas of the Web site are bilingual (English/Spanish) while College Broadband products and services will benefit all students applying to college, the company has specifically included products and services that meet the needs of urban schools and students.
Booth 1050
Computer Learning Foundation
1069 West Evelyn Avenue
Sunnyvale, CA 94086
Telephone: 408.720.8898
Fax: 408.720.8777
E-mail: clf@computerlearning.org
Web: http://www.computerlearning.org
The Computer Learning Foundation is an international non-profit educational foundation that provides information, publications and projects to help educators and parents use technology effectively with children. As the host of Computer Learning Month each October, the Foundation offers contests for students, educators, community groups and schools in which thousands of dollars in technology products are awarded each year.

Booth 1650
Computer Literacy Press, Inc.
11584 Coldcoast Drive
Cincinnati, OH 45249-1560
Telephone: 513.530.5100
Fax: 513.530.0110
E-mail: sknapic@complitpress.com
Web: http://www.complitpress.com

Booth 1444
Course Technology/South-Western
One Main Street
Cambridge, MA 02142
Telephone: 800.648.7459
Fax: 617.225.0899
Course Technology/South-Western will display its latest products. See our ad on page 92-93.

Booth 2454
CrossTec Corporation
500 Northeast Spanish River Blvd., Suite 201
Boca Raton, FL 33431
Telephone: 800.675.0729
Fax: 561.391.5820
Web: http://www.fect.com
Let CrossTec introduce you to NetOp School. The long awaited software-only solution for computer based training on a network. Designed specifically for educators in networked environments, NetOp School allows broadcasting/remote control (via IPX, NetBIOS, TCP/IP) to one, several, or as many as 50 ‘student PC’s (WIN NT/98/95/3.x). Demo in full screen or window, automated monitoring, launch programs, transfer files and conduct chat sessions, all from your desk.
FREE fully-functional evaluation copies of the software are available. Stop by the CrossTec booth to learn how you can turn your network into a truly interactive learning environment.

Booth 2854
Computrac
1890 Cobb International Blvd., Suite B
Kennesaw, CA 30152
Telephone: 770.429.1777
Fax: 770.429.8977
Projectors, interactive whiteboards, printers, and wireless networks.

Booth 1154, 1156
CTB/McGraw-Hill
20 Ryan Ranch Road
Monterey, CA 93940
Telephone: 831.393.0700
Fax: 831.393.7825
Web: http://www.ctb.com
CTB/McGraw-Hill will display its latest products.

Booths 1560, 1562
Cubic Science, Inc.
19433 East Walnut Drive South
City Of Industry, CA 91748
Telephone: 800.383.6363 or 909.598.3277
Fax: 909.598.3266
E-mail: cubic@cubicsci.com
Web: http://www.cubicsci.com
Cubic Science creates educational software to enhance the understanding of science and prepare children for the hi-tech future.

Booths 1644, 1646
Curriculum Administrator Magazine
992 High Ridge Road
Stamford, CT 06905
Telephone: 203.322.1300
Fax: 203.329.9177
E-mail: camanager@aol.com
Curriculum Administrator Magazine will display its latest products.

Booths 430, 432
CyberPatrol, Unit of The Learning Company
139 Rangeway Road, Box 2001
North Billerica, MA 01862-0901
Telephone: 800.225.0248
Fax: 800.366.1158
E-mail: cainfo@curriculumassociates.com
Web: http://www.curriculumassociates.com
As the "teachers who publish," Curriculum Associates®. Inc. creates technology and print materials that integrate easily and effectively across the curriculum-reading, writing, math, social studies, science, and school-to-work. Curriculum Associates’ multimedia correlates to national and state standards, incorporates the Internet, and inspires learning that lasts.

Booths 2100, 2101
CyberPatrol, Unit of The Learning Company
600 Worcester Road
Framingham, MA 01702
Telephone: 508.416.1276
Fax: 508.872.8750
CyberPatrol, Unit of The Learning Company will display its latest products.

Booth 770
Daly Computers
7-1 Metropolitan Court
Gaithersburg, MD 20878
Telephone: 301.670.0381
Fax: 301.963.1516
Web: http://www.daly.com
Founded in 1987, Daly Computers is the premier system integrator and computer reseller in the Mid-Atlantic region. Over the past ten years, Daly’s success has been attributed to its ability to consistently deliver quality services and products to its customers. A total commitment to customer satisfaction is built into everything we do. Daly Computers has consistently been rated by the Consumer Checkbook as having the highest quality in services and product delivery in the region.

Daly Computers has the infrastructure and the experienced staff to support the needs of governments, educational institutions, and Fortune 500 companies. The corporate headquarters is located in Gaithersburg, Maryland where it maintains an integration site covering over 23,000 square feet. Teams of experienced sales and technical support staff are ready to help you with all your information technology needs.
Booths 940, 942
Data Projections, Inc.
3036 Rodgersdale
Houston, TX 77042
Telephone: 713.781.1999
Fax: 713.781.3338
E-mail: getinfo@dataprojections.com
Web: http://www.dataprojections.com
Data Projections is a privately held company that provides solutions for more effective meetings, presentations, and classroom instruction. Headquartered in Houston, Texas and founded in 1987, Data Projections has evolved into a full-service company with a complete range of presentation products and services. In addition to an extensive product line, Data Projections supports product sales with valuable services, such as installation and system design, presentation skills coaching, creative design, equipment rentals, accessories, and service programs for equipment repair and support. Data Projections has seven sales offices located in Austin, Boise, Dallas, Houston, Indianapolis, St. Louis, and San Antonio.

Booth 2556
Data Recognition, Inc.
2929 Lenhorn Blvd., Suite 103
Austin, TX 78758
Telephone: 800.374.3472
Fax: 512.349.6201
E-mail: sales@dri.com
Web: http://www.datarecognition.com
Data Recognition, Inc. is a premier systems integrator providing automated data collection and communication solutions using wired and wireless networks, mobile computing, and related products and services. As a systems integrator, Data Recognition not only offers data collection hardware and software, but also offers on-site service, support, training and consultation. DRI provides front and back of house hardware and software solutions for the educational industry.

Booth 2950
DataServ, Inc.
37562 Hills Tech Drive
Farmington, MI 48331
Telephone: 800.352.2849
Fax: 248.489.8403
E-mail: rlax@mindsnet.com
Web: http://www.mindsnet.com
DataServ will exhibit its latest products. Providing a full spectrum of emerging technologies professional services including and not limited to technology assessment, consulting, network integration and convergence of data, video and voice technologies for next generation learners.

Booths 2261, 2263
DDC Publishing
275 Madison Avenue, 12th Floor
New York, NY 10016
Telephone: 800.528.3897
Fax: 800.528.3862
Web: http://www.ddcpub.com
DDC Publishing will display its latest products.

Booth 836
Dell Computer Corporation
One Dell Way, MS 8714
Round Rock, TX 78682
Telephone: 800.289.3355
Fax: 512.728.5708
E-mail: k12_inquiry@dell.com
Web: http://www.dell.com/k12
Schools across the nation call Dell to plan and implement their technology infrastructure using OptiPlex desktops, rugged Latitude portables and reliable PowerEdge servers. We offer a range of services from installation to leasing and peripherals such as printers and scanners. Call us at 888.977.DELL to discuss your needs.

Booth 562
Discourse Technologies Inc.
10218 North Port Washington Road
Mequon, WI 53092
Telephone: 800.421.0941
Fax: 888.421.0941
Web: http://www.discourse.com
The Discourse GroupWare Classroom generates 100% class participation during every lesson. Real-time two way feedback between the teacher and students enhances teaching and learning.

Booths 2541, 2543
Discovery Channel School
7700 Wisconsin Avenue
Bethesda, MD 20814
Telephone: 301.771.5447
Fax: 301.986.4829
Web: http://www.mindsnet.com
We offer a wealth of educational resources including award-winning videos, CD-ROMs, student activity books, teachers' A-Z resource books, Web guides, an easy-to-use Web site with complete curriculum, and more.

Booth 443
Diskoverly Educational Systems
1850 Old Okeechobee Road, Suite 106
West Palm Beach, FL 33409
Telephone: 800.331.5489
Fax: 561.683.8416
E-mail: info@diskoverly.com
Web: http://www.diskoverly.com
Specialize in distributing academic-priced software and computer-related products. Access to more than 100,000 products from 21 warehouses.

Booth 2536
DK Interactive Learning
95 Madison Avenue
New York, NY 10016
Telephone: 212.213.4900
Fax: 212.448.0217
E-mail: caedlighe.shore@dk.com
Web: http://www.dk.com
DK Interactive Learning will display its latest products.

Booth 2036
DreamWriter—NTS Computers
11491 Kingston Street
Maple Ridge, BC V2X 0Y6
Canada
Telephone: 800.663.7163
Fax: 877.373.2697
E-mail: nts@nts.dreamwriter.com
Web: http://nts.dreamwriter.com
The DreamWriter® and Rol-A-Lab®. Imagine wireless communication, students learning anytime, anywhere, augmented by mobile computer labs. NTS is the leading provider of portable technology tools for education with units starting as low as $175. Class Sets of up to 30 DreamWriters are available in the Rol-A-Lab mobile storage and recharging cabinet, designed to provide easy management and security. Come and see the latest DreamWriter models—portable, network-ready student laptop computer complete with Web browser and a full suite of education applications.

Booths 2261, 2263
DDC Publishing
275 Madison Avenue, 12th Floor
New York, NY 10016
Telephone: 800.528.3897
Fax: 800.528.3862
Web: http://www.ddcpub.com
DDC Publishing will display its latest products.
EBSCO offers free previews of all applications. Please contact us today at 800.653.2726 or visit www.esrn.com. See our ad on page 109.

Booth 1654
Dukane Corporation
2900 Dukane Drive
Saint Charles, IL 60174
Telephone: 630.584.2300
Fax: 630.584.2792
E-mail: avsales@dukane.com
Access students, staff, parents, or video curriculum with ease. Dukane provides technology that helps students learn and makes life easy for staff. Dukane makes communications easy!

Booth 864
DynaVox Systems Inc.
2100 Wharton Street
Pittsburgh, PA 15203
Telephone: 412.381.5483
Fax: 412.381.5741
E-mail: sales@dynavsxyxs.com
Web: http://www.dynavsxyxs.com
DynaVox Systems Inc., a division of Sunrise Medical Inc., is the world's largest manufacturer of advanced augmentative communication solutions for individuals with speech, language, physical and learning disabilities. Thousands of non-speaking individuals around the world rely on DynaVox products to help them break through the communication barriers at school, home, and in the community. Brands include DynaVox 3100 and DynaMyte 3100, and the new Dynamo speech-output devices featuring: dynamic displays, DynaSym, and onboard environmental control units (ECUs). We also have DynaVox software that allows you to turn your Macintosh computer or PC into a communication device or evaluation tool.

Booth 2269
e-Tutor, Inc.
1524 South Prospect Avenue
Park Ridge, IL 60068-5349
Telephone: 847.318.7110
Fax: 847.318.0852
e-Tutor sets a new, higher standard for delivering fully integrated, superior learning over the Internet for grades K-12. e-Tutor produces consistent, interactive lessons in a self-paced environment by providing content in a pre-structured delivery format. e-Tutor can be accessed any time, from any place using a basic computer with Internet access via standard Web browsers. e-Tutor enables students to be responsible for their own learning, integrating the full potential of the Internet in each lesson. e-Tutor incorporates the best of current instructional practice with the power of the World Wide Web.

Booth 2442
EarthWalk Communications, Inc.
10262 Battleview Parkway
Manassas, VA 20109
Telephone: 703.393.1940
Fax: 703.393.1730
E-mail: support@earthwalk.com
Web: http://www.earthwalk.com
EarthWalk Communications, Inc. provides state of the art wireless network classroom solutions to the U.S. education market. EarthWalk specializes in hardware, software, training and support. Hardware products include: integrated wireless laptop computers, large screen classroom presentation monitors and RF wireless peripherals. See our ad on the inside front cover.

Booth 2370
eBoard.com
20 Rowes Wharf, Suite 409
Boston, MA 02110
Telephone: 617.739.7378
Fax: 617.739.1449
E-mail: gbrott@eboard.com
Web: http://www.eboard.com
eBoard is easy!
eBoard.com provides educators with the fastest and easiest way to post assignments, updates and schedules online for students and parents. eBoard is focused on being the absolute simplest way to post messages, photos and files to the Internet.
The free service lets teachers create their own "Online Corkboard" where they can quickly and easily post "sticky notes" containing pictures, messages, files or links for students or parents to view. In only minutes, any teacher, regardless of Internet experience can have their own "Online Corkboard" for their class. Customized, no-advertising versions also available. Visit the eBoard booth today to learn more!

Booth 2120
Edmark Corporation
6727 185th Avenue Northeast
Redmond, WA 98073
Telephone: 800.426.0856 or 425.556.8400
Fax: 425.556.3702
E-mail: edmarkteam@edmark.com
Web: http://www.edmark.com
Edmark designs software that combines time-honored education methodology with rich multimedia technology to inspire creativity, develop self esteem, higher level thinking and problem-solving skills; and actively engage children in the learning process. Edmark will feature the latest additions to their award winning lineup of software for pre-K-10th grade students. See our ad on page 86-87

Booth 868
EBSCO Publishing
10 Estes Street
Ipswich, MA 01938
Telephone: 800.653.2726 or 978.356.6500
Fax: 978.356.6565
E-mail: esrn@epnet.com
Web: http://www.esrn.com
EBSCO Publishing is a leading provider of learning applications (covering reading comprehension, science and social studies) and full text reference databases for the school market. EBSCO delivers these quality assessment and reference applications via EBSCO School ResourceNet (ESRN), the premier online learning community that links teachers, parents and students in the education process. For more information on ESRN or other applica-
The EDmin Virtual EDucation System is an integrated suite of Internet-based software applications that supports communication, collaboration and continuous improvement within the Connected Learning Community. This standards-based system measures student achievement through the use of a powerful relational database and allows educators to use online, real-time information to improve their instructional practices. The Virtual EDucation System fulfills most school and district-defined assessment needs and promotes a culture of school accountability. See our ad on page 75.

Booth 348
Education Networks of America
PO Box 22989
Nashville, TN 37202-2969
Telephone: 615.253.4344
Fax: 615.532.4789
Web: http://www.ena.com
Education Networks of America (ENA) is a provider of comprehensive Internet services to K-12 schools. These services include content filtering, network management, caching, security and customer service. ENA currently provides Internet access to over 1,750 schools and more than 100,000 computers.

Booth 2537, 2636
Education Week
6358 Granger Road
Port Charlotte, FL 33981
Telephone: 941.697.0790
Fax: 941.697.8570
Web: http://www.edweek.org
Education Week is American education’s newspaper of record. Teacher Magazine is a monthly professional development journal for K-12 educators.

Booth 2561
Educational & Business Systems, Inc.
6358 Granger Road
Port Charlotte, FL 33981
Telephone: 941.697.0790
Fax: 941.697.8570
Web: http://www.edmin.com
“Videodidact” is a computer classroom control system. It allows the instructor/teacher to exercise total control over the whole classroom without leaving their computer.

• The instructor can review each student’s screen or transmit his screen to any or all the students.
• If the instructor wants to get the attention of the students, he can simply blank out their screens.
• The instructor can remote control the student’s keyboard and mouse from his/her computer.

“Videodidact” is solely a hardware video-net. It does not become part of any software or hardware.

Virtual EDucationTM
...Internet-based solutions to improve learning
Virtual EDucation is an integrated suite of Web-based assessment applications that allows you to integrate data from multiple sources, align your curriculum to district and state standards and access district-wide data from anywhere, at anytime.

Improved Results
Informed Decisions
Timely Information
Come see us at booth 236!
Booths 226, 228, 230
Educational Insights
16941 Keegan Avenue
Carson, CA 90746
Telephone: 310.884.2000
Fax: 310.886.8850
E-mail: ei@edin.com
Web: http://www.edin.com
Educational Insights will display its latest products.

Booths 2237, 2239
Educational Software Institute
4213 South 94th Street
Omaha, NE 68127
Telephone: 800.955.5570 or 402.592.3300
Fax: 402.592.2017
E-mail: infoedsoft.com
Web: http://www.edsoft.com
edsoft.com—find and buy just the software you need using all the publishers through one friendly distributor.

Booths 2320, 2321, 2323, 2325, 2327, 2329, 2331, 2333
Educational Resources
1550 Executive Drive
Elgin, IL 60123
Telephone: 800.624.2926 or 847.888.8300
Fax: 847.888.8653
Web: http://www.edresources.com
Educational Resources, America's largest distributor of educational technology, offers more than just software to educators. For over a decade Educational Resources has provided value-added services, professional development and qualified consultation to schools.
Educational Resources has developed programs and partnerships to meet your curriculum needs. Ask how the Partnership Plus Program can maximize your technology dollars! Visit our booth and meet your local representative or call 800.624.2926.

Booth 2702
eHomeRoom.com, Inc.
136 Peachtree Memorial Drive, NC#1
Atlanta, GA 30309
Telephone: 404.355.4606
Fax: 734.758.7205
eHomeRoom is a free Web site designed to improve communications and increase involvement among students, parents, and educators. From one single source users can view all school activities and events, view homework assignments, and even add their own personal appointments. Teachers and parents can easily communicate with each other via built-in e-mail. The site also supports displaying information about multiple children that attend different schools. Users can also print a weekly schedule of all their activities.

Booths 2571
ELLIS by CALI, Inc.
1675 North Freedom Blvd., Suite 2A
Provo, UT 84604
Telephone: 801.374.3424
Fax: 801.374.3495
E-mail: sales@cali.com
Web: http://www.ellisworld.com
Since its 1992 release, ELLIS has established itself as the most exceptional English training software in the world. The ELLIS curriculum combines graphics, full-motion video, digitized sound and voice recording, animation, and text in a comprehensive and user-friendly environment.

Stop by our booth to see ELLIS programs for beginner, intermediate, and advanced learners, plus specialized programs for business English, pronunciation, and adaptive testing. These impressive ELLIS programs accelerate and enhance learning. If you're responsible for helping learners increase their English proficiency, come learn about ELLIS now.

Booth 2402
Encore Software, Inc.
5420 West 83rd Street
Los Angeles, CA 90045-3204
Telephone: 310.342.0600
Fax: 310.342.0602
Encore Software publishes the complete line of Advantage educational titles, now in its third generation with over 700,000 units sold. Curriculum covers math, science and multi-subject educational suites for middle and high school levels. The Advantage line is high quality software at an incredible value.
ePALS' Classroom Exchange connects K-12 classrooms in 130 countries. 教室交换 currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.

Booth 1746
Epson America
20770 Madrona Avenue, MS 01-04
Torrance, CA 90503
Telephone: 310.782.5102
Fax: 310.782.5136
E-mail: info@RosettaStone.com
Web: http://www.RosettaStone.com

The Rosetta Stone Language Library is the award-winning program designed by teachers and students which makes learning a new language faster and easier than ever before. This immersion style, interactive multimedia program uses over 8,000 real-life color pictures to clearly convey the meaning of each new spoken phrase. Suitable for all ages. Available in 23 languages, including English (ESL).

Booth 1574
Excelsior Software, Inc.
PO Box 3417
Greeley, CO 80633
Telephone: 800.473.4572 or 970.353.8311
Fax: 970.353.8340
E-mail: dtagle@excelsiorsoftware.com
Web: http://www.gradebook.com

The PINNACLE system is a new approach to maintaining accurate classroom information within a school environment. It is the leading provider of proprietary collaborative classroom technology. ePALS enables K-12 teachers and students from around the world to meet and correspond online, share school projects, learn about other countries and cultures, practice foreign languages and develop "epal" (electronic pen pal) friendships.

The ePALS' Web site offers teacher and parent-monitored e-mail, instant language translation, collaborative project ideas, online lesson plans and other education-enhancement tools and resources. ePALS' currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.

Booth 1574
Excelsior Software, Inc.
PO Box 3417
Greeley, CO 80633
Telephone: 800.473.4572 or 970.353.8311
Fax: 970.353.8340
E-mail: dtagle@excelsiorsoftware.com
Web: http://www.gradebook.com

The PINNACLE system is a new approach to maintaining accurate classroom information within a school environment. It is the leading provider of proprietary collaborative classroom technology. ePALS enables K-12 teachers and students from around the world to meet and correspond online, share school projects, learn about other countries and cultures, practice foreign languages and develop "epal" (electronic pen pal) friendships.

The ePALS' Web site offers teacher and parent-monitored e-mail, instant language translation, collaborative project ideas, online lesson plans and other education-enhancement tools and resources. ePALS' currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.

Booth 1574
Excelsior Software, Inc.
PO Box 3417
Greeley, CO 80633
Telephone: 800.473.4572 or 970.353.8311
Fax: 970.353.8340
E-mail: dtagle@excelsiorsoftware.com
Web: http://www.gradebook.com

The PINNACLE system is a new approach to maintaining accurate classroom information within a school environment. It is the leading provider of proprietary collaborative classroom technology. ePALS enables K-12 teachers and students from around the world to meet and correspond online, share school projects, learn about other countries and cultures, practice foreign languages and develop "epal" (electronic pen pal) friendships.

The ePALS' Web site offers teacher and parent-monitored e-mail, instant language translation, collaborative project ideas, online lesson plans and other education-enhancement tools and resources. ePALS' currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.

Booth 1574
Excelsior Software, Inc.
PO Box 3417
Greeley, CO 80633
Telephone: 800.473.4572 or 970.353.8311
Fax: 970.353.8340
E-mail: dtagle@excelsiorsoftware.com
Web: http://www.gradebook.com

The PINNACLE system is a new approach to maintaining accurate classroom information within a school environment. It is the leading provider of proprietary collaborative classroom technology. ePALS enables K-12 teachers and students from around the world to meet and correspond online, share school projects, learn about other countries and cultures, practice foreign languages and develop "epal" (electronic pen pal) friendships.

The ePALS' Web site offers teacher and parent-monitored e-mail, instant language translation, collaborative project ideas, online lesson plans and other education-enhancement tools and resources. ePALS' currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.

Booth 1574
Excelsior Software, Inc.
PO Box 3417
Greeley, CO 80633
Telephone: 800.473.4572 or 970.353.8311
Fax: 970.353.8340
E-mail: dtagle@excelsiorsoftware.com
Web: http://www.gradebook.com

The PINNACLE system is a new approach to maintaining accurate classroom information within a school environment. It is the leading provider of proprietary collaborative classroom technology. ePALS enables K-12 teachers and students from around the world to meet and correspond online, share school projects, learn about other countries and cultures, practice foreign languages and develop "epal" (electronic pen pal) friendships.

The ePALS' Web site offers teacher and parent-monitored e-mail, instant language translation, collaborative project ideas, online lesson plans and other education-enhancement tools and resources. ePALS' currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.

Booth 1574
Excelsior Software, Inc.
PO Box 3417
Greeley, CO 80633
Telephone: 800.473.4572 or 970.353.8311
Fax: 970.353.8340
E-mail: dtagle@excelsiorsoftware.com
Web: http://www.gradebook.com

The PINNACLE system is a new approach to maintaining accurate classroom information within a school environment. It is the leading provider of proprietary collaborative classroom technology. ePALS enables K-12 teachers and students from around the world to meet and correspond online, share school projects, learn about other countries and cultures, practice foreign languages and develop "epal" (electronic pen pal) friendships.

The ePALS' Web site offers teacher and parent-monitored e-mail, instant language translation, collaborative project ideas, online lesson plans and other education-enhancement tools and resources. ePALS' currently connects over 25,000 "self-registered" K-12 classrooms in 130 countries. See our ad on page 96.
Farallon Communications will display its latest products.

Fiberworks, Inc. is a vertically-integrated communications systems provider specializing in the design and installation of high-performance IT infrastructures for local, wide, and metropolitan area networks. Using "best-of-breed" products and services, we build IT solutions that deliver the most effective results at the lowest possible cost of ownership. We provide all the products and services necessary to build fiber and copper-based networks with the best possible price/performance ratio. Customers may purchase stand-alone cable components and hardware, or take advantage of a comprehensive set of network service and support programs that include fiber network planning and design, installation, project management, remote network monitoring, and various post-sale maintenance and support programs.

Follett Software Company makes it easy to bring patrons the best access to information with innovative technology-based solutions that maximize access to information and staff resources. Our award-winning Internet and Windows-based solutions are just a few of the innovative solutions we bring to our more than 40,000 customers worldwide. Our solutions are flexible to work with you—no matter what level of technology exists in your library today—for single site libraries and entire districts. And we stand by you every step of the way, from guidance at the conceptual stages through data conversion, software and hardware integration, installation, and most importantly, training.

Now you can use the power of the Internet to take your Advanced Placement program further. Apex Learning offers a Web-based curriculum with everything you need for success.

In addition to our cost-effective online courses, we provide exam reviews for students and extensive classroom materials for teachers. And our award-winning program is easy to implement, so you can utilize this innovative curriculum in no time.

For more information call 1-800-453-1454 or visit our website at www.apexlearning.com.
Hear inspiring speakers from the American Museum of Natural History, NASA, the education industry and Classroom Connect™.

Test drive Connected University™ and Classroom Today™.

Learn about Fall "AustraliaQuest™."

Take a personalized on-site photo.

Learn about our NEW Professional Development "Blended Solution."

Win Special Travel Prizes.

In person, in the booth...Abe Lincoln, Amelia Earhart, Mark Twain and others.

www.classroom.com

the Learning Spark... in One click

classroom CONNECT™

Content that Clicks

Visit us at booth #1836
MASTER LOCK: New and comprehensive approach to securing your home computer. Provides Internet content filtering, protects personal information from Internet release, limits user time on Internet, blocks changes to desktop, secures files and directories.

COOLER: Restricts almost any feature in most applications.

HISTORIAN: The complete computer usage and recording tool.

Booth 2659
FSCreations, Inc.
621 Mehring Way, Suite 228
Cincinnati, OH 45202
Telephone: 513.241.3415
Fax: 513.241.5091
E-mail: rayo_nubin@fscreations.com
Web: http://www.examview.com
FSCreations designs and develops software for educators worldwide. The most recent Pro Version of ExamView is the most flexible and easy-to-use test generating program available. This hot new product is laden with features, including a powerful equation editor, that make it simple to create tests in a matter of minutes. To learn more about ExamView and download a demo, visit www.examview.com.

Booth 2944
Funds for Learning
2111 Wilson Blvd., #700
Arlington, VA 22201
Telephone: 703.351.5070
Fax: 703.351.6218
E-mail: info@fundsforlearning.com
Web: http://www.fundsforlearning.com
Funds for Learning is an educational technology consulting firm specializing in the E-rate program and tools for applicants and vendors.

Booths 2169, 2171
FUTUREKIDS, Inc.
5777 West Century Blvd., Suite 1555
Los Angeles, CA 90045
Telephone: 310.337.7006
Fax: 310.337.0803
E-mail: info@futurekids.com
Web: http://www.futurekids.com
Futurekids, Inc., is a world leader in helping schools use technology to transform education. With over 15 years experience in educational technology, Futurekids is a trusted and valued partner to over 2,000 schools and 75 countries worldwide. Futurekids has achieved this by providing schools with distinguished consulting services that address all key elements of successful technology integration. These services include school technology planning and assessment, professional development, K–12 student curriculum, classroom integration, and much more. Individualized attention and long-term mentoring and support further enhance these services to ensure each school receives the highest return on their technology investment.

Booths 837, 839
Gamco/Orchard Software
8135 Forsyth Blvd., Suite 212
St. Louis, MO 63105
Telephone: 800.351.1404 or 314.726.0725
Fax: 800.896.1760 or 314.726.1571
E-mail: sales@gamco.com
Web: http://www.orchardsoftware.com
Siboney Learning Group publishes K–12 software for all computers. Our GAMCO software offers hundreds of individual titles with management that helps students understand basic skills and key concepts stressed in textbooks and on standardized tests. Orchard Teacher’s Choice Software is our comprehensive managed solution that offers a cost-effective and motivating alternative to integrated learning systems. Both product lines feature titles in reading, writing, language, mathematics, and science. Please stop by our booth and register for free software.

Booth 1544
Gateway
PO Box 2000
North Sioux City, SD 57049
Telephone: 800.779.2000 or 605.232.1379
Fax: 810.815.0740
Gateway's K–12 program was designed specifically to support the educational needs of elementary, middle and high school students, both in the classroom and in the front office. As an educational professional, you want to give your students every advantage possible. Gateway can help you give them a technological edge by providing them with the latest computing technology, custom-configured for your campus environment. So your students can get the computing power they need to get informed and stay connected.
wherever learning happens

edmark.com

The vast resources of the Internet are now captured into a global learning community with edmark.com. The educators' most trusted content provider for over 30 years is going to the web, empowering students wherever learning happens.

Edmark.com provides daily information, teaching materials, resources, and software most needed by teachers and library media specialists—addressing issues of time, money, training, standards, and accountability. Putting you in control of student management and success... it's what you've been waiting for. Edmark.com—helping teachers be heroes in their communities!

COME VISIT US AT BOOTH #2120

EDMARK
Ignite the Curious Mind®
Development Series provides self-paced, multi-level instruction for students in grades 6–12, and beyond, targeting general vocabulary, test preparation (SAT/ACT), and --new for 2000–2001-- English as a Second Language (ESL). The Get A Clue Literature Series provides both vocabulary and reading-comprehension instruction customized to specific literary texts, such as *Romeo & Juliet* and *The Scarlet Letter*.

Booths 1155, 1157, 1159
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240
Telephone: 614.430.4000
Fax: 614.430.4414
Web: http://www.glencoe.com
Grafco, Inc.
2 Tyler Court, Suite B
Catasauqua, PA 18032-0071
Telephone: 610.492.8889
Fax: 610.492.8887
E-mail: info@grafco.com
Web: http://www.grafco.com

Booth 2869
GlobaLearn.com
2 Tylor Court, Suite B
Cambridge, MA 02140
Telephone: 617.492.8889
Fax: 617.492.8887
E-mail: pmullin@globalearn.com
Web: http://www.globalearn.com
GlobaLearn.com’s expeditions and multi-disciplinary, multi-cultural and adaptable curriculum. Students follow live expeditions abroad from their classroom via the WWW, learning about geography, history, culture, and the environment. They use the expedition team as extensions of themselves, conducting investigations of their local community as the explorers investigate communities abroad. Teachers have access to curriculum and teacher’s guide, chat areas, and other support resources. Students can ask questions of the explorers and communicate with thousands of participating classrooms worldwide. Use our expeditions for any class, any age.

Booth 2539
GPN/University of Nebraska-Lincoln
PO Box 80669
Lincoln, NE 68501
Telephone: 402.472.2007
Fax: 402.472.4076
E-mail: gpn@unl.edu
Web: http://www.gpn.unl.edu
Check out GPN’s new line-up of CD-ROMs, videos and online resources, for the pre K–12 classroom, such as Newton’s Apple, Reading Rainbow, Math in the Middle, and Class. Free previews and satisfaction guaranteed. Register to win a free CD-ROM or laserdisc.

Booths 2837, 2736
Grafo, Inc.
PO Box 71
Catasauqua, PA 18032-0071
Telephone: 800.367.6169
Fax: 800.432.3219
E-mail: info@grafco.com
Web: http://www.grafco.com
Grafo manufactures a wide range of extremely stable and durable furniture. The TT series of computer tables feature roomy, flip-top accessed cable troughs with side grommets for organizing cable and classrooms.
New products: Internet Safari®, our new secure children’s browser—because it’s a jungle out there, and Thinkology®, our award-winning, critical thinking skills software for early learning students. Stop by the booth to receive a CD-ROM guided tour of Thinkology and information on Internet Safari.

Booth 2168
Hewlett-Packard Company
5301 Stevens Creek Blvd. MS 54L-AJ
Santa Clara, CA 94022
Telephone: 408.553.7262
Fax: 408.553.6731
E-mail: miriam_tam@hp.com
Web: http://www.hp.com/go/education
HP will demonstrate a variety of products including HP PCs, HP printers, digital cameras, and Mac-connect solutions. Visit HP’s new education Web site at http://www.hp.com/go/education.

Booths 2829, 2831
Highsmith, Inc.
17530 Caribou Drive East
Monument, CO 80132
Telephone: 719.488.0704
Fax: 719.481.8657
Web: http://www.highsmith.com
A complete offering of technology and library furniture and equipment for schools, including planning and design assistance for computer labs and libraries.

Come and see us at booth 2469
www.boxlight.com
BOXLIGHT offers special educational discounts.

© 2000 BOXLIGHT and the BOXLIGHT logo are registered trademarks of BOXLIGHT Corporation.
Assessment
How well do your students know Microsoft Office 2000?
Stop by our booth and find out how you can accurately assess your students' proficiency with SAM 2000, our "live in the application" performance-based testing program.

Certification
Course Technology is your guide to certification and success! We offer certification test preparation materials for the following:
- A+
- Cisco
- MCSE
- MOUS
- Corel
- And more!

Computer Applications
Course Technology features some of the most successful applications series on the market:
- South-Western Series
- Shelly Cashman Series
- Illustrated Series
- And more!
We also have two brand new computer-based training products for applications - Course CBT, and the LearnBy Series - new from the Shelly Cashman Series.

Teacher Training
Our teacher training products are perfect for self-paced or instructor-led training, and are available for short or longer courses.
- Teachers Discovering Computers from the Shelly Cashman Series will help you learn the basics.
- Our Course Instructor Led Training (ILT) Guides and Illustrated Course Guides offer inexpensive solutions for training on a variety of topics.
- We also offer computer- and Web-based training, and more!

Course Technology – helping people teach and learn about technology

Come visit us in
BOOTH 1444
at NECC

Win a digital camera!

for the chance to

Teacher Training
Our teacher training products are perfect for self-paced or instructor-led training, and are available for short or longer courses.
- Teachers Discovering Computers from the Shelly Cashman Series will help you learn the basics.
- Our Course Instructor Led Training (ILT) Guides and Illustrated Course Guides offer inexpensive solutions for training on a variety of topics.
- We also offer computer- and Web-based training, and more!

Colleges and Universities call 800-648-7450
High Schools call 800-354-9706
Private Career Colleges call 800-477-3692
Corporations and Training Companies call 800-340-7450
Government Agencies, Healthcare Organizations, and Correctional Facilities call 800-998-7498

8EST COPY AVAILABLE
Booth 2462
HighWired.com
300 North Beacon Street, First Floor
Watertown, MA 02472
Telephone: 617.926.1850
Fax: 617.926.1861
E-mail: info@highwired.com
Web: http://www.highwired.com
HighWired.com is the world's largest online high school community. The company provides free Web site building tools to high school teachers and students. In a short period of time, thousands of high schools from all 50 states and over 50 countries have joined the company's network.

Booth 2942
Howard Computers
580 Eastview Drive
Laurel, MS 39443
Telephone: 601.399.5075
Fax: 601.399.5060
E-mail: csatcher@howardcomputers.com
Howard Computers is a manufacturer of custom-built-to-order computer systems. Ranging from laptops to servers, Howard Computers provides the customer with a quality product backed by customer service, which is second to none.

Booth 2769
Hyper Technologies
1125 Fir Avenue
Blaine, WA 98230
Telephone: 800.663.8381 or 604.945.4233
Fax: 604.464.8680
Web: http://www.winsellect.com
Hyper Technologies will display its latest products.

Booth 2020
IBM Corporation
4111 Northside Parkway, HO6A1
Atlanta, GA 30327
Telephone: 800.IBM.4YOU
Fax: 800.214.1436
E-mail: pelaia@us.ibm.com
The IBM exhibit will showcase IBM e-business solutions for schools including solutions for improving student achievement and building and managing a technology infrastructure. Improving student achievement includes teaching to standards, individualized and discovery-based learning, teacher development, assessment and accountability. The exhibit will include solutions from Lotus Development, Tivoli, Symbol Technologies, Virtual Learning Technologies, and others.

Booth 1536
IDE Corp.—Innovative Designs for Education
120 North Central Avenue, Suite 4
Ramsey, NJ 07446
Telephone: 201.934.5005
Fax: 201.934.7332
E-mail: ide@idecorp.com
Web: http://www.idecorp.com
Educational consultant specializing in instructional redesign to achieve technology infusion. Makers of the Technology Infusion Toolkit 2000—the ultimate professional development CD for teachers.

Is this what using your student information system feels like?
Ours is web-based.
It takes away the pain.

Web-based is Better
- Faculty integrated — no need to navigate through separate modules
- Reduced hardware, training and maintenance costs
- Secure and customizable to address your unique needs
- A single server can run your entire district

PowerSchool is Better
- Automates reports, schedules, grades, attendance and much more
- Provides real-time parental access to student performance
- Offers remote hosting capability — your server or ours!

Built-in Online Community Features
- Your school's website
- Email
- School fundraiser
- Classroom web pages

Come by booth 2560 for a free demonstration and a chance to win an authentic autographed Steve Young football!
Amidst all the traffic on the web you are a gem. I applaud what you are doing to bring together children, technology and international cultures in such a safe, encouraging and nurturing site.

Holly Williamson
Parent
San Diego, CA

Partnerships and inquiries:
inquiries-necc@epals.com

IDG Books Worldwide offers a comprehensive collection of computer technology and general reference books for students of all levels and learning styles, including best-selling...for Dummies® books and the award-winning, full-colored Simplified® and 'Teach Yourself VISUALLY® series.

IDG Books Worldwide
919 East Hilldale Blvd., Suite 400
Foster City, CA 94404
Telephone: 650.653.7000
Fax: 650.653.7500
E-mail: jrobinson@idgbooks.com

ePALS Classroom Exchange is used by more than 1.5 million students and teachers in 130 countries. They collaborate on projects, learn about other countries and cultures and practice foreign languages. Over 25,000 registered classrooms use the site for its:
- interactive classroom community
- free monitored Web-based email with instant language translation
- lesson plans and global events
- world maps and international weather
- interfaces in French, Spanish, German and English

Visit us today at www.epals.com and start an adventure that could last the whole school year — if not a lifetime.

Drop by for a Web site demo @ NECC booth #2601.

Imind education systems delivers a fully integrated Internet and Intranet-based solution to K-12 and adult education. Through its education hub, Imind™ delivers instructional and classroom management tools, education resources, student data and online communications for students, teachers, administrators, and parents. Serving public, private, and after school programs, Imind’s dynamic learning environment and sophisticated database capabilities support student achievement, parent involvement, and teacher effectiveness.

Booths 2920, 2922
Imind education systems
104 Tiburon Blvd.
Mill Valley, CA 94941
Telephone: 415.380.4667
Fax: 415.381.9565

Imind education systems develops educational multimedia software and Internet curriculum, which promotes "understanding through involvement." Award-winning titles include "All the Right Type" — keyboarding program and Crosscountry U.S.A. — social studies. New releases include All the Right Type 3.0, our professional development program — Teachers’ Tech Tutor and our latest Internet initiative, The Learning Window. Corel Corporation is a key strategic partner in The Learning Window initiative. Corel Corporation, maker of the award-winning Corel WordPerfect® and CorelDRAW®, is a leading software developer known for its business applications, professional and consumer graphics products. Committed to developing software for a variety of operating systems, Corel provides products for the Windows®, Linux®, UNIX® and Macintosh® platforms.

Booth 2268
IDG Books Worldwide
919 East Hilldale Blvd., Suite 400
Foster City, CA 94404
Telephone: 650.653.7000
Fax: 650.653.7500
E-mail: jrobinson@idgbooks.com

WWW.NECCSITE.ORG • NECC2000
Booth 448
Inspiration Software, Inc.
7412 Southwest Beaverton Hillsdale Highway, Suite 102
Portland, OR 97225
Telephone: 800.877.4292
Fax: 503.297.4676
E-mail: oronzio@inspiration.com
Web: http://www.inspiration.com

INSPRIATION
The premier tool to develop ideas and organize thinking.

New version 6.0! Now with hyperlinks, expanded symbol library and more!
Inspiration® is a powerful visual learning tool that inspires students to develop ideas and organize thinking. Inspiration's integrated diagramming and outlining environments work together to help students comprehend concepts and information. The Diagram view makes creating and modifying concept maps, webs, idea maps and other graphical organizers easy. Its intuitive interface keeps students' focus where it should be—on their ideas, not the drawing process. Inspiration's powerful Outline view allows students to quickly prioritize and rearrange ideas, helping them create clear, concise essays, reports and more. Used in social studies, language arts and science curriculum. Available on Hybrid CD-ROM.

Booths 860, 862
IntelliTools, Inc.
1720 Corporate Circle
Petaluma, CA 94954
Telephone: 707.773.2000
Fax: 707.773.3001
E-mail: info@intelligtools.com
Web: http://www.intelliertools.com
IntelliTools® publishes a series of hardware and software tools that facilitate computer access and create multi-sensory learning solutions for people with physical, cognitive, or visual disabilities. The product line includes IntelliKeys®, a versatile alternative keyboard, Overlay Maker®, a basic drawing program for designing custom keyboard layouts, IntelliTalk®, a talking word processor, IntelliPics®, an authoring tool for creating multimedia activities, and ClickIt®, a handy utility for adding hot spots and scanning to popular software. In addition, IntelliTools publishes a growing line of accessible curriculum software for IntelliKeys, switch, and mouse users.

Booths 669, 671
Interactive Products
Division—Numonics
101 Commerce Drive, Box 1005
Montgomeryville, PA 18936
Telephone: 215.362.7766
Fax: 215.361.0167
E-mail: numonics@numonics.com
Web: http://www.interactivewhiteboards.com

With more than 30 years of manufacturing experience, Numonics is pleased to present the latest version of its award-winning Interactive Presentation Manager (IPM). The IPM is the most powerful interactive whiteboard available for classrooms. Providing durability and the performance of a true digital technology, the IPM is the best value in helping to meet tomorrow's demanding curriculum. Linking the class to the Internet, multimedia, software applications, or distance education is no problem with the IPM. Educational Technology Grants are available.

Booths 1561, 1563
Internet Products, Inc.
10350 Science Center Drive, Suite 100
San Diego, CA 92121
Telephone: 858.320.4800
Fax: 858.320.4848
E-mail: info@internetproducts.com
Web: http://www.InternetProducts.com
Internet Products Inc., maker of the iPrism® and the InterGate® solution, provides turnkey Internet solutions for educational organizations. Booth activities will include demonstrations on Internet filtering and district-wide Internet gateway management. Come see how we can provide you with a better way to see the Internet!

Booths 1845, 1847
ISTE—International Society for Technology in Education
414 North Wabash Avenue
Chicago, IL 60611
Telephone: 847.835.1992
Fax: 847.835.4926
E-mail: iste@iste.org
Web: http://www.iste.org

ISTE, the International Society for Technology in Education, is one of the largest teacher-based, non-profit organizations in educational technology. Our membership includes teachers, technology coordinators, administrators and friends of education who seek to promote the use of technology to support and improve learning, teaching and administration in K–12 education. ISTE provides resources, workshops, legislative updates and other activities to help you learn and share with colleagues in the United States and around the world. Visit our booth or find us on the Web at www.iste.org.
Booths 733, 832
Jay Klein Productions
2930 Austin Bluffs Parkway, Suite 104
Colorado Springs, CO 80918
Telephone: 719.594.0271
Fax: 719.599.8312
E-mail: gradebust1@aol.com
Web: http://www.gradebusters.com
Jay Klein Productions, creators of Grade Busters 1/2/3, Grade Busters: Record Breaker, and Grade Busters: Making the Grade, will demonstrate the latest classroom management and teacher productivity tools for MS-DOS, Macintosh and Windows. (Again, bring your program disks by to get the latest free upgrades, and to see why we have the only products in our field receiving the Computer Learning Foundation™ Seal of Approval!) We will also demonstrate Corporate Climber™, a revolutionary multimedia program for remediation of speech, middle school through adult. Carmen Sandiego™ does for social sciences, Saul Kurtz, Etta Mollogy, and colleagues do for communication arts!

Booth 746
JDL Technologies
5555 West 78th Street
Edina, MN 55439-2702
Telephone: 800.535.3069 or 952.946.1810
Fax: 952.946.1835
E-mail: info@jdltech.com
Web: http://www.jdltech.com
JDL Technologies provides networking and Internet access integration solutions exclusively to K-12 schools. JDL helps schools realize their educational goals by providing vendor-neutral network analysis, planning and design, K-12WORLD™ products, multi-vendor procurement, installation and implementation, customer support and professional development. JDL Technologies—Connecting America’s Schools™—performance guaranteed!

Booth 748, 2650
K’NEX Education Division
PO Box 700, 2990 Bergey Road
Hatfield, PA 19440-0700
Telephone: 800.ABC.KNEX or 215.996.4233
Fax: 215.996.4222
E-mail: abcknex@knex.com
Web: http://www.knexeducation.com
Interface with new Computer-Controlled K’NEX! The award-winning K’NEX Education System expands into the realm of computer control. Gain practical experience in planning, constructing, and operating computer-controlled models, and discover the advantages of the K’NEX rod & connector system for designing moving models directly controlled by the computer and by independent interfaces. The Computer-Control System combines model building with easy-to-use programs, activities, and lesson plans to help explain the relationship between the physical and mechanical world and the abstract world of computer science. The icon-based software is simple to use and implement and requires no previous programming experience.

Booth 2668
Jungsoft USA, Inc.
156 South Spruce Avenue, Suite 152
South San Francisco, CA 94080
Telephone: 650.952.0574
Fax: 650.952.5230
HDD Sheriff by Jungsoft. Hard drive protection and recovery system.

Booths 748, 2650
K’NEX Education Division
PO Box 700, 2990 Bergey Road
Hatfield, PA 19440-0700
Telephone: 800.ABC.KNEX or 215.996.4233
Fax: 215.996.4222
E-mail: abcknex@knex.com
Web: http://www.knexeducation.com
Interface with new Computer-Controlled K’NEX! The award-winning K’NEX Education System expands into the realm of computer control. Gain practical experience in planning, constructing, and operating computer-controlled models, and discover the advantages of the K’NEX rod & connector system for designing moving models directly controlled by the computer and by independent interfaces. The Computer-Control System combines model building with easy-to-use programs, activities, and lesson plans to help explain the relationship between the physical and mechanical world and the abstract world of computer science. The icon-based software is simple to use and implement and requires no previous programming experience.
PC110 - Files and Folders

The first course of its kind, PC110 - Files and Folders, teaches the concepts and skills required for working with the computer's filing system. PC110 is ideal for beginning through intermediate-level computer users.

Meet Your Training Solution

The one course every computer user should be required to take!

Please join us on Wednesday, June 28, for our concurrent session: HELP! Where did my file go? I can't find it! And don't forget to stop by booth #2738 to pick up your free demo CD and learn how Teknimedia's Computer Literacy Series can improve the computer skills of your students and teachers!
Leading Technology Micro, Inc. (LTM) is leading the way in educational technology. We have successfully supported entire state educational systems in addition to providing state-of-the-art custom built systems throughout corporate America.

LTM's excellent customer service, integrity, product loyalty and work ethic have earned numerous multi-million dollar educational contracts.

LTM uses a complete range of products from major industry leaders such as Acer, Cisco, Hewlett Packard, Linux, Microsoft, Intel, Toshiba, Xerox, 3Com and many others.

As LTM enters the next millennium we are determined to provide our customers with the latest technology to serve their educational and corporate needs.

Learning Pays.com is an e-learning technology company that provides K-12 schools with a comprehensive menu of Web-based tools for use by students, parents and teachers. Learning Pays.com's School Too™ includes an interactive calendaring system, online registration for school activities, school related e-commerce, access to homework and progress reports, individualized assignments, same grade chats and links to real-time Web-cams at school events.

Learning Pays.com's e-services organization works with schools to develop a customized technology plan, which includes needs assessment, system analysis, educational software, computer hardware, installation services, customer service and support, training and assistance in securing funding via grants.

Learning in Motion creates and publishes innovative software for K-12 education. You can find creative and well-researched solutions for math, physical and life sciences, language arts, and the Internet. At www.learn.motion.com we host a monthly list of Top Ten Education Sites on the World Wide Web, and ideas of how to use them in your classroom.

Learning Pays.com
110 East Boudrow Blvd., Suite 1900
Fort Lauderdale, FL 33301
Telephone: 954.463.0900
Fax: 954.463.0991
E-mail: readye@learningpays.com
Web: http://www.learningpays.com
Learning Pays.com is an e-learning technology company that provides K-12 schools with a comprehensive menu of Web-based tools for use by students, parents and teachers. Learning Pays.com's School Too™ includes an interactive calendaring system, online registration for school activities, school related e-commerce, access to homework and progress reports, individualized assignments, same grade chats and links to real-time Web-cams at school events.

LCSI is the publisher of two very powerful multimedia authoring tools-MicroWorlds Pro lets students create dynamic, interactive school projects. Students create HTML templates for their interactive projects to be displayed on the WWW; add hyperlink connections to the WWW; make easy animations, drag & drop music, pictures, videos, Web pages, sound, and shapes into their projects. MicroWorlds allows students to display MicroWorlds projects on the WWW. Students have access to digital videos, digital photos, and sound clips for their projects. The actual process of designing and creating a MicroWorlds project is a rich learning experience. Product presentations held at LCSI's booth.
Booths 2102, 2200
Lexmark International
740 West New Circle Road, Building 1
Lexington, KY 40505
Telephone: 606.232.6163
Fax: 606.232.5439
Lexmark is a manufacturer and developer of superior printing devices and printing solutions.

Booths 845, 847
Library Video Company
7 East Wynnewood Road
Wynnewood, PA 19096
Telephone: 610.645.3620 or 610.645.4000
Fax: 610.645.4070
E-mail: christine@libraryvideo.com
Web: http://www.libraryvideo.com
Library Video Company (LVC) is the leading distributor of educational videos, CD-ROMs, DVDs, and audio books. Since 1985, LVC has been providing outstanding products at budget-friendly prices to schools and public libraries. LVC carries over 12,000 titles, including 2,000 CD-ROM products from leading children's software manufacturers—all pre-screened to ensure their educational value. LVC creates several well-detailed catalogs a year. We also have a Web site, libraryvideo.com, where customers can easily search all products by media type, subject, or grade level before placing orders online. Schlessinger Media, LVC's award-winning production division, distributes a library of over 300 originally produced and acquired educational videos.

Booth 561
Lexia Learning Systems, Inc.
PO Box 468
Lincoln, MA 01773
Telephone: 508.435.3942 or 781.259.8752
Fax: 781.259.1349
E-mail: info@lexialearning.com
Web: http://www.lexialearning.com
Lexia Learning Systems builds software to help children and adults learn to read. Based on the well-proven Orton-Gillingham system, Lexia's software provides a structured approach to learning to read English which supports teachers in the classroom, and provides practice to students learning at home. The Quick Reading Tests identify strengths and weaknesses in decoding skills, and help teachers assign practice software. Phonics Based Reading and Reading S.O.S. (Strategies for Older Students) help students develop phonological awareness, sound-symbol correspondence and decoding skills. Lexia software is used with LD, ESL and mainstream students in thousands of institutions across the country.

Booth 2860
Lernout & Hauspie, Kurzweil Education Group
52 Third Avenue
Burlington, MA 01803
Telephone: 800.894.5374 or 781.203.5000
Fax: 781.203.5033
E-mail: education.info@LHSL.com
Web: http://www.LHSL.com/education/
Millions of people around the world struggle with reading everyday. Whether due to blindness, learning disabilities, or a reading difficulty such as dyslexia, access to printed word is now possible thanks to the reading software developed by L&H's Kurzweil Educational Systems Group. This solution is made possible through the use of speech, language, and optical character recognition technology.

Booth 528
Lightspan, Inc.
2391 Circadian Way
Santa Rosa, CA 95407
Telephone: 800.333.9954 or 707.521.3530
Fax: 707.521.3535
E-mail: info@ltools.com
Web: http://www.lightspan.com
The Lightspan Partnership is a curriculum-based educational software and Internet products company dedicated to improving student achievement by enhancing the classroom experience and then extending that experience into every students' home. See our ad on page 10-11.

Booth 2660
LIGHTWARE
9875 Southwest Sunshine Court, Suite 200
Beaverton, OR 97005
Telephone: 800.211.9001
Fax: 503.643.9756
E-mail: sales@lightware.com
Web: http://www.lightware.com
Lightware is a dynamic, experienced young company committed to creating a more affordable, more portable and easier to use LCD projector, so that everyone, business people, trainers, everyone—can make a great impression without having to spend a fortune.

Exhibitor Hours
Monday, 9:45 am - 5:30 pm
- Continental Breakfast in the Exhibit Hall, 9:45 - 11 am
- Refreshment Break in the Exhibit Hall, 3:30 pm
Tuesday, 9:30 am - 5 pm
Wednesday, 9:30 am - 2:30 pm
WWW.NECCSITE.ORG • NECC2000
WWW.NECCSITE.ORG
Integrate technology into your curriculum by publishing books on site with Lintor Publishing Center.

We are the only company that provides a complete package—software, book covers, and binding materials—enabling students to publish beautiful hard-bound books right in the classroom. Used in hundreds of schools across the country to improve writing, reading, and technology skills, this easy-to-use template-based software fits right over your school's word processing program.

Therefore, students can incorporate a variety of technology into their publications, from simple word-processing to higher level capabilities such as importing graphics, using scanners, and digital cameras. (K–12)

Datadesk's new patented Little Fingers keyboard is the world's first keyboard designed to fit children's smaller hands and fingers.

The LittleFingers keyboard incorporates key cap size and spacing that is scientifically engineered to allow kids to reach all the keys easily, naturally, and comfortably. Students can learn to touch-type proficiently without having to hunt-and-peck on an adult-size keyboard.

It doesn't matter what computer system you use because the same LittleFingers keyboard works with any PC or Macintosh computer. Even if you change platforms, LittleFingers protects your investment.

Let LittleFingers benefit your students today. The results will last a lifetime!

Logical Extension Resources
7168 Archibald Avenue, Suite 240
Alta Loma, CA 91701-6421
Telephone: 909.980.0046
Fax: 413.541.6115
E-mail: sales@lxrtest.com
Web: http://www.lxrtest.com
LXR will be demonstrating the new LXR-TEST 6.0—a total assessment solution. This new 6.0 release features the latest in item banking and Web testing technologies.

Logical Choice Technologies
3305 Breckinridge Blvd., Suite 134
Duluth, GA 30096
Telephone: 770.564.1044
Fax: 770.564.0244
Provides streamlined way for technology directors and specialists, and purchasing agents to receive online quotes and purchase computers, peripherals, software, and services over the Web.
ABLESOF T PRODUCTS SAVE YOU TIME

Come check out AbleSoft's NEW Product line for the 2000-2001 school year at Booth #2825. Our time-saving products include Teacher's Toolbox, a comprehensive classroom administrative package that automates grading, scheduling, attendance monitoring, lesson planning, report card generation, and test creation; graphic arts tools for bringing desktop publishing right into the classroom; an entire library of historical and literary documents on one CD; a package of Internet tools that help teachers make the best use of the Web; and a program for creating puzzles for use as worksheets, tests and quizzes.

Teacher's Toolbox 4.0
Teacher's Toolbox Suite 4.0
Teacher's Graphic Tools
Teacher's Internet Tools
Teacher's Puzzle Creator
Library of the Future, 4th Ed.

For more information, call 1-800-467-3569 or visit our website at www.ablesort-inc.com

Booth 554
Lucent Technologies
5 Wood Hollow Road, Room 2H16
 Parsippany, NJ 07054
 Telephone: 800 WaveLAN
 Fax: 973.581.3223
 Web: http://www.wavelan.com

Lucent Technologies is a global leader in wireless LANs, with installations in more than 50 countries. Through its Bell Labs research and development arm, Lucent holds a total of 25 patents on high-speed Wireless LAN technology for both indoor and outdoor applications. Lucent Technologies also plays a leading role in Wireless LAN standards development by virtue of its chairmanships of the IEEE 802.11 and ETSI BRAN (Broadband Radio Access Network) committees. Lucent Technologies, headquartered in Murray Hill, N.J. (U.S.A.), designs, builds and delivers a wide range of public and private networks, communications systems and software, data networking systems, business telephone systems and microelectronic components. For more information on Lucent Technologies, visit the corporate Web site at http://www.lucent.com.

Booths 2400, 2401
Macromedia, Inc.
600 Townsend Street, Suite 310
San Francisco, CA 94103
 Telephone: 415.252.2000
 Fax: 415.626.0554
 E-mail: education@macromedia.com
 Web: http://www.macromedia.com

Macromedia's mission is to add life to the Web. Our award-winning products empower educators to develop the most engaging Web site experiences and Instructional Authoring applications on the Web. Macromedia Education has a variety of programs and specially priced products, including site licensing, available to both K–12 and Higher Ed. Learn more at www.macromedia.com/education. Contact us at education@macromedia.com.

Booth 265
Main Xchange, Inc.
48 West 37th Street, Suite 1001
New York, NY 10018
 Telephone: 201.569.4343
 Fax: 201.568.3922
 Web: http://www.mainxed.com

Main Xchange, Inc. will display its latest products.

Booth 1948, 1950
Market Data Retrieval
1 Forest Parkway
Shelton, CT 06484
 Telephone: 203.926.4800
 Fax: 203.926.1826
 E-mail: amingo@dnb.com
 Web: http://www.schooldata.com

Market Data Retrieval (MDR) is a leading provider of information on the education market. Our database includes over 4.5 million educators at 250,000 institutions—from preschool through college—and over 70 technology-related list selections. Our full range of customized database services offers effective solutions for marketers. MDR's state-by-state school directories are published annually and are available in print and electronic formats. MDR also publishes research reports, including Technology in Education, New Teachers and Technology, E-Mail Marketing Outlook, and The College Technology Review.
textHELP!®

Do you know someone who struggles at school or home with reading and writing? textHELP!® software provides motivation, independence and results in both learning and comprehension.

textHELP!® Read & Write
An easy to use toolbar that works with any of the Windows® based applications, e.g. Microsoft Word, Excel, Internet Explorer, etc., include:
- Speech Feedback
- Speaking Phonetic
- Spellchecker
- Homophone Support
- Word Prediction
- New Comprehensive Thesaurus

textHELP!® Type & Talk
A flexible educational word processor offers positive reinforcement for those who have learning disabilities. It combines features of the award winning Read & Write, such as speech, spelling, homonym support, thesaurus and word prediction within a simple to use word processor. The recently released Type & Talk Version 3 now works on both Mac and PC platforms.

The intuitive solution for literacy needs
Utilise textHELP!'s innovative software to enhance and develop literacy ability and maximise potential.

Come and see our innovative products at Booth No. 2765
For further details of textHELP!'s products call our toll free number on:
1 888 333 9907 or fax us on: 1 877 631 5991

textHELP Systems Ltd., Enkalon Business Center, 25 Randalstown Road, Antrim BT41 4LJ
Northern Ireland. Email: info@texthelp.com
Web Site: http://www.texthelp.com

Booth 2500
Math.com
5420 West 83rd Street
Los Angeles, CA 90045
Telephone: 310.342.0600
Fax: 310.342.0602
Math.com, LLC, is dedicated to providing revolutionary ways for students, parents, teachers, and everyone to learn math. Combining educationally sound principles with proprietary technology, Math.com offers a unique experience that quickly guides the user to the solutions they need and the products they want. These solutions include assessment, on-demand modular courses that target key math concepts, 24/7 live online tutoring, and answers to math questions from experts. In addition to solutions, Math.com offers exploratory and recreational introductions to the world of math that will lead to deeper understanding and enjoyment.

Booth 244
MathResources Inc.
5516 Spring Garden Road, Suite 203
Halifax, NS B3J 1C6
Canada
Telephone: 800.720.1323
Fax: 902.492.7101
E-mail: ron@mathresources.com
Web: http://www.mathresources.com
MathResources designs and develops interactive math software for teachers and students. Some of our products include:
- The MathResource: Interactive Math Dictionary, for senior high and beyond, combines the power of the computation engine Maple with a comprehensive database of over 5,000 terms and definitions.
- The MRI-Graphing Calculator CD-ROM, combines all the functionality of a graphing calculator with all the power of a computer.

The Windows CE version of the calculator software is available on the new A-20 Cassiopeia, the latest in handheld computers. Stop by our booth and see all of our products in action.

Booths 1668, 1670
MathXpert
2211 Lawson Lane
Santa Clara, CA 95054
Telephone: 800.361.1001
Fax: 408.567.0659
E-mail: info@mathxpert.com
Web: http://www.mathxpert.com
MathXpert Assistant Series programs focus on the process of solving Algebra, Trigonometry, and Calculus problems. The three programs, MathXpert Algebra Assistant, MathXpert Pre-Calculus Assistant, and MathXpert Calculus Assistant, help students build proficiency and confidence in the strategies of problem solving. Appropriate for middle school through college, these programs are great for both classroom demonstration and independent practice. Thousands of problems are included, and you can even type in your own problems to solve.

Booths 1154, 1155, 1156, 1157, 1158, 1159, 1160
McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240
Telephone: 614.430.6324
Fax: 614.430.6321
Come and see the latest products from these divisions of the McGraw-Hill Companies (refer to individual listings for more details):
- CTB/McGraw-Hill
- Glencoe/McGraw-Hill
- McGraw-Hill Learning Technologies
Booths 1158, 1160
McGraw-Hill Learning Technologies
8787 Orion Place
Columbus, OH 43240
Telephone: 614.825.6324 or 800.848.1567
Fax: 614.825.6321
E-mail: passkey@mcgraw-hill.com
Web: http://www.passkeylearning.com
PassKey: A Prescriptive Learning System
PassKey is McGraw-Hill’s network or CD-ROM delivered program for reading, writing, math, and science instruction that provides test preparation and effective basic skills remediation. Built-in correlations to over 40 state and national proficiency tests make test preparation fast and effective. Students of all levels can succeed with PassKey’s award-winning tutorials, guided practice, and right and wrong answer feedback. PassKey is modular, so you can select the subjects and reading levels (1.6–12.9) that your students need. PassKey’s powerful yet easy-to-use management system makes administration a snap. Stop by our booth at NECC and see for yourself how PassKey can help improve your students’ test scores.

Booth 1744
Media & Methods Magazine
1429 Walnut Street, 10th Floor
Philadelphia, PA 19102
Telephone: 215.563.6005
Fax: 215.587.9706
E-mail: michelesok@media-methods.com
Web: http://www.media-methods.com
Media & Methods is the vanguard publication dedicated to teaching practices and products in the forefront of the field of K–12 education. Chock full of pragmatic articles on how to use today’s instructional technologies and resource materials presented by experts in the field.

Booths 1545, 1547
MediaSmith, Inc.
#2, 2nd Floor, 396 Assiniboine Avenue
Winnipeg, Manitoba R3C 0Y1
Canada
Telephone: 204.984.9211
Fax: 204.956.4960
E-mail: fred@mediasmithsw.com
Web: http://www.mediasmithsw.com
MediaSmith™ unleashes the potential of multimedia authoring by transparently incorporating graphics, text, sound, movies including QTVRs, and animation across platforms utilizing the latest in JAVA technologies. This new generation of software allows students as young as grade 3 to create fabulous presentations, teachers to construct online and offline resources including integrated units of study with differentiated feedback. MediaSmith™ can be used for story boarding, science projects, year books, electronic portfolios and many more applications across the curriculum. MediaSmith™ is powerful simplicity—www.mediasmithsw.com.
classroom management system for customization, grading, tracking, and assessment. Correlations to state, district, and national math principles and standards are available. Ideal for remediation, intervention, and gifted and talented students. Available in network lab-packs, or single-user dual platform versions. See our ad on page 165.

Booths 855, 857, 859
Micro Warehouse, Inc.
535 Connecticut Avenue
Norwalk, CT 06854
Telephone: 203.899.4276
Fax: 203.899.4576
E-mail: EdBids@mwhse.com
Web: http://www.warehouse.com
Micro Warehouse—a direct computer products solutions provider since 1987—is a worldwide leader in supplying over 50,000 of today's leading name brand PC and Macintosh computer hardware, software and networking products to business, education and government. Last year alone, we served over two million customers. A dedicated account staff works with your organization to help plan, select, deliver and finance the best products and services for you—based on our years of experience, the superior buying power of a $2.4 billion company, and leading-edge knowledge of the computer products industry. Plus, we do it every single day, 24 hours a day—by phone or online at www.warehouse.com.

Booths 2820, 2822
Meridian Creative Group
5178 Station Road
Erie, PA 16510
Telephone: 814.898.2612
Fax: 814.898.0683
E-mail: info@meridiancg.com
Web: http://www.meridiancg.com
Meridian Creative Group, a Division of Larson Texts, is an educational multimedia and print publishing company. Featured products include CD-ROM-based K-12 math software programs where each grade level, or course, is year-long in scope and sequence, covering all the major math topics. Programs are mastery-based, interactive, and include a

Booth 345
MICRO-INTEL International
1200 Papineau Avenue, Suite 301
Montreal, Quebec H2K 4R5
Canada
Telephone: 514.528.1905
Fax: 514.528.1770
Micro-Inel creates innovative multilingual, multimedia applications for the educational, institutional and home markets. Come visit us and learn about our broad range of titles, covering the whole curriculum area: reading, language arts, math, social studies and sciences software for grade levels starting at pre-K up to adult. Recognized for the richness of their content, these multimedia products fully comply to your highest educational standards and learning objectives. Micro-Inel's goal is to transform the way people interact with information, to increase their knowledge and to improve their cultural awareness.

Booths 2530, 2532
Micrograms Software
9934 North Alpine Road, Suite 108
Machesney Park, IL 61115-8240
Telephone: 815.877.4455
Fax: 815.877.1482
E-mail: tellthem@micrograms.com
Web: http://www.micrograms.com
Micrograms produces educational software designed for use in schools. We offer skill development programs for students in grades K through 8. Stop by to pick up a free preview CD and see our newest releases. Software giveaway after each demonstration!
Booth 2542
Miramar Systems, Inc.
10 East Yanonali Street
Santa Barbara, CA 93101
Telephone: 805.966.2432
Fax: 805.965.1824
E-mail: sales@miramarsys.com
Miramar Systems, Inc. will display its latest products.

Booth 2524
MSCS
3887 State Street, Suite 109
Santa Barbara, CA 93105
Telephone: 888.463.8252
Fax: 805.898.8749
E-mail: info@mscs-k12.com
Web: http://www.mscs-k12.com
NetClass is network management and menuing software specifically designed for K–12 schools with Novell netware or Microsoft NT server. NetClass allows schools to administrate their own networks without having to have a certified CNA, CNE, or MCSE. Teachers combine students and software into “classes.” Printer management, Windows desktop security, and assignments are some of the many other features of NetClass. NetClass works with Windows 98/95, Windows 3.1, and DOS stations. NetClass is the perfect solution for schools needing to upgrade from IBM ICLAS networks. NetClass even works with most of the IBM courseware. For more information come by our booth, call 888.4NetClass, or check our Web site, www.mscs-k12.com.

Exhibitor Hours
Monday, 9:45 am–5:30 pm
• Continental Breakfast in the Exhibit Hall, 9:45–11 am
• Refreshment Break in the Exhibit Hall, 3–3:30 pm
Tuesday, 9:30 am–5 pm
Wednesday, 9:30 am–2:30 pm

Find out how you can be part of this equation at NSBA booth #1254. Enter to win a free registration for the 14th Annual Technology + Learning Conference, October 25–28 in Denver.

Booth 761
Misty City Software, Inc.
13625 Northeast 126th Place, Suite 430
Kirkland, WA 98034-8738
Telephone: 800.795.0049 or 425.820.2219
Fax: 425.820.4298
E-mail: sales@mistycity.com
Web: http://www.mistycity.com
Visit our booth for a free demo CD of award-winning Grade Machine, a teacher’s best choice for classroom management. With the power and flexibility to meet any grading need, Grade Machine is easily used by elementary, secondary, and college teachers. New Version 6.9 includes e-mail progress reports, student pictures in seating charts, and more. Unique Smart Data Exchange feature lets schools design filters to communicate with most school administration packages, at no extra charge. Windows and Macintosh cross-platform.

Also see Grade View software, which provides a school-wide view of student performance for administrators, counselors, coaches, and other key staff.
Booths 1949, 954, 956, 958
Multi Media Schools/Information Today, Inc.
143 Old Marlton Pike
Medford, NJ 08055
Telephone: 609.654.6266
Fax: 609.654.4309
E-mail: custserv@infotoday.com
Web: http://www.infotoday.com
MultiMedia Schools (MMS) is a practical how-to magazine focused on the needs of school practitioners. Articles, reviews, and columns address using electronic information resources in K-12 schools—Internet, online and multimedia databases, CD-ROM technology, and computer hardware software. MultiMedia Schools is published by Information Today, Inc., the publisher of Information Today, Computers in Libraries, Link-Up, and Searcher. The Magazine for Database Professionals. ITI also publishes books and other periodicals pertaining to library and information science and the electronic delivery of information. ITI sponsors the National Online Meeting and IOLS conference, and also the Computers in Libraries and Internet Librarian conferences.

Booth 2054
N2H2, Inc.
900 Fourth Avenue, Suite 3400
Seattle, WA 98164
Telephone: 206.336.1501 or 800.971.2622
Fax: 206.336.1556
E-mail: info@n2h2.com
Web: http://www.n2h2.com
N2H2 provides Internet technologies for safety and productivity in schools.

Booth 954, 956, 958
NASA Education Program
NASA Headquarters
Code FE
300 E Street Southwest
Washington, DC 20546-0001
Telephone: 202.358.1110
Fax: 202.358.3048
Web: http://education.nasa.gov
Discover the universe of educational programs, materials, and services that NASA provides. Educators will be introduced to the latest NASA curriculum support products, Internet resources, and multimedia projects designed to enhance the entire curriculum.

Booths 1346, 1348, 1350
National Geographic School Publishing
1145 17th Street Northwest
Washington, DC 20036
Telephone: 800.368.2728 or 202.857.7378
Fax: 202.857.7300
Web: http://www.nationalgeographic.com
Come explore at the National Geographic School Publishing Booth. Bring the world to your classroom with powerful, high quality supplemental classroom materials that will stimulate your students' quest for knowledge.

Booth 1254
National School Boards Association
1680 Duke Street
Alexandria, VA 22314
Telephone: 703.838.6722
Fax: 703.683.7300
E-mail: itte@nsba.org
Web: http://www.nsba.org
Learn more about NSBA's Technology + Learning Conference, October 25-28 in Denver, and about NSBA's other technology programs for educators. See our ad on page 119.

Booth 2527
National Science Foundation
4201 Wilson Blvd., Room 855
Arlington, VA 22230
Telephone: 703.306.1234
Fax: 703.306.0434
The National Science Foundation provides funds for a variety of programs in the science, mathematics and engineering fields. Do you know that the Foundation offers grants, workshops and curricula for all educational levels? Students and teachers will want to investigate the many opportunities that NSF has to offer. Projects in the areas of curriculum development, laboratory instrumentation, teacher and faculty enhancement, technological education as well as other areas of research endeavors are funded by the Education and Human Resources Directorate (EHR). We invite you to stop by and see for yourself. Complimentary publications are available.

Booths 2728, 2730
National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, CA 95052
Telephone: 408.721.2652
Fax: 408.245.9655
National Semiconductor provides the technology that enables people to access the Internet inexpensively. Visit us to learn about the benefits of thin-client technology in education and check out our FREE Internet Training Program for teachers. See our ad on page 3, 5.

Booth 2270
National Wildlife Federation
8925 Leesburg Pike
Vienna, VA 22184
Telephone: 703.790.4236
Fax: 703.790.4094
The National Wildlife Federation Animal Tracks Program provides training to classroom teachers in environmental topics to be incorporated across the curriculum for grades K–12.

Booth 2254
NCS
4401 West 76th Street
Edina, MN 55435
Telephone: 612.830.7687
Fax: 612.830.7691
E-mail: info@ncs.com
Web: http://www.ncs.com
NCS provides hardware, software, and services to districts throughout the country. Application solutions include financial management, student records management, testing, instructional/curriculum management, online comprehensive courseware and teacher/student resources, parent/school communications, electronic document management, and surveys.
Teachers can also monitor and assist students on an individual or group basis by watching, sharing, or controlling select PCs. With full featured remote control capabilities, NetSupport School Pro is ideal for incorporation in distance learning programs.

Booth 371
Network Data Services, Inc.
536 Grand Slam Drive
Evans, GA 30809
Telephone: 706.650.8015
Fax: 706.863.9950

NDS is a single source partner for professional IT services, computer systems, network design, installation, maintenance, and related communication services. Services include network analysis-management; network cable infrastructure design, installation, testing, support; wireless network services; technology planning; on-site service contract; and customized maintenance agreements.

NDS employs a technical staff with more than 75 years of combined network experience. The company’s cabling plant engineers have over 60 years of combined wiring experience using UTP, STP, Token Ring, and fiber optics.

Booth 2670
New Forum Publishers, Inc.
555 North Lane, Suite 6040
Conshohocken, PA 19428
Telephone: 404.262.0994
Fax: 404.842.0292
E-mail: huggins@newforum.com
Web: http://www.beyondbooks.com

Beyond Books is an Internet-based source of educational content that parallels, expands on and deepens current curricula in the nation’s high schools and middle schools. First time users can easily make use of Leonardo’s powerful features due to its highly GUI interface. Leonardo does it all!

Booth 2533
NECTAR Foundation
10 Bowhill Avenue
Nepean, ONT K2E 6S7
Canada
Telephone: 613.224.3031
Fax: 613.224.1946
E-mail: nectar@ocdsb.on.ca
Web: http://www.nectar.on.ca

NECTAR Foundation develops innovative educational programs featuring integrated curriculum, interactive technologies and individualized student programs. The software is developed by teachers for teachers. Students can easily capture texts and images from the Web and integrate them into their presentations.

First time users can easily make use of Leonardo’s powerful features due to its highly GUI interface. Leonardo does it all!

Booth 1054
NetSchools Corporation
100 Galleria Parkway Northwest, Suite 134
Atlanta, GA 30339
Telephone: 770.226.5000
Fax: 770.226.5010
E-mail: sales@netschools.net
Web: http://www.netschools.net

NetSchools Corporation has defined and created a revolutionary new learning environment that combines an Internet-centric curriculum with a wireless notebook computer for every student. The Solution is designed to address accountability and equity issues, to provide parental involvement and a personalized learning system for every student, with the total cost of ownership at an affordable level.

NetSchools is the only company to successfully fulfill the compelling vision of the future in which every student and every teacher incorporates the power of the computer and the Internet into every aspect of the school day.

Booth 1468
NetSupport
106 Colony Park Drive, Suite 400
Cumming, GA 30040
Telephone: 888.665.0808
Fax: 770.205.4462
E-mail: sales@netsupport-inc.com
Web: http://www.netsupport-inc.com

NetSupport School Pro is innovative software designed to empower teachers by enabling centralized PC instruction without the need for additional costly A/V equipment. With NetSupport School Pro, a teacher can remotely control PCs in their classroom, thus giving students an individual learning experience.

This software-based solution allows teachers to show their screen to any number of connected PCs, thereby enabling real-time visual instruction.

Teachers can also monitor and assist students on an individual or group basis by watching, sharing, or controlling select PCs. With full featured remote control capabilities, NetSupport School Pro is ideal for incorporation in distance learning programs.
Booth 1251
Nippon Educational Computing Association
3609 Century Park Tower
2-1-1 Tsukada, Chou-Ku
Tokyo, 104-0051
Japan
Telephone: 81.3.3533.3969
Fax: 81.3.5547.3246
Nippon Educational Computing Association will display its latest products.

Booth 1162
Nordex International
350 Lincoln Street, Suite 220
Hingham, MA 02043
Telephone: 781.740.4506
Fax: 781.740.1025
E-mail: info@nordexinternational.com
Web: http://www.nordexschool.com
Nordex School is the most powerful student administration system available. It is cross-platform, modular, open, extensible, and easy-to-use. Loaded with powerful features, it not only includes Student Record Management, Attendance Tracking, Discipline, Grade Reporting, and a Master Schedule Builder but also a District-wide component. Come and see for yourself.

Booths 2449, 2451
Nortel Networks
4401 Great America Parkway SC-06
Santa Clara, CA 95054
Telephone: 408.495.7584
Fax: 408.495.2650
E-mail: tknisker@nortelnetworks.com
Web: http://www.nortelnetworks.com
Nortel Networks is a global leader in telephony, data, wireless and wireline solutions for the Internet. Nortel Networks has played an integral part in supporting the education community for more than 20 years. In 1998, the company invested $15.3 million in over 400 education, training and research projects at more than 140 universities worldwide. Today, while focused on creating a high-performance Internet that is more reliable and faster than ever before, the company is offering a program called NetKnowledge to help schools train secondary and post-secondary students in valuable job and career skills within the telecommunications industry. Visit us at www.nortelnetworks.com.

Booths 2336, 2338, 2340
NoteSys
838 Main Street
Monroe, CT 06468
Telephone: 203.445.1115
Fax: 203.445.1115
E-mail: info@notesys.com
Web: http://www.notesys.com
NoteSys, Inc. specializes in being a complete technology solution provider to the educational market, and will be displaying and demonstrating their wireless computer lab.

Booth 1951, 2050
Nova Solutions, Inc.
PO Box 725
Effingham, IL 62401
Telephone: 800.730.6682
Fax: 800.940.6682
E-mail: info@novadesk.com
Web: http://www.novadesk.com
With Nova Solutions' monitor-below-the-work surface design, ordinary classrooms become multi-purpose classrooms. Nova's space-saving design provides privacy, security and a clear line-of-sight between teacher and students. Our Electronic Classroom series, K-12 desks and multimedia lecterns provide the solution for classrooms, libraries and labs. Experience Nova at booths 1951, 2050.

Booth 445
Nova Southeastern University, Programs in Instructional Technology & Distance Education
1750 Northeast 167th Street
North Miami Beach, FL 33162
Telephone: 954.262.8550 or 954.262.3909
Fax: 954.262.3909
E-mail: itdeinfo@fcae.nova.edu
Web: http://itde.nova.edu
Nova Southeastern University offers accredited, advanced degrees via a unique blend of conveniently scheduled on-site instruction, and electronically-mediated distance education. Nova's cluster concept allows learners in cohorts of 20-25 working professionals to earn Master of Science and Doctor of Education degrees in Instructional Technology and Distance Education. To learn more about these innovative programs, visit the Nova Southeastern University booth (445) at NECC 2000 Exhibits. For additional information, call 800.986.3223, ext. 8550, send e-mail to itdeinfo@fcae.nova.edu, or visit the Instructional Technology and Distance Education homepage at http://itde.nova.edu.

Booth 2241
Nova Southeastern University, SCIS
3100 Southwest 9th Avenue
East Campus, Building B
Fort Lauderdale, FL 33315-3025
Telephone: 954.262.2000
Fax: 954.262.3872
E-mail: stixis@scis.nova.edu
Web: http://www.scis.nova.edu
The School of Computer and Information Sciences (SCIS) is distinguished by its ability to offer traditional and non-traditional educational program formats that enable the professional to pursue an advanced degree without career interruption. SCIS champions and practices distance education—a concept realized through approaches such as cluster, institute, and online programs (via the Internet and World Wide Web). SCIS offers degree programs leading to a bachelor's in computer information systems or computer science; a master's in computer information systems; and a doctoral degree in computer information systems, computer science, computing technology in education, and information science, and information systems.
nschool.com is a free Web-based education system providing a new level of communication between parents, students, teachers, and school administrators. nschool.com is a user-friendly, "point and click" system requiring no prior computer or Internet experience. Easy to use, nschool.com provides a full array of features including e-mail, lesson plan database, discussion forums, individual user Web pages, resource center, and search engines. By providing a communication tool that conveniently links all of the participants in the education process, the nschool.com system greatly enhances and simplifies the school's ability to fulfill its primary function—education.

Booth 1947
Perfect Solutions
15950 Schweizer Court
West Palm Beach, FL 33414-7128
Telephone: 800.726.7086
Fax: 561.790.0108
E-mail: perfect@gate.net
Web: http://www.perfectsolutions.com
A Computer for Every Student® Laser PC6 wireless laptop at $290. Mobile recharging labs; text-to-speech; Internet.

Booths 851, 950
Peter Li Education Group
4905 34th Street South, Suite 6400
Saint Petersburg, FL 33711
Telephone: 800.555.8512
Fax: 727.864.2436
Copies of various publications of the Peter Li Education Group, our annual meeting calendars and our new technology market report will be available, along with promotional materials for technology planning and management will be available.
Technology planning and management provides coverage of districts that are active in a retrofit or new school project this school year. Editorial helps improve technology selection for district-wide administrators in charge of major technology-related purchases through strategic planning stories, success stories and technology categories, and technology planning ideas along with various columns such as technotes and purchase options in technology.

Booth 2443, 2445, 2447
Philips Consumer Electronics
64 Perimeter Center East
Atlanta, GA 30346
Telephone: 770.821.2244
Fax: 770.821.3126
Philips Consumer Electronics will display its latest products.

Booth 2946
Phoenix Multimedia, Inc.
689 Discovery Drive
Huntsville, AL 35806
Telephone: 256.464.6600
Fax: 256.772.6551
Phoenix Multimedia, Inc. will display its latest products.

Booths 2602, 2700
Phoenix/BFA/Coronet
2349 Chaftee Drive
Saint Louis, MO 63146
Telephone: 314.569.0211
Fax: 314.569.2834
Educational video, laserdisc, CD-ROM, DVD and print materials. Come see our new CD-ROM and DVD titles.
more affordably than ever before. These innovative, no-compromise digital video manipulation tools perform a variety of on-air, production, and post production functions such as the addition of special effects, capture, storage, and playout, as well as title creation. Pinnacle Systems offers a range of cost-effective solutions for introducing video into classrooms. At Pinnacle Systems, we believe that Video In Education Wins!

Booths 936, 938
Pioneer New Media Technologies, Inc.
2265 East 220th Street
Long Beach, CA 90810
Telephone: 800.LASER.ON
Fax: 310.952.2990
E-mail: lpellegromo@pnmt.com
Web: http://www.tools4teachers.com

Pioneer New Media Technologies, Inc. continues to bring cutting-edge technology to education. Visit the Pioneer booth and experience the power of DVD-Video. You’ll see Pioneer’s DVD-V7400 (industrial DVD-Video player) in action, and you’ll discover interactive classroom activities and lesson plans that motivate and engage students.

Booth 2436
Pitsco LEGO Dacta
PO Box 1708
Pittsburg, KS 66762
Telephone: 316.231.0000
Fax: 316.231.1339
E-mail: sfienen@pitsco.com
Web: http://www.pitsco-legodacta.com

Pitsco LEGO Dacta develops a wide range of educational based products for grades K–12 and beyond. Our use of manipulatives with educational software has led the industry for over 10 years now. The introduction of the RCX robotics system, LEGO CAD, Red Rover and other materials represents a new chapter in the use of technology in education. Come see what project-based, hands-on activities we have for your classroom.

Booths 2743, 2745
PLATO* Education/TRO Learning, Inc.
4660 West 77th Street
Edina, MN 55435
Telephone: 800.899.2000 or 612.832.1543
Fax: 612.832.1270
Web: http://www.plato.com

With thousands of hours of high-quality, individualized coursework, PLATO provides your middle school and high school students with the instruction and assessment they need to master the performance-based skills defined by state and national standards. And, now PLATO on the Internet allows you to deliver managed instruction to your students anywhere at anytime.

Booth 1362
Polaroid Education Program
400 Boston Post Road
Wayland, MA 01778
Telephone: 781.388.6275
Fax: 781.388.6252
E-mail: breens@polaroid.com
Web: http://www.polaroid.com/pep

Digital, instant, and 35mm imaging technology; visual learning workshops; curricular resources.

Booth 2438
Power On Software
6525 West Campus Oval, Suite 130
New Albany, OH 43054
Telephone: 614.413.4000
Fax: 614.413.4001
E-mail: sales@poweronsoftware.com
Web: http://www.poweronsoftware.com

Power On Software, developers of award-winning security, network management, and scheduling/contact management software, is dedicated to publishing quality solutions for the education market.

Booth 2842
PowerQuest Corporation
PO Box 1911
Orem, UT 84059-1911
Telephone: 801.437.8900
Fax: 801.221.0149
E-mail: magic@powerquest.com
Web: http://www.powerquest.com

PowerQuest continues to develop jaw dropping technology! The Academic Technician Power Pack with its arsenal of award-winning products has saved schools and IS technicians hundreds of hours and thousands of dollars in their process of computing administrative efficiency. Come see how ServerMagic™ Pro, Drive Image™ Pro, PartitionMagic® Pro, Search & Rescue™ Pro, EZ Restore™, and BootMagic™ will save you $5,000 immediately and impact the IS department significantly!
PowerSchool is the leading provider of Web-based student information systems for K–12 schools. Our cross-platform, comprehensive student information system allows teachers to record grades and attendance electronically. These records are then posted and can be accessed real-time by parents through a confidential log-in. In addition to student records, PowerSchool also serves as a doorway to the best educational resources online. This provides parents both with information regarding how their student is performing and access to the resources that will help their child succeed.

PowerSchool is scalable so an entire district can use a single server to run the system. See our ad on page 95.

Booth 1065
Pre-Owned Electronics, Inc.
125 Middlesex Turnpike
Bedford, MA 01730
Telephone: 800.274.5343
Fax: 781.778.4848
E-mail: education@preowned.com
Web: http://www.preowned.com
Pre-Owned Electronics, Inc. is one of the largest computer remanufacturers in the United States. For over 15 years, we have provided educational markets with new and remanufactured Macintosh computers, peripherals and accessories. Pre-Owned Electronics is the largest independent provider of remanufactured Apple parts in the nation, as well as a leading national provider of Compaq, Power Computing, Toshiba, HP, IBM, Motorola StarMax, and Umax SuperMac. We guarantee every product we ship with a 180-day warranty.

Booth 2560
PowerSchool
1130 Iron Point Road, Suite 288
Folsom, CA 95630
Telephone: 888.470.0808
Fax: 916.985.1092
E-mail: sales@powerschool.com
Web: http://www.powerschool.com
PowerSchool is the leading provider of Web-based student information systems for K–12 schools. Our cross-platform, comprehensive student information system allows teachers to record grades and attendance electronically. These records are then posted and can be accessed real-time by parents through a confidential log-in. In addition to student records, PowerSchool also serves as a doorway to the best educational resources online. This provides parents both with information regarding how their student is performing and access to the resources that will help their child succeed.

PowerSchool is scalable so an entire district can use a single server to run the system. See our ad on page 95.

Booth 1760
Premio Computer, Inc.
918 Radecki Court
City Of Industry, CA 91748
Telephone: 626.839.3100
Fax: 626.839.3193
E-mail: mktrg@premiopc.com
Web: http://www.premiopc.com
Premio Computer, Inc. has been manufacturing high quality PC desktops, workstations and servers since 1989. Our extensive experience in the education market has made us a top 10 PC vendor to the United States education market, according to International Data Corporation and Dataquest. Premio’s experience with schools includes classroom network consulting and E-Rate.

Booth 263
Principia Products, Inc.
16 Industrial Blvd., Suite 102
Paoli, PA 19301
Telephone: 800.858.0860 or 610.647.7850
Fax: 610.647.8771
E-mail: info@principiaprod.com
Web: http://www.principiaprod.com
Principia Products, Inc. is a leading provider of data collection software for Windows. Our flagship product, Remark Office OMR, works with a common image scanner to scan data from plain-paper forms. Users can create and print their own scannable forms using any word processor. Data can be exported to virtually any analysis package.

Remark Classic OMR works with common OMR readers to collect data from pre-printed forms. Remark Classic OMR grades tests, tabulates surveys, and exports data to virtually any analysis package.

Remark Web Survey makes it easy to create and collect data from Web-based forms without any knowledge of HTML or Web programming techniques.

Booths 361, 363
Proxim, Inc.
510 DeGuigne Drive
Sunnyvale, CA 94086
Telephone: 408.731.2700
Fax: 408.731.3685
E-mail: sales@proxim.com
Web: http://www.proxim.com
Proxim wireless LAN products deliver network connections to your students and staff wherever they are. Using laptops and wireless LANs, K–12 schools using lab-on-a-cart solutions are bringing computers into the classroom where students work and learn. Since laptops are easy to deploy where they’re needed, schools can often buy fewer computers for the same number of students. With wireless LANs at colleges and universities, laptop users can network without wires from dorm rooms, libraries, classrooms, and even the quad on sunny days. Proxim is the world’s most popular wireless LAN, with easy-to-use, mobile-friendly products for your students on the go.

Booth 2940
Proxima Corporation
9440 Carroll Park Drive
San Diego, CA 92121-2298
Telephone: 858.457.5500
Fax: 858.677.5653
E-mail: info@proxima.com
Web: http://www.proxima.com
Proxima Corporation, the global leader in presentation and conferencing solutions, develops, markets and sells world-class products to benefit corporate enterprises, work groups, mobile professionals, trainers, and professional public speakers. Proxima offers a wide range of multimedia projectors, audio and video conferencing equipment and presentation tools to increase the efficiency and productivity of its customers. For more information about Proxima products, call 800.447.7692 or visit www.proxima.com.

Founded in 1982, Proxima is a wholly-owned subsidiary of Proxima ASA, headquartered in Fredrikstad, Norway. Proxima ASA is publicly traded on the Oslo, Norway Stock Exchange (PRX.OL).

Booths 937, 939
Quality Education Data
1700 Lincoln, Suite 3600
Denver, CO 80203
Telephone: 303.860.0238
Fax: 303.860.0238
E-mail: info@qeddata.com
Quality Education Data, Inc. (QED), headquartered in Denver, Colorado, is a research and database company focused exclusively on education. QED is a wholly-owned subsidiary of Scholastic, Inc. QED’s National Education Database covers all U.S. and Canadian educational institutions and is the core data resource which supports all QED products and services. These include QED’s National Registry of Teachers by Name™, mailing lists, market research, marketing databases, database design, and annual research reports.
Quick Course® Books/OTSI
Booth 2061
2217 152nd Avenue Northeast
Redmond, WA 98052
Telephone: 425.885.1441 or 800.854.3344
Fax: 425.881.1642
E-mail: quickcourse@otsiweb.com
Web: http://www.quickcourse.com
Recommended by educators and training professionals worldwide for classroom instruction and self-paced training, Quick Course® textbooks, workbooks, and online training products teach popular software applications and practical business skills using hands-on examples that can immediately be used in the school, work or home environment.

Quick Course® products provide beginning- to intermediate-level training appropriate for all ages, incorporating time-proven teaching techniques, extensive graphics, and step-by-step training exercises for each lesson. Additional instructor resource materials are available to assist in the classroom teaching process.

Rainbow Educational Media
Booths 2749, 2751
Rainbow Educational Media is a recognized publisher of K-8 multimedia products for classroom use. Rainbow develops highly rated, competitively priced, supplemental curriculum programs in CD-ROM, videocassette and videodisc formats. All of our programs are designed to heighten students’ interest and make the task of learning easier and faster, while substantially increasing their ability to comprehend a concept. We encourage you to stop by our exhibit booth for a product demonstration!

QuickPAD by H45 Technology, Inc.
Booths 2749, 2751
H45 Technology is approaching its 10th year of business operating in the heart of Silicon Valley. Three years ago we introduced the QuickPAD Portable Word Processor through retail channels nationwide and direct sales to schools and the education market successfully for the past 2 years.

The QuickPAD is an intelligent alternative to overcrowded computer labs and expensive laptops. With a full-size laptop keyboard, screen, and 70 pages of memory it will operate for 400 hours on 4 AA batteries and upload via infrared into any MAC or PC computer.

We offer volume discounts, immediate turn-around, and most importantly, an innovative reliable product! Free 30-day evaluation units available.

Booth 2545
Rauland-Borg Corporation
3450 West Oakton Street
Skokie, IL 60076
Telephone: 847.679.0900
Fax: 847.679.0625
E-mail: mike.shares@rauland.com
Web: http://www.rauland.com
Rauland-Borg Corporation manufactures school communications and multimedia management solutions. The company develops technical solutions to meet the school, faculty and students’ needs for communication and instruction.
Booth 601
Regional Technology in Education Consortium
3001 Dole Building, University of Kansas Lawrence, KS 66045
Telephone: 785.864.0536
Fax: 785.864.0704
Web: http://tec.org
Regional Technology in Education Consortiums (R*TECs) provide technical assistance, workshops for teachers and administrators, Web sites, policy advice, lesson ideas, free tools and a lot more. R*TECs are funded by the U.S. Department of Education and serve as providers of services and catalysts for regional cooperation and resource sharing.

Booth 553
Riverdeep
Interactive Learning
125 Cambridge Park Drive
Cambridge, MA 02140
Telephone: 800.564.2587 or 617.491.4440
Fax: 617.491.5885
E-mail: info@riverdeep.net
Web: http://www.riverdeep.net
Riverdeep Interactive Learning is a global leader in the development of interactive educational software. The company’s core products are software-based curriculum for middle and high school students consisting of exciting interactive activities which greatly enhance a student’s learning experience. The company’s math and science products are used widely in public school systems throughout the U.S. and are accessible through the Internet. Riverdeep’s Resource Exchange is a service to the educational community providing all resources to link technology and multimedia with quality education.

Booth 568
Sagebrush Corporation
457 East South Street
Caledonia, MN 55921
Telephone: 800.533.5430
Fax: 507.725.2301
E-mail: info@sagebrushcorp.com
Web: http://www.sagebrushcorp.com
Sagebrush Corporation is a rapidly growing library and information solutions company delivering integrated information resource management solutions to the education world. We are dedicated to providing solutions that enhance educational access to information, help librarians and students achieve their goals, and build bridges for educational success.

Sagebrush offers the Athena and Winnebago Spectrum integrated library automation solutions for Windows, the highest quality learning resource solutions from Econo-Clad Books and American Library Publishers, and superior library service solutions.

By focusing on the unique needs of the education market, Sagebrush Corporation offers schools and libraries a total resource and materials solution. See our ad on page 133.

Booth 640
SAS inSchool
SAS Campus Drive
Cary, NC 27513
Telephone: 919.677.8000
Fax: 919.677.4444
E-mail: inSchool@sas.com
Web: http://www.SASinSchool.com
SAS inSchool will showcase Web-based multimedia curricula for all core discipline areas in grades 6–12. The units of study are content-focused and include mapping to national and state standards, as well as instructor aids for integration into the classroom. Stop by booth 640 to meet with the teachers that helped develop these products. Educators devote their lives to learning–our products help them bring learning to life. Visit our Web site at http://www.SASinSchool.com for more information.

Booth 2600
School Center
300 East Main Street, Suite 18
Carbondale, IL 62901
Telephone: 888.642.4448 or 618.351.1776
Fax: 618.351.1996
E-mail: jkeyser@schoolcenter.com
Web: http://www.schoolcenter.com
School Center™ is a complete, district-wide Web site that works on Windows and Mac platforms simultaneously. Everything going on in your school district can be shared with the community—schedules, events, sports scores, board meetings—it's up to you! Web Pages can be updated and modified by administrators, teachers—even parents—and no one has to have knowledge of HTML or FTP. Best of all, the software is a server application, which means no per-client software to purchase or install. For more information, contact School Center at 888.642.4448, or visit us at www.schoolcenter.com.

Booths 2201, 2300
School Improvement.Net
8686 South 1300 East
Sandy, UT 84094
Telephone: 801.566.6500
Fax: 801.566.6885
Professional development for the 21st century. School Improvement.Net is an online community dedicated to the school improvement needs of all educators. SiNet provides online professional development featuring Video Journal content with Interactive questions and reporting capabilities for administrators.

Scholastic Inc.
555 Broadway
New York, NY 10012-3999
Telephone: 212.343.6100
Fax: 212.343.6930
E-mail: dsiclari@scholastic.com
Web: http://www.scholastic.com
Scholastic is committed to creating high-quality multimedia products for use in school and at home with our Core Educational Software products, Independent Software products, Software Clubs, Learning Ventures products and magazines.
School Reform News—The Heartland Institute
19 South La Salle
Chicago, IL 60603
Telephone: 312.377.4000
Fax: 312.377.5000
E-mail: nikki@heartland.org
Web: http://www.heartland.org
School Reform News—monthly newspaper covering market-based school reform efforts. Circulation of 45,000 includes private school educators, every state and national elected official in the U.S., and education journalists. Free to educators, parents, and other qualified subscribers. 312.377.4000 or nikki@heartland.org.

Booths 238, 240
SchoolComputer.com
2018 Lindell Avenue
Nashville, TN 37203
Telephone: 615.383.1010
Fax: 615.383.1058
SchoolComputer.com is dedicated to helping educators get the technology they need.

Booth 2936
SchoolOne.com
27540 Detroit Road, Suite 206
Westlake, OH 44145-2299
Telephone: 440.835.8989
Fax: 440.835.8964
E-mail: info@schoolone.com
Web: http://www.schoolone.com
SchoolOne.com’s services enhance communication. These free online services appear as part of a school’s Web site: Student Progress: Through password-protected access, parents and students view homework assignments, scores, and teacher-generated progress notes. Message Boards: post messages about events, classes, clubs, and more.

Booth 2568
SCI Technologies
105 Terry Drive, Suite 120
Newtown, PA 18940
Telephone: 800.421.9881
Fax: 215.579.8589
E-mail: lgsagliardo@scitechnologies.com
Web: http://www.scitechnologies.com
LabWorks is a data acquisition device that focuses student attention and time on the thought intensive aspects of the process of science experiment design, data organization, and analysis.

Booth 460
Security Software Systems, Inc.
1998 Bucktail Lane
Sugar Grove, IL 60554
Telephone: 888.835.7278
Fax: 630.466.7678
E-mail: info@securitysoft.com
Web: http://www.securitysoft.com
Cyber Sentinel is the most advanced child protection software available. It provides a unique solution for analyzing, monitoring, filtering and blocking undesirable, predatory and sexually explicit computer traffic in chat rooms, e-mail, instant messages, and Web sites. Captures and logs all violations for review. Will e-mail parents/teachers of violations.

Booth 120
Telecommunications Systems, Inc.
500 East Golf Road
Villa Park, IL 60181
Telephone: 630.888.2727
Fax: 630.888.2728
E-mail: info@tsi.com
Web: http://www.tsi.com
Lockdown provides PC security by preventing unauthorized software from being run or installed, accidental or intentional tampering with system settings. Provides full file locking of personal or confidential files, and allows time control to all applications including online usage. Provides unique PC security and control.

Booth 343
SecurTech Company
575 Willow Lane
Lake Oswego, OR 97035-5340
Telephone: 503.636.6831
Fax: 503.636.9642
Web: http://www.securtech.com
SecurTech is manufacturer of Righton Security products for securing computers, electronic gear, VCRs, TV's in offices, schools, classrooms and industry. We are mail order only.

Booths 2425, 2427
Sharp Electronics Corp./LCD Products Group
Sharp Plaza, Box 1
Mahwah, NJ 07430-2135
Telephone: 201.529.8731
Fax: 201.529.9636
E-mail: pro.LCD@sharpusa.com
Web: http://www.sharpusa.com
Sharp Electronics Corp./LCD Products Group will display its latest products. SMART Technologies Inc. seamlessly brings together your teaching tools and your choice of teaching tools into an interactive whiteboard, SMART Board, an interactive whiteboard, you can control projected Windows and Macintosh applications and other multimedia by pressing on the Board’s large touch-sensitive surface. Simplify equipment set-up and use with SMART Expression, a mobile, multimedia cabinet that integrates your choice of teaching tools into an attractive secure cabinet. SynchronEyes classroom instruction and computer-control software, will help you to create a focused learning environment.
plans that are available to you for outfitting your computer labs with the best and most up-to-date software on the market. Whether you use Macs or PCs, we have the software for almost any need you may have. Our experts are trained to find you solutions. Also in our booth you will have the opportunity to see several new products that have just recently been released. Stop by for a list of presentation times.

Booth 2770
Sonic Desktop Software
9836 White Oak Avenue, Suite 209
Northridge, CA 91325
Telephone: 800.454.1900 or 818.718.9992
Fax: 818.718.9990
E-mail: sharon@sonicdesktop.com
Web: http://www.sounsow.com
SmartSound® is the revolutionary new family of audio software products that allows students and teachers alike to create soul-stirring soundtracks for video, multimedia and Web projects in minutes instead of hours. It is the first and only audio software to approach audio creation from a visual creator's perspective—not a musician's. And, because of its patented, award-winning technology anyone can begin creating emotion packed, precisely timed soundtracks with professional results in minutes. Includes high-quality, royalty-free music and sound effects. See why, for thousands of schools and universities, SmartSound® is the powerful intuitive way to create soul-stirring soundtracks in minutes!

Booth 537, 628, 636
Software Express, Inc.
4128-A South Blvd.
Charlotte, NC 28209
Telephone: 800.527.7638
Fax: 704.529.1010
E-mail: nicepeople@swexpress.com
Web: http://www.swexpress.com
Stop by our booth to meet your dedicated territory manager and learn about fascinating new software products for classroom or office use. Let our experts explain the economical volume purchase plans that are available to you for outfitting your computer labs with the best and most up-to-date software on the market. Whether you use Macs or PCs, we have the software for almost any need you may have. Our experts are trained to find you solutions. Also in our booth you will have the opportunity to see several new products that have just recently been released. Stop by for a list of presentation times.

Booth 965
Society for Computer Simulation International
Box 17900
San Diego, CA 92177-7900
Telephone: 858.277.3888
Fax: 858.277.3930
E-mail: scs@scs.org
Web: http://www.scs.org
Established in 1952, The Society for Computer Simulation International (SCS) is the international, multidisciplinary forum dedicated to research, development and applications of simulation. SCS Membership represents a worldwide network of simulation professionals, including regional councils in North America, the European Economic Community, the Pacific Rim nations, and China that meet both informally and at SCS Conferences for more formal presentations of techniques and technology. The monthly journal Simulation, the quarterly journal Transactions, and The Directory of Simulation Software are a few SCS Publications that keep our members current with advancements in computer simulation.

Booths 2655, 2754
Smith System
2603 Technology, PO Box 860415
Plano, TX 75086
Telephone: 800.328.1061
Fax: 972.578.2631
The most complete line of furniture for teaching and technology in the industry.

Booth 544
SMARTer Kids Foundation
Suite 600, 1117 11th Avenue Southwest
Calgary, AB T2R 1K9
Canada
Telephone: 403.228.8565
Fax: 403.245.0366
E-mail: info@smarterkids.org
Web: http://www.smarterkids.org
The SMARTer Kids Foundation provides opportunities for students and teachers to learn new skills and grow in self-confidence by placing technology and programs at their service. Founded in 1997, the Foundation has awarded over US$20 million in grants to educational institutions and supports research projects on the impact of technology on student learning. Stop by our booth to find out how you can apply for SMARTer Kids grants and other programs that help your school acquire and use technology effectively.

Booth 1436
SmartStuff Software
2100 Southeast 10th Avenue
Portland, OR 97214
Telephone: 503.231.4300 ext. 230 or 800.671.3999
Fax: 503.231.4334
E-mail: info@smartstuff.com
Web: http://www.smartstuff.com
FoolProof Security is installed on over 2 million educational machines in the U.S., making it the unequivocal security choice for educators. FoolProof Security protects the system's configuration on any OS. FoolProof Internet offers comprehensive Internet security and includes browser security, real-time content filtering, and guided activities.

Booths 628, 636
Sonici Desktop Software
9836 White Oak Avenue, Suite 209
Northridge, CA 91325
Telephone: 800.454.1900 or 818.718.9992
Fax: 818.718.9990
E-mail: sharon@sonicdesktop.com
Web: http://www.sounsow.com
Sonic Desktop Software is the revolutionary new family of audio software products that allows students and teachers alike to create soul-stirring soundtracks for video, multimedia and Web projects in minutes instead of hours. It is the first and only audio software to approach audio creation from a visual creator's perspective—not a musician's. And, because of its patented, award-winning technology anyone can begin creating emotion packed, precisely timed soundtracks with professional results in minutes. Includes high-quality, royalty-free music and sound effects. See why, for thousands of schools and universities, SmartSound® is the powerful intuitive way to create soul-stirring soundtracks in minutes!

Booth 537, 628, 636
Software Express, Inc.
4128-A South Blvd.
Charlotte, NC 28209
Telephone: 800.527.7638
Fax: 704.529.1010
E-mail: nicepeople@swexpress.com
Web: http://www.swexpress.com
Stop by our booth to meet your dedicated territory manager and learn about fascinating new software products for classroom or office use. Let our experts explain the economical volume purchase plans that are available to you for outfitting your computer labs with the best and most up-to-date software on the market. Whether you use Macs or PCs, we have the software for almost any need you may have. Our experts are trained to find you solutions. Also in our booth you will have the opportunity to see several new products that have just recently been released. Stop by for a list of presentation times.

Booth 965
Society for Computer Simulation International
Box 17900
San Diego, CA 92177-7900
Telephone: 858.277.3888
Fax: 858.277.3930
E-mail: scs@scs.org
Web: http://www.scs.org
Established in 1952, The Society for Computer Simulation International (SCS) is the international, multidisciplinary forum dedicated to research, development and applications of simulation. SCS Membership represents a worldwide network of simulation professionals, including regional councils in North America, the European Economic Community, the Pacific Rim nations, and China that meet both informally and at SCS Conferences for more formal presentations of techniques and technology. The monthly journal Simulation, the quarterly journal Transactions, and The Directory of Simulation Software are a few SCS Publications that keep our members current with advancements in computer simulation.

Booths 2655, 2754
Smith System
2603 Technology, PO Box 860415
Plano, TX 75086
Telephone: 800.328.1061
Fax: 972.578.2631
The most complete line of furniture for teaching and technology in the industry.

Booth 544
SMARTer Kids Foundation
Suite 600, 1117 11th Avenue Southwest
Calgary, AB T2R 1K9
Canada
Telephone: 403.228.8565
Fax: 403.245.0366
E-mail: info@smarterkids.org
Web: http://www.smarterkids.org
The SMARTer Kids Foundation provides opportunities for students and teachers to learn new skills and grow in self-confidence by placing technology and programs at their service. Founded in 1997, the Foundation has awarded over US$20 million in grants to educational institutions and supports research projects on the impact of technology on student learning. Stop by our booth to find out how you can apply for SMARTer Kids grants and other programs that help your school acquire and use technology effectively.
network with other teachers, learners, and planners through a unique system supporting collaboration and resource sharing. On our Web site you will find a combination of development and collaboration tools and resources, designed for online access, that address the problems you face daily.

Booths 1945, 2044, 2046
Spectrum Industries, Inc.
1600 Johnston Street, PO Box 400
Chippewa Falls, WI 54729-0400
Telephone: 800.235.1262
Fax: 800.335.0475
E-mail: spectrum@spectrumfurniture.com
Web: http://www.spectrumfurniture.com
Researched, designed, and developed specifically for schools. Attractive, durable furniture incorporates a system that organizes and controls the maze of cables and cords. Instructor requested features are built into this functional, modular, and flexible system. Affordable quality.

Booths 442, 444
Steck-Vaughn
PO Box 26015
Austin, TX 78755
Telephone: 800.531.5015
Fax: 512.795.3676
E-mail: info@steck-vaughn.com
Web: http://www.steck-vaughn.com
Steck-Vaughn software is designed to involve students in active, discovery-based learning across the curriculum. From single titles to complete units of instruction, Steck-Vaughn offers all the options for integrating technology into the curriculum. Bring technology-based learning into the classroom. Hot-linked Web-based activities provide connections to grade appropriate materials for exploration and research. See our ad on page 142.

Booth 700
South Central Regional Technology in Education Consortium
3001 Dole Building
Lawrence, KS 66045
Telephone: 785.864.0536
Fax: 785.864.0704
E-mail: webmaster@scrtec.org
Web: http://scrtec.org
SCR*TEC is a federally funded grant to integrate technology and education in the southern region including Texas, Missouri, Kansas, Nebraska, and Oklahoma. The SCR*TEC mission is to help teachers and other educators create, share, or find solutions to problems they encounter when integrating technology into education. Use our free site to
Booth 1354
Symantec Corporation
20330 Stevens Creek Blvd.
Cupertino, CA 95014
Telephone: 408.253.9600
Fax: 408.252.4694
E-mail: custserv@symantec.com
Web: http://www.symantec.com
Symantec, a world leader in Internet security technology, provides a broad range of content security solutions to individuals and companies. The company is a leading provider of anti-virus protection, Internet content and e-mail filtering, and mobile code detection technologies to enterprise customers. Headquartered in Cupertino, Calif., Symantec has worldwide operations in more than 24 countries.

Booths 2160, 2162
Symbol Technologies, Inc.
One Symbol Plaza, MS A-10
Holtsville, NY 11742-1300
Telephone: 631.738.2400
Fax: 631.738.4645
E-mail: webmaster@symbol.com
Web: http://www.symbol.com
Symbol Technologies, Inc. and its business partners provide educators with access to student information based on application-specific Palm Computing® solutions, wireless networks and bar code data capture.

Booths 1860, 1862
T.H.E. Journal
150 El Camino Real, Suite 112
Tustin, CA 92780
Telephone: 714.730.4011
Fax: 714.730.3739
E-mail: editorial@thejournal.com
Web: http://www.thejournal.com
For twenty-six years T.H.E. Journal has been the premiere magazine for education technology serving both K–12 and post secondary schools. With a total readership of over 800,000 T.H.E. Journal is the most widely read book in the field. Stop by our booth for a free one year's subscription.

T.H.E. Journal launched its T.H.E. Institute three years ago, offering online accredited courses for the professional development of educators. Partnerships with companies such as Compaq and AT&T Learning Network have given the Institute the ability to develop comprehensive programs for anytime anywhere learning. Stop by the booth for a demonstration of 'math ed ology' a multimedia approach for improving math instruction for elementary teachers. Developed by Arizona State University with a grant from the National Science Foundation, this latest offering of the Institute promises to do a better job of teaching basic mathematical concepts in the early learning years.

Booth 2748
Tangent Computer, Inc.
197 Airport Blvd.
Burlingame, CA 94010
Telephone: 800.342.9388
Fax: 650.342.7081
E-mail: sales@tangent.com
Web: http://www.tangent.com
Tangent Computer, Inc. will display its latest products.
that we, as teachers, felt would be most useful for today's schools. Come see us at Booth 1164.

Booths 2930, 2932
Teacher Universe, Inc.
5900 Hallis Street, Suite A
Emeryville, CA 94608
Telephone: 510.768.2415
Fax: 510.768.2444
E-mail: awilliams@teacheruniverse.com
Web: http://www.teacheruniverse.com
Teacher Universe creates technology-rich solutions for improving the quality of life and work for teachers worldwide. These solutions engage both teachers and students in collaboration, research, inquiry, expressive activities that enhance student achievement and teacher satisfaction. Through a variety of Teacher Universe programs including TeacherUniverse.com and Galaxy.org, Teacher Universe provides instructional technology planning, professional development, instructional tools, year-long curricula, and career and life services.

Helping teachers use technology effectively is also a goal of our professional staff development division which offers seminars, on-site training, and online courses.

Booth 2924
TeacherEducation.com—Teacher Education Institute
1079 West Morse Blvd.
Winter Park, FL 32789-3751
Telephone: 407.629.4877
Fax: 407.740.8177
E-mail: tei@teachereducation.com
Web: http://www.TeacherEducation.com
TeacherEducation.com is the homepage for the Teacher Education Institute and the site for exciting, new online courses for teachers. For 18 years, TEI has offered exciting and practical graduate courses to over 100,000 teachers. Now a leader in the development of online courses, TeacherEducation.com focuses on the human factors in education and the effective integration of technology into the classroom. Online graduate courses include Teachers Discovering Computers, an introductory course in technology use and integration; Teaching with Webquests, how to create Web-based lesson plans; Preventing School Violence, Inclusion, Self-Esteem for Educators, and Leadership for Teachers.

Booth 2857
teachersroom.com, Inc.
203 Dunavant Drive
Rockford, TN 37853
Telephone: 423.577.1617
Fax: 423.577.1618
E-mail: vbranum@teachersroom.com
Web: http://www.teachersroom.com
teachersroom.com is an online, e-commerce site specializing in educational products and ideas for teachers and parents. Our site features products for children from birth through high school. We offer a school rewards program as well as online information for teachers on computer usage and instructional enrichment. Visit our exhibit for information on our Website as well as free materials on using the Internet in the classroom. Sign up for door prizes and receive a free gift, just for stopping by!

Booth 327
Teaching K-8 Magazine
40 Richards Avenue, 7th Floor
Norwalk, CT 06854
Telephone: 203.855.2650
Fax: 203.855.2656
E-mail: teachingk-8@aol.com
Web: http://www.teachingk-8.com
Teaching K-8 is a classroom service magazine bringing strategies, techniques and technology to the classroom teacher.
TeachMaster Technologies is an educational software and consulting firm. Software products include: searchable software of compendium of national voluntary standards for K–12 education and 43 different state standards and benchmarks in one InfoBase entitled STANDARDS ReferenceMaster. Standards vocabulary of over 7,000 vocabulary keywords derived from the national voluntary standards in one searchable InfoBase entitled STANDARDS Vocabulary Master. STANDARDS ToolKit, for writing standards and benchmarks using the speed of your technology, and Standards Record Keeping and Reporting software, for monitoring student mastery of standards.

Tech4Learning, Inc. provides products and services that help educators integrate constructivist forms of educational technology into the curriculum. Our classroom support solutions and professional development are designed to address educators, at a variety of technical proficiencies, who are integrating technology into their classrooms. Products such as our Clay Animation Kit, and AnswerBox for HyperStudio, as well as our Tech Camp onsite workshop help educators focus on a project-based approach to integrating technology.

TechLAN's Campus-wide wireless network and phone systems. SkoolTalk—parental notification for grades and attendance.

Technology & Learning will display its latest products.
Booth 2738
Teknimedia Corporation
4905 Del Ray Avenue, Suite 307
Bethesda, MD 20814
Telephone: 800.366.4614
Fax: 301.656.0177
E-mail: info@teknimedia.com
Web: http://www.teknimedia.com
Teknimedia's Computer Literacy Series is the easiest, most effective way to become computer literate! Ideal for teaching computer skills to adults and students (grades 5+), the Computer Literacy Series consists of the following interactive multimedia CD-ROMs:
 - PC100-Basic Skills teaches the skills required for working with the common elements of computer programs.
 - PC101-Computer Basics teaches essential computer concepts and terminology.
 - PC110-Files and Folders teaches the basic skills and concepts required for working with the computer's filing system.
 - PC120-The Internet teaches the essential skills required for working with the Internet and World Wide Web.
See our ad on page 102.

Booth 331, 333
Texas Instruments Incorporated
Customer Services Center,
PO Box 650311, MS-3962
Dallas, TX 75265
Telephone: 800.842.2737 or 972.917.1616
Fax: 972.917.3184
E-mail: ti-cares@ti.com
Web: http://www.ti.com/calc
Texas Instruments Educational Solutions group offers a wide range of instructional tools including calculators, software, teaching aids and the industry's most comprehensive educator support program. Products and programs are designed to meet teacher and student needs throughout academic life—K-16. For years, TI has been focused on the true rewards of teaching—helping students learn, discover and grow. In doing so, our relationship with teachers continues to be our most valuable lesson.

Booth 1564
The Bureau for At-Risk Youth
135 Dupont Street
Plainview, NY 11803
Telephone: 516.349.5520
Fax: 516.349.5521
E-mail: info@at-risk.com
Web: http://www.at-risk.com
The Bureau for At-Risk Youth will display its latest products.

Booths 2844, 2846
The College Board
45 Columbus Avenue
New York, NY 10023
Telephone: 212.713.8000
Fax: 212.713.8316
E-mail: jnmorrow@collegeboard.org
Web: http://www.collegeboard.org
The College Board will display its latest products. See our ad on page 112.
Greenwood Electronic Media: New Reference

Stop by Booth #2826 for a Product Demo!

Critical Companions to Popular Contemporary Writers

This program provides the ideal tool to push (students') thinking further, and to help them make connections between the topics/techniques of traditional canon writers and those of contemporary writers. . . Exceptionally easy to use.

- Book Report

Women's Studies Encyclopedia Revised and Expanded Edition

CD-ROM (ISBN: 0-313-31074-2) or ONLINE $295

Studies in Irish Literature

"[An excellent reference work. . . recommended for academic and Irish Studies collections."

-Library Journal

CD-ROM (ISBN: 0-313-31249-4) or ONLINE $295

Daily Life Through History

Social history comes alive in this indispensable, "hands-on" electronic resource to life as it was actually lived in 10 great periods, from Ancient Mesopotamia to Victorian England.

CD-ROM (ISBN: 0-313-31367-9) or ONLINE $395

Demo Our Forthcoming . . .

American Slavery: A Composite Autobiography

The authoritative collection of VVA slave narratives for the Web, with a comprehensive name index!

88 Post Road West • P.O. Box 5007 • Westport, CT 06881-5007
Telephone (203) 226-3571 • Office FAX (203) 222-1502
administrators, and parents help their K–8 students learn and improve performance on state tests. Homeroom.com assesses where the student is strong and weak, and offers immediate remediation to improve educational outcomes.

Booth 245
The Wright Group
19201 120th Avenue Northeast
Bothell, WA 98011
Telephone: 800.523.2371
Fax: 425.486.7704
Web: http://www.wrightgroup.com
Publisher of Breakthrough to Literacy, exciting research-based interactive early literacy software for Pre K–2.

Booth 1660
thINK4inc.com
PO Box 1900
Ventura, CA 93002
Telephone: 800.786.5521
Fax: 805.643.5913
E-mail: thinkinc@primenet.com
Manufacturer and international distributor of printing supplies for computer printers, copiers, and fax machines. New inkjet and toner cartridges for less. Ink refill kits for all desktop inkjet printers. Come by our booth for a demonstration and see how simple it is to refill your own empty inkjet cartridges. Or have us remanufacture your empty inkjet and toner cartridges. Coated media for inkjet printing, including photo glossy paper, clear films, and T-shirt transfers. Special archival and indelible inks for fine art and high security applications. Join our empty inkjet cartridge collection program and earn cash for your school club or activity!

Booth 1865
ThinkQuest
200 Business Park Drive, Suite 307
Armonk, NY 10504
Telephone: 914.765.1138
Fax: 914.765.8322
E-mail: sibley@thinkquest.org
Web: http://www.thinkquest.org
ThinkQuest, an international educational technology initiative, awards over $1.5 million annually to students and teachers who collaborate to produce Internet based learning tools. The ThinkQuest Internet Challenge, ThinkQuest Junior and ThinkQuest for Tomorrow’s Teachers demonstrate what happens when students and teachers harness the power of the Internet for learning.

Booths 254, 256, 854
Tom Snyder Productions
80 Coolidge Hill Road
Watertown, MA 02472
Telephone: 800.342.0236
Fax: 617.926.6222
E-mail: heaney@tomsnyder.com
Web: http://www.tomsnyder.com
Tom Snyder Productions produces educational software and CD-ROM programs for all content areas. They are designed to inspire cooperative learning and critical thinking skills in K–12 classrooms. The company also publishes easy-to-use tools for customizing and printing time lines, maps, and graphs.

Booth 945, 947
TopTutors.com
720 Wilshire Blvd., Suite 200
Santa Monica, CA 90401-1737
Telephone: 310.393.6900
Fax: 310.393.9968
E-mail: info@TopTutors.com
Web: http://www.TopTutors.com
TopTutors.com® is the most rewarding home business opportunity for top teachers!

Using our revolutionary technology, a teacher can tutor children anywhere in the country. Students and teachers connect via the Internet for live, interactive one-to-one tutoring sessions with full audio communication. It’s a convenient and exciting way for students to receive personal instruction from a credentialed teacher, a critical step to improving academic performance. If you are a teacher interested in being part of an innovative educational program, earning extra money or building your own tutoring business, visit http://www.TopTutors.com for a demonstration.

Booth 654
Toshiba America
9740 Irvine Blvd.
Irvine, CA 92618
Telephone: 949.583.3000
Fax: 949.222.4303
Web: http://www.education.toshiba.com
As the leader in comprehensive computing solutions, Toshiba America Information Systems Inc., Computer Systems Group, demonstrates its industry dominance and commitment to computers in the classroom with notebook, desktop and server product offerings, solutions, services and strategic alliances at NEC2000.

On the showroom floor, Toshiba will highlight its most recent offerings for the Notebooks for Schools program, providing specially configured portable personal computers to students and teachers to augment the delivery of education curricula in K–12 public and private schools. Toshiba also will demonstrate several recently introduced education solutions, including Simply Mobile, a Toshiba computer lab on wheels; Discourse Laptop Classroom groupware solution; and Internet Select, an all-in-one solution for K–12 curriculum integration, Internet content management and network connectivity.
Booth 454
Turner Learning, Inc.
One CNN Center, PO Box 105573
Atlanta, GA 30348
Telephone: 800.344.6219
Fax: 404.827.0532
Web: http://learning.turner.com
Turner Learning brings the world into the classroom with award-winning news, documentaries, and classic films from the world's leading cable networks. Its programs are free to educators, and will motivate, inspire, and challenge students in a wide variety of subject areas.

Turner Learning's programs include CNN NEWSROOM, CNN Student Bureau, TNT Learning, TCM By The Book, Cartoon Network's Animate Your World, Turner South's "Storytellers" and Atlanta Thrasher's Score For Schools. In addition, Turner Learning and CNN Interactive recently launched CNNfyi.com, the definitive news and information Web site for students and teachers grades 6 through 12. See our ad on page 13, 15.

Booth 2164
Tyndal Stone Media
1102 8th Avenue, 3rd Floor
Regina, SK S4R 1C9
Canada
Telephone: 306.584.7331
Fax: 306.586.5337
E-mail: sales@tyndal.com
Web: http://www.tyndal.com
Tyndal Stone Media will display its latest products.

Booth 702
U.S. Department of Education
Office of Technology, Room 6W313
Washington, DC 20202
Telephone: 202.401.1444
U.S. Department of Education will display its latest products.

Booth 2928
U.S. Geological Survey
509 National Center
Reston, VA 20192
Telephone: 703.648.5776
Fax: 703.648.5777
E-mail: sclepage@usgs.gov
Web: http://www.usgs.gov/education
Panels depicting research and products of the U.S. Geological Survey dealing with earth sciences.

Booth 2456
U.S. News & World Report
450 West 33rd Street
New York, NY 10001
Telephone: 212.916.8707
Fax: 212.716.6969
E-mail: emartin@usnews.com
Web: http://www.usnews.com
As a pioneer and innovator, U.S. News & World Report has developed tools that guide students and educators through today's complex world. U.S. News's product line includes: a weekly subscription program, U.S. News Classroom, that brings the world to the classroom, in print and online; the multimedia Getting Into College Kit that includes our America's Best Colleges guidebook, video, software programs, and Web tools; U.S. News Online, at www.usnews.com, a comprehensive tool that provides guides to the past, present, and future in News & Views, practical information in News You Can Use, and college, graduate, and career resources in .edu.

Booth 223, 225
USA TODAY
1000 Wilson Blvd.
Arlington, VA 22229
Telephone: 703.276.5329
Fax: 703.558.3986
E-mail: education@usatoday.com
Web: http://education.usatoday.com
USA TODAY Education provides a daily lesson plan with a range of multidisciplinary activities and interactive online resources and features connected to each day's news. Students can take a poll about today's top news story, speak out on a current issue, explore career interests, learn from a USA TODAY journalist about writing an editorial and much more. Stop by our booth to learn more.

Booth 329
Vernier Software & Technology
13979 Southwest Millikan Way
Beaverton, OR 97005-2886
Telephone: 503.277.2299
Fax: 503.277.2440
E-mail: info@vernier.com
Web: http://www.vernier.com
Vernier Software will be exhibiting software and hardware that can be used in science labs to measure temperature, pH, motion, dissolved oxygen, heart rate, EKG, sound, respiration, conductivity, and more. Our products can be used with computers and the Texas Instruments CBL System.

Booth 962
Virco Mfg. Corporation
2027 Harpers Way
Torrance, CA 90501
Telephone: 800.448.4726
Fax: 310.328.0292
E-mail: kransen@vircomfg.com
Web: http://www.virco.com
Virco's industry-leading selection of educational furniture includes traditional classrooms chairs and desks, mobile tables and cabinets and our innovative Mojave™ and Future Access™ technology furniture lines.
become a technician. VTEL is both Synchronous and Asynchronous for Distance Learning and most assured not just another videoconferencing product.

Booth 2664
Walden University
24311 Walden Center Drive
Bonita Springs, FL 34134
Telephone: 800.444.6795
Fax: 941.498.4266
E-mail: info@waldenu.edu
Web: http://www.waldenu.edu

Doctoral and master’s programs at Walden University combine high-quality curriculum and innovative distance delivery models. The result is highly applied rigorous programs that are flexible without compromising academic integrity. These programs are ideally suited to adult learners who wish to pursue an advanced degree without the professional and personal sacrifices associated with traditional, campus-based programs.

Four academic divisions make up Walden University: the Management Division, the Education Division, the Health and Human Services Division, and the Psychology Division. Walden students complete much of their work online or through self-directed research. Walden’s Education Division offers an online Educational Technology specialization both at the doctoral and master’s level.

Booth 1460
VTEL Corporation
108 Wild Basin Road
Austin, TX 78746-3326
Telephone: 800.299.8835 or 512.437.2362
Fax: 512.437.2748
E-mail: info@vtel.com
Web: http://www.vtel.com

VTEL provides complete classroom solutions based upon the merger of voice, video and data collaboration. These solutions enable and empower teachers and students for success without having to become just another videoconferencing product.

Booths 2843, 2845
Vision Database Systems
1095 Jupiter Park Drive, Suite 3
Jupiter, FL 33458
Telephone: 561.748.0711
Fax: 561.748.0712
E-mail: vds1@earthlink.net

Vision Database Systems is the developer and manufacturer of the RapIDCard Photo ID System. Now your school can make their own great looking plastic, color Photo IDs.

Booth 2926
Vista Associates, Inc.
14 Adelaide Drive
Wayland, MA 01778
Telephone: 508.653.2490
Fax: 508.653.2957
Vista Compass is a Web-based portal that provides a single point-of-access to student services, courses and collaboration. Connecting the whole campus, Vista Compass allows a school to unify services, such as administration, teaching, campus and e-commerce into a common Web environment. Vista Compass supports both campus and distance education, improves educational quality, and reduces IT administration costs.

Booth 1406
Waters Network Systems
2950 Xenium Lane North, Suite 108
Minneapolis, MN 55441
Telephone: 800.441.5319
Fax: 612.509.7450
E-mail: debh@wtrs.com
Web: http://www.watersnet.com
Waters Network Systems provides LAN connectivity products designed specifically for K-12. Waters offers the largest selection of classroom hubs and switches in the industry. All of our classroom products are covered by our exclusive lifetime warranty and are available for both copper and fiber LANs. We also provide network design consulting services and customized coursework training through our K-12 consulting group. We are committed to providing products and services that will enhance today’s learning environment and provide a foundation for the migration of emerging technologies. Visit our booth to see how the Waters’ solution can dramatically reduce your networking installation costs.

Booth 2065
WCCE 2001 (World Conference on Computers in Education)
C/O Danish Data Association
St. Kongensgade 59 A
Copenhagen, DK-1264
Denmark
Telephone: 45.3311.1560
Fax: 45.3393.1580
E-mail: wcce2001@sek.ddf.dk
Web: http://www.wcce2001.dk

The 7th World Conference on Computers in Education (WCCE 2001) is an IFIP event organized by the Danish Data Association and co-organized by the Danish Computing Centre for Research and Education, UNI-C.

Booths 1761, 1763, 1765
WCCE is a truly International Conference with a substantial history going back 30 years. WCCE 2001 will be held in Copenhagen, Denmark in July 2001.

WCCE 2001 will explore the use of information and communication technologies in education and the teaching of informatics.

Booth 2851
Welsh Products, Inc.
PO Box 845
Benicia, CA 94510
Telephone: 800.745.3255 or 707.745.3252
Fax: 707.745.0330
E-mail: wpi@welshproducts.com
Web: http://www.WelshProducts.com

Complete product line for printing by four methods: thermal screen, an economical way to print multiple copies; computer design to inkjet to transfer paper; sublimation transfers for continuous tone, photographic quality; and the innovative Print Coco. All supplies for one-stop shopping to transfer your computer designs to t-shirts, mouse pads, mugs, tiles, banners, etc.
WIN Laboratories, Ltd. produces the TradeWIN computer, the low-cost upgradable system that is perfect for educational uses. TradeWIN can be used to upgrade existing equipment or provide complete new installations. Prices start at $299.

Winnebago Spectrum/Athena brings your library cross-platform client/server design for Windows® and Mac® OS. Spectrum enhances learning with multi-tasking/multi-windowing, Internet connectivity, and networking flexibility. Athena’s easily installed and maintained library automation for Windows enhances learning with an icon-based Visual Search, key word searches, easy MARC cataloging and circulation, and Internet solutions.

World Book School and Library will display its latest products.

WorldWise Computer Supplies & Accessories offers consumable computer products and close-out educational software to schools, school districts, and educators. Computer supplies include ink jet cartridges, toner cartridges, ribbons for printers, disks and media storage, mouse mats, cleaning supplies, and numerous other accessory items. Software titles are obtained from liquidation sales, close-outs from software publishers, and special buys.

Yamaha Corporation of America will display its latest products.
Booth 2756
Youthline USA
4581 U.S. Highway 9 North
Howell, NJ 07731
Telephone: 732.886.0833
Fax: 732.886.5131
Web: http://www.youthline-usa.com
A newspaper for kids designed to introduce the complex skill of reading a newspaper. Contains news, stories, contests, games and more. Youthlineusa.com is packed with educational, multimedia content that goes beyond the printed paper, with daily news updates, interactive activities, and more.

Booth 368
ZapMe! Corporation
3000 Executive Parkway, Suite 150
San Ramon, CA 94583
Telephone: 925.543.0300
Fax: 925.543.0301
Web: http://www.zapme.com
ZapMe! is a broadband interactive network bringing the latest technology and educational tools to schools for free. The ZapMe! network includes PCs, software, aggregated educational content and "always on", bi-directional satellite-delivered Internet access. Designed primarily for students ages 13-19, ZapMe!'s quality content and fun products involve teens in an interactive, cutting-edge lifestyle experience at school, home ... anywhere.
ZapMe!'s strategic partners include Dell, Gilat Satellite Networks, Microsoft, New Sub Services, School Specialty, Sylvan Learning Systems and Xerox. Founded by Lance Mortensen in 1996, ZapMe! (www.zapme.com) is located in San Ramon, California.

Booth 436
Zenith Electronics Corporation
1000 Milwaukie Avenue
Glenview, IL 60025
Telephone: 847.391.7982
Fax: 847.391.7253
Zenith Electronics developer of PC2TV. The true choice in dual scan true SVGA computer display in a multimedia monitor.
Feeling constructive?

We're breaking ground for NECC 2001 in Chicago and are looking for educators to roll up their sleeves and help us build the best national ed-tech program ever!

Our 22nd Call for Participation is available exclusively at www.neccsite.org or by calling 541.346.6322. Deadline for submission of all proposals is October 9, 2000.

The educational foundation of the information age is being built right now, and architects are needed!
New!

HyperStudio® 4.0

The NEW HyperStudio® 4.0 goes beyond "stand and deliver" presentations to help you and your students create your own world of interactive learning.

- Drag and Drop technology for quick design
- Dozens of new features & effects you've asked for
- Macintosh® & Windows® on same CD
- New Teachers Guide packed with great ideas

JOIN US!

Join us for a theater presentation or hands-on workshop for your chance to win HyperStudio 4.0!
THE BEST SOLUTION FOR THE NEXT GENERATION.
Introducing the all-new AlphaSmart 3000. The most affordable way to
give students a hands-on computer experience. This simple and rugged
computer companion lets students enter and edit text, then send it to any
computer for formatting, or directly to a printer. Our exclusive SmartApplets™
expand the AlphaSmart's functionality for keyboarding, calculator functions,
templates and much more. We've also doubled the battery life, added a
kid-proof USB port and increased the memory. To learn what it can do for your
students, call 888-274-0680 or visit our web site at www.alphasmart.com.

AlphaSmart
NOT JUST TOOLS. SOLUTIONS
The Center for Education Integrating Science, Mathematics, and Computing (CEISMC) is a dynamic change agent for K-12 education, leveraging Georgia Tech's human, scientific, and technological resources throughout the state of Georgia. CEISMC serves communities in three fundamental ways: generating and disseminating innovative programs and materials, operating ongoing programs, and catalyzing collaborative partnerships. While CEISMC's efforts always focus on the improvement of student mathematics, science, and technological understanding and skills, CEISMC has programs for teachers as well. CEISMC also provides products and services to state and community agencies as well as school districts. CEISMC's partnerships involve teachers, university/college faculty, business/industry leaders, and policy makers at the local, state, and national levels. Specific information about CEISMC's activities can be found at www.ceismc.gatech.edu.
NECC 2000 Chairs/Committees

NECC2000
Conference Chairs

Paul Ohme, Conference Chair
CEISMC, Georgia Institute of Technology

Claudia Huff, Conference Co-Chair
GTRI, Georgia Institute of Technology

Lynne Schrum, Conference Co-Chair
University of Georgia-Athens

Program Chairs

Kathy O'Neill, Chair
Georgia State University

John Richards, Co-Chair
Turner Learning (GA)

Anita Best, Co-Chair
International Society for Technology in Education (OR)

Workshop Chairs

Curt Cearley, Co-Chair
State University of West Georgia

Leslie Conery, Co-Chair
International Society for Technology in Education (OR)

NECC 2000 Host Committee

Kathryn Bailey, Volunteers Co-Chair
Paideia School (GA)

Richard Brock, Closing Session Co-Chair
Georgia State Department of Education

Curt Cearley, Workshop Co-Chair
State University of West Georgia

Marj Economopoulos, Transportation Co-Chair
Kennesaw State University (GA)

Barbara Ferguson, Transportation Co-Chair
Kennesaw State University (GA)

Eric Greene, Communications and Sponsorship Coordinator
NECC 2000 Chairs/Committees

Georgia Coalition for Science, Technology, and Mathematics Education

Barbara Ham, Softwear Co-Chair
Dougherty County Schools (GA)

Jay Harriman, International Chair
University of Georgia

Kim Hartsell, Needs for Persons with Disabilities Co-Chair
Georgia Project for Assistive Technology

Donna Herring, Publications Chair
Northwest RESA (GA)

Clara Keith, Special Events Co-Chair
Georgia Department of Education

Lorraine Lambert, Facilities Coordinator
Griffin Spalding School System (GA)

Melinda Maddox, Alabama State Department of Education Representative
Alabama State Department of Education

William Marsh, Signage Co-Chair
Morrow High School (GA)

Kim Mulkey, Social Events Co-Chair
BellSouth Foundation (GA)

Michael Murray, Closing Session Co-Chair
Kennesaw State University (GA)

Roxanne Revak, Conference Coordinator at CEISMC
CEISMC, Georgia Institute of Technology

Jane Royall, Needs for Persons with Disabilities Co-Chair
Georgia Department of Education

Mildred Sharkey, Softwear Co-Chair
Georgia Institute of Technology

Bill Thomas, Needs for Persons with Disabilities Co-Chair
Southern Regional Education Board (GA)

Phil Thomas, Marketing Co-Chair
Georgia Department of Education

Tom Upchurch, Marketing Co-Chair
Georgia Partnership for Excellence in Education (GPEE)

Ann Ware, Environmental Chair
Henry County School System (GA)
NECC 2000 Chairs/Committees

Linda Whitacre, Volunteers Co-Chair
Georgia Learning Connections,
Georgia Institute of Technology

Donna Whiting, Kids' Aerospace Camp Coordinator
Georgia Institute of Technology

Corky Wiley, Signage Co-Chair
Sharpsburg (GA)

James Woodall, Treasurer
PricewaterhouseCoopers, LLP

Lisa Woodard, Alabama State Department of Education Representative
NECA Board of Directors

Cathleen Norris, President
University of North Texas-Denton

Judy Robb, Vice President
University of New Hampshire-Durham

James Kerlin, Treasurer
Pennsylvania State University-University Park

Sally Sloan, Secretary
Winona State University (MN)

David Brittain, Past-President
MGT of America (FL)

M. G. (Peggy) Kelly, Director-at-Large
California State University-San Marcos

Paul Ohme, Director-at-Large
CEISMC, Georgia Institute of Technology-Atlanta

Harriet Taylor, Director-at-Large
Louisiana State University-Baton Rouge

Society Representatives

Chuck Chulvick, ACM/SIGUCCS
Rariton Valley Community College (NJ)

Steve Gilbert, AAHE/TLT Group
American Association for Higher Education/TLT Group (DC)

Karen Gould, ACM/SIGCUE
Metro School District of Wayne Township (IN)

Robert Harrell, AECT
Georgia Perimeter College

Brian Hawkins, EDUCAUSE
EDUCAUSE (CO)

Bonnie Marks, ISTE SIGTC
Alameda County Office of Education (CA)

C. Dianne Martin, ACM/SIGCAS,
George Washington University (VA)
NECA 1999-2000 Board of Directors

Gail Miles, CCSC
Lenoir-Rhyne College (NC)

Allen Parrish, IEEE Computer Society
University of Alabama

Lynne Schrum, ISTE
University of Georgia-Athens

Charlie Shub, SCS
University of Colorado-Colorado Springs

Neal Strudler, ISTE SIGTE
University of Nevada-Las Vegas

Harriet Taylor, ACM/SIGCSE
Louisiana State University-Baton Rouge

Cheryl Williams, CoSN
National School Boards Association (VA)
NECA Member Societies 2000

These descriptions are provided for the 14 professional societies/associations that belong to the National Educational Computing Association (NECA). Contact information for each society's NECA representative is given following the society's description. Information about each society can also be found on the NECA Web site (www.neccsite.org).

ISTE-International Society for Technology in Education

The International Society for Technology in Education (ISTE) is the largest teacher-based, nonprofit organization in the educational technology field. Its official mission is "to promote appropriate uses of information technology to support and improve learning, teaching, and administration at the K-12 levels and in teacher education."

ISTE publications focus on the effects of computers, software, and other technologies on classroom teaching, curriculum, and teacher education. Learning & Leading with Technology (L&L), ISTE's monthly magazine, spotlights practical classroom uses of computer hardware and software. ISTE's monthly online newsletter, ISTE Update, keeps members in touch with recent news and trends in educational technology. The Journal of Research on Computing in Education (JRCE), as well as ISTE's other scholarly journals, assists teachers in determining research-supported directions for technology initiatives. ISTE also publishes a wide range of books for teachers interested in enhancing instructional uses of computers at the precollege level. These publications now include the nationally recognized Generation www.Y materials as well as the National Education Technology Standards for student achievement in Grades K-12.

Major components of ISTE's teacher-outreach programs include:

- Teacher-led workshops at major conferences, offering hands-on approaches to new instructional technologies
- ISTE-sponsored conferences and leadership symposia that provide teachers with enhanced career development opportunities
- National representation in Washington with regular updates to members on issues such as E-rate and other initiatives that affect technology and education
- National accreditation standards for applying information technology in education, developed by ISTE for NCATE and NETS
- Networking through ISTE's Special Interest Groups (SIGs) that link tech coordinators, computer science educators, Logo users, telecommunications educators, hypermedia/multimedia users, and others
- More than 50 local and regional Affiliates, organizations whose members support ISTE goals and distribute ISTE information through their newsletters, conferences, and membership meetings

Contact: ISTE Customer Service Office, 800.336.5191, fax: 541.302.3778, iste@iste.org, www.iste.org
ISTE SIGTC-Special Interest Group for Technology Coordinators

The Special Interest Group for Technology Coordinators (SIGTC) is a professional organization that helps technology coordinators meet the challenges of a rapidly changing field. We provide an excellent forum to identify problems and solutions, and share information on issues facing technology coordinators at the precollege level.

SIGTC publishes SIGTC Connections through the International Society for Technology in Education (ISTE). Articles in SIGTC Connections contain helpful information and answers to questions such as:

- What are some ways technology coordinators are successfully organizing and communicating with teachers and administrators?
- What strategies are technology coordinators using to enlist the support of school boards and administrators?
- How do technology coordinators keep informed of new trends and developments in this rapidly changing field?

For general information, contact ISTE (see preceding). For information on ISTE's SIGTC, contact Bonnie Marks, Alameda County Office of Education, 313 W. Winton, Hayward, CA 94544.

ISTE SIGTE-Special Interest Group for Teacher Educators

SIGTE is the ISTE Special Interest Group for Teacher Educators involved in educational technology. SIGTE provides a forum for members to share successes, raise questions, and meet the challenges of helping other professionals use technology to enhance learning and education. SIGTE publishes a quarterly journal, the Journal of Computing in Teacher Education (JCTE), that works to provide its members with the answers to practical, leadership, research, and theoretical questions, such as:

- What is happening in K-12 computer education that relates to teacher education programs?
- What funding issues are in the forefront of current preservice and inservice teaching areas?
- What are the directions in teacher education as related to computer and technology education?
- How can educators become effective critics and implementers of innovations using technology?

Each year, SIGTE gives a cash award at NECC for the best paper describing research on technology in teacher education; the paper is presented at the conference.

For general information, contact ISTE (see preceding). For information on ISTE's SIGTE, contact Judy Robb, University of New Hampshire, Department of Education, Morrill Hall, Durham, NH 03824, jkull@christa.unh.edu.
AAHE/The TLT Group—American Association for Higher Education/The Teaching, Learning, and Technology Group

AAHE is a membership association of individuals interested in improving the effectiveness of the higher education enterprise as a whole and their own effectiveness in their particular setting. The association's membership includes more than 8,000 administrators, faculty, and students from all sectors, as well as policy makers and leaders from foundations, business, and government.

AAHE is higher education's citizen's organization, in which individuals step beyond their special roles to collectively address the challenges higher education faces. Members share two convictions: that higher education should play a more central role in national life, and that each of our institutions can be more effective. AAHE helps members translate these convictions into action.

Through conferences, publications, and special-interest projects, members acquire both the "big picture" and the practical tools needed to increase their effectiveness in their own setting and to improve the enterprise as a whole.

Contact: Steven Gilbert, AAHE/The TLT Group, One Dupont Circle, Suite 360, Washington, DC 20036-1110, gilbert@tltgroup.org, www.tltgroup.org

ACM/SIGCAS—Special Interest Group on Computers and Society

With a membership of approximately 1,000, this professional group seeks to identify social and ethical issues raised by computer technology and provide a forum for examining these issues. SIGCAS was one of the sponsors of the ACM Policy98 Conference held in Washington, D.C., which brought together computer professionals and government policy makers to discuss the critical technology issues that affect social policy.

SIGCAS publishes a quarterly newsletter, Computers and Society, which is a primary source of material on this topic. As a vehicle of communication for the SIGCAS membership, the newsletter includes news, comments, and articles on societal issues raised by computing technology. One of the few periodicals on this subject, it provides a flexible and timely forum for important, evolving topics, such as privacy, equity of access, de-skilling of the workplace, regulation of the Internet, and intellectual property rights. There are also monthly educational columns that include ethics scenarios and case studies, pedagogical ideas, and reviews of new textbooks in the area of ethics and social effects that are useful for high school, community college, and university educators.

According to a recent membership survey, about 40% of SIGCAS members teach course material on computers and society. In recent years, SIGCAS has organized sessions at computer conferences on new methods for teaching the ethical and social effects of computers.

Contact: C. Dianne Martin, CS Department, George Washington University, 7th Floor, Academic Center, Washington, DC 20052, diannem@seas.gwu.edu
ACM/SIGCSE-Special Interest Group on Computer Science Education

SIGCSE became a special interest group of ACM in 1970. It currently consists of more than 2,000 members from educational, industrial, and governmental communities interested in various aspects of computer science education. SIGCSE has goals of encouraging and assisting in the development of effective academic programs and courses in computer science, and promoting research in computer science education.

The following are objectives of SIGCSE:

1. To provide a continuing forum for discussion of common problems among education and other computer scientists through organized meetings and symposia.
2. To publish a bulletin at least quarterly containing information aimed specifically at those interested in computer science education.
3. To work closely with the Education Board of ACM to ensure implementation of effective education programs by the association.

Contact: Harriet Taylor, ELRC-111 Peabody Hall, Louisiana State University, Baton Rouge, LA 70803, taylor@asterix.ednet.lsu.edu

ACM/SIGCUE-Special Interest Group on Computer Uses in Education

SIGCUE provides a forum for the discussion of ideas, methods, and policies related to all aspects of computers in the educational process. Established in 1969, its membership (more than 1,400 persons) comes from many countries and numerous, diverse institutions and businesses.

SIGCUE publishes a newsletter, SIGCUE Outlook. Recent topics have included preservice education in educational computing, international reports on educational computing, and a teacher training curriculum project. SIGCUE also sponsors and organizes technical sessions at ACM annual meetings, the National Educational Computing Conference, and other national and regional meetings of interest to its members.

Among SIGCUE's goals are:

1. Helping to bring the technical expertise within ACM to bear upon educational computing generally.
2. Cooperating with other special interest groups or educational societies to promote attention to educational computing issues.
3. Providing written and verbal forums for members and the educational community to exchange ideas concerning computer uses in education.

Contact: Karen Gould, Metro School District of Wayne Township, 1220 S. High School Drive, Indianapolis, IN 46241
ACM/SIGUCCS-Special Interest Group on University and College Computing Services

SIGUCCS provides a forum for those involved in providing computing services on a college or university campus. The topics addressed by SIGUCCS include managing campus computing, computing as it relates to the overall goals of the institution, and the state of the art in various types of college and university computing services. SIGUCCS provides opportunities to discuss and share ideas and experiences with others.

Two annual conferences are regular activities of SIGUCCS. The Computing Center Management Symposium addresses the many aspects of managing computing on campus. This includes hardware, software, planning, finances, and personnel, to name few. The User Services Conference covers more directly the delivery of particular services to the higher education community. Tutorials on relevant issues are held at both conferences.

In other projects, SIGUCCS offers a peer review of the university computing function. Upon request of the computer center director, members of SIGUCCS will formally analyze and comment on different areas of the campus computing function. SIGUCCS also publishes a quarterly newsletter. We consider the newsletter our most important form of communication because it reaches all members and is subscribed to by numerous university computing centers. Conference proceedings are published either as separate documents or as part of the newsletter itself.

Contact: Chuck Chulvick, Raritan Valley Community College, Box 3300, Somerville, NJ 08876, 908.526.1200, ext. 8409, cchulvic@raritanval.edu

AECT-The Association for Educational Communications and Technology

The Association for Educational Communications and Technology (AECT) is an international professional association dedicated to the improvement of instruction at all levels through the appropriate use of instructional technology. AECT's purpose is to promote the effective design and use of technologies in the teaching/learning process, worldwide.

Founded in 1923, AECT has evolved as an organization as the technology used in education has evolved, from the early use of traditional audiovisual media to today's interactive and multimedia technology platforms. AECT members can be found at all levels of public and private education, from elementary schools to colleges and universities, as well as in the corporate and government sectors.

Organizationally, AECT has 7 special interest divisions and 5 councils. Affiliates include 8 chapters, 46 state affiliate organizations, and 14 national and international affiliate organizations. With more than 4,000 members, AECT is the largest international association for professionals involved in the integration of instructional technology in the learning process. AECT is the United States representative to the International Council for Educational Media (ICEM).
Tech Trends is the association's professional periodical. Published during the school year, Tech Trends features authoritative, practical articles about technology and its integration in the learning environment. Educational Technology Research and Development (ETR&D), the association's research quarterly, is the only refereed journal focusing entirely on research and instructional development in the rapidly changing field of educational technology.

AECT also publishes reference books on a variety of topics, including practical applications of technology, research, copyright, and standards and guidelines for the field of special interest to instructional technologists.

The AECT annual convention is held in February, drawing participants from around the world. Additionally, AECT sponsors an annual summer institute for leaders within AECT and its affiliates.

Contact: Phil Harris, AECT Executive Director, 1800 N. Stonelake Drive, Suite 2, Bloomington, IN 47404, pharris@ait.net, 812.335.7675, fax: 812.335.7678

CCSC-Consortium for Computing in Small Colleges

CCSC is a nonprofit organization focused on promoting effective use of computing in smaller institutions of higher education that are typically nonresearch in orientation. It supports activities that assist faculty in such institutions to make appropriate judgments concerning computing resources and educational applications of computer technology.

Because departments in smaller colleges and universities are usually small and not highly specialized, the consortium encourages the sharing of expertise, effective curriculum patterns, and efficient technological applications. The consortium is concerned with the advancement of major programs in both computer science and computer information systems, and with the use of computers in the liberal arts and sciences.

The Journal of Computing in Small Colleges is distributed to faculty at more than 400 colleges across the country. Now in its seventh volume, its five annual issues are averaging 500 pages, with articles addressing the broad spectrum of curriculum and computer use in higher education.

Contact: Gail Miles, Lenoir-Rhyne College, Box 7482, Hickory, NC 28603, miles@lrc.edu

CoSN-Consortium for School Networking

The Consortium for School Networking is a nonprofit organization formed to further the development and use of telecommunications in K-12 education. CoSN provides a dynamic forum for educational, institutional, and corporate organizations that share the goal of promoting state-of-the-art computer networking technology in schools. By working together through CoSN, these separate groups form a powerful national voice focused on realizing the promise of K-12 networking.

CoSN has identified three areas of work that are key to fulfilling its mission:
1. Leadership Enhancement: CoSN will engage in programs and activities to improve the capabilities of those in leadership positions at the national, state, and local levels to ensure that information technology has a direct and positive effect on student learning.

2. Advocacy: CoSN will maintain a strong and effective voice in policy formation and implementation at the federal level to ensure that law and policy at the federal level serve the interests of all students in our schools.

3. Coalition Building: CoSN will actively foster partnerships and collaborate with other organizations, government agencies, and businesses to improve access, equity, the performance of networking technology in schools, the effect of information technology on student learning, and teacher productivity.

CoSN's activities for accomplishing this work are many. Its annual K-12 Networking Conference has become the premier forum on telecommunications in the classroom by bringing together key players from national, state, and local education, corporations, and government to focus on the most important current issues in K-12 networking. Electronic newsletters and member alerts give up-to-the-minute announcements on K-12 networking issues with specific legislative updates from legislative consultant Leslie Harris. CoSN's award-winning Web site at www.cosn.org offers educators a one-stop resource for information on K-12 networking trends and developments. COSNDISC, a moderated online discussion open to everyone on the Internet, serves as a meeting place for everyone interested in school networking.

Contact: Toni Miller, Membership Director, 202.466.6296, ext. 15, infor@cosn.org

EDUCAUSE-Transforming Education Through Information Technologies

The mission of EDUCAUSE is to help shape and enable transformational change in higher education through the introduction, use, and management of information resources and technologies in teaching, learning, scholarship, research, and institutional management.

The incorporation of EDUCAUSE in 1998 was the result of a consolidation of two prominent educational technology associations-CAUSE and Educom-that recognized an increasing convergence in their missions and goals. The association's focus encompasses the management and use of instructional, research, administrative, and library computing; telecommunications and networking; and administration of this enterprise.

Today, librarians, faculty, presidents, deans, registrars, business officers-most of the campus community-use technology-based information resources and are concerned with using them more effectively and efficiently. The professionals who plan for and manage such resources are challenged to fully leverage the significant investment their campuses have made in them, supporting the growing information needs of staff, faculty, and students, while positioning their institutions for the future. EDUCAUSE provides the leadership,
information, professional development, and services our members need to achieve this end.

Membership in EDUCAUSE is open to institutions of higher education, corporations serving the higher education information technology market, and other related associations and organizations. EDUCAUSE provides benefits to both the institutions/organizations and their individual representatives who participate in our activities and use our programs and services, including professional development opportunities, publications, strategic policy initiatives, and information services.

Contact: EDUCAUSE, 303.449.4430, info@educause.edu, www.educause.edu/

IEEE-Computer Society

The Computer Society is the world's largest association of computing professionals, with a total membership of approximately 108,000 computer scientists, computer engineers, and interested professionals. Society membership is open to IEEE members, associate members, student members, and non-IEEE members who qualify for affiliate membership. An affiliate member is a person who has achieved status in his or her chosen field of specialization and whose interests focus on the computing field.

Every Computer Society member receives Computer, a peer-reviewed monthly magazine of general interest to computing professionals that also covers society news and events. Nine specialized magazines and eight transactions are also available to society members as optional subscriptions, and to nonmembers, libraries, and organizations.

The society sponsors or co-sponsors more than 100 conferences and meetings ranging from workshops and symposia with a few dozen participants to major conferences with many thousands of attendees. More than 30 technical committees offer the opportunity to interact with peers in technical specialty areas, receive newsletters, and conduct conferences and tutorials.

The Computer Society has more than 100 local chapters throughout the world and an additional 100-plus student chapters that provide the opportunity to interact with local colleagues and hear experts discuss technical issues. In addition, tutorials, educational activities, accreditation of computer science and engineering academic programs, the development of standards, and an international electronic mail network all play prominent roles in the society's activities.
SCS-Society for Computer Simulation, International

The Society for Computer Simulation, International (SCS) is the only technical society devoted primarily to the advancement of simulation and allied technology. It has a worldwide membership and a network of regional councils that covers the United States, Canada, the United Kingdom, Europe, and the Pacific Rim.

Simulation is used in every scientific and technical discipline, including aerospace, biomedical, business, education, engineering, and manufacturing. Areas that have been specifically recognized as important to SCS members include artificial intelligence, computer-aided design and manufacturing (CAD/CAM), education, environmental issues, knowledge-based systems, robotics, simulators, and standards.

The society publishes Transactions of SCS, a quarterly archival journal, and SIMULATION, a monthly journal of applications of simulation.

In addition to the flagship Summer Computer Simulation Conference (SCSC), the society sponsors several other conferences, including the SCS Western Multiconference, the SCS Eastern Multiconference, the Winter Simulation Conference, and the European Simulation Symposium.

Contact: Society for Computer Simulation International, PO Box 17900, San Diego, CA 92177-7900, 619.277.3888, fax: 619.277.3930, info@scs.org, www.scs.org/
NECA representative contact: Charles Shub, Computer Science Department, University of Colorado-Colorado Springs, Colorado Springs, CO 80933, cdash@cs.uccs.edu, 719.593.3492, fax: 719.262.3369, www.cs.uccs.edu/~cdash
NECC 2000 Paper Reviewer Acknowledgments

NECA and the 2000 National Educational Computing Conference thank the following people for their contribution of knowledge, effort, and time as referees:

Wing-Kee Au William Lyle, III
Danielle Bernstein Diane McGrath
Rick Billstein Michael McVey
Arlene Borthwick Cindy Meyer Hanchey
Doris Carey Keith Miller
Richard Close Nancy Nelson Knupfer
Sheila Cory Dale Niederhauser
Herbert Dershem Kwi Park-Kim
Ann Fleury Joseph Picking
Brian Harvey Dawn Poole
Tony Jongejan Steve Rhine
Douglas Kennard Bob Riser
Henry Kepner, Jr. Robert Seidman
Jim Kerlin Charles Shub
Brenton Kidder Richard Teter
Antonio Lopez, Jr.

If you are interested in becoming a paper referee for 2001 or for future NECCs, please contact NECA, phone 541.346.NECA, necc@oregon.uoregon.edu.
Research Paper: Connecting Technology to Teaching and Learning

Interactive Computer Models for Science Education

Hisham Al-Haddad
Integrated Science and Technology Program
Marshall University
Huntington, WV 25755
alhaddad@marshall.edu

Mike Little
Integrated Science and Technology Program
Marshall University
Huntington, WV 25755
little@marshall.edu

Key Words: computer models, interactive learning, science education

Abstract

At Marshall University, science faculties are developing computer-based interactive multimedia models for high-school students. These models are designed to promote and enhance science education among high-school students and help high-school teachers utilize computer technology in the classroom. This paper describes a development project funded by the government of the state of West Virginia for the last three years. The developed models are designed to promote science education in remote Appalachian high schools that lack ready access to either extensive laboratory equipment or computer resources. The paper describes the computer models and highlights the authors’ experience working with high-school teachers.

Introduction

Concepts of teaching and learning, such as interactive learning, fostering critical thinking, and pragmatic teaching, have taken a major role in education, especially in the fields of science (Miller & Cheetham, 1990; Trimbur, 1989). Many educational organizations, such as the National Association for the Advancement of Science and the National Research Council, are calling for interactive learning and the involvement of both high school and college students in investigative/interactive learning of science (Soloway et al., 1997). To increase the knowledge of science and promote interest and enrollment of high-school students in basic sciences, these organizations recognize and stress the need for new techniques for teaching traditional science concepts in an innovative and stimulating manner.

In West Virginia, the state government is motivating a reform of science and technology education in high schools. The state government is actively funding projects that lead to innovative teaching techniques using current computer technology. The goal is to bring a change in how students learn course content and become active learners with critical- and creative-thinking abilities.
Faculties at Marshall University have been active participants in the reform process. The authors developed a set of computer-based interactive multimedia models to promote science education. The models are used by a selected group of high schools in the state, and are taught by science teachers in a variety of courses including Coordination and Thematic Science, Environmental Earth Science, Chemistry, Honors Chemistry, Applied Biology, Advanced Biology, AP Biology, Anatomy, and Independent Study. Using these models, students work with real-world scenarios and learn the science behind those scenarios. The models interactively teach students the concepts of basic sciences using a multidisciplinary approach. The rest of the paper addresses salient features of the developed models and how they help increase students' learning of science concepts.

The Computer Models

For the last three years, the authors received funding to develop, for high-school students, intuitive and interactive computer-based simulation models for learning the process of scientific analysis behind real-world scenarios. The authors are working with high-school teachers to help them utilize the developed models and computer technology in the classroom. The primary objectives of the models are to:

1. promote interactive science education among high-school students,
2. provide a mechanism of experiencing the process behind real-life scientific analysis methods that would otherwise not be possible because of limited resources,
3. provide a high level of interactivity so that the students feel involved in the process, and
4. increase students' interest and enrollment in basic sciences.

In addition to teaching science concepts, the models are designed to increase student awareness of issues that have a direct and critical effect on the quality of life and the economy of the state. For example, the Acid Mine Drainage model simulates the effect of the acid discharge from abandoned mines to streams and rivers. As of February 2000, we have completed the development of the DNA model, Wetland model, and Acid Mine Drainage model.

Description of the Models

The models are integrated into a virtual community called Highland Park. Students learn to integrate a number of scientific and mathematical operations as they interact with their computers in a virtual world. Highland Park, like much of Appalachia, has undergone considerable environmental damage from past mining and timbering operations and is now being developed into a tourist center and nature preserve. Students enter the park through an interactive image that first explains their work assignments and then provides access to these assignments. Students are directed to assess the effects of past environmental degradation and to develop plans to remedy this environmental degradation by interacting with the computer models.

Some of the models require numeric data collection and manipulation. Such models are integrated with Microsoft® Excel and Word for handling numeric and textual data. In most cases, data files have default names so that the users do not have to worry about which files to access and save. The models are installed on
the server, and accounts are assigned to students. Student progress is saved in a database and is accessed by a
user name and password. The database allows the students to save their work during a session and continue
at a later time. The instructor explains the experiment and the necessary background materials using
handouts, online documents, Web pages, and so forth. Students are divided into groups, members of which
are rotated.

DNA Model

The DNA model simulates the process of DNA analysis using the Restriction Fragment Length Polymorphism
(RFLP) method. The model uses a crime scene of a badly burned car that was found at the base of a cliff in
Highland Park. The model starts by presenting a full description of the crime scene and detailed information
about the car and the four victims found at the scene. In addition, the model provides necessary information
about relatives of the victims.

Students are informed that a murder has been committed and that the crime can be solved only by using
DNA analysis on tissue and blood samples gathered at the crime scene and from relatives. The model
interactively guides students through the entire DNA analysis process, from preparing blood samples to
reading the final results and presenting a final report. Throughout the process, students are asked to make
decisions and predictions. Based on their decisions, they may get incorrect results.

Initially students enter the laboratory, where they use interactive lab tools to cut and size DNA. DNA data are
entered into a database. Students take the initial step in solving the crime by querying the database for DNA
matches with crime scene evidence. Ultimately, a lab kit, provided by the Integrated Science and Technology
Program at Marshall University, provides the final clues necessary to solve the crime.

Wetland Model

The Wetland model simulates the effect of tourism on the wetlands. Using tools built into the model,
students assess the effect of visitors on the various elements of the wetland, including birds, rattlesnakes,
salamanders, and a trout fishery. They also assess the effect of waste from condominiums at a nearby ski
resort.

Students assess the possible usefulness of a wetland as a tourist attraction by inventorying the bird fauna.
Using a binocular tool, students capture images of birds and then record their calls. Images of nests and basic
ecological data are also collected. After determining that the wetland contains suitable bird species to attract
tourists, students must build a quantitative model that predicts how many tourists can be allowed into the
wetland without negatively affecting the wetland habitat. Students also use the mark-recapture tool to
inventory the number of rattlesnakes in an abandoned mine site used as a tourist attraction, salamanders
used for food in a turkey habitat, and trout in a trout fishery.

Students are informed that nitrogen-based waste from condominiums at a ski resort may negatively affect a
portion of the wetland. They are instructed to build a qualitative model that relates increases in nitrogen
concentration to changes in pH, dissolved oxygen, the photosynthetic rate, carbon dioxide, and alkalinity.
Acid Mine Drainage Model

The Acid Mine Drainage model simulates the treatment of acid mine water from an old abandoned mine operation. The model gives students a history of mining in the Blackwater River Valley of West Virginia. Students are presented with an image of the largest treatment facility; maps of the area; and a database that gives pH, dissolved oxygen, alkalinity, carbon dioxide, calcium carbonate, and air and water temperatures for monthly samples gathered during a one-year period. Students go through a series of simulations of lab exercises that demonstrate how pH changes relative to alkalinity. Students interpret their lab data and data from the database relative to standard titration curves. They then use their titration curves and water quality data from the database to interpret overall water quality in the Blackwater River Basin. Finally, students locate the treatment facility on the river by noting where pH and alkalinity increase dramatically. The goal of this model is to direct students to estimate the cost of treating a 4 cubic feet per second (cfs) acid mine discharge for one year. This task requires students to learn basic chemistry skills such as balancing equations and calculating and measuring water quality parameters, including pH, alkalinity, acidity, and hardness.

Acid Rain Model

In the Acid Rain model students try to establish a relationship between acidity in rainfall and whether acid rain is negatively affecting a spruce forest. Students pick five-year-old spruce trees from the forest by drawing a transect line on a scanned photograph of a spruce tree forest. Next they measure the height of the trees from the scanned photographs using a custom tool developed and integrated in to the model. This process is repeated for five sets of data. The acidity of rainfall is simulated by using various concentrations of aerated soft drinks, and measured using pH meters in the wet laboratory. The data are automatically moved in to an Excel environment where students draw graphs and conduct statistical tests to see whether the relationship between growth and acidity is significant. The results are then imported in to MS Word to generate reports.

Experience and Benefits

The primary benefit of the models is that students learn the scientific processes of making their own hypotheses, and proving or disproving them using proper inferences, analysis, and critical-thinking skills. Using current news events helps keep up interest in the scientific process. In addition, some of the tedious and time-consuming steps of the simulated process can be reduced or made more interesting using interactive multimedia. Other benefits are that students learn practical skills using standard tools.

Conclusions and Future Work

The models are currently used in high-school science classes. The current phase of the development includes expansion of each model and integrates the models in to one interactive system, called Wildlife Nature Preserve. The new integrated system includes a set of tools that allows the students to work with wildlife and environmental issues. The tools include a Wildlife Surveying Tool, Visitor Impact Estimating Tool, Environmental Systems Modeling Tool, and Environmental Analysis Tool.

As part of the project, we have conducted training workshops for high-school teachers. Science teachers from selected high schools were invited to participate and receive training and support materials. We also have set a number of scheduled meetings with the teachers and visits to those schools. In addition, we conducted two workshops during the West Virginia Science Teachers Association Annual Conference (Al-Haddad & Little, 1999a, 1999b). We plan to invite more high schools and put the models in more classrooms throughout the
state. We presented the concept of these models in national conferences and workshops to science teachers (Little, 1997, 1998; Little & Al-Haddad, 1999), and received favorable comments and recommendations.

References

Research Paper: Staying Connected with Professional Development

Information Technology in Teacher Education: A Closer Look

Talbot Bielefeldt
Research Associate
International Society for Technology in Education
1787 Agate Street
Eugene, OR 97403-1923
541.346.2405
talbot@iste.org

Key Words: preservice teacher training survey

This research was conducted using a grant from Intel Corporation and with the cooperation of the Milken Exchange on Education Technology. This paper is abridged from the report submitted to Intel to accommodate the format requirements of the National Educational Computing Conference proceedings.

Introduction: The 1998 IT in Teacher Education Survey

In 1998, the author and others collected information on 416 schools, colleges, and departments of education (SCDEs) in the United States (Moursund & Bielefeldt, 1999). Respondents (mostly deans and education faculty) were asked to rate their institutions in terms of a variety of indicators of capacity, including course work, technology facilities and support, skills of graduates, and field experience opportunities.

A factor analysis of the 32-item survey indicated four groups of items in which the questions were closely related to one another:

- Integration of technology into the program (7 items)
- Facilities (11 items)
- Field experience (4 items)
- Applications skills (4 items)

Of these, integration (the actual use of technology in the program) was the best predictor of other aspects of capacity. When questions were clustered into factors, we observed scattered significant differences on demographic characteristics (e.g., institutions affiliated with the National Council for Accreditation of Teacher Education tended to report more integration of technology), but we could not identify any particular type of institution more likely to report high technology capacity.

Six items, having to do with hours of course work, faculty technology skills, technology planning, and distance education, were not statistically related to any of the factors. The number of hours of technology training integrated in to other course work had a moderate correlation with other ratings of capacity.

"Connecting @ the Crossroads"
however, technology-specific course work had little correlation even with the reported technology skills of graduates.

Our tentative recommendation was that teacher training institutions should concentrate on increasing integration of technology throughout their programs through faculty staff development and field experiences rather than on developing additional technology courses.

High-Capacity Programs

One limitation of large survey studies is that they often do not include information on how the respondents achieved the levels of capacity they reported. In an effort to better ground our findings and to provide guidelines for other institutions, we conducted a follow-up survey of those institutions that had above-average ratings on all four factors in the 1998 survey. In identifying these high-capacity institutions, we first limited our search to those institutions that responded to at least 30 of the 32 survey items, the mean level of response. Then we calculated a total score for each institution on the survey items in each of the four factors. Those scores were compared with the average scores for each factor.

We selected SCDEs that rated themselves highly on all four factors because we believe that aspects of technology capacity are necessarily related. Observers of college classrooms have reported that effective use of technology depends on a combination of facilities, technical support, professional development, and leadership (Barron & Goldman, 1994; Strudler, McKinney, & Jones, 1995). High capacity in one area, such as equipment, may have a limited effect on teaching and learning if it is not complemented with the training and other support needed to make use of the facilities. This relationship was observed in our 1998 survey, in which there were moderate correlations ($r=.34$ to $.62$) among the four factors we identified.

Using the previously described procedure, we identified 62 institutions that reported above-average levels of capacity on all four factors. In the spring of 1999, we sent these SCDEs a follow-up survey that asked respondents how they achieved their reported levels of capacity in technology preparation of new teachers. Specifically, we asked each institution to describe what helped or hindered them in providing technology facilities, integration of technology in their programs, field experiences, and graduates with basic technology skills.

In addition, we asked follow-up questions about two findings from the 1998 survey. Noting that the survey did not find a relationship between high numbers of technology course hours and other measures of capacity, we asked each respondent to describe the role of required technology courses in teacher preparation. We also asked respondents to rate (on a scale of 1–4) the importance of several alternative methods of providing technology training, including formal course work within and outside the education program, training integrated in to other education and noneducation course work, prior training in high school or community college, and informal learning.

Another question that we felt required elaboration had to do with technology planning. In 1998, we asked only whether an institution had a written, funded, regularly updated technology plan. Sixty-five percent did not (or the respondents were uncertain whether one existed). Those that did have a plan had somewhat higher scores on the different factors, but the presence of a technology plan explained at most about 5% of the variance. We felt we needed more information on the role of technology planning. We asked the high-capacity institutions (half of whom had plans) to rate, on a scale of 1–4, how important a formal technology plan is to implementing information technology in teacher education, and to describe the characteristics of an effective technology plan. The survey questions appear as an appendix.
Twenty-two of the 62 high-capacity institutions (35%) responded to the 1999 survey. As a group, these SCDEs had mean scores on each of the factors that were .8 to .9 standard deviations above the means for the full sample of 416 institutions (Table 1). As might be expected, standard deviations at this upper end of the sample distribution were considerably compressed.

Table 1. Mean Scores on Factors for SCDEs

<table>
<thead>
<tr>
<th>Factors</th>
<th>Facilities</th>
<th>Integration</th>
<th>Applications</th>
<th>Field Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>416 SCDEs</td>
<td>30.7</td>
<td>7.9</td>
<td>17.3</td>
<td>6.0</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Respondents</td>
<td>38.2</td>
<td>3.9</td>
<td>22.7</td>
<td>3.8</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the questions under each of the factors should be treated as independent scales. There are different numbers of questions and different numbers of possible points under each of the factors. We do not consider the total score on the 1998 survey to be a reliable measure of capacity because the meaning of high or low scores on some items depends on interpretation. For instance, some institutions felt that a low score on required technology courses was a strength because it meant technology was integrated throughout the programs.

Respondents came from five of the six Regional Educational Technology Consortia areas. Overall mean ratings for schools in different regions were similar. The proportion of public and private institutions (55% vs. 45%) was the same in both samples. Compared with the full sample, the high-rating SCDE respondents had a somewhat higher median number of graduates in 1998 (136 vs. 120) and a higher percentage of NCATE affiliation (86% vs. 62%).

Procedure

The author and a research assistant coded each open-ended response from each respondent on the 1999 survey. Types of responses were not specified in advance; each reader was free to propose categories of responses and to sort respondents’ comments into those categories. Units of response could be sentences, phrases, or (in the case of respondents who tended to write in lists) individual words. On most questions, the two readers proposed similar meanings for 60–80% of the response units on the first reading. Combining or subdividing categories so that both readers used the same list of categories brought the agreement to 80% or more.

Results

The types of responses for each item were tallied to identify common themes. Tables 2–9, 11, and 13 show the numbers and percentages of respondents providing each type of answer to each question. (Note that the percentage of respondents for each answer is independent of percentages for other answers; the column totals are not meaningful.) The discussion following each table includes excerpts from the narrative responses. Tables 10 and 12 show the ratings respondents gave for the usefulness of various sources of technology training and for technology plans.

"Connecting @ the Crossroads"
Technology Facilities: Helped and Hindered

Table 2. Elements Reported to Support Provision of Technology Facilities (22 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest, leadership, commitment</td>
<td>18</td>
<td>82%</td>
</tr>
<tr>
<td>Financial resources</td>
<td>16</td>
<td>73%</td>
</tr>
<tr>
<td>Infrastructure and technical support</td>
<td>7</td>
<td>32%</td>
</tr>
<tr>
<td>Building renovations and upgrades</td>
<td>5</td>
<td>23%</td>
</tr>
<tr>
<td>Integration of technology in curriculum</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Influence of or integration with K–12 technology programs</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Long-range planning</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Training, professional development</td>
<td>2</td>
<td>9%</td>
</tr>
<tr>
<td>Integration of technology with other departments; sharing</td>
<td>2</td>
<td>9%</td>
</tr>
<tr>
<td>Accreditation standards</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table 3. Elements Reported to Hinder Provision of Technology Facilities (20 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of financial resources or budget allocations</td>
<td>11</td>
<td>55%</td>
</tr>
<tr>
<td>Size or age of facilities</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>Personnel; lack of technically experienced faculty</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>Lack of commitment to technology</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Lack of time</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Lack of planning or poor planning</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Lack of technology in K–12 schools</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>“Mainframe mentality”</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Two factors stood out in helping institutions provide students and staff with adequate facilities: Commitment (mentioned by 82% of respondents) and money (mentioned by 73%). Finances were also the most commonly cited hindrance (55%) to providing facilities.

Another element—organizational infrastructure and technical support—was included as part of facilities on the original 1998 survey. However, seven respondents felt support was important enough to mention on its own.

Various elements were reported by different institutions as helping to drive technology improvements. The most important of these was building renovations, which provided opportunities to rewire and upgrade classrooms. By the same token, facilities that were difficult to upgrade (either because they were too old or being built too quickly) were cited by one quarter of respondents as an important hindrance.

Other “drivers” included long-range planning, the pressure of NCATE accreditation requirements, and the general integration of technology in the program.
Integration: Helped and Hindered

Table 4. Elements Reported to Help Faculty and Students Integrate Technology into Classroom Practice (22 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training, professional development</td>
<td>15</td>
<td>68%</td>
</tr>
<tr>
<td>Technology infrastructure</td>
<td>11</td>
<td>50%</td>
</tr>
<tr>
<td>Expectations of teachers, administrators, NCATE</td>
<td>9</td>
<td>41%</td>
</tr>
<tr>
<td>Personnel: faculty initiative and skill</td>
<td>8</td>
<td>36%</td>
</tr>
<tr>
<td>Incentives for faculty</td>
<td>5</td>
<td>23%</td>
</tr>
<tr>
<td>Technology skills of incoming students</td>
<td>2</td>
<td>9%</td>
</tr>
<tr>
<td>Student course work</td>
<td>2</td>
<td>9%</td>
</tr>
<tr>
<td>Support from K–12 schools</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table 5. Elements Reported to Hinder Faculty and Students from Integrating Technology into Classroom Practice (21 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of infrastructure</td>
<td>11</td>
<td>52%</td>
</tr>
<tr>
<td>Lack of time</td>
<td>6</td>
<td>29%</td>
</tr>
<tr>
<td>Lack of enthusiasm or buy-in</td>
<td>4</td>
<td>19%</td>
</tr>
<tr>
<td>Lack of mentors or examples in practice</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Lack of K–12 technology capacity</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Other competing requirements of the program or institution</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Lack of financial resources</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Lack of training or professional development</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>No hindrances</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

The most helpful technique for promoting integration of technology in teacher education was reported to be professional development for college faculty (mentioned by 68% of respondents). Related to the first point, faculty initiative and skill in using technology were also described as being important to integration (36%).

Lack of professional development was mentioned by only two institutions. A greater concern for most respondents was technology infrastructure and facilities. About half the respondents felt that their facilities limited their ability to integrate technology; the other half felt their facilities were a strength.

Forces helping to drive integration efforts included expectations of teachers (for technology use by students), administrators (for technology use by teachers), and NCATE (for technology use by programs). The growing use of technology in K–12 schools also provides more opportunities to apply integration skills (see Field Experience in the following section), as well as an increasingly computer-adept student body coming out of high school.
Field Experience: Helped and Hindered

Table 6. Elements Reported to Help Institutions Provide Technology-Related Field Experiences (22 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration of technology field experience in the college program</td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td>A high level of K–12 facilities and support</td>
<td>6</td>
<td>30%</td>
</tr>
<tr>
<td>Effective mentors (college supervisors and K–12 teachers)</td>
<td>6</td>
<td>30%</td>
</tr>
<tr>
<td>Funding (grants and bond measures) for facilities and training</td>
<td>6</td>
<td>30%</td>
</tr>
<tr>
<td>Dedication and willingness to learn; initiative</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>Professional development at K–12 and college levels</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>NCATE standards</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table 7. Elements Reported to Hinder Institutions from Providing Technology-Related Field Experiences (18 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of K–12 teachers using technology, whether or not it is present</td>
<td>11</td>
<td>61%</td>
</tr>
<tr>
<td>Lack of technology in K–12 schools</td>
<td>8</td>
<td>44%</td>
</tr>
<tr>
<td>Lack of time, lab access, or other resources in the college</td>
<td>4</td>
<td>22%</td>
</tr>
<tr>
<td>Lack of coordination by the college or university</td>
<td>2</td>
<td>11%</td>
</tr>
<tr>
<td>Lack of initiative by students</td>
<td>1</td>
<td>6%</td>
</tr>
</tbody>
</table>

The conditions reported to support technology-related field experience were diverse, with similar numbers of respondents (five to seven) mentioning integration with the college course work, levels of technology in K–12 schools, availability of mentor teachers and supervisors, initiative on the part of students, and training for K–12 teachers and college faculty. There was much greater agreement on the main limitation on field experience programs: the lack of capacity in K–12 schools. That includes both lack of hardware and a lack of teachers using technology (whether or not it is present).

Other hindrances included lack of technology facilities at the college, failure by the college to coordinate field experience opportunities, or failure by individual student teachers to take advantage of technology in the schools.

Applications Skills: Helped and Hindered

Table 8. Elements Reported to Help Students Achieve Proficiency with Word Processing, E-Mail, World Wide Web, and Electronic Gradebooks (22 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology-specific course requirements</td>
<td>17</td>
<td>77%</td>
</tr>
<tr>
<td>Integration of technology in the program; expectations of proficiency</td>
<td>11</td>
<td>50%</td>
</tr>
<tr>
<td>Technology infrastructure</td>
<td>4</td>
<td>18%</td>
</tr>
<tr>
<td>Ongoing training and support (formal and informal)</td>
<td>3</td>
<td>14%</td>
</tr>
<tr>
<td>Strong student background in technology</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

National Educational Computing Conference 2000, Atlanta, GA
Table 9. Elements Reported to Hinder Students from Achieving Proficiency with Word Processing, E-Mail, World Wide Web, and Electronic Gradebooks (20 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of infrastructure</td>
<td>9</td>
<td>45%</td>
</tr>
<tr>
<td>Few or no hindrances</td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td>Not enough course work, or courses offered too late in the program</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>Lack of interest of skill in technology integration on the part of faculty</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>Lack of time for training and program development</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Large and diverse classes for students</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Most respondents agreed on what helped their students master basic computer skills: the technology training courses provided in their programs. The other main influence on student technology skills was the overall use of technology in the program: the expectations of faculty and the access and support provided by the institution.

For a third of the respondents, there were no serious obstacles to students developing applications skills. The SCDEs that did report hindrances listed lack of infrastructure as the leading problem, followed by lack of technology course work, lack of time to develop courses, and lack of faculty who could integrate technology into other courses.

Sources of Training

When we asked respondents to rate various sources of technology training for preservice teachers, results tended to mirror responses to the previously mentioned applications skills item. Technology courses within the teacher training program were rated as essential by most respondents, followed by training integrated into other education course work and informal individual learning. High-school experience and training from outside the program were not considered essential by most respondents (Table 10).

Table 10. Importance of Sources of Technology Training

<table>
<thead>
<tr>
<th>Source of Training</th>
<th># Respondents</th>
<th>Unimportant t=1</th>
<th>Useful =2</th>
<th>Important =3</th>
<th>Essential =4</th>
<th>Mean rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology courses within the education program</td>
<td>22</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>16</td>
<td>3.7</td>
</tr>
<tr>
<td>Technology integrated into other education course work</td>
<td>22</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>3.4</td>
</tr>
<tr>
<td>Informal learning from peers or self-study</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3.3</td>
</tr>
<tr>
<td>Prior training in high school or community college</td>
<td>21</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>Technology integrated into other non-education course work</td>
<td>22</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>Technology courses from outside the program</td>
<td>22</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* Σ(rating x no. responses) / no. respondents

Role of Technology Course Work

Our respondents emphasized two points about the role of technology-specific course work: First, the courses build confidence and skills; second, they need to be followed up with actual use of technology in other course work. Eight of the respondents reported that the formal courses were basically a transition to the integration
of technology; they may even be phased out over time. Also mentioned were the ideas that integration should be specifically taught as well as modeled, and that technology training was "preparation for the future," not necessarily for immediate integration (Table 11).

Table 11. Roles of Required Computer Courses in Training New Teachers (22 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A starting point to build confidence and basic skills</td>
<td>12</td>
<td>60%</td>
</tr>
<tr>
<td>Should be followed by integration in to other course work</td>
<td>11</td>
<td>55%</td>
</tr>
<tr>
<td>Should be minimized or eliminated in favor of integration</td>
<td>8</td>
<td>40%</td>
</tr>
<tr>
<td>A resource; provide support and tools for other course work</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>Should specifically teach integration</td>
<td>3</td>
<td>15%</td>
</tr>
<tr>
<td>Necessary for preparing students for the future</td>
<td>3</td>
<td>15%</td>
</tr>
</tbody>
</table>

Technology Planning

The perceived value of technology planning apparently exceeds the actual practice of planning. Only half of the high-scoring respondents reported having technology plans, but all but one rated technology plans to be "Essential" or "Important" (Table 12).

Table 12. Importance of a Formal Technology Plan (22 Respondents)

<table>
<thead>
<tr>
<th>Not needed=1</th>
<th>Useful=2</th>
<th>Important=3</th>
<th>Essential=4</th>
<th>Mean rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>16</td>
<td>3.7</td>
</tr>
</tbody>
</table>

* \(\Sigma \) (rating x no. responses) / no. respondents

All respondents—whether they had a plan or not—had ideas about what a useful technology plan should look like. At least half of the respondents said a plan should have specific goals and objectives; attend to integration of technology (not just provide hardware and software, although that is important); involve all important stakeholders; and be based on needs assessment and ongoing evaluation. Another feature mentioned was professional development. A variety of factors having to do with the practicalities of making a plan work were mentioned by several respondents. These included funding, incentives, and an implementation scheme (Table 13).

Table 13. Characteristics of a Useful Technology Plan (22 Respondents)

<table>
<thead>
<tr>
<th>Responses</th>
<th># Responses</th>
<th>% Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes specific goals and objectives</td>
<td>13</td>
<td>65%</td>
</tr>
<tr>
<td>Includes integration with curriculum</td>
<td>11</td>
<td>55%</td>
</tr>
<tr>
<td>Involves all stakeholders</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>Provides adequate facilities and support</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>Provides for needs assessment, evaluation, and revision</td>
<td>10</td>
<td>50%</td>
</tr>
<tr>
<td>Provides for professional development</td>
<td>7</td>
<td>35%</td>
</tr>
<tr>
<td>Provides for adequate funding</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>Is realistic</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Provides for actual implementation of the plan</td>
<td>2</td>
<td>10%</td>
</tr>
<tr>
<td>Includes incentives for following the plan</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>
Discussion

The responses to the 1999 survey tend to support our theory that infusing technology in to teacher preparation requires a comprehensive approach that attempts to balance facilities, faculty professional development, course work, and field experience. Responses in each area often referred to other aspects of capacity. For instance, integration was said to depend partly on having adequate technology facilities. Facilities in turn depend on a level of integration that creates demand. Student application skills are said to be related to both integration and facilities, but integration can itself be hindered by a lack of student computer skills.

Outside of the factors themselves, some helping/hindering agents were mentioned under several categories. Money, of course, was a common need, mentioned in all areas except student skill with applications. Professional development was mentioned under all four factors. We did not ask about how to do professional development, but others have identified time as a barrier to faculty learning new technology skills and integrating them in to instruction (Strudler, et al., 1995, p. 19). In the present survey, time was mentioned (although not specifically tied to professional development) under all factors except student applications skills.

In 1998, we noted that, while many institutions were proud of their technology course offerings, there was little correlation between the courses and the reported levels of integration, student skills, or other factors. In 1999, the high-rating respondents held technology courses in high esteem as a way to build student skills, although they were rarely mentioned as contributing directly to integration or field experience.

When we looked at the original 1998 surveys for these respondents only, we found that a higher correlation did exist between required technology course work and three of the other factors (Table 14). It is interesting to note that student computer skills—which were linked to technology courses in the 1999 narrative responses—composed the one factor that did not correlate well with course work on the 1998 survey.

Table 14. Correlations Among Main Factors and Course Work, 1998 and 1999 Surveys

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td>.41</td>
<td>.39</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>.44</td>
<td>.28</td>
<td>.62</td>
<td>.59</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Experience</td>
<td>.35</td>
<td>.53</td>
<td>.52</td>
<td>.38</td>
<td>.34</td>
<td>.27</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Technology Courses</td>
<td>.16</td>
<td>.35</td>
<td>.17</td>
<td>.24</td>
<td>.11</td>
<td>.52</td>
<td>.16</td>
<td>.28</td>
</tr>
<tr>
<td>Integrated Tech. Training</td>
<td>.18</td>
<td>.43</td>
<td>.33</td>
<td>.35</td>
<td>.19</td>
<td>.05</td>
<td>.23</td>
<td>.49</td>
</tr>
</tbody>
</table>

It would seem that the role of technology course work is not primarily to boost student skills in word processing and other applications. As we noted in 1998, students gain technology skills from a variety of sources. Rather, the course work in these high-rating SCDEs probably is most valuable in supporting the integration of technology in the rest of the activities. Presumably, in these high-capacity SCDEs, there is more technology to teach, and more opportunity to apply what is taught.

"Connecting @ the Crossroads"
The 22 high-rating respondents were no more likely than the rest of the original sample to have large numbers of course hours. (Three to four quarter hours was the median number of credits for both samples in both technology-specific course requirements and technology training integrated in to other course work.) However, the course hours seemed to be more related to the rest of the program.

Money, time, and course hours can all be quantified, budgeted, and scheduled. One of the important drivers of technology use mentioned by our respondents is harder to pin down—commitment. Our survey did not ask how SCDEs fostered commitment to technology innovations, but some of the respondents provided clues. One noted that commitment took the form of appointing a vice president of technology. Another reported the administration began requiring technology be included in faculty evaluation plans. In contrast to these top-down commitments, two sites reported that students voluntarily raised their own fees to support technology. Another respondent recounted how he and his colleagues made a presentation before their trustees to gain support for technology. The common thread in these comments seems to be the role of human initiative, facilitated by administrative actions and access to information. It suggests that supporting the innovation actually means supporting the innovators.

References

Appendix:

Information Technology in Teacher Education
1999 Capacity Questions

1. We're interested in knowing more about how you achieved the high levels of capacity you reported in 1998. Please tell us what you consider to be the key elements that

1.1.1 Helped your institution provide technology facilities for students and teachers.
1.1.2 Hindered your institution in providing technology facilities.
1.2.1 Helped faculty and students integrate technology into classroom practice.
1.2.2 Hindered faculty and students from integrating technology into classroom practice.
1.3.1 Helped your students achieve proficiency with word processing, e-mail, the World Wide Web, and electronic gradebooks.
1.3.2 Hindered your students in achieving proficiency with word processing, e-mail, the World Wide Web, and electronic gradebooks.
1.4.1 Helped your institution provide technology-related field experiences for students.
1.4.2 Hindered your institution in providing technology-related field experiences.
2. In our 1998 survey, higher numbers of IT-specific course requirements did not correlate with higher reported capacity in other areas. In your opinion, what is the role of required computer courses in training new teachers?

3. Postsecondary students acquire their technology skills from a variety of sources. Please rate these sources of technology training as to how important each is for students in your program. Use the following scale:

1 = Unimportant, rarely used
2 = Moderately useful, used by some students
3 = Important, used by many students
4 = Essential, used by most students

<table>
<thead>
<tr>
<th>Source of training</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology courses within the education program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology courses from outside the education program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology training integrated into other education coursework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology training integrated into other non-education coursework.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior training in high school or community college.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informal learning from peers or self-study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (describe):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1 In your opinion, how essential is a formal technology plan to implementing information technology in teacher education?

 1: Not needed _2_: Not essential, but useful _3_: Very important _4_: Essential

4.2 In your opinion, what are the key characteristics of a useful technology plan?
Active Learning Strategies in Computer Graphics

Ronald Curtis
Department of Computer Science
William Paterson University of New Jersey
Wayne, NJ 07470
curtisr@cs.wpunj.edu

John P. Najarian
Department of Computer Science
William Paterson University of New Jersey
Wayne, NJ 07470
najarian@cs.wpunj.edu

Key Words: active learning, aesthetics, OpenGL®, ray tracing

Abstract

In this paper, active learning models are applied to computer graphics. Lectures are augmented in real time with student activities, inquiry-based reasoning, and other methods of initiating student contribution to the learning experience. This approach promotes a more comprehensive, deeper, and more memorable understanding of the theory, principles, and methodologies of computer graphics. A progression of such activities is presented as they are applied in the course.

Introduction

The classical model of lecture-homework-exam does not meet the challenge of contemporary students. When competing with mass media and other forms of information delivery, a verbal lecture does not leave enough sensory impression. Likewise, even what students read in a passive framework is barely remembered, less so in pre-examination cramming. Weaker students have difficulties in reading, most notably with abstract and mathematical concepts. These problems are magnified in computer graphics, where mathematical expressions/structures and programming projects may prove too formidable.

The solution to these problems requires a radically different approach to lectures, homework, and projects. Lectures should involve periodic breaks in which students perform activities that reinforce the concepts being inculcated. The activities should be simple at first and based upon student experience or a familiar context. In the beginning, this may mean giving the students programs with which to experiment rather than expecting that they write the code.

"Connecting @ the Crossroads"
Foundations and Aesthetics

At the earliest stages, students need to understand the concepts of color and resolution, especially appreciating their effect on the images generated. To achieve that, a useful exercise is to have students download sample GIF or JPEG images and view them in a standard imaging package such as Photoshop® or LView®. There are many such packages in the public domain. Next, have the students magnify the images to see the inherent pixel nature of the image. Another useful exercise is to have them view the photograph at 4, 16, 256, ~65,000, and 16 million colors. They quickly recognize the associated information content. Have them save the files at each step. They directly see the "space complexity" measure by looking at the file sizes. To demonstrate the effects of compression, have students save an image as a bitmap (such as uncompressed TIFF).

These activities also prove useful when preceding a lecture on the hardware and history of computer graphics. Most students have little idea that the era of mainframe and minicomputer dominance involved little graphics beyond character-mode printed posters. Some may remember low-resolution four-color applications of the early 1980s. To best contrast this evolution, have them compare small, simple overview-perspective games with textured-bitmapped first-person three-dimensional games. Restrict this time period to at most five minutes, the goal being discernment, not frivolity. This can be followed by a discussion of the historical trends of graphics hardware during the 1980s and 1990s. The need for increasing memory model size, graphics memory, display resolution, CPU speed, and for coprocessors takes on a greater reality. The importance of the transition from two dimensions to three becomes apparent. Another useful exercise in hardware appreciation is to run several graphical programs (from the student assignments) with specialized graphic-instructional primitives utilizing the coprocessor, and then run those programs without them. A graphical simulation of raster scan operations would be useful but none are available.

To facilitate this initial experience-orientation, a textbook should introduce colorful samples of computer graphics early. Hearn and Baker (1997; the primary text used in this course) and Firebaugh (1993) provide numerous illustrations at this stage.

Graphic Primitive Programming

Programming in computer graphics often begins with designing a line-draw function from a single-pixel dot function. One useful exercise is to hand out graph paper and have students "x"-out boxes to draw lines. They easily accomplish this for drawing y=x and y=0. At y=(3/7)*x and y=(1/4)*x, serious problems become evident. At this point, they are ready to code a simple incremental algorithm (such as digital differential analyzer—DDA). After several runs, have students try their algorithm with y=100*x. Students arrive on their own at the conclusion to switch the looping dimension depending on slope.

Bresenham's line algorithm requires even more preparation. One activity students enjoy is calculating. Using a spreadsheet package, have students compute intermediate numerical values that Bresenham requires and then use the chart facility to view the results. After this prototyping activity, students are generally more confident in proceeding to the program design stage.

Another useful exercise is for students to form teams, each responsible for a distinct algorithm for solving the same problem. In the circle-generating problem, each team has a different algorithm to program and they post their timing results on the board. This is also a good time to compare their results with those produced by a coprocessor's routine.
Two-Dimensional Programming

The next exercise is to design a plotting routine for an arbitrary parametric curve in the plane (see Figures 1 and 2 for examples of parametric curves). A good first step is to have students research on the Web or in the library about particular parametric curves, such as hypotrochoids. After studying the curves and getting formulas for them, students insert those formulas in the plotter routine. This routine (only 25–30 lines of code) generates 1,000 points of that curve, computes the maximum and minimum values, and then scales and plots all points based on those maximum and minimum values.

![Figure 1. Standard parametric curve.](image)

A bountiful source of several major families of parametric curves is Lawrence (1972). Introducing parametrics is important because of the decline in their coverage in a significant portion of modern calculus texts, despite their central role in several areas of computer graphics. They serve as a useful introduction to multivalued functions, broaden student understanding of piecewise linear graphics in the plane, and have applications in simulation.

![Figure 2. Nonstandard parametric curves.](image)

The team approach works well with fill algorithms. In each team, one person supervises the trial drawings and the key logic therein. The second person converts the samples and reasoning into a program. A third person constructs test inputs; these inputs should adequately address problem situations and thoroughly test

"Connecting @ the Crossroads"
the code. Finally, the fourth person is responsible for debugging and testing. The debug phase often produces surprising results, the most amusing being fills that go beyond boundaries and inundate the screen.

Anti-aliasing models can be tested by editing an enlarged image and then reducing it to see the actual results at the normal scale. This is best accomplished with line segments since this activity requires some effort even for small segments; that segment can then be duplicated and concatenated to see the final results.

Transformations are easily experimented with; most image-processing packages have such options. At the stage of students programming transformations, the situation has some interesting side effects. When working with line segments defined by endpoints, the matrix transformations work well. However, when students run their transformation procedures on images, the side effects from rotations and scaling are quite shocking. The need for interpolation becomes acute.

Clipping algorithms can be covered by first providing some examples for the whole class to solve by hand on paper, providing the solutions when errors are encountered, and then forming teams for the actual programming. The problem in programming is that students often "visualize" the solution before applying the algorithms in the class problem-solving efforts. During the programming, no such global intuitions are available during execution. Teams of at least four are needed here; at least one student should concentrate just on the algorithm's steps, not the coding issues, to guarantee adherence to the method assigned. Roles of students in each team should be based on their decisions; to impose a rotation of functions on students often irritates them by blocking their opportunity to contribute in areas of their strengths.

Three-Dimensional Wiring

The introduction to three dimensions requires an extensive review of vector and matrix operations. Intermix lecturing with student calculation exercises (see Figure 3).

![Figure 3. Early exercise in wire-frame, three-dimensional perspective calculation, depth cues, and random-image generation (desert scene).](image)

It is beneficial to have students verify their results on a simple wire-frame modeling program. As they progress from the basics to the three-dimensional transformations, this visual verification becomes indispensable. Students should program short routines to read/construct and display polygon tables and quadrilateral meshes. They can then modify their two-dimensional transformation procedures to three
dimensions (a short activity). At this point, have the students modify their 1,000-point plotter in two
dimensions to three dimensions and apply transformations to give perspective. The resultant surface plotter
is quite an accomplishment.

Students consistently dread the spline representation. Having students generate sample cubics with their
two-dimensional plotter routine helps them understand the versatility of this curve. A formal discussion of
curvature and quadratic limitations will give some background but rarely convinces them as well. A
computer-aided design (CAD) or drawing package with splines built-in is an effective way for students to
visualize the effects of control points. After several proofs and many numerical examples, assign a different
spline algorithm to each team. After computing coefficients, have students test their results by running the
plotter routine on the spline and also plotting the data points.

Solid Phase: Ray Tracing

Introducing a public domain ray tracer such as a Persistence of Vision™ Ray Tracer (POV-Ray) is an effective
way to approach constructive solid geometry (see Figure 4). Students find the programming less pressured,
can concentrate on concepts, and produce results too time-consuming to completely program otherwise.
This approach was presented in Owen, Larrondo-Petrie, and Laxer (1994) and Schweitzer (1990). POV-Ray
includes online interactive tutorials. POV-Ray code samples on the Web are abundant. Students develop a
solid appreciation of three-dimensional positioning, perspective, lighting, color, and texture as they construct
several scenes. Several books by Waite Group Press are complete introductions to ray tracing and animation
with POV-Ray, most notably Young and Wells (1994) and Bowermaster (1994). Unfortunately, all of them are
out of print but are worth borrowing through interlibrary loan with their CDs. The C/C++ code can interact
with the user and then call POV-Ray routines to accomplish the task. One popular activity is to write recursive
C code for a Lindenmayer system. This generates point and arc information, which is then rendered using
POV-Ray. This may be a student's best opportunity to see the inherent power of recursion.

![Figure 4. POV-Ray generated scene.](image)

Ray tracing prepares students for actual C/C++ programming with depth, shadows, reflections, and other
three-dimensional characteristics. Pedagogical exercises with folded paper models can serve as a prelude to
algorithm design for binary space-partitioning (BSP) trees and hidden line removal. Bringing a flashlight and
metal objects to class will illuminate during a lecture on normals, lighting, and reflection. By turning off the
overhead lights and closing the shades, students can get a more dramatic and realistic view than any ray
tracer could produce. This serves as an effective lab exercise. The mathematical model and subsequent C/C++ code follows.

One of the benefits of using C/C++ is that scene generation occurs in real time, so that if a bug occurs, students can predict and observe when the scene went bad. It is also more amusing watching objects and shadows get generated.

Fractals and Randomized Models

The simplest exercise in randomization (Monte Carlo methods) in computer graphics is to have students write a C/C++ program to generate a wire-frame grid and then use a random-number generator to raise or depress grid-points on that surface a random but carefully bounded amount (like wrinkling). This is an easy and short program, described in Pokorny (1994). Going a step further, have students use nonuniform random-number generators to produce different textures. As a final step, apply color variations depending on surface height. Applying colors carefully, one can achieve the effect of geological strata.

Another application of random numbers and colors is in producing cloud formations (see Figure 5). Using a random-number generator with a Gaussian distribution and applying shades of white on a blue background in cluster patterns, students can produce impressive results.

As an independent but not mutually exclusive methodology, fractals and space-filling curve generation also gives students an occasion to write functions in class that generate complex natural objects and scenes (see Figure 6). By putting more parameters in to this function (such as angles and length ratios), broad categories of fractals can be generated.

![Figure 5. Cloud formation using random-number generators (compare with Figure 6).](image)
As an exercise prior to coding, students can download sample fractal programs, some quite professional, such as Fractint, from the Web and generate fractals with which to compare their own results. Hand drawing Koch curves also serves to motivate students.

Animation

The greatest obstacle to animation is student anticipation of greater effort being required. The idea of physical trajectories and producing frames/time-parametrized functions induces anxiety. To alleviate it, start with a programming exercise to draw a short horizontal line segment and then to erase the segment. Add a loop to the code to draw the segment farther to the right each time. To give an apparent smoothness of motion, have the loop not redraw the line segment but just delete one pixel on the left and add one on the right. This incremental approach "slides" the image.

The second animation exercise would be to write a function to draw a small car or, if students have learned file formats already, redraw a small scanned bitmap of a car. Combine this code with the previous nonincremental animation.

Another source of simple animations to demonstrate is the Web with its numerous animated GIF files. A frame-by-frame display of these can be accomplished by using any of several GIF-animation utilities (also on the Web). Students should be cautioned that these are often hand-drawn and are more akin to the mechanical cartoon arcades of the previous century or flip books than to computer graphics.

For nonlinear motion, a simplified solar system is an excellent programming exercise. One option is the practice in shading the planets as they move. Another optional modification is to add random periodic bumps on the surface and shaded boundaries to give the appearance of rotation and bumpiness.

At this stage, students are ready for the final project in animation. To encourage originality and imagination, several inspiring animations are demonstrated from the CDs of Bowermaster (1994) and Shatz (1993). SIGGRAPH also publishes CDs with exceptional animations but those are of higher caliber and often involve hardware and software that are not available to students.

"Connecting @ the Crossroads"
Other Resources and Issues

Books by Clifford A. Pickover (1990, 1991) provide very readable and well-illustrated expositions on topics including computer graphics. Unlike other popularizations, Pickover's include programming code. The Graphics Gems multivolume book series also provides short expositions that could be converted into exercises or projects.

Implementation support is always a consideration, but more so in computer graphics. Without 24-bit color, these activities would suffer; other less-pressing necessities are a robust combination of memory (more than 32 MB), graphics memory (more than 4 MB), and operating system (such as UNIX, Linux, or NT).

Since students are concerned about applicability of knowledge, we have recently shifted toward OpenGL as a standard. Since NT platforms are the student preference, a second text we require for the course is Wright and Sweet (1996). If NT is not a concern, a single compact text covering both computer graphics principles and OpenGL is Angel (1997). Finally, for those not using OpenGL but using X-Windows, Pavlidis's 1982 classic has been modernized (in 1996) and expanded with exercises concentrating on interactive, event-driven programming.

References

Research Paper: Moving Beyond the Crossroads: Teachers as Agents for Change

Goals 2000: Initial Evaluation

Debra J. Dirksen
Metropolitan State College of Denver
Campus Box 87, PO Box 173362
Denver, CO 80217

Major Donald Tharp
United States Air Force
fantom4@aol.com

Key Words: Goals 2000, integrating technology, teacher training

Introduction
The following is an evaluation of a Goals 2000 project being carried out in a rural western school district. Project participants have embarked on a series of training modules designed to develop their skill with a variety of software applications and the integration of technology within the curriculum. Participants are receiving training and a new laptop computer with Windows® 95 for use in their respective jobs. Participants include administrators and classroom teachers.

An initial study was conducted in the fall to frame a benchmark for evaluating the success of the project in providing the teachers with the technical skills, knowledge, and motivation necessary to integrate technology within the curriculum effectively and efficiently. A follow-up evaluation was conducted the following spring. This is an ongoing project, so evaluations will continue to be conducted on a yearly basis.

Methodology
Six questions formed the focus of this evaluation:

1. What technology related skills do participants in the project already possess?
2. What concerns do participants currently have regarding the integration of technology within the curriculum?
3. How are teachers currently using technology within the classroom?
4. At what Level of Use are participants in their current use of technology and its integration within the curriculum?
5. What technology related skills are students currently acquiring through their teachers' use of technology within the curriculum?

"Connecting @ the Crossroads"
6. What is the perceived impact of current technology use by teachers on students?

Data collected to answer these questions were obtained through the use of interviews with, and questionnaires completed by, participants in the project. Initially, 23 project participants were interviewed and completed the questionnaires: 2 school board members, 4 elementary teachers, 10 secondary teachers, and 7 administrators. In the spring follow-up, 14 participants were interviewed and completed questionnaires: 6 elementary teachers, 7 secondary teachers, and 1 administrator. The group that participated in the initial evaluation was not included in the spring evaluation. We were not prepared at that time to do a comparison group based on training, across the group. The district was well represented in this project with an administrator and at least two teachers from each building being included. Participants included educators who were already well versed in technology and others who had limited experience with technology. Participants ranged from 23 to 57 years in age, with the average age of the participants being 43; 57% of the participants were female and 43% male. Teachers ranged from first-year teachers to those with 31 years of experience.

The Concerns-Based Adoption Model (CBAM), a model developed in the 1970s to assess, facilitate, and evaluate the change process, served as the basis for this study. CBAM provides a strong tool for evaluating implementation efficiently and effectively. The diagnostic components of CBAM are designed to evaluate the change and adoption process, attending not only to the technical problems associated with the adoption of an innovation, but also to the personal perceptions of the potential adopter.

The CBAM model includes three diagnostic dimensions: (1) Stages of Concern (SoC), (2) Levels of Use (LoU), and (3) an Innovation Configuration Map (ICM). The Stages of Concern questionnaire (SoCQ) and Levels of Use interview were used in this evaluation. The Stages of Concern questionnaire was used to assess the intensity of the feelings and perceptions that the participants held in relation to the integration of technology within the curriculum. (Alpha coefficients on the SoC questionnaire range from .64 to .83, and test-retest correlations range from .65 to .86.) The Levels of Use interview was used to assess where participants were in their current use of technology and its integration within the curriculum. (The LoU interview has a 98% correlation with observation.)

After completing the Stages of Concern questionnaire, participants were asked to respond to the open-ended question “What are your concerns about integrating technology into the classroom?” The question was used to clarify the concerns expressed by project participants.

In addition to these diagnostic procedures, participants were asked to complete two additional questionnaires: an impact survey and a self-assessment of their skills with computers and application software. The impact survey contained questions regarding the effect of current technology integration within the curriculum. The statements participants were asked to respond to addressed the quality of student work, learning behaviors, teaching with technology, communication with parents and students, interactive classroom organization, student technology skills, and student interaction. The purpose of the survey was to assess the participants’ perceptions of the effect that their current use of technology is having on student learning, the development of technology skills by students, student achievement, and teacher pedagogy.

The self-assessment contained specific questions regarding a variety of technology skills: computer operations, word processing, operating systems, spreadsheets, databases, computer graphics, desktop

National Educational Computing Conference 2000, Atlanta, GA
publishing, telecommunications, and multimedia. The self-assessment was used to assess the participants' current skill with these technology applications.

Data Analysis

The data collected from each of these assessments were analyzed using a combination of quantitative and qualitative methods. A comparison of means was used to analyze the scores obtained from the SoC questionnaire. The LoU interviews were scored using a rubric created by the developers of the Concerns-Based Adoption Model. A frequency count was used to analyze the responses to the impact questionnaire. Means calculated within each skill area were used to analyze the self-assessment. The data obtained from individual participants were compiled and comparisons made between their responses. Trends were identified and outliers explored in greater depth.

The information was also grouped according to the participants' roles in the district: administrator, elementary teacher (K–6), and secondary teacher (8–12). The data obtained from school board members were included with those obtained from the administrators, unless otherwise noted. The data obtained from the K–12 music teachers were included with those obtained from the secondary teachers.

Results

What technology related skills do participants in the project already possess?

The participants in this project, as a whole, have very limited technology skills. In the self-assessment questionnaire participants were asked to rate their ability—(1) no-knowledge, (2) limited knowledge, (3) some knowledge, (4) competent, and (5) expert—with the following technology skills: computer operations, word processing, operating systems, spreadsheets, databases, computer graphics, desktop publishing, telecommunications, and multimedia. Most participants rated themselves ranging from some knowledge to competent in response to the question “I know how to properly boot up, operate, and shut down the computer.” But, otherwise, skills were limited in most areas (see Figure 1).

Administrators rated their word processing, operating system, telecommunications, and spreadsheet knowledge between limited knowledge and some knowledge. Their strongest skill area (see Table 1), word processing (2.83), was rated as having some knowledge. The administrators rated their skill level closer to no-knowledge in the other skill areas: computer operations, databases, computer graphics, desktop publishing, and multimedia.

"Connecting @ the Crossroads"
Secondary teachers rated their level of ability in all skill areas between limited knowledge and competent. They rated their strongest skill areas (see Figure 1) between some knowledge and competent: word processing (3.34), operating systems (2.81), and spreadsheets (2.82). The secondary teachers rated their skill level closer to limited knowledge in the other skill areas: telecommunications, computer graphics, databases, desktop publishing, computer operations, and multimedia.

The elementary teachers rated their level of ability in spreadsheets, computer graphics, and operating systems between limited knowledge and some knowledge. They rated their word-processing skills as competent (2.89; see Figure 1). The elementary teachers rated their skill level closer to no-knowledge in the other skill areas: telecommunications, multimedia, desktop publishing, databases, and computer operations.

What concerns do participants currently have regarding the integration of technology within the curriculum?

Initially, administrators had high Informational concerns and high Collaboration concerns. The one administrator interviewed during the spring meeting demonstrated lower Informational concerns. Informational concerns focus on a general awareness about integrating technology within the curriculum and an interest in learning more detail about the integration of technology. Collaboration concerns focus on the coordination of activities related to the integration of technology with others. These concerns would seem to be appropriate for administrators. Board members had very much the same concerns.
Table 1. Technology Skills Self-Assessment Mean Ratings

<table>
<thead>
<tr>
<th>Skill</th>
<th>Administrator</th>
<th>Secondary</th>
<th>Elementary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Operations</td>
<td>1.37</td>
<td>1.95</td>
<td>1.04</td>
</tr>
<tr>
<td>Word Processing</td>
<td>2.83</td>
<td>3.34</td>
<td>2.89</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>2.14</td>
<td>2.81</td>
<td>2.00</td>
</tr>
<tr>
<td>Spreadsheets</td>
<td>1.85</td>
<td>2.82</td>
<td>2.28</td>
</tr>
<tr>
<td>Databases</td>
<td>1.46</td>
<td>2.25</td>
<td>1.35</td>
</tr>
<tr>
<td>Graphics</td>
<td>1.52</td>
<td>2.33</td>
<td>2.01</td>
</tr>
<tr>
<td>Desktop Publishing</td>
<td>1.45</td>
<td>2.05</td>
<td>1.37</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>1.96</td>
<td>2.39</td>
<td>1.57</td>
</tr>
<tr>
<td>Multimedia</td>
<td>1.18</td>
<td>1.93</td>
<td>1.38</td>
</tr>
</tbody>
</table>

In the initial group, the concerns of the elementary and secondary teachers were more extensive. Elementary teachers had high Informational and Collaboration concerns, but they also had high Personal concerns. High Personal concerns indicate that the individual is uncertain about the demands of integrating technology within the curriculum and the individual's ability to carry out the task. This could include concerns about the reward structure in place for this project, decision-making matters and how they are being carried out, and potential conflicts with other areas of the job. Informational concerns were still high in the spring, indicating that the problems identified, because of lack of information, in the fall had not been addressed. Management concerns were also beginning to peak among the participants, indicating the participants were beginning to be concerned about how they would manage the use of technology within their classrooms. Participants continued to express Collaboration concerns with an additional emphasis on Refocusing concerns. The participants seemed to have ideas for refocusing their efforts on options other than technology that would enhance learning in the classroom. The elevated Collaboration concerns would indicate that the participants continued in their concern with coordinating their efforts with those of other teachers in their buildings. This could be emphasized because the schools included within the study offer specific technology classes during the school day in which classroom teachers are expected to collaborate with a technology teacher.

In the initial study, the secondary teachers, on the other hand, had high Personal concerns, high Collaboration concerns, and high Refocusing concerns. They were concerned that technology have a positive effect and not a negative effect. They were also wondering whether technology really is a solution; are there other means of teaching that would be better than technology? The group interviewed in the spring exhibited these same concerns. The secondary teachers demonstrated elevated concerns across the board.

The process of change can be more successful if the "concerns" of the individual are considered. The concept of concerns, in this instance, includes the participant's feelings, preoccupation, thought, and consideration toward the integration of technology within the curriculum. The participants in this project have strong Personal concerns and strong Impact concerns. They want to know how this will affect how and what they teach. They also want to know the potential effect on student learning. In their view, there cannot be any continuous effect unless there is continued support for this project beyond this initial implementation. Without funding for additional hardware and software, the training the participants will be receiving in these

workshops will be of limited usefulness. Additionally, they would like for this opportunity to be afforded to other faculty members, and, in their view, without continued financial support this will not be possible.

Primary among the participants' concerns is the availability of technology, additional funding, time to implement integration projects, time to learn the necessary skills, and technical support. One participant expressed the concern that "the technology that we currently have is not being used to its fullest capacity." The reason given for this view focuses primarily on training of faculty and staff. Once they have training, the participants are concerned that they will not have the necessary hardware and software to adequately integrate technology within the curriculum. Characteristic of this uncertainty was the following statement: "At this point in time, I feel quite unprepared and untrained to do much integrating for my students. In addition, I don't believe we have adequate equipment to be able to do a first-rate job of integrating technology. So, my question is, will we be able to obtain the equipment needed if we decide to integrate?" In relation to time and technical support, the following quote characterizes the participants' concerns: "Time. I am concerned about trying something new and exciting then experiencing glitches beyond my control which will waste valuable learning time."

How are teachers currently using technology within the classroom?

Currently, there is very limited integration of technology within the curriculum. Most integration is limited to using technology as a resource tool. Among the administrators, technology is primarily used as an administrative tool for preparing memos and administrative reports. One of the administrators, however, actively searches for Internet sites and other resources for the teachers in his building.

The integration of technology within the curriculum by teachers seems to be limited, to a great extent, by the availability of up-to-date technology within their classrooms. Those with only one computer in their room use the computer primarily as a resource tool for preparing for their classes. Several teachers go somewhat further and find Internet sites to enhance their lessons—either at home or on the classroom computer, depending on their access to the Internet.

Those with access to more than one computer utilized a variety of models: word processing by students, drill and practice, and the generation of products by students. Those using the computer for word processing by students were primarily using the computer as a tool for students to type their final products: reports, poems, and stories. Several teachers used the computer as a workbook that would give immediate feedback, providing students with further practice by using drill and practice computer programs. Finally, a couple of teachers designed specific assignments in which the students used computer software and the Internet to do research and eventually develop a product on the computer. Teachers who go to the extent of having students create products on the computer hold the view that by using the computer as a generative learning tool students will develop their higher-order thinking skills. These teachers also had easy access to three or more computers.
At what Level of Use are participants in their current use of technology and its integration within the curriculum?

The Levels of Use construct provides a key ingredient for understanding and describing the implementation of an innovation. Levels of Use focuses on the behaviors that are or are not taking place in relation to the innovation. Typically a person will move in sequence from Level of Use 0, Non-Use, to Level of Use IVA, Routine, assuming that the innovation is appropriate, the leader and other change facilitators fulfill their roles, and time is provided. The first use of an innovation tends to be disjointed and erratic. Most new users cling to the users guide and concentrate on the day-to-day uses more than considering long-term uses. Hall and Hord indicate that individuals typically remain at the Mechanical level for an extended period of time. As the user becomes quite experienced, they move in to Level of Use IVA, Routine. Once users reach a Routine Level of Use they typically fall in to a comfortable pattern for using the innovation. As users move toward the higher Levels of Use—IVB, Refinement; V, Integration; and VI, Renewal—adaptations are intended to improve the effectiveness and positive outcomes from using the innovation. The focus is now on increasing effects with students.

The participants in this project ranged in their Levels of Use from that of a Non-User, orientation perspective, to that of a teacher who was working to integrate her use with that of other teachers in an effort to increase the effect of the integration of technology on her students.

The administrators were primarily at a Mechanical Level of Use, still working their way through the idea of integrating technology within the curriculum and developing their own skills to the point where they feel comfortable using the technology that is available to them. One administrator was at LoU IVA, Routine. The administrator was comfortable with his current use of technology and was not, at that time, looking to change how he was using the computer. His use of technology centered on administrative word-processing and using the Internet as a means for accessing the news. Another administrator was at LoU IVB, Refinement. This administrator spent a good share of time looking for resources, software, and Internet sites that would help teachers in his building increase the effect of technology on student learning.

The school board members who participated in this study were dichotomous in their use of technology. One board member was active in the use of technology as an administrative tool for business purposes. The other board member was a Non-User, preparing to learn how to use technology.

The secondary teachers ranged from a Non-User to teachers who had already reached a Routine Level of Use or who were refining their current use so that they could have a greater effect on their students. One of the secondary teachers actively uses the three computers available to her to teach the content to her students. She utilizes the Internet for student research, runs tutorial programs to help her students further develop their skills, and develops projects for the students to complete on the computers. Another teacher uses the nine computers available to him as a supporting piece for one of the units he teaches. When students use the computers it is primarily for the purpose of drill and practice or to complete spreadsheet exercises outlined in the text. Access to the computers is limited to keep students from playing games on the computers.

The elementary teachers ranged from a Non-User to one who was working with other teachers, collaboratively, in order to have a greater effect on her students. One of the elementary teachers used AlphaSmart®, to which her students have access, for students to type the final draft of their writing. The writing is then uploaded to the computer and printed out. This particular teacher is striving to learn all she

“Connecting @ the Crossroads”
can to increase the effect of technology on her students, including working with other teachers to enhance the
learning process. She is at an Integration Level of Use (V). But other elementary teachers were at a Mechanical
Level of Use (III).

What technology related skills are students currently acquiring through their teachers' use of technology within the curriculum?

A majority of the participants said that students were learning how to use computer application programs
because the teacher was integrating technology within the curriculum. When questions regarding the use of
application programs were framed in the statement "Because of my use of technology in the classroom," 74%
(71% spring) of the participants said that students could use a word-processing program and 70% (93% spring)
said that students could print their own documents. Only 52% (50% spring) of the participants said
that students could use a database. Fifty-seven percent of the participants said their students could use
HyperStudio® in the spring, compared with only 43% in the fall. The use of other application programs was
not perceived to be as strong (see Table 2).

<table>
<thead>
<tr>
<th>Application Program</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Processing</td>
<td>74%</td>
<td>71%</td>
</tr>
<tr>
<td>Print Documents</td>
<td>70%</td>
<td>93%</td>
</tr>
<tr>
<td>Databases</td>
<td>52%</td>
<td>50%</td>
</tr>
<tr>
<td>HyperStudio</td>
<td>43%</td>
<td>57%</td>
</tr>
<tr>
<td>Spreadsheets</td>
<td>39%</td>
<td>43%</td>
</tr>
<tr>
<td>PowerPoint®</td>
<td>17%</td>
<td>7%</td>
</tr>
</tbody>
</table>

What is the perceived impact of current technology use by teachers on students?

Participants were asked to respond to a variety of impacts that have been identified as being a result of
integrating technology within the curriculum. The initial group of participants in this project did not strongly
agree or agree with very many of the 76 phrases presented to them. Those interviewed in the spring
maintained a more positive attitude. This may be the result of a year's worth of work or a difference in
attitude promoted by the training provided. These phrases represented impacts on the quality of student
work, learning behaviors, interactive classroom organization, teaching with technology, student interaction,
and communication. Table 3 details those phrases in which more than 50% of the participants strongly
agreed or agreed with the statement. Each area covered by the impact survey is represented in Table 3.
Participants agreed with other statements included in the survey but not to the level identified in the table.
Table 3. Responses to Phrases Concerning the Use of Technology in the Classroom

<table>
<thead>
<tr>
<th>Because of my use of technology in the classroom:</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of Student Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students take more interest in learning.</td>
<td>48%</td>
<td>79%</td>
</tr>
<tr>
<td>Students stay focused on learning for longer periods of time.</td>
<td>39%</td>
<td>71%</td>
</tr>
<tr>
<td>Students demonstrate more independent learning.</td>
<td>70%</td>
<td>64%</td>
</tr>
<tr>
<td>Students use technology to support higher levels of learning.</td>
<td>48%</td>
<td>79%</td>
</tr>
<tr>
<td>Students are learning the content in greater breadth.</td>
<td>30%</td>
<td>79%</td>
</tr>
<tr>
<td>Students express interest in topics being studied.</td>
<td>52%</td>
<td>71%</td>
</tr>
<tr>
<td>Learning Behaviors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student work demonstrates more creativity.</td>
<td>48%</td>
<td>86%</td>
</tr>
<tr>
<td>The complexity of students’ work has increased.</td>
<td>43%</td>
<td>71%</td>
</tr>
<tr>
<td>Students express original thoughts related to classroom topics.</td>
<td>35%</td>
<td>71%</td>
</tr>
<tr>
<td>Students are adding relevant information to the classroom discussion.</td>
<td>39%</td>
<td>71%</td>
</tr>
<tr>
<td>Interactive Classroom Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I plan more hands-on and cooperative learning activity.</td>
<td>52%</td>
<td>43%</td>
</tr>
<tr>
<td>Technology has allowed me to increase the degree of student involvement.</td>
<td>52%</td>
<td>64%</td>
</tr>
<tr>
<td>Teaching with Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I have learned to use a new technology teaching tool.</td>
<td>52%</td>
<td>64%</td>
</tr>
<tr>
<td>The computer has become a learning tool in my classroom.</td>
<td>52%</td>
<td>71%</td>
</tr>
<tr>
<td>I have found that my enthusiasm for teaching has increased.</td>
<td>43%</td>
<td>71%</td>
</tr>
<tr>
<td>I am able to make content more relevant to students (real world).</td>
<td>65%</td>
<td>64%</td>
</tr>
<tr>
<td>I have greater access to outside resources.</td>
<td>70%</td>
<td>71%</td>
</tr>
<tr>
<td>I now allot more class time to hands-on learning activities.</td>
<td>48%</td>
<td>64%</td>
</tr>
<tr>
<td>I use the computer as a learning center in my classroom.</td>
<td>52%</td>
<td>57%</td>
</tr>
<tr>
<td>Technology has increased the reliability-validity of information available for me to use in instruction.</td>
<td>57%</td>
<td>57%</td>
</tr>
<tr>
<td>Student Interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students are encouraged to participate in peer tutoring.</td>
<td>48%</td>
<td>79%</td>
</tr>
<tr>
<td>I use my students as a resource for working with the computer.</td>
<td>65%</td>
<td>64%</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I communicate personally with other teachers at my school more.</td>
<td>52%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Summary

The participants in this project have limited technology skills, and the integration of technology within the curriculum is not happening, except on a very limited basis. The majority of the integration techniques that are being used have the possibility of a very limited effect on student learning and on how students are being taught. Hence, the participants have a very limited view as to the effect that technology is having on their teaching and their students. Only a few teachers are currently striving to make technology an integral part of
student learning by having students use the computer as a generative learning tool, creating real-world products and participating in real-world simulations.

The administrators participating in the project have limited technology skills and are only at a Mechanical Level of Use with the skills that they do possess. The secondary teachers possess greater skill with the technology but their use is limited. They are primarily using the computer as a resource, and that, at a Mechanical Level of Use. Elementary teachers have a limited skill with the technology but are striving to use the technology for more than a resource. They are limited, however, in their use, beyond students doing word processing, by their lack of knowledge and lack of access to technology.

Of greatest consequence are the concerns expressed by the participants. Many of the participants feel that they are being pressured by the administration to change computer operating platforms. This has proven to be a major block in the dissemination of the project. This was discussed after the interviews conducted in the fall, and it continues to be a block. The Information concerns of the participants have not been addressed. Participants need and want to be informed about the greater picture of this project. They want to know where the project is going. Is the long-term support available so that this project can continue? Are funds available to purchase the hardware and software necessary to effectively and efficiently integrate technology within the curriculum? Will technical support be available? Will training continue? These Personal concerns could greatly interfere with the participants’ ability to take full advantage of this project. Their questions need to be answered.

Recommendations

Following are a series of recommendations made based upon our conversations with the project participants. Many of the participants had unanswered questions and unanswered concerns. All of these are potential roadblocks to the success of this project.

1. We recommend that an informal meeting be held with the educators participating in this project. At this meeting the following issues need to be discussed:
 • What is the "phase-in" approach for this project?
 • What are the plans for expansion? Who is getting what? When? What are the plans for continued funding support by the district?
 • Where is this project going?
 • What is the time line for training? What will be taught?
 • How will the participants know when they are finished with training?
 • Integration training? When, where, how?

2. Share the vision with the participants. Allow time for teachers who are currently integrating technology within the curriculum to share some of the activities they do with their students. Either provide time in a meeting for a group “show and tell” or, better yet, provide teachers release time to actually visit classrooms that are currently integrating technology.

3. Address the platform issue. There seems to be quite a bit of strife over the mandated shift from Macintosh® computers to Windows-based computers. A compromise needs to be reached. Perhaps the model that has been implemented in Glendo could be followed. All Macintosh computers have been moved to the middle school and the new PCs are going in to the high school. It is very possible to run Macs and PCs on the same server—Novel and NT both allow this and it is not too difficult.
4. Address "access" concerns — all the training in the world is of no use if there are not computers for the teachers to use, with students, once they have gained the skills.

5. Provide integration training on how to work within the realm of the one-computer classroom.

6. Gain further community support by informing parents about the project that is being implemented.
Research Paper: Connecting Technology to Teaching and Learning

eEducation: Interdisciplinary Crossroads

Kathleen S. Micken
Roger Williams University
Gabelli School of Business
1 Old Ferry Road
Bristol, RI 02809
401.254.3139
ksm@alpha.rwu.edu

Alan C. Cutting
Roger Williams University
Gabelli School of Business
1 Old Ferry Road
Bristol, RI 02809
401.254.3139
alc@alpha.rwu.edu

Key Words: constructivism, constructionism, Web, Internet, Papert, interdisciplinary, active learning, group learning

The world of e-business is percolating so far up into every field, said General Motors Vice President and CIO Ralph Szygenda, that he expects every graduate that walks into his office looking for a job to have e-commerce knowledge—both about the nuts and bolts of the technology and the business understanding to go along with it. (Vaas, 1999, p. 69)

Introduction

It is 1974. Ohio State University has just published *Making Toys through Teamwork*. As fifth- and sixth-grade students manage their toy companies, they not only learn the techniques of wood construction and mass production but also inductively develop an understanding of marketing principles.

It is 1980. Seymour Papert polishes his final draft of *Mindstorms*, advocating a constructionist approach to education, in which learners construct knowledge by solving reality-based problems, exploring the limits of their own understanding.

It is 1990. Tim Berners-Lee prepares to introduce the world to the World Wide Web, an event that inadvertently begins to rewrite the rules of how marketers interact with their customers.

It is February 1999, and the confluence of these three events is about to change the way students at a small New England college think about marketing, technology, and their role in enterprise.
This paper presents the framework we used in implementing Marketing on the Web, an interdisciplinary course that integrates marketing and technology strategies. We have grounded our approach in cognitive psychology (Piaget, 1967, 1970; Rumelhart & Norman, 1978) and in constructionist theory (Papert, 1980, 1993, 1996). While we have applied the framework at the undergraduate college level, it may profitably be adapted to other levels, primary through graduate.

The course is co-taught by two faculty: one from computer information systems (CIS) and one from marketing. It is designed to provide a unique opportunity for students to build on and integrate the concepts and skills acquired in prior semesters. It affords students an opportunity not only to expand and extend their Web development skills but also to understand that they must be applied in a directed manner if they are to be of value in solving business problems. Marketing concepts come alive as students, no longer constrained to studying theory and analyzing the work of others, become active participants. Experimenting, creating, revising, discussing, publishing, and reflecting on works of their own, they understand theory through action and experience the business value of technology through its application. In an environment made possible only through an interdisciplinary approach students are getting an eEducation.

Conceptual Foundation

In 1980 Seymour Papert championed the superiority of "learning by doing" in Mindstorms: Children, Computers and Powerful Ideas, which laid out a conceptual framework for how computers could be used in education. He termed his approach constructionism. These ideas were later expanded in The Children's Machine (1993) and The Connected Family (1996). Papert's thesis is that "old" ways of learning were artifices of the available technology—books, teachers to lecture, paper, and pencils. Computers, he suggests, allow people to learn in a more innate fashion. He argues that this internally driven learning, in which people learn "what they need to know in order to carry things out," is a superior educational process. Following this model, the role of the teacher is to create the conditions for discovery rather than to provide ready-made knowledge (Papert, 1996, p. 45).

Papert articulated the concept in a 1983 speech in which he draws a distinction between teaching and learning.

Teaching denotes a kind of fluidic theory of learning in which litres of knowledge fluid are transferred from the teacher vessel to a student vessel. We have this notion of the student being filled up from the wise container known as the teacher. I always like the [term] learning because learning denotes the process that is happening in the learner. I think what we really want to happen in education is to get that process energized and going because then the learners can function as they must for most of their life without depending on an explicit teacher. (Harper, 1989, p. 62)

Active learning is the hallmark of Papert's constructivist theory. His basic insight on the potential of active learning is the principle behind the phenomenon observed by Ohio State a quarter of a century ago as well as the one we employ in Marketing on the Web. As students do marketing they learn marketing. Active learning has been a recognized educational goal within the educational community for some time. Teachers have tried various approaches to experiential learning in the university classroom including the use of creative questioning techniques (Hallgren, 1982), data collection and analysis projects (McCorkle, Denny, Diriker, & Alexander, 1992), participatory examinations (Graham, Graham, & Whiting, 1997), as well as case analyses and research projects. While these are effective improvements to a straight lecture/discussion format, none provides the constructivist learning environment advocated by Papert.
Instructional Strategy

Papert’s model was based largely on the work of Jean Piaget (Harper, 1989), who coined the phrase, “to understand is to invent” (Papert, 1996). Piaget advocated an environment that stimulates the learner to build his/her own intellectual structures through planning, estimation, interaction, experience, revision, and extension (Watts, 1989).

Papert’s and Piaget’s ideas have been extended by other researchers interested in learning and curriculum design. Two are of particular interest for this paper. Marzano (1992) employed constructivism as a basis for developing curriculum planning principles, which he termed “dimensions of learning.” Reid, Forrestal, and Cook (1989) were interested in articulating the phases of successful collaborative learning projects. Table 1 presents these approaches side by side. We found that patterning our course around the five instructional principles suggested by Marzano and Reid et al. does indeed create an effective active learning environment. Further, the interdisciplinary nature of the course significantly promotes the constructivist goal of allowing students to create their own knowledge structures. The following five sections provide the explanations.

Table 1. Constructivist Theory and Two Applications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attitudes and Perceptions About Learning (Motivation)</td>
<td>Engagement</td>
</tr>
<tr>
<td>Planning and Estimation</td>
<td>Acquiring and Integrating Knowledge</td>
<td>Exploration</td>
</tr>
<tr>
<td>Interaction</td>
<td>Extending and Refining Knowledge</td>
<td>Transformation</td>
</tr>
<tr>
<td>Experience</td>
<td>Using Knowledge Meaningfully</td>
<td>Presentation</td>
</tr>
<tr>
<td>Revision and Extension</td>
<td>Productive Habits of Mind</td>
<td>Reflection</td>
</tr>
</tbody>
</table>

Motivation: The Engagement Phase

When the consumer looks at a Web page or a banner, the information that is presented there is processed by the human mind in several separate stages. Each of these stages is like a gateway. If the information does not make it past a stage, it is lost and the consumer has not been impacted by it… (Hofacker, 2000, p. 47)

As any teacher can attest, the perception process (previously outlined by Hofacker) employed by marketers and communication experts applies equally well to the learning process. Exposing students to a problem is not enough; you also have to get their attention. For students to engage in active learning they must be inspired to solve a problem—ideally they should be absorbed by it. Students may view problems as engaging because they are novel, difficult, paradoxical, relevant, and the like. The opportunity to display their results on a Web page may in itself provide the required motivation (Abita, 1999; Batty-Hotz, 1999). But not everyone finds the same problems compelling. How does one choose problems that will appeal to each member of an entire class?

The importance of presenting authentic, relevant problems has been emphasized by teachers across specific subject areas including computer applications (Lowther, 1999), writing (Romano & Romano, 1999), science,
and business (Joyner & Pedersen, 1998), as well as in the general curriculum (Norton, 1999; Williams & Merideth, 1997). Following the Piagetian model, we would add that allocating some portion of the problem domain to the students themselves greatly enhances the probability of each student finding a problem compelling. We recently gave students in Marketing on the Web the task of developing a Web site for a small candy producer. One group centered on the sexy, romantic image associated with the exchange of candy, while another focused on the stereotypical busy executive whose main concern is minimizing the time required to schedule the reliable delivery of candy for special occasions. Both groups presented their problem statement with zeal. Each had taken ownership of a problem it wanted to solve.

It is worth noting that students, for the most part, do not seek out easy problems. As Papert points out, "Most dislike of school work comes from finding it boring, the exact opposite of finding it too difficult. Children, like everyone else, don't want 'easy'-they want 'challenging' and 'interesting'-and this implies 'hard' (Papert, 1996, p. 52; emphasis in the original).

A side effect of giving students the freedom to explore the problem space is that they regularly bring fresh perspectives to the subject. We often found ourselves thinking, "Wow, how'd she think of that... I couldn't do that!" Why couldn't we? Probably because we are too familiar with the subject. If you want to know about pebbles ask a two-year-old. To us they're gravel—to a two-year-old they're fascinating.

Acquiring and Integrating Knowledge: The Exploration Phase

Having explored the problem domain students begin to explore the solution space. To select a solution strategy they need information. Students also need to consider how a decision made in one area will affect other areas. If they design the site to enable direct sales, for example, what technological requirements does that decision entail? What effect will it have on their dealer network? Is the company equipped to handle direct orders, returns, and billing? Knowledge becomes active. Students seek out the information they need to solve the problem they defined.

In this exploration phase the value of an interdisciplinary course is most conspicuous. To be successful, students have to think beyond their current perspectives to incorporate new ones. Students are asked to refocus, to view a business problem from a new, broader enterprise perspective. CIS majors add marketing insights to their technological expertise; marketing majors learn to incorporate technology strategies in to their planning procedures. This process is difficult. Students have to make the conscious effort to create cognitive space for the new material. If accomplished successfully, the end result is a more sophisticated perspective. As Anderson suggests, "Schema change is the 'sine qua non' of the acquisition of knowledge as opposed to the mere aggregation of information" (1977, p. 430). Put more prosaically, the student now begins to see the elephant, not just the trunk (or the foot, or the tail...).

Extending and Refining Knowledge: The Transformation Phase

As students begin to design their Web sites, controlled environments with which customers interact, they must transform their knowledge and theories into reality. Following the Piagetian model, the best place for this transformation to take place is an intellectual playground, a responsive learning environment they can explore and extend. The microworld of a Web site provides this environment. It furnishes a set of primitives (text, graphics, sounds, data, bandwidth) and a set of constructs for organizing and acting on those primitives (hypertext markup language [HTML], pages, tables, frames, hypertext links, animations, forms). To this we add a set of marketing constructs. Students use these elements to create (invent) environments uniquely their own. Their creations reflect the goals they have established for their sites and their own
individual styles in reaching those goals. Their success depends largely on the interplay between CIS and marketing concepts. Students constantly have to ask themselves questions such as "What other techniques and technologies might we use in constructing this Web site?" and "How will the target market react to a site that requires them first to download and install a Shockwave Plug-In?"

Throughout the course each Web site is always a work in progress. As students are exposed to new concepts and techniques they revise and extend their world to incorporate the new elements now at their disposal, thereby completing the constructivist loop. Feedback is ultimately provided at several levels. In this phase it is provided by the Web directly to the individual or group developing the site—does the site look and behave the way the student wants it to?

Using Knowledge Meaningfully: The Presentation Phase

Students are now ready to test their knowledge with a wider audience. As every teacher knows, we never learn a subject quite so well as when we have to explain it to someone else (Papert, 1993, p. 162). This same principle applies in a constructivist classroom. Students not only need to expand, modify, and build their knowledge structures, but they also have to be able to communicate that knowledge.

We facilitate this process by developing a critical ethic in the class, providing a second level of feedback. Beginning with the first week of classes, students critique each other's work orally. To discuss and comment on the effectiveness of their work, students must reflect on the criteria and standards of good marketing and good Web design. What is the apparent target market for the site? Does the intended message agree with the apparent one? Do animated GIFs enhance or detract from the site's purpose?

A third level of feedback comes from the instructors. We function as coaches, suggesting other areas the team may want to consider and helping students with difficult concepts. As much as possible, however, we try to avoid what Papert (1993) refers to as the intolerant insistence on "right" answers. Instead of pushing students to get it "exactly right" the first time, we adopted Papert's approach of helping students get it "vaguely right," so that there is room for them to redirect their efforts. The microworld of a Web site greatly facilitates this process. Students can easily try out different approaches, make changes and alterations—even completely change directions—in response to their own ideas and the critiques of classmates.

Productive Habits of Mind: The Reflection Phase

The constructivist philosophy is attractive because it engenders learning independence in students. As they take responsibility for their own education, they are also developing what Marzano refers to as productive habits of mind, mental processes that should stay with them throughout their lives, processes such as critical-thinking skills, an appreciation for learning strategies, and team skills.

The interdisciplinary nature of Marketing on the Web naturally leads to an environment that promotes the development of these processes. Reid et al. (1989) suggest that successful collaborative learning assignments must be complex enough so that a group with multiple perspectives and multiple knowledge sets is perceived to be better equipped to solve the problem than a group without these resources. A complex interdisciplinary problem would be of little value, however, if we were to allow the formation of homogeneous teams. Scholars have long known that heterogeneous groups render higher-quality decisions than homogeneous groups do (Fisher, 1980; Jensen & Chilberg, 1991). A diverse group brings different perspectives to bear on an issue. If group members are motivated to express their ideas and to listen to others, the result is a fuller consideration of a problem's complexities and alternative resolutions. We engender cross-fertilization by purposely
balancing team membership so that neither CIS nor marketing majors dominate. Additionally, requiring that non-CIS majors explain the technology strategy and that CIS majors explain the marketing strategy during class presentations and critiques further engenders the exploration of alternative schema.

The complex interdisciplinary problem environment also fosters an appreciation for learning about learning. Success depends largely on the ability of each group member to assimilate the concepts and techniques of the "foreign" discipline. Much as a child with the latest video game wants to be the first on the block to master it, groups that find efficient means of cross-fertilization are the first to bear fruit. It is not that they are having so much fun that they don't know they are learning. Rather they see learning as a desirable goal and look for better ways to accomplish it.

We would also submit that an interdisciplinary course by its very nature adds an important collaborative layer: the interplay between the disciplines—in this instance marketing and CIS—which is personified by the collaboration between the instructors. We have found it helpful, for example, for the CIS professor to express the importance of supporting a Web site's development strategy with good marketing theory. CIS students seem to perceive his admonition not to overdo the whiz-bang of technology as more valid than when the same comment comes from the marketing professor.

The Obvious Question

At this point, the reader may be thinking, "If I divert class time to teach Web development (marketing), won't I have to cut out some of the marketing (Web development) content I cover?" There are two problems with this line of thinking. First, it assumes that marketing and computer information systems are separate and distinct disciplines. In the real world of enterprise development there is considerable overlap. The second problem, while less obvious, is just as important. It relates to the economic theory of roundabout production proposed by Böhm-Bawerk (1932) and Richard Ely (1902)—if your economics class had been constructivist-based you'd remember them!

Consider two tailors in the 1850s, about the time of Elias Howe, A. B. Wilson, and Isaac Singer. One decides to forego some current production and invest time and resources in one of those newfangled sewing machines (roundabout production); the other doesn't. The tailors quickly discover that he who invests in and applies the best tools wins. As the chair of the Utah Strategic Planning Commission observed in 1988, "Throughout history, every significant increase in human productivity has involved the better use of tools" (Thomas & Knezek, 1995).

Does this principle apply to education as well as economics? There is evidence that it does. Cutting (1990) provides an apt example. He was teaching Prolog programming to undergraduates who had no prior computer experience. To do useful work with Prolog, students had to understand the concept of recursion. Recursion is a difficult concept and a significant number of students were unable to master it in the allotted time. While Prolog relies on recursive techniques, it is not a particularly good tool for teaching them. Logo, on the other hand, is an excellent tool for teaching recursion. Cutting found that students who first learned Logo, followed by Prolog, were able to do more with Prolog than students who spent comparable total time on Prolog alone. By investing time to learn Logo he was able to cover more material, not less.

We suggest that the same principle applies to integrating Web development with marketing. Marketing provides a context-rich environment ideal for understanding how Web development theory and techniques can be applied in a business setting. Rather than simply developing a "cool" Web site, students develop an
appreciation for how technological expertise can add value to an organization’s marketing strategy. Each discipline serves as an effective tool for understanding the other.

Conclusion

John Dewey (1916) once said that the goal of education is not just to acquire information, but to be able to apply it. His thoughts echo almost a century later in the comments of General Motors Vice President and CIO Ralph Szygenda in our introductory quotation. We suggest that if Dewey were alive today, he would very much favor an interdisciplinary eEducation.

An environment that motivates students to take an active role in the learning process, allows them to apply their newfound knowledge to real problems, and encourages them to push the limits of their understanding certainly is one that enhances education. Ohio State discovered this truth a quarter of a century ago with its Making Toys through Teamwork curriculum. Seymour Papert championed the idea almost 20 years ago. A decade ago Tim Berners-Lee developed a revolutionary new system for the exchange of information throughout the scientific community. In the process, he gave us not only a new medium for marketing but also a new environment, a technological playground for marketing theory, which makes it possible for us to realize Dewey’s dream and meet Szygenda’s expectations.

We are not alone in promoting the benefits of incorporating the Internet in to the classroom. What is different about our approach, however, is its interdisciplinary focus in which the technology is more than just a tool. Students learn the importance of developing a technology strategy consonant with an organization’s marketing strategy.

Areas for Further Research

A course of this type has advantages beyond reinforcing, extending, and integrating concepts acquired in previous classes. Interdisciplinary courses would seem to be effective vehicles for introducing students to those topics as well. If true understanding comes from building complex intellectual structures with associative links among concepts, then students would benefit from being introduced to this process early in their educational careers. As with other learning environments based on constructionism, a course such as this one could be taught at a wide range of grade levels, from secondary school through college. Virginia’s Make It Your Business curriculum for Grades 6–9 (Guide to Marketing Course Competencies, 1996) is one example. It appears to us that integrated courses could target Areas 3 (Conducting a Needs Assessment), 4 (Planning the Product or Service), and 5 (Preparing a Marketing Strategy) of that program. Would it fit in your curriculum as well? We would appreciate feedback …

Note

1 Papert invented the term constructionism to distinguish his concept from that of Piaget. He says that “The name constructionism derives from an alternative model, according to which the learner has to construct knowledge afresh every time” (Papert, 1996, p. 45). He also notes that “my word will evoke the term constructivism, whose contemporary educational use is most commonly referred back to Piaget’s doctrine that knowledge simply cannot be ‘transmitted’ or ‘conveyed ready made’ to another person” (Papert, 1993, p. 142).
References

Vaas, L. (1999, October 11). University of IT. *PC Week,* pp. 69, 70, 75.

“Connecting @ the Crossroads”
Research Paper: Connecting Technology to Teaching and Learning

Web-Based Extended Learning through Discussion Forums

Mary Jo Parker
Headmaster, Academy for Science and Health Professions
Conroe ISD
Conroe, TX 77304
parker83@earthlink.net, maparker@conroe.isd.tenet.edu

Key Words: Web-based interactive learning, Internet, intranet, shared learning, discussion board

Introduction and Rationale

As the intranet/Internet is introduced into the learning environment of the classroom today, the effects of this technological environment must begin to be studied. Technology offers an opportunity to affect and monitor academic behaviors such as problem-solving ability and metacognitive reflection. However, what evidence can be found that speaks to the effectiveness of the use of such learning places? Can a model for visualizing any level of effectiveness be generated for such environments?

As technology creates a virtual classroom environment as it moves to a Web-based space, questions arise regarding the effectiveness of such geographically unrestricted, collaborative problem-solving places (Jacobsen & Levin, 1993). Collaborative designs such as these become possible when the learning environment is placed within a Web of computers, thereby facilitating and encouraging access by many to a shared intranet/Internet Web-place.

As students use the collaborative capabilities of a networked intranet learning environment, thinking about their own thinking evolves, thereby increasing the opportunity to clarify misconceptions of knowledge, procedural or declarative. The science classroom presents one opportunity to study the effects of a shared intranet environment on student problem-solving ability and metacognitive reflection skills through shared contextualization. Field study data collection, posting, and discussion create a context, or anchor (Brown et al., 1989), for this virtual learning environment based on real, concrete information.

Questions Researched

As part of a secondary research question, an evaluative analysis of the CourseInfo software (Blackboard, Inc., 1998) was undertaken. The tracking capabilities of the CourseInfo software were evaluated through measurement of (1) the number of log-ons to the threaded discussion Web page, (2) the number of threaded statements, (3) the number of threaded dialogue statements of response to other student statements, and (4) the number of threaded dialogue statements of response to teacher statements.
Analysis of tracked user movement within the shared Web-based environment was investigated as one possible model of evaluating learner academic behaviors within, and as a result of, Web-based environments. While further analysis is needed, results of this study support tracking user movement as an avenue of quantifying the effectiveness of Web-based learning initiatives.

Study Background

Subjects

Subjects for this study were first-time 9th- and 10th-grade biology students from three public education high schools in the Conroe ISD within Conroe, Texas. The sample (n) contained 78 students of the 1,400 students enrolled in Biology I courses. Two classes from each school were selected and randomly assigned to a control class and a treatment class. Selected campuses operated on an A-B, 90-minute class alternating block schedule.

Technology

Participants assigned to treatment groups received access to technology. This technology included Macintosh® platform computers. Scanners, digital cameras, Internet connections, and laser printers rounded out the technology utilized by the treatment groups. Software access included Apple® QuickTake® PhotoNow software, HP® scanning software, Microsoft® Office, Netscape Navigator® Gold 3.0, and Inspiration® 4.0.

Ecology Curriculum

Teachers at selected campuses received an Adopt-a-Ditch ecology curriculum (Stone & Myers, 1994). This modified curriculum provided the context for the Web-based learning environment. Training for all curriculum lessons, the LaMotte Freshwater Testing Kits, and the Web-based database was provided. Spontaneously generated forum topics were noted as the researcher analyzed collected data within the Web-based learning environment.

Teacher Training

Technology training consisted of instruction and practice in using the CourseInfo intranet simulation software (Blackboard, Inc., 1998), uploading and downloading Inspiration files through the Internet, using a digital camera and downloading images, working with Excel spreadsheets and graphics, and using the discussion forum environment.

Software Background

A secondary intent of this study was to provide evaluative discussion of the software product used to create the shared learning environment. As this newly developed distance education software product was in the process of being piloted by a variety of institutions and research programs, permission for its use as part of this study was obtained (from Blackboard, Inc.). Agreements between the author and software developers included evaluative information resulting from use of the product, taking into consideration the constraints of its application within the nature of the study. Results addressing the secondary research question focused
on an examination of tracked user movement findings, discussion forum findings, and difficulties experienced during use of the software product.

One caveat exists as a part of answering this secondary research question. It is imperative to remember that this section’s evaluative basis remains the by-product of this particular study. As many other piloted uses of this product have occurred, or are presently ongoing, this author suggests that additional review of other evaluative efforts be examined should any future use of the product be initiated.

Further, it must be noted that use of the product within this study represents a model whereby security access was granted to all subjects within the study. This type of widespread access is not the usual mode of access suggested by the developers. However, this approach was utilized to create a more constructivist (Jonassen, 1996), shared environment given the nature of the software product. Therefore, review of the secondary research question findings should occur with forethought of these caveats. Future users of this software product should consider the type of learning environment they envision, as well as the learning philosophy underpinning that environment, as this study’s findings of the software are taken into account.

Software Capabilities within the Model of Study

Tracked User Movement

CourseInfo software provides a database of user movement patterns once entry in to the Web site occurs (see Figure 1). Analysis of recorded user movement can be obtained for a variety of statistical views of user movement.

These statistical views were made available through the CourseSite Stats option accessible with a security password through the control panel. Views (analyses) available include: (1) traffic hits for the entire course site; (2) traffic hits by each page within the course site (see Figure 2); (3) traffic hits by date; (4) traffic hits by time and by links (see Figure 3); (5) traffic hits by countries, visitors, and browsers; and (6) filtering the preceding information by server domain.
As a part of the study, tracked user movement generated information related to several aspects of user movement. Repeated visits (interpreted as level of traffic) can be connected to user preferences related to Web-page function, design, or information. The total number of hits can indicate to some degree user time within the shared learning environment in general. Evaluating which pages were accessed during the study could indicate depth and type of use of the shared environment. Use of help pages within the shared environment could imply use in a self-sufficient way. Finally, tracked use of the discussion board provided information as to the development of the entire study group, the collaborative extent of the group, and student-initiated discussion. Tracked user movement, identified movement by page title, and number of traffic hits, as well as percentages, were summarized (see Figure 4).

Analysis of user movement by page indicated entrance into the shared environment through the main page. The Course Documents page was used with the most frequency (13.3%) after entering the shared environment. This page provided the storage location for uploaded files (graphs, images, and documents) for all participants. All files accessed through this page by any participant were viewed or downloaded. Use of the
Assignments page incurred 9.8% of the hits. This page held sample files and user instructions for the various activity demands of the ecology curriculum. The limited use of this page simulated the nature of FAQs pages in other Web sites, that is, it remained relatively unused. The third most frequented page within the Web site was the student Tools page, at 11.9%, indicating that help pages entitled Tools seem to be more frequently accessed by novice users than pages titled in other ways.

An analysis of user movement by date was undertaken as an indicator of the overall use of the shared environment. Table 1 contains a use-by-date display of user movement within the Web site. Examination of use-by-date hits, filtered through server domain, provides evidence of the site's extension of interactivity between time and the users. At first glance an appearance of minimal use might be seen in the small number of hits and the low percentages. However, closer examination indicates that in an A-B block schedule hits were recorded for each day of the school week. This looms important as it suggests that in some way students gained access to the shared Web-based environment during days when no science class was scheduled.

Discussion Forum Findings

Analysis of the use of the shared environment's discussion board revealed much about the amount of time spent using a shared discussion place as well as about other previous discussion forum experiences within the classroom. Extrapolation of the number of hits associated with accessing the discussion board provided evidence of minimal use of this type of environment and technology, suggested a lack of previous exposure to the electronic sharing of ideas and information, and detected technical issues as the most pressing and reported discussion topics. The following sections address these extrapolations.
Table 1. Analysis of User Movement by Date of Use for the Duration of Study

<table>
<thead>
<tr>
<th>Date of Use</th>
<th>Day of the Month</th>
<th>Scheduled Study Dates</th>
<th>Hits</th>
<th>Percentage of Hits (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-4-98</td>
<td>Monday</td>
<td>+</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>5-5-98</td>
<td>Tuesday</td>
<td></td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>5-6-98</td>
<td>Wednesday</td>
<td>+</td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>5-7-98</td>
<td>Thursday</td>
<td></td>
<td>8</td>
<td>2.8</td>
</tr>
<tr>
<td>5-8-98</td>
<td>Friday</td>
<td>+</td>
<td>103</td>
<td>39.2</td>
</tr>
<tr>
<td>5-11-98</td>
<td>Monday</td>
<td></td>
<td>70</td>
<td>24.7</td>
</tr>
<tr>
<td>5-12-98</td>
<td>Tuesday</td>
<td>+</td>
<td>16</td>
<td>5.7</td>
</tr>
<tr>
<td>5-13-98</td>
<td>Wednesday</td>
<td></td>
<td>27</td>
<td>9.5</td>
</tr>
<tr>
<td>5-14-98</td>
<td>Thursday</td>
<td>+</td>
<td>25</td>
<td>8.8</td>
</tr>
<tr>
<td>5-15-98</td>
<td>Friday</td>
<td></td>
<td>16</td>
<td>5.7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>283*</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: The * denotes the number of hits remaining after discounting the number of hits recorded by the dissertation's author while monitoring the site.

Use of the shared discussion board

Originally, a total count of discussion threads posted by the author of the study was determined. Sixteen threads were initially established as "starters" for each of the activities in the ecology curriculum guide. The use of starter threads potentially enabled moderation and enumeration of topics by the author or by each campus teacher. A count of the number of discussion responses indicated very little activity within the shared discussion board. Minimal new discussion threads were originated through the duration of the study. The lack of discussion threads or responses seemed surprisingly low considering that each curriculum activity included responses to the discussion board topics as indicated in each activity directions. Analysis of discussion threads and responses suggested little time of use within the forum opportunity of the site. Only five new discussion threads were recorded over the duration of the study. Of the new threads recorded only one came from a student. Efforts to understand this lack of activity brought focus to the nature of the discussion threads or response messages actually recorded within the discussion forum.

Nature of the discussion forum threads and responses

A review of the content of the discussion threads created by teachers and students indicated their experiences with technical difficulties associated with some aspect of the various technologies involved in the study. Primarily, use of the uploading and downloading capabilities presented time-consuming difficulties as apparent in the number of discussion threads and responses made by teachers and the one student discussion response dealing with this aspect of the study. Additionally, qualitative analysis of the dissertation author's discussion responses suggests frustrations and needed help on the part of the writers of the responses. In some instances the discussion thread titles indicated the degree of technical problems being experienced: "Feeling Frustrated-Punch Here," "Need Directions," or "Need Directions too."

An analysis of the dates of the forum threads and responses provides additional evidence of the minimal use of the discussion forum as well as potential reasons for this lack of use. The dates of teacher and student discussion threads and responses seemed to indicate initial use occurred late in the study and did not follow the curriculum guide of activities. Table 2 summarizes discussion threads and responses by date.

299
Table 2 seems to suggest that the teachers, at least, were beginning to try to use the forum as a place to share difficulties as well as a place for seeking help. When dissertation author discussion threads and responses were analyzed, all appeared to address technical issues inherent in the software or in the computer platform providing technology capabilities.

Table 2. Summary of Discussion Threads and Responses by Date

<table>
<thead>
<tr>
<th>Discussion Thread Titles</th>
<th>Date</th>
<th>Respondent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Discussion</td>
<td>May 1</td>
<td>Teacher</td>
</tr>
<tr>
<td>Test Run</td>
<td>May 1</td>
<td>Teacher</td>
</tr>
<tr>
<td>Feeling Frustrated-Punch Here</td>
<td>May 8</td>
<td>Teacher</td>
</tr>
<tr>
<td>Need Directions</td>
<td>May 11</td>
<td>Student</td>
</tr>
<tr>
<td>Need Directions too</td>
<td>May 11</td>
<td>Teacher</td>
</tr>
<tr>
<td>Discussion Response Titles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re: Ditch Site Locations</td>
<td>May 5</td>
<td>Teacher</td>
</tr>
</tbody>
</table>

Difficulties Experienced Using CourseInfo Software

Examination of uploaded files and discussion forum transcripts provided evidence of a variety of difficulties experienced with the piloted software. These difficulties seemed to cluster around novice user levels of the participants, computer platform inconsistencies, and software security issues.

When an initial survey of all uploads into the CourseInfo ditch ecology site was performed, upload attempts provided evidence that use of the site by students was high. However, this same information suggested that the on-site help pages and on-hand training documents had not been accessed during initial uploads, as many attempts to upload were to incorrect locations.

Once user uploads were found, attempts to open and view each was made. This was initially undertaken by the dissertation author to ensure the viewability of the data. Computer platform issues came into evidence during this phase for all campus users. All campus users operated Macintosh platforms that automatically upload files with no preassigned file extension added to the file name. PC platforms and software automatically preassign the file type extension to a file name, thereby enabling identification of the file type. This became critical within the CourseInfo environment as each uploaded file, when opened, launched a copy of the application needed for readability. The lack of automatic assignment of file type extensions as a result of Macintosh platform use caused initial uploads by each campus to be unreadable. This issue created multiple upload attempts of the same data and high frustration levels among the users uploading.

Summary

The secondary research question attempts to identify academic behaviors that can be tracked within a shared Web-based learning environment such as that offered by the piloted CourseInfo software. Identifying user movement patterns in Web-based environments and discussion forum patterns as well as attempting to ascribe meaning to these movement patterns by connecting these movements to academic problem-solving and metacognitive reflection offers much potential for understanding these new learning environments. Connecting meaning to these movement trends within the context of the shared Web-based environment may be the most interesting, potentially meaningful aspect of this study.

"Connecting @ the Crossroads"
As shared Web-based learning environments within secondary classrooms experience rising use, models focused on understanding the critical elements of effectiveness of these environments seem necessary, rather than novel. Tracking user movement and discussion forum patterns offers a potential way of documenting and quantifying learner critical thinking and metacognitive reflection within a Web-based learning environment. Tracking movements and discussion forum patterns provides one method of assessment within the Web-based environment that can be maintained behind the scenes without interference to the learner and without overt, game-like feedback. This type of assessment informs instruction, the instructor, and the learning environment. The potential exists for measuring the effect of the environment through the learner's movement patterns, thereby offering the possibility of creating an optimum learning environment for each and every type of learner.

The richness of shared data, data examination, and learner insights follows naturally from analyzing user movement patterns. Moving learner metacognitive reflection capabilities to a Web-based learning environment presents the academic accountability often missing from current models of Web-based learning. Not only depth of knowledge, but also critical-thinking levels, can begin to be warehoused for constructive use by each learner/user.

Contextualizing Web-based learning environments with real-time scientific data collection and evaluative activities appears to favorably support the improvement of academic behaviors. Given the strong emergence of distance education initiatives, evaluating and assessing these behaviors within the Web-based learning environment becomes ever more important. Add to this the constructivist nature associated with this study's model, and the power and empowerment of this type of Web-based learning place becomes awesome, and needed.

Future Implications

The results of this study present one practical model for infusing technology into the classroom setting; for improving problem-solving ability and metacognitive reflection over a short duration; for creating a collaborative, cooperative learning space; and for maintaining a science space for learning where no gender differences arise.

The power an intranet offers within the constraints of a school district, or geographic locale, has not yet been tapped. This study proposes one mechanism for doing just that given the infrastructure present or absent through the use of a Web-based intranet. This model offers a "get your feet wet" method of networked connectivity for classrooms and teachers who have not yet jumped into the World Wide Web.

This research provides a study in contextualizing connectivity with end goals of improved problem-solving and metacognitive reflection. Both of these elements are often lost when initial attempts to jump into networked learning occur or are contemplated. Further, this study provides an avenue of documenting the nature of learning during the use of Web browsing or other networked connections. Tracking learner movements within a browsed Web site has metacognitive as well as problem-solving implications for each and every learner.
References

"Connecting @ the Crossroads"
Images of Teaching with Computer Technology:
A Metaphorical Perspective

Karthigeyan Subramaniam
School of Education
PO Box 56
University of Otago
Dunedin, New Zealand
subka317@student.otago.ac.nz

Key Words: metaphors, images, teaching actions, computer technology integration

There has been keen ongoing interest in how teachers integrate computer technology into their teaching (Dias, 1999; Hadley & Sheingold, 1993; Sandholtz, Ringstaff, & Dwyer, 1997). The aim of this research is to describe how teachers' images of teaching with computer technology can be a means to understanding how they construct meaning in their integration of computer technology into their teaching.

This paper focuses on the actions of teaching through teachers' images of their teaching with computer technology integration into teaching-learning environments: the way the teaching process is structured by teachers' relationships with computer technology and how this relationship defines their work (Bigum, 1997) and their "thoughts, voice and experiences" (Budin, 1999, p. 668). It also focuses on how teachers themselves comprehend and convey their roles (Budin, 1991) and thus search for a new paradigm or paradigms that encompass these roles (Kerr, 1991). These insights may shed light on the range of opportunities afforded by technology from the teachers' perspectives.

Salomon (1998) argues that the technological affordances provided by computer technology offer needed tools and novel teaching-learning opportunities in classroom teaching. This, he states, requires novel psychological insights to materialize in the classroom. Salomon claims that human understanding of cognition and the technologies they develop and utilize as tools for teaching are comprehended metaphorically. Both are thus linked, as the following quote signifies:

"Historically, our understandings of the human psyche, particularly cognition and the technology we employ as metaphor or as tools for teaching tend to go hand in hand ... this parallelism between our psychological understandings and the technologies available to us remain unchanged The way we believe people learn and think and the information technologies we develop to make that possible continue to live in a tight, reciprocally supportive marriage. (Salomon, 1998, p. 4)

An implication garnered from this perspective strengthens the notion that the way we conceptualize our psychological insights in relation to pedagogical actions afforded by technologies can be conveyed as metaphors.

Thus the preceding brief review concurs with what Kerr (1996, p. 23) refers to as a new paradigm in research in technological affordances and teachers, "a person-centered vision for technology in education."

"Connecting @ the Crossroads"
It is imperative to understand that teachers’ relationships with computer technology integration may lead us to consider the nature of teachers’ goals and how they fulfill them (Bromley & Apple, 1998). The essence of what teachers actually do in classrooms and a comprehension of their views—an in-depth “reappraisal” (Scimshaw, 1997, p. 112)—of teachers’ use of computer technology may be revealed.

Method of the Study

Image is proposed as a construct to understand teachers’ particularistic knowledge in the context of teaching with computer technology. This particularistic knowledge is defined as the “particulars of practice” providing a “rich picture” (Johnston, 1992, p. 124) of teaching actions with computer technology. The study reported in this paper has incorporated the utilization of teachers’ metaphors as a tool to investigate teachers’ images of teaching with computer technology.

By using metaphors to illuminate teachers’ images, the study offers a means to comprehend how teachers see themselves teaching with computer technology. Metaphors provide a means to make explicit the teachers’ language of practice and provide insights into their teaching practice with computer technology leading to a discussion of teachers’ construction of meaning (Collins & Green, 1990) with the integration of computer technology into their teaching.

A Review of the Methodology Used to Elicit Teachers’ Metaphors

The approaches to research on metaphors for teaching fall into two categories. The first category is the natural metaphoric language (Morine-Dershimer & Reeve, 1994) or speech metaphors (Connelly & Clandinin, 1988) that are prevalent in teacher discourse. The second category is the generation of verbal or written explicit metaphors (Marshall, 1990) or metaphorical statements (Gurney, 1995; Miller & Fredericks, 1988) by teachers resulting from assigned or instructional activities.

The speech metaphor analysis approach and metaphorical statement approach have both been extensively used in educational research. The identification and analysis of preservice and inservice teachers’ metaphors have contributed to the understanding of teachers’ thinking, professional knowledge, beliefs, teacher role conceptualizations, images of teaching, and teaching actions.

In the field of explicit metaphorical statements research, metaphors have been used to investigate the images of how teachers view themselves and their learners in the classroom (conceptions of teaching and learning; Gurney, 1995); images that teachers have of themselves in fulfilling their roles (Berliner, 1990); and the images of personal practical knowledge (Ritchie & Russell, 1991). The underlying themes in the utilization of metaphors in these areas of research were based on the assumptions that “images lead to metaphors”; “metaphors provide a careful means for clustering images”; and “images are metaphorically embedded” (Bullough, 1991, p. 200). Ritchie and Russell (1991) also claim that images are expressed as metaphors and that these metaphors make the images (embedded within the metaphors) graphic and visible.

In fact being able to recall images and to adopt and manipulate these images in reflecting about action in a particular context is possibly an important aspect of the task of teaching....
Images, whether representations or reconstructions, provide us with an indicator of teachers' knowledge attributable to different training experiences and the relationship between knowledge and observed practice.

Thus, metaphors can shed light on the images that teachers capture and encapsulate and refer to in the course of their teaching.

Research studies by Gurney (1995) and Miller and Fredericks (1988) have provided much support for the use of metaphorical statements. In a study conducted with preservice teachers' metaphorical statements of the teaching and learning process, Gurney demonstrated that metaphorical statements could be a device in the envisioning of teachers' conceptions of teaching. This, he suggested, could be done by analyzing metaphorical statements for themes and moods. Miller and Fredericks (1988), in a study involving 25 students in a sociology of education class, had also demonstrated that metaphorical statements helped to "reflect and structure individual experience" (p. 263) and claimed that metaphorical statements were viable as a "rich source of qualitative data" (p. 269).

On a final note, Dickmeyer (1989) has suggested that metaphors can depict an oversimplified view of the phenomenon under study. In this study such oversimplification is viewed as a "virtue" following the convention of Bullough (1991, p. 44). It is acknowledged that the simplification would enable the teachers to reflect on and analyze more easily their teaching with computer technology.

Data Collection

Data for this study were elicited by the second approach to the use of metaphors—explicit metaphors generated in response to an instructional task. The data collection consisted of three steps. First, teachers were instructed to write down personally constructed metaphors (Munby, 1987, as cited in Ritchie, 1994) in the form of explicit metaphorical statements. This was followed by teachers creating narratives (Tobin & Tippins, 1996) of selected metaphorical statements. The last step of this data collection stage involved the teachers' derivation of metaphors for the statement "The teacher as ..." (Berliner, 1990; Ritchie, 1994; Ritchie & Russell, 1991; Tobin, 1990, 1993; Tobin & LaMaster, 1995; Tobin & Tippins, 1996) from the narratives of their respective metaphorical statements.

Step I: Generating Written Metaphors

The use of the metaphorical statement approach in this step followed the convention of Miller and Fredericks (1988), Gurney (1995), and Inbar (1991). The purpose of generating personal metaphors in this study was to capture and encapsulate participants' teaching actions with computer technology in graphic and visible ways.

In this study the six secondary school teachers from the Republic of Singapore were asked to write down three or four metaphors each for their teaching process with computer technology. Metaphors were elicited during the five-month research cycle. The teachers were asked:

Please write three or four metaphors of your teaching process with computer technology.

The purpose of writing more than one metaphorical statement was to prevent teachers from responding to the task by giving a one-sided emphasis on selected aspects of the phenomenon under study (Inbar, 1991). In addition, Bullough (1991) cautioned that single metaphors would not suffice in capturing the phenomenon under study. All the metaphors were collected and compiled by the researcher.

"Connecting @ the Crossroads"
Step II: Deriving Narratives from Metaphorical Statements

Following the verification process, the qualified metaphors (refer to Gurney, 1995, for a detailed process for qualification of metaphorical statements) were returned to the teachers for corroboration. This step followed the convention of Tobin and Tippins (1996) and Inbar (1991). Teachers were asked to select one metaphorical statement each that was representative of their teaching with computer technology from the metaphorical statements that they had written and that were verified. The teachers were then asked to read their respective chosen metaphors and describe the metaphor. The following phrase was used by the researcher to assist the teachers in explaining their metaphors:

Choose one metaphor which is the most representative of your teaching with computer technology and please explain it in a few words.

The main purpose for this procedure was to make explicit the meaning underlying the chosen metaphors rather than rely on the researcher’s interpretation of the meanings. Aspin (1984, p. 34) had stressed the need to use metaphors as a generative tool for educational discourse and not merely as “fixers or thought stoppers.” In addition to that, Inbar (1991, p. 25) cited two important justifications for the preceding step: first, teachers’ choices of representative metaphors were made explicit, revealing the “deeper meaning” that they had for the chosen metaphor, and second, teachers’ explanations served as connections between the tacit and the explicit domains of their knowledge. Therefore, by exploring the narratives, a better perspective of the images of teaching with computer technology was focused on.

Step III: Creating Metaphors for “The teacher as ...”

This stage involved the participants in reading their narratives three times and relating their narratives to the following phrase:

Metaphors for “The teacher as ...”

Responses were transcribed by the researcher, and teachers were asked to verify their metaphor by reading their narratives again and confirming their choice of metaphor for “The teacher as ...”.

The purpose for this procedure was to allow teachers to read their narratives in order to capture their own images of teaching with computer technology and encapsulate them in another metaphor. The narratives were the depiction of “actions, causes and consequences” (Lyle, 2000, p. 59) of teaching actions with computer technology integration. This step gave the teachers an opportunity to reflect on their own practices and look at the language they had assigned to their teaching actions (Briscoe, 1991). This was also a way for the teachers to “re-vision” (Connelly & Clandinin, 1988, p. 77) their construction of metaphorical sentences and related narratives, and to contextualise the teaching actions in another metaphor, thereby structuring one’s teaching practices and making explicit personal practical knowledge.

Furthermore, by looking back at the construction of practice especially with computer technology, teachers were reflecting on what they perceived as the “visual imagery” (Berliner, 1990, p. 85) embodying the requirements of their roles in the classroom. In addition, “The teacher as ...” metaphors could reveal the thoughts and perceptions that teachers have of themselves (Anderson, 1995).

This process enabled the researcher to get a further set of coherent and consistent metaphors that alleviated the major concern of single metaphors not being enough to describe the complexities of the teaching process with computer technology.
Thus by eliciting a second set of metaphors from the teachers' own narratives, insights into teachers' images of teaching actions were explored. Table 1 illustrates the data collection steps previously depicted.

Table 1. Components of the Data-Gathering Process by Steps of Occurrence

<table>
<thead>
<tr>
<th>Data Collection Actions</th>
<th>Instructions That Prompted Actions</th>
<th>Data That Actions Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step I: Personally Written Metaphors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection of metaphorical statements from teachers.</td>
<td>"Please write three or four metaphors for your teaching process with computer technology."</td>
<td>Teachers' handwritten metaphorical statements.</td>
</tr>
<tr>
<td>Qualification and Verification of Metaphorical Statements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachers select the most representative statement from their own set of metaphorical statements.</td>
<td>"Choose one metaphorical statement which is most representative of your teaching with computer technology and please explain in a few words."</td>
<td>Audio recording and verbatim verbal transcript of participants' explanations of their most representative metaphorical statement.</td>
</tr>
<tr>
<td>Step III: Metaphors for "The teacher as ..."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivation of metaphors for "The teacher as ..." from teachers' own narratives.</td>
<td>"Please read the narrative for your representative metaphorical statement at least three times. Can you now complete the phrase 'The teacher as ...'?"</td>
<td>Audio recording and verbatim verbal transcript of teachers' responses.</td>
</tr>
</tbody>
</table>

Analysis of the Data

Data collection generated three sets of results: personally constructed metaphorical statements; narratives of teachers' most representative metaphorical statements for teaching with computer technology; and "The teacher as ..." metaphors. The metaphors for "The teacher as ..." were used to derive corresponding images and associated images depicted in the narratives for each teacher respectively.

Findings

From the analysis of the data the teachers' images of teaching with computer technology were derived. Consideration of the participants' metaphorical statements (Table 2) and their metaphors (Table 3) revealed connections that suggest conceptual coherence among the metaphorical statements, the narratives, and "The teacher as ..." metaphors.
Table 2. Teachers’ Most Representative Metaphorical Statements for Their Teaching Process with Computer Technology

<table>
<thead>
<tr>
<th>Participants</th>
<th>Metaphorical Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sundari</td>
<td>Computer technology is a tool I use to anchor my students so that they are focused.</td>
</tr>
<tr>
<td>Anthony</td>
<td>To teach or learn with computers is like learning to drive a car. Once the basics are mastered, driving is easy. Like driving it can break down and cause frustrations.</td>
</tr>
<tr>
<td>Ning</td>
<td>Computer technology is one of the tools in my toolbox that can help the students make meaning of what they are learning.</td>
</tr>
<tr>
<td>Angela</td>
<td>Computer technology to teaching is like seasoning to cooking. Appropriate quantity added at an appropriate time makes the dish taste better.</td>
</tr>
<tr>
<td>Tan</td>
<td>Computer technology in my teaching is like a bank. A lot of wealth is stored there. Pupils withdraw from it.</td>
</tr>
<tr>
<td>Woo</td>
<td>The teacher gives the skeleton and the students use computer technology to build up the meat of the skeleton.</td>
</tr>
</tbody>
</table>

Table 3. “The teacher as …” Metaphors

<table>
<thead>
<tr>
<th>Participants</th>
<th>“The teacher as …” Metaphors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sundari</td>
<td>Captain</td>
</tr>
<tr>
<td>Anthony</td>
<td>Artist</td>
</tr>
<tr>
<td>Ning</td>
<td>Director</td>
</tr>
<tr>
<td>Angela</td>
<td>Cook</td>
</tr>
<tr>
<td>Tan</td>
<td>Director</td>
</tr>
<tr>
<td>Woo</td>
<td>Head Chef</td>
</tr>
</tbody>
</table>

Discussion

All the teachers who participated in this study communicated their images of teaching actions with computer technology integration through their metaphors (metaphorical statements and “The teacher as …” metaphors) and accompanying narratives. The narratives served to unravel the conceptual mappings (Lakoff, 1994) that metaphorical statements and the “The teacher as …” metaphors had encapsulated. The corresponding and associated images depicted in the narratives together with the metaphors (metaphorical statements and “The teacher as …” metaphors) revealed how psychological insights were related to pedagogical actions (Salomon, 1998).
The teachers' metaphorical statements basically depicted teaching actions with computer technology as a tool with a purpose, "a tool I use to anchor" and "to build up," or as a tool itself that had a function or served to perform a function, "a car," "bank," and "one of the tools in my toolbox." The corresponding and associated images in the narratives further embellished the characteristics of the tool image together with the teaching images present in the narratives. For example, Sundari's image of teaching using computer technology involved images of an "anchor" in the "sand." Sundari's role in relation to the learning process with computer technology was to focus students onto the knowledge using the computer technology. The computer technology was the source of the knowledge—"it is like the anchor on a ship. It is deeply rooted in the sand"—to be transferred to the students. The captain metaphor revealed the image of a teacher in control of students' learning with the aid of computer technology. In the context of teaching with computer technology, it was possible that Sundari perceived the teacher as controlling the learning process of students by stabilizing the process with the computer technology, like a captain stabilizing a ship with an anchor. This results in students being focused on the content to be learned.

Encapsulated in the rest of the teachers' "The teacher as ..." metaphors and metaphorical statements were also corresponding and associated images as revealed by the narratives. The artist metaphor depicted Anthony's image of teaching with computer technology as being centered on the mastering of the computer technology for teaching, just like mastering the skills to drive a car. The director metaphor captured Ning's image of a teacher directing students in the use of computer technology for their own personal learning outcomes. The cook metaphor captured the image of Angela as a teacher who put much effort in to the integration of computer technology, with consideration given to the choice of software/hardware and timing, to make the teaching process effective.

The director metaphor encapsulated Tan's image of teaching with computer technology as a teacher directing students to use the computer technology like a "bank." Students were to "draw" content from the computer technology. The head chef metaphor encapsulated Woo's image of teaching with computer technology as a teacher needing to be in complete charge of the teaching process so that students will gain better content knowledge or even more content knowledge.

Conclusion

In this paper, the focus was to describe how teachers' images could help to increase the understanding of teachers' construction of meaning in teaching with computer technology integration. The empirical findings of this study have allowed the building of a relationship between the psychological insights, as captured and encapsulated by metaphors, and that of the narratives, which depicted the pedagogical actions. The findings further imply that teachers construct mental images to view and understand their thoughts and actions (Briscoe, 1991). The computer technology integration, in this study, was structuring and influencing the teachers' understanding leading to utilization of how teaching and learning were taking place. The study further reflects on how teachers operationalize teaching actions with images of themselves, the computer technology, their students, and the learning process. To help teachers utilize computer technology in their teaching there is a need for teacher educators during preservice and inservice courses to examine teachers' images. The findings here present a plausible reference to teachers' construction of meaning with the integration of computer technology in to teaching actions.
Implications

Teacher educators taking part in inservice and preservice courses involving the integration of computer technology into pedagogy should give early attention to the images that teachers’ thought structures encompass.

Inservice computer technology trainers have to look closely at their teaching approaches to accommodate the images that teachers already have of teaching with computer technology. Inservice computer technology trainers should embrace these underlying images to bring about effective ways to prepare teachers in their use of computer technology for pedagogical purposes.

References

NECC 2000 Sessions Handouts Index A-C

Al-Haddad, Hisham

Interactive Computer Models for Science Education: DNA Model
Interactive Computer Models for Science Education: Wetlands Model
Original Author Submissions

Arnett, Janet

Learning Pathways

Barr, Helen

Real Help for the Help Desk
Original Author Submissions

Barrette, Helen

Designing & Developing Standards-Based Electronic Portfolios (pdf format)

Barton, Robin

Creative Use of Cyberspace: Training Teachers for Inclusion
Original Author Submissions

Baule, Steve

Faculty Instructional Technology Skill Sets 7-12-99 (pdf format)
Faculty Instructional Technology Skill Sets 2-9-99 (pdf format)
Internet Searching Classes (pdf format)
Internet Searching Class 4 (pdf format)
Internet Searching Class 5 (pdf format)
Overview of the Individual Technology Learning Plan (pdf format)
Technology Skill Assessment for Jane Q. Trevian (pdf format)
Individual Technology Learning Plan for Jane Q. Trevian (pdf format)

Becker, Nancy

Electronic Portfolios
Original Author Submissions

Bequette, Glenda

The Great Chocolate Experience V
Permission to Publish on the Internet
Chocolate Test
Chocolate Covered Trivia
M&M Fractional Math
Chocolate Fun Facts
Bingham, Margaret

How do you build upon the Lessons Learned? (pdf format)
Lessons Learned: Technology, Learning, and Teaching
Original Author Submissions

Bloom, Linda

Synthesis of Technology
Technology in the Multidisciplinary Classroom - How Does it Work?
Original Author Submissions

Boettjer, Maryanne

Technology and the Modern Language Classroom
Original Author Submissions

Bowman, Jacqueline

International Multimedia Connections Enhance Young Children's Learning I
International Multimedia Connections Enhance Young Children's Learning II
About NeoBook
Original Author Submissions

Brown, Abbie

Developing Assessment Strategies for Technology Integration: Three Diverse Case Studies
Original Author Submissions

Burks, Beverly

Moving Beyond The Multimedia Basics With Kid Pix
Wish You Were Here - Virtual Vacations
Find Your Way Through the Multimedia Maze
Original Author Submissions

Byars, Matthew

STLP Certification Program
Original Author Submissions

Carriero, Corinne

Using Inspiration
Bytes, Camera, Action, MovieWorks!
Using The SONY Mavica Digital Camera (F7 & 73)
Original Author Submissions

Cavanaugh, Cathy

Developing a School Network Course
Original Author Submissions

Cavanaugh, Terence

Creating Interactive PowerPoint Presentations for Teachers and Students
Some Interactive Macros You Can Use With PowerPoint Presentations
Original Author Submissions

Clark, G. Christopher

Beyond HTML (pdf format)
WebCT Getting Started Tutorial (pdf format)
WebCT Usage Survey (pdf format)
Technology-enhanced short-distance learning (pdf format)

Cohen, Libby

GENASYS
Original Author Submissions

Craig, Dorothy

Cultural Connections: Similarities in Technology, Teleresearch, and Classroom Practices
Los Dias de los Muertos (American Halloween) Sample Homework Assignment
Using the Internet for Teleresearch
Original Author Submissions
Interactive Computer Models for Science Education - DNA Model

Hisham AL-Haddad and Mike Little
Integrated Science and Technology Program
Marshall University - Huntington, WV
Interactive Computer Models for Science Education

Wetlands Model

Hisham AL-Haddad and Mike Little
Integrated Science and Technology Program
Marshall University - Huntington, WV
Learning Pathways (www.katy.isd.tenet.edu/pathways) is a Web site created as a resource for teachers, students, curriculum specialists, instructional technologists, and parents.

Learning Pathways Menu

- Reach Out!
- Featured Classroom
- Timely Topics
- Learner’s Corner
- Search For More
- Teacher Topics
- Classroom Connections
- Tech Talk

Each of these resources provides extraordinary opportunities to connect with people and places around the world and allows you to add a divergence of ideas and perspectives to your topic of study. Based on research of the International Society for Technology in Education (ISTE) and the Milken Exchange on Education Technology (1999), it’s not enough to merely have the hardware available, teachers need training, continuous support, and modeling of best practices for them to successfully integrate the available technology with their curriculum. Learning Pathways is our district’s model of how to do this.

In the **Reach Out!** section (www.katy.isd.tenet.edu/pathways/reach.htm) you will find three types of resources: (1) online projects, (2) subject matter experts, and (3) virtual field trips. Online projects provide opportunities for students and teachers to connect with other classrooms around the world for curriculum-based projects. Subject matter experts provide expertise for a given field and can serve as mentors to students as they study certain topics. Virtual field trips enable students to travel "virtually" with a group of people exploring different parts of the world and then electronically share what they find.

In the **Featured Classroom** section (www.katy.isd.tenet.edu/pathways/feature.htm), Katy ISD highlights its commitment to providing the best education to all students through a balanced, dynamic curriculum. Technology plays an important role in delivering that curriculum. Find out how technology is being integrated into teaching and learning in Katy ISD in this section of the site.

In the **Timely Topics** section (www.katy.isd.tenet.edu/pathways/timely.htm) you will find activities and links to sites on topics being studied throughout the school year in various curriculum areas. It is through the coordinated efforts of the Katy ISD Instructional Technology Department, instructional specialists, teachers, and the district Webmaster that these resources are made available here.
The **Learner's Corner** section (www.katy.isd.tenet.edu/pathways/learner.htm) is where you will find special resources for elementary and secondary learners, in addition to the homework help sites. Included in this section are sites on the Web that provide interactivity going beyond just providing information on a given subject. You can explore and respond to information you find on these sites in an interactive way.

The **Search for More** section (www.katy.isd.tenet.edu/pathways/search.htm) contains a list of educationally based search tools to use for keyword searches. Search tips and a search tutorial are provided here.

The **Teacher Topics** section (www.katy.isd.tenet.edu/pathways/tchertop.htm) provides links to organized indices of sites for teachers, professional resources/organizations, lesson plans, research, reference, quiz tools, Internet, and Webmaster resources.

The **Classroom Connections** section (www.katy.isd.tenet.edu/pathways/connections) provides parents and students with information about such things as upcoming field trips, supply lists, major projects, and useful Internet resources for the classroom. These pages are created and maintained by the classroom teacher, grade level, or department.

The **Tech Talk** section (www.katy.isd.tenet.edu/pathways/techtalk) features the Katy ISD Instructional Technology Department's newsletter. Highlights include articles about the use of technology in Katy ISD schools, technology tips, and curriculum resources.
Real Help for the Help Desk

Real Help for the Help Desk

Students In Charge

Presented by

Barbara Barr
bbarr@jessamine.k12.ky.us
Real Help for the Help Desk

Students in Charge

Opportunities For All Ages

Activities in which our students participate:

- Infrastructure

- Technological
 - Preventative Maintenance
 - Trouble Shooting
 - Repairs
 - Phone Support

- KTLN/CenterNet

- Special Projects
 - Authentic involvement
Real Help for the Help Desk: Students in Charge

Training
- Manuals
- In-Service
- Just In Time Training

Planning and Organization
- Planning Meetings
- Meet with vendors
- Make arrangements
- Office assistance

Real Help for the Help Desk

Students In Charge

Opportunities For All Ages

Special Education Classes

Special Needs

Gifted Leadership Program

Self Image Needs

Belonging Needs
Real Help for the Help Desk: Students in Charge

- Fast Workers
- Beta Club/Honor Society
- Organizations
- Philanthropic Groups
- Capstone Students
- For Credit
- Income Needs
- Real World Job Experience

Real Help for the Help Desk

Students in Charge

Structuring the Programs
Real Help for the Help Desk: Students in Charge

Begin with the end in mind!

Planning

Rules/guidelines

System of checks and balances

Flexibility

Building process

Student Handbook

- General Information
- Responsibilities
- Day to Day
- Contacts
- Purchasing
- Personal Growth
- Technical Procedures

Jessamine County Schools
District Technology Office
Hiring Procedures
Student employees must be recommended by a teacher or staff member.

Student must be a member in good standing with their school STLP.

Students must fill out an application.

Student must get 2 letters of recommendation.

Student must submit application, resume, and letters of recommendations to the District Technology Office.

Student must schedule an interview.

Student must attend orientation training.
You are the communication link between the District Technology Office and the school!

Jessamine County
District Technology Office
Expectations of Student Workers

Keep a weekly time sheet

Check email daily as most information is relayed this way.

Adhere to school dress code
Be pleasant to co-workers and visitors to the District Technology Office

Keep a portfolio of their work

Clean up after themselves

Attend training sessions

Call if unable to work at a scheduled time

Always be courteous and professional in each work environment

Jessamine County Schools
District Technology Office
Student Work Procedures

Procedure Upon Arrival at Work:

Check in with the Help Desk Coordinator

Check work folder for the specific school where you will be working that day

Look over Help Desk Tickets to make sure you understand the specific problems to be addressed.

Check with MAC or PC technician to explain what you would do to solve each Help Desk ticket.
Embedded Secure Document

The file file:///F//PRESENTS/barrett/barrett.pdf is a secure document that has been embedded in this document. Double click the pushpin to view barrett.pdf.
We believe that infusing technology in courses increases faculty and student creativity and experiential learning by breaking down the barriers of traditional instruction and building learning communities. Doing so can be especially effective for future or current general education teachers learning how and expected to include students with disabilities in classroom experiences of all kinds. Therefore, we redesigned the required course, "Teaching and the Exceptional Child" that introduces future general educators to strategies for teaching students with disabilities in general education classrooms.

Our collaboration began four years ago as an effort to save time and to use our complementary skills and knowledge. As part of an accreditation process, we developed a generic syllabus for faculty who teach this course, that included (a) a choice of textbooks, (b) the catalog and course description, (c) course goals, outcomes and objectives, (d) suggested activities and assignments, and (e) a bibliography. As faculty often do, we then found ourselves with too little time and too much to do, so we divided our course preparation to make best use of our talents. Dr. Garcia wrote lecture notes and study guides while Dr. Barton developed the related slide presentations and assembled supporting materials (e.g., relevant articles, videos, and activities, required special education forms). When the opportunity to develop a WebCT course occurred, we took advantage of it. With the assistance of our instructional technology support specialist, Kim Simshauser, we transformed the slide presentations, study guides and related materials into instructional modules. And so it grew and continues to grow.

At Armstrong Atlantic State University (AASU), "Teaching and the Exceptional Child" fulfills the Georgia Professional Standards Commission requirement for initial teacher certification. Students include both undergraduates and persons seeking Georgia teacher certification, many of who move here from states where this course is not required.
Work Procedures:

- When you arrive at the school, remember to check in with the STC/TRT.

- Introduce yourself to the teacher/staff in the room/office where you are working.

- Be willing to call from individual schools to receive additional technical support for problems.

- Upon completion of the work assignment, explain to the teacher/staff what was done.

- If the problem cannot be resolved, explain the next step or action.

- **Clean up after yourself and put things back!**

- Before proceeding to the next Help Desk Ticket, write a detailed explanation of the steps taken to resolve the problem.

- Upon returning to the District Technology Office, report each specific problem you worked on or the specific steps which need to be taken to complete the job.
"Teaching and the Exceptional Child" prepares teachers to teach students with disabilities in general education classrooms. The course includes twelve academically rigorous course modules with (a) online narrated slide lectures, (b) video clips of interviews with parents, teachers and students with disabilities, (c) text-based study guides, (d) links to content-related web sites, (e) links to definitive articles from professional journals and other sources, (f) access to the AASU library's electronic reserve system, and (g) interviews with special educators, special education faculty and specialists in the various disciplines.

The assignments for each module include chapter readings with focus questions and case studies that require comprehension, analysis, synthesis and evaluation of required readings. Activities require students to reflect on readings and integrate their learning with their prior knowledge and evaluate it from the perspective of future general education teachers. For example, in Module Five, students post responses to the following: "In the LD Forum on the course bulletin board, begin a dialogue with your classmates about the questions, ideas, or concerns that you have about teaching students with learning disabilities and/or attention deficit disorder in your class. Be age and subject specific, especially if you teach or plan to teach middle or secondary students. What would help you be more effective?" Another activity requires students to read articles from professional journals, to summarize the article (not just repeat the abstract!) and state how what they learned may help them as general educators.

The students who select the web-enhanced or online sections of the course often do so because they are nontraditional students, many with full time jobs, who like the flexibility of online learning. The syllabus, the course calendar and assignments clearly describe the minimal levels of student participation. For satisfactory completion of the course, students must accumulate enough points to earn a grade of C, the minimum that the AASU College of Education accepts for credit toward degree completion. Students earn up to 20 points for each of the twelve learning module completed. Required course activities include two projects, an annotated bibliography, four tests, and a group online presentation.

As we designed the course, we carefully examined the knowledge base and the learning processes required to meet the course objectives. We choose each activity for its contribution to the accomplishment of course objectives. Then we choose the appropriate technology for accomplishing the task. For example, to account for the varying learning styles of students, we provided opportunities for both text-based and experiential learning activities. Students may access the knowledge base either through reading or by listening to online narrated slide lectures. Many activities also involve posting answers to critical thinking questions on the course bulletin board, and then reflecting on and discussing answers to these questions with classmates. Students may also access the publisher's companion website and online study guide.

Two examples of our use of technologies involve online research and student presentations. Students locate and evaluate web sites and use the University library's online electronic reserves and electronic database to locate articles for an annotated bibliography. The text includes 16 chapters only 12 of which are included in formal learning modules. For the other four chapters topics and those in the Appendix, we use the WebCT group assignment tool to randomly assign students to chapter groups. Then each group uses the bulletin board, chat room or other communication modalities to collaborate on an online presentation based on self-selection of salient material from their assigned readings. Their classmates then may use to learn that material for their chapter study.

The course also requires students to make appropriate and effective use of external resources. Narrated slide lectures for most modules provide foundation knowledge in the WebCT environment. In addition,
the text chosen has a companion website and online learning guide. Students also must do either
web-based research using the Georgia Peachnet's Galileo databases or real-time library research using
ORCA. They may also access brief video clips from the publisher that support the text, audio interviews
with other faculty, as well as virtual field trips to community sites. Additional interviews and virtual field
trips are in the planning stage. Students interview general educators, special educators and persons with
disabilities. Students also may attend optional seminars where may view and discuss videos, engage in
case-based problem solving, or engage in lively discussions with invited guests.

A link to the WebCT 2.0 Student Tutorial is on the student's course home page. On the WebCT course
Listing page is a link to AASU WebCT support. Students are not required to learn and use html. They are
encouraged to use tools like Netscape Composer. Netscape is the AASU standard browser. Those who
want to develop their web design skills can access the WebMonkey home page
[http://hotwired.lycos.com/webmonkey/index.html] and to ZDNet's Internet Basics and Web Design site
[http://www.zdnet.com/zdhelp/stories/main/0,5594,2236427-4,00.html]. This page can also be accessed
from the course "First Things First" page.

At the beginning of the course, students receive a letter that sets the stage for their online learning
experience. In order to confirm their registration, they send an email to the instructor where they
introduce themselves and tell why they are brave enough to venture into online learning. Then they
receive a welcome letter explains how to access AASU's WebCT site, the syllabus, and the "First Things
First" page. The welcome email also includes their first assignment. Students are also forewarned of the
need to have access to these tools: (a) MS Word or Corel WordPerfect (All assignments are written in
APA format using one program or the other.), (b) email (Outlook or Netscape) with assignments sent as,
(c) American Psychological Association IV citation guidelines, (d) electronic reserves at the AASU
library, (e) MS PowerPoint (nothing fancy required, just the basics) for the group project, (f) virus
detection software (All emails need to be scanned before sending.), and (g) a WWW search engine. If
they do not have these resources at home, they may access them in one of the computer labs on campus.

Our experience has taught us that the face-to-face versions of the course, which we both previously
taught, were less rigorous than the web-enhanced or fully online courses we now teach. Why? First, the
face-to-face course required less self-evaluation and less concrete evidence of critical thinking than either
the web-enhanced or the web-centric versions. The web-based activities encourage students to think
more critically and to reflect more on their learning. Each learning module also requires extensive
writing and independent self-directed learning. The students, therefore, rely on an instructor less and
more on their own resources to read, research, evaluate and integrate information. Lastly, student
behavior confirms our observation since they constantly complain about how much work they have to do
and in the same breath, tell us how much they are learning.

Further evidence of rigor is the syllabus, which clearly reveals course objectives in compliance with
the principles of the Georgia Professional Standards Commission, the Southern Association of Colleges
and Schools, and the National Council for Accreditation of Teacher Education. AASU's College of
Education is NCATE accredited. Minimal levels of student participation are clearly stated in the syllabus
in course outcomes, in student assignments and in student responsibilities. Course rigor also derives from
the learning activities, which require students to build a knowledge base and then employ critical
thinking strategies. Thus, students are enticed by ready access to materials and by discovering interesting
and informative web sites. They often complain about how much time they spend on a module because
they get involved in investigating the resources provided.
Keeping abreast of the constantly evolving knowledge base as well as the regulatory and legal mandates of special education law, challenges instructors who desire to keep current in these areas and to focus on preparing their students well. Therefore, we also wanted to be able to adapt the course modules for various levels, e.g., teachers in the field needing certification and undergraduates with no teaching experience and less academic maturity. For these reasons, we developed adaptable, multipurpose instructional modules that could be used in various contexts: (a) as a web-centric university-level course, (b) as a web-enhanced, traditional classroom-based course, (c) as an independent study course, or (d) as web-centric or web-enhanced staff development for currently employed teachers. During the spring 2000 semester, we taught three sections of "Teaching and the Exceptional Child:" (a) a web-enhanced, 15-week course, (b) a web-enhanced 7-week course, and (c) a web-centric (fully online) 15-week course.

Wending our way through this complex process made us carefully examine the academic rigor of everything we included so that materials and activities would meet the needs of a wide range of students and provide the rigor to ensure quality learning. For example, in the 7-week class, where we know students lack the academic maturity for self-directed learning, we offer more face-to-face instruction while still requiring active participation in web-based learning. The 15-week web-enhanced course has a weekly seminar to discuss course content, view supplementary videos or hear guest speakers. Seminar attendance is not required for the web-centric course; however, the seminars are open to them as well.

An example of a non Web-based assignment with content robustness is one where students interview a person with a disability. The interview results in written report on what the person does during the course of a regular day. The students then reflect on (a) sources of stress observed, (b) evidence of the individual's attitude toward the disabling condition, (c) evidence of support from family, teachers and/or peers, (d) the extent of the individual's independence/dependence, and (e) the person's emotional, social, and educational well being. In addition, they summarize their personal reactions reporting what they learned and the impact of the experience on them. Our goal is not only to have students develop intellectually but also affectively by deepening their understanding of persons with disabilities.

Another content-robust, non Web-based assignment requires students to interview three teachers asking each three questions about their classroom management strategies. Then, after reading the text and/or listening to the lecture, they write a 1-2-page paper reflecting on the 5 classroom management strategies discussed by the teachers and by the text authors that they think might help them in their classrooms.

A content rich Web-based assignment asks them to examine cartoons of Calvin and Hobbes and then to visit the Calvin and Hobbes web site. Using what they learn from reading the chapter, they decide whether they believe Calvin is a gifted youngster and state the reasons for their decisions. Then to make matters more interesting, they report how they would manage Calvin's behavior as Calvin's father. This written assignment integrates understanding the humor of the delightful Calvin and Hobbes with knowledge of gifted youngsters and the parenting strategies their parents need.

On the CEUG2100 Tools Page is a link to UCLA Library's guidelines for evaluating web sites. Throughout the course, students are exposed to web sites that provide them with information that supports the content of course. One project assignment is to select five web sites and evaluate them using the guidelines provided. That process includes both the evaluation process and validation process. In another assignment they enter "attention deficit hyperactivity disorder" in a search engine of their choice and then evaluate the validity of the web sites against information in their text and other resources and explain the basis for their decisions about the validity.
Most students who have taken the course to date are nontraditional students who work and attend classes in the evenings. Although they have been offered the opportunity to use the course chat room, they have chosen not to do so because it is very difficult for them to find agreed-upon times to chat. Therefore, to date we have not used the chat room. However, we make extensive use of Email and the bulletin board. Students especially like the bulletin board because it allows them to reflect before responding and to read respond to other students' postings. Usually the lively dialog among the students requires little comment from the instructor, other than an enthusiastic one about the interest and complexity of the discussion. They use either external email or WebCT email to send assignments as attachments. The instructor usually interacts daily with various students by email or bulletin board postings and with groups of students by the bulletin board. Each student receives personal emails discussing their work performance. Often the instructor uses the editing functions in Microsoft Word to insert comments as well. Students also have access to WebCT home pages. We have not discovered a course activity suitable for the whiteboard, but rest assured if we do, we would use it because the bulletin board has served us so well.

We believe that "Teaching and the Exceptional Child" has exemplary breadth and depth of content for an initial preparation, teacher-education course. Students interact with the content about exceptional learners, and with each other and the instructor, in complex and meaningful ways. Clearly, this course goes far beyond just the inclusion of a course syllabus and the instructor's lecture notes. We invested conscientious effort in building a learning community where students learn not only from the instructor and the learning modules but also from each other and from external sources. Both non web-based and web-based assignments are (a) clearly stated, (b) cause students to apply course concepts and skills and (c) require critical thinking. In addition, web-based assignments require students to evaluate and validate web-based information. They also clearly specify the student's required work products. The WebCT modules lead students through paths of information and activities in logically organized, manageable segments. Students interact with each and with the instructor often using asynchronous tools, such as the bulletin board and email. The instructor actively participates in the course, not only interacting with students but also constantly revising content and assignments to meet students' needs. Many students' web access is limited by slow download times; therefore, digitized images and graphics are used only when they add value to the learning process. Students' learning is assessed using the built-in WebCT quiz features as well as written activities that require reading, research and critical thinking. We both have come to realize the value added to a course by the judicious and appropriate use of the web learning environment. We believe our students value it as well.

Access is an important issue in web-based instruction, especially access for students with disabilities enrolled in the course. In creating this course, we produced alternative versions of the content to allow students with hearing and visual impairments to participate. All they need to do is to inform us of their needs and we will provide adapted content to accommodate them. We made transcripts of all audio lectures and videos and used tags to identify images for text reading software.

We believe that we are on the brink of an evolution in higher education. This evolution will open higher education to more people and allow each student to engage more actively in both designing and implementing his or her own course of study. We are excited to be part of a process that is changing the teaching-learning paradigm to one where students participate with us in a technology-enriched learning community.
Faculty Instructional Technology Skill Sets

Operating System Skills

<table>
<thead>
<tr>
<th>General Computer Skills</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Identify computer parts</td>
<td>• Back up files to the server</td>
<td>• Remove viruses from a floppy disk and the hard drive</td>
</tr>
<tr>
<td></td>
<td>• Use and locate a printer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Navigate and select menu items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating System Skills</td>
<td>• Log on and navigate both platforms</td>
<td>• Begin a document on one platform and finish on the other</td>
<td>• Convert files between platforms and file types</td>
</tr>
<tr>
<td></td>
<td>• Learn to use either Mac OS8 or Windows 95/98</td>
<td>• Rename files</td>
<td>• Learn how to use both Mac OS8 and Windows 95/98</td>
</tr>
<tr>
<td>Computer Troubleshooting</td>
<td>• Check electrical and peripheral connections</td>
<td>• Clear printer jams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check keyboard and mouse cables</td>
<td>• Check status of printer with the print monitor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conduct a “forced quit”</td>
<td>• Restart the computer after a system crash</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Restart the computer after a system crash</td>
<td>• Accurately report problems to the help desk</td>
<td></td>
</tr>
</tbody>
</table>

Production Skills

Word Processing Skills	• Locate and open an existing document	• Change the formatting of a document	• Create a template	
	• Create an MS Word or ClarisWorks file	• Create tables	• Set up and use mail merge	
	• Understand and use tool bars	• Add graphics to a document	• Integrate a spreadsheet or a chart	
	• Cut, copy, insert and move text	• Use pre-existing templates		
	• Use grammar and spell check	• Save a .doc file as another file type		
	• Print files and adjust page setup as needed			
	• Save files to multiple locations			

Database Software Skills	• Search and retrieve data	• Enter and edit data in a pre-existing file	• Define relationships between fields and files
	• Sort fields by specific data	• Add new fields to a database	• Use calculations
	• Save the database file	• Create new layouts	• Use summary fields
	• Print a prepared report	• Create a new database file	• Set up and use mail merge
Spreadsheet Software Skills	• Open an Excel workbook		
• Enter and edit data in a pre-existing workbook			
• Save the workbook			
• Print a prepared report	• Insert, modify and delete rows and columns		
• Create or modify the layout			
• Create a range			
• Enter a formula			
• Sort data			
• Create a new worksheet			
• Create a chart	• Modify chart layout		
• Import and export information			
• Import and export data			
Presentation Software	• Open a PowerPoint file		
• Create a new presentation in both slide and outline format			
• Present a prepared document	• Format a presentation using a template		
• Use transitions and builds			
• Print handouts	• Create user notes		
• Add graphics, charts and multimedia			
Internet Skills	• Launch Netscape		
• Use hyperlinks			
• Find a specific web site by typing in the URL			
• Use basic search engine skills to find information			
• Use bookmarks	• Use bookmarks		
• Download files from the Internet			
• Use advanced search engine skills to find information			
• Organize, import and export bookmarks			
Web Skills	• Send and receive email		
• Open an attachment	• Enter setting information		
• Send attachments			
• Utilize features like forward and reply			
• Set up signature files	• Utilize address book and create distribution lists		
• Create alternate mail folders and use filters			
• Subscribe to and participate in listserv discussion groups			
Email Skills	• Retrieve messages		
• Send messages			
• Record a greeting	• Record an extended absence greeting		
• Use advanced features such as forwarding and group distribution lists			
Miscellaneous Skills	• Be able to operate the following:		
• VCR
• Overhead projector
• Photo copier | • Be able to operate the following:
• Classroom network hookups
• Laserdisc player
• CD player
• Video projector
• Fax machine
• Connect a laptop computer to the video system | • Be able to operate the following:
• Equipment in the EPI center |
Faculty Instructional Technology Skill Sets

Operating System Skills

<table>
<thead>
<tr>
<th>General Computer Skills</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify computer parts</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Use and locate a printer</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Navigate and select menu items</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating System Skills</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log on and navigate both platforms</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Learn to use either Mac OS8 or Windows 95/98</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Troubleshooting</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check electrical and peripheral connections</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Check keyboard and mouse cables</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Conduct a “forced quit”</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Restart the computer after a system crash</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Accurately report problems to the help desk</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

| Clear printer jams | • | • |

Production Skills

<table>
<thead>
<tr>
<th>Word Processing Skills</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate and open an existing document</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Create an MS Word or ClarisWorks file</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Understand and use tool bars</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Cut, copy, insert and move text</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Use grammar and spell check</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Print files and adjust page setup as needed</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Save files to multiple locations</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database Software Skills</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentamation</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>FileMaker Pro</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>TreviAC</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Search and retrieve data</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Sort fields by specific data</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Save the database file</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Print a prepared report</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Change the formatting of a document	•	•	•
Create tables	•	•	•
Add graphics to a document	•	•	•
Use pre-existing templates	•	•	•
Save a .doc file as another file type	•	•	

Enter and edit data in a pre-existing file	•	•	•
Add new fields to a database	•	•	•
Create new layouts	•	•	•
Create a new database file	•	•	•

Define relationships between fields and files	•	•	•
Use calculations	•	•	•
Use summary fields	•	•	•
Set up and use mail merge	•	•	•
Spreadsheet Software Skills

- Open an Excel workbook
- Enter and edit data in a pre-existing workbook
- Save the workbook
- Print a prepared report
- Insert, modify and delete rows and columns
- Create or modify the layout
- Create a range
- Enter a formula
- Sort data
- Create a new worksheet
- Create a chart
- Modify chart layout
- Import and export information
- Import and export data

Presentation Software

- Open a PowerPoint file
- Create a new presentation in both slide and outline format
- Present a prepared document
- Format a presentation using a template
- Use transitions and builds
- Print handouts
- Create user notes
- Add graphics, charts and multimedia

Internet Skills

Web Skills

- Launch Netscape
- Use hyperlinks
- Find a specific web site by typing in the URL
- Use basic search engine skills to find information
- Use bookmarks
- Download files from the Internet
- Use advanced search engine skills to find information
- Organize, import and export bookmarks

Email Skills

- Send and receive email
- Open an attachment
- Enter setting information
- Send attachments
- Utilize features like forward and reply
- Set up signature files
- Utilize address book and create distribution lists
- Create alternate mail folders and use filters
- Subscribe to and participate in listserv discussion groups

Miscellaneous Skills

Voice Mail Skills

- Retrieve messages
- Send messages
- Record a greeting
- Record an extended absence greeting
- Use features such as forwarding and group distribution lists

Audio-Visual Skills

- Be able to operate the following:
 - VCR
 - Overhead projector
 - Photo copier
- Be able to operate classroom video equipment (Black box)
- Connect a laptop computer to the video system
- Be able to operate EPI Center equipment
Optional Additional Skills

<table>
<thead>
<tr>
<th>HyperStudio</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Open and navigate through a stack</td>
<td>• Create a new stack</td>
<td>• Add a sound to a stack</td>
</tr>
<tr>
<td></td>
<td>• Understand the concepts of button, card, stack, text and home</td>
<td>• Add cards to an existing stack</td>
<td>• Add a video clip to a stack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add functional buttons</td>
<td>• Create an animation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add text and graphics (both paint and draw) objects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transport a stack between platforms</td>
<td></td>
</tr>
<tr>
<td>Pentamation</td>
<td>• Log into Pentamation & properly exit</td>
<td>• Use the ring menu</td>
<td>Use the FastPath option</td>
</tr>
<tr>
<td>(Student records)</td>
<td>• Query a student’s records</td>
<td>• Query multiple student records</td>
<td>Use Boolean operators to print a report with multiple criteria</td>
</tr>
<tr>
<td></td>
<td>• Print an individual screen</td>
<td>• Print a predefined report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select a printer</td>
<td></td>
</tr>
<tr>
<td>MCL Lab Equipment</td>
<td>• Starting the system and identify parts of the teacher’s position (ASC</td>
<td>• Create, save and load a new class file</td>
<td>Using a Response Analyzer</td>
</tr>
<tr>
<td></td>
<td>DI 8 Console)</td>
<td>• Enter and modify students’ names to a class list</td>
<td>• Use Audio program Editor</td>
</tr>
<tr>
<td></td>
<td>• Use and locate Master PC, VCR, LaserDisk and Vizcam</td>
<td>• Create, save and load group files</td>
<td>• Use Test and Quick Test</td>
</tr>
<tr>
<td></td>
<td>• Knowledge of the operation software (The Main Screen, The Menu)</td>
<td>• Assign sources to program groups</td>
<td>• Use Response Retrieval with Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Communicate with a single student, group of students or with a</td>
<td>• Fast erase tapes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use pairing, conference mode, and telephone mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor students and remote control over their recorders and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Select a student as a model voice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Load a program audio or video tape, CD, laser disc or CD-ROM</td>
<td></td>
</tr>
<tr>
<td>Claris Home Page</td>
<td>Working in a Claris Home Page document</td>
<td>Adding extra HTML to your page</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opening HTML files</td>
<td>Using Edit HTML Source mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Edit Page mode</td>
<td>Changing the text display in Edit HTML Source mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutting, copying, and pasting</td>
<td>Adding attributes to an element</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using the toolbars and palettes</td>
<td>Adding images to your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using the object and link editors</td>
<td>Adding HTML to text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resizing elements using the mouse</td>
<td>Adding HTML to the document tags</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Previewing your work</td>
<td>Setting the color and background of your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Preview Page mode and previewing your Web page</td>
<td>Using an image for the background</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Printing your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using the Site Editor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adding text to your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adding tables to your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using Claris Home Page libraries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creating links and anchors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adding frames to your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adding forms to your Web page</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connecting to a FileMaker Pro database</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adding multimedia to your Web page</td>
<td></td>
</tr>
</tbody>
</table>
Internet Searching Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Learn the different types of Internet search tools</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Learn tips and techniques for effective searching</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learn to use AltaVista, Hot Bot or Excite</td>
<td></td>
</tr>
<tr>
<td>Class 2</td>
<td>Use Boolean logic to refine a search</td>
<td>Mastery of the Internet class 1 skills</td>
</tr>
<tr>
<td>Class 3</td>
<td>Learn to evaluate Internet web sites</td>
<td>None</td>
</tr>
<tr>
<td>Class 4</td>
<td>Learn to use a meta-search engine: Metacrawler, Dogpile or Inquire Pro</td>
<td>Mastery of the Internet Class 1 skills</td>
</tr>
<tr>
<td></td>
<td>Use specialized search tools</td>
<td></td>
</tr>
<tr>
<td>Class 5</td>
<td>Learn to create, edit and organize your bookmarks</td>
<td>Mastery of the Internet Class 1 and 2 skills</td>
</tr>
<tr>
<td>Class 6</td>
<td>Download files from the Internet</td>
<td>Mastery of the Internet Class 1 and 2 skills</td>
</tr>
<tr>
<td></td>
<td>Use and print Adobe Acrobat files</td>
<td></td>
</tr>
<tr>
<td>Class 7</td>
<td>Learn about Internet security and how to recognize a secure site</td>
<td>Mastery of the Internet Class 1 and 2 skills</td>
</tr>
<tr>
<td></td>
<td>Learn how to cite Internet sources</td>
<td></td>
</tr>
</tbody>
</table>
Internet Searching
Class 4

New Trier High School
Staff Development

Training Guide
Prepared by
Instructional Technology Department

- For assistance, please call the Help Desk @ ext. 2624
Internet Searching – Class #4

Course Objectives:

1. Use a meta-search engine
2. Learn about specialized search tools
(go to http://nths.newtrier.k12.il.us/library/isearch/isearch4.htm)

What is a Meta-search Engine?

Meta-search engines pose your question to up to a dozen or more search engines and directories simultaneously. They can be efficient, but tend to be slower and not as precise as single search engines.

- **MetaCrawler**: Sends your keywords to ten different search tools, then collects and displays the best response from each (http://www.metacrawler.com)
- **Dogpile**: Searches the Web, newsgroups, stock quotes, ftp sites and others. (http://www.dogpile.com)
- **Inquire Pro**: Developed by the students at the Illinois Math and Science Academy, this meta-search engine searches AltaVista, Excite, Hotbot, Lycos and Yahoo. (http://toolkit.imsa.edu/search/).

Using Inquire Pro

InquirePro is a meta-search engine developed by the students at the Illinois Math and Science Academy. It will do the following:

- Save you time by searching multiple engines simultaneously and returning citations without the time-consuming downloading and distracting clutter of advertisements
- Give you access to multiple search strategies without the need to enter the detailed syntax required by individual search engines
- Enable you to control the ranking and organization of the results returned by individual search engines
- Identify sites that returned multiple citations so you can search them more thoroughly
- Automate in-depth searches of individual sites*

InquirePro searches AltaVista, Excite, HotBot, Lycos and Yahoo, offers multiple options and settings, and will allow you to limit your search to images or sounds. Its Internet Search Center offers great information on how to formulate searches, reviews of search engines, and a tutorial. Best of all, it has no advertising!

*From the IMSA Internet Search Center Home Page (http://toolkit.imsa.edu/)
Specialized Search Tools

Specialty Search Engine

- **SearchPower** (http://www.searchpower.com): A search engine for specialized subjects

Graphics and Multimedia

- **AltaVista** (http://www.altavista.com/): Click on Images, Video or Audio to restrict your search.
- **Beaucoup** (http://www.beaucoup.com/): Searches for art, music, sounds.
- **Clip Art Searcher** (http://www.webplaces.com/search/): Use several different search engines to find graphics, sound and video files.
- **Electric Library** (from the NTHS Library home page): http://nths.nttc.org/library/home2.htm: Click on Pictures to search for graphics files.
- **MP3.com** (http://mp3.com/): All things about MP3, including thousands of legal MP3 files.
- **MP3meta** (http://www.mp3meta.com/): Search all the major MP3 search engines at once through this metasearch service from SavvySearch.

Newsgroup Searching

- **Supernews** (http://www.supernews.com/): Searches newsgroup discussions, with archives.

Mailing Lists

Looking for folks with similar interests? Join an Internet listserv. Some good places to start looking:

- **List of Lists** (http://catalog.com/vivian/interest-group-search.html): Search for lists of interest.
- **Liszt** (http://www.liszt.com/): The granddaddy of listserv searching, still a good place to find subject listservs.
- **Publicly Accessible Mailing Lists (PAML)** (http://www.neosoft.com/internet/paml): One more good place to find mailing lists.
Internet Shopping

- **Dealpilot** (http://www.acses.com/): A buying service for books, CD's, videos and DVD's, which checks about 25 Internet stores to find the best price.
- **Buyer's Index** (http://www.buyersindex.com): Lists information from about 9,000 mail order companies, web shopping sites and classified ad sites.
- **mySimon** (http://www.mysimon.com): The largest comparison shopping service on the Internet; searches over 1500 merchants.

Science Search Engines

- **Chemie.DE** (http://www.chemie.de/): Directory and search engine for information about chemistry. Click on the "search engine" link on the home page to search.
- **Biolinks** (http://www.biolinks.com/): A search engine for scientists, with links to journals, organizations, companies and more. It spiders the web and has human-categorized results.

Medical Search Engines

- **MedHunt** (http://www.hon.ch/MedHunt/): MedHunt uses both humans and web crawling to build its index of medical information. Searches can be narrowed by region, and a French interface is available.
- **Citeline.com** (http://www.citeline.com/C1SE/search): Provides a focused medical search, using a pre-screened index of medical sites.
- **Medical World Search** (http://www.mwsearch.com/): Listings are created by spidering pages from a select group of medical sites, in order to keep results tightly focused.

Financial Searching

With the sites listed below, you enter the name of a company or a stock symbol, and then you'll be linked to a page with quotes, financial data and more.

- **DailyStocks** (http://www.dailystocks.com/)
- **JustQuotes.com** (http://www.justquotes.com/)
- **TradingDay** (http://tradingday.com/)
Law

- Oyez, Oyez, Oyez (http://oyez.nwu.edu/): U.S. Supreme Court multi-media database sponsored by Northwestern University.
- LawCrawler (http://www.lawcrawler.com/): Powered by an AltaVista search engine, delivers information only from sites identified as dealing with law issues.

Web Rings

Web rings are groups of sites linked together around a similar topic. Each would install a special code on its pages, making it easy to connect to the next site in the ring. You can search the rings for particular areas of interest.

- Bomis (http://www.bomis.com/)
- WebRing (http://www.webring.org/)

Search Problems

Try searching for some of the following problems using both the meta-search engines and the specialized ones.

- Find a web ring of Internet sites about Australian history.
- A few years ago, the Reverend Jerry Falwell sued Hustler magazine for libel, claiming that he had been defamed by a story the magazine had run. He received damages, but Hustler appealed. Find the Supreme Court case which dealt with this problem. What was the verdict of the court?
- Cystic fibrosis has long been a difficult disease to manage for young patients. Find some information about the new treatments for cystic fibrosis which use so-called “orphan” drugs.
- Where can you buy women’s cotton sweaters online?
- You are preparing a web site for a mythology project your students are working on. Find a picture of Achilles which you can use on this page.
- Bluegrass is one of your favorite types of music. Find a listserv devoted to bluegrass.

Much of the information in this section came from Search Engine Watch, an extraordinarily useful site for anyone who does it a lot of Internet searching. It can be accessed at http://www.searchenginewatch.com
Internet Searching

Class 5

New Trier High School
Staff Development

Training Guide
Prepared by
The Library Staff

• For assistance, please call the Help Desk @ ext. 2624
Internet Searching: Class 5

Course Objectives:

1. Learn to create a bookmark
2. Learn how to edit and organize bookmarks
3. Learn how to create and use multiple bookmark lists
4. Learn how to check the currency of your bookmarks
Creating a Bookmark

To bookmark a web page:

- Go to the web page you want to bookmark.
- Click Bookmarks.
- Choose Add Bookmark
- The name of the currently displayed page is added as the last item in the Bookmark menu.

To revisit a bookmarked web page:

- Click Bookmarks.
- Choose a bookmarked page.

Editing and Organizing Bookmarks

To organize your bookmarks into folders:

- Click Bookmarks and choose Edit Bookmarks.
- Click the item just above where you want to put a new folder
- Open the File menu and choose New Folder.
- Give your new folder a name and click OK
- Drag your bookmark into it.
To reorder bookmarks:

- Click Bookmarks and choose Edit Bookmarks.
- Drag any bookmark, folder, or separator to reposition it.

To delete a bookmark:

- Click Bookmarks and choose Edit Bookmarks.
- Click to select a bookmark.
- Press the Delete key.

To file a bookmark on the fly:

- Go to the web page you wish to bookmark.
- Click Bookmarks and choose File Bookmark.
- Choose a folder in which to store a bookmark for the current page.
Keeping Multiple Bookmark Lists

You can have more than one bookmark list, each with its own set of titles linked to favorite pages. Only one bookmark list can be active at a time.

To save a bookmark list:

- Click Bookmarks and choose Edit Bookmarks.
- Open the File menu and choose Save As.
- Give the file a name
- The list is saved as an HTML-formatted file
To open and use a bookmark list:

- Click **Bookmarks** and choose **Edit Bookmarks**.
- Open the **File** menu and choose **Open Bookmarks file**.
- The file you open determines what you see in the **Bookmarks** menu.

Checking the Currency of Your Bookmarks
To find out if a bookmarked page has been moved or modified since your last viewing:

- Click Bookmarks and choose Edit Bookmarks.
- Select one or more bookmarks. If you want to check all bookmarks, don’t select any.
- Open the View menu and choose Update Bookmarks.
- Click All Bookmarks or Selected Bookmarks.
- Click Start Checking.

If a page has changed, Netscape puts a special mark on the page’s bookmark icon. If Netscape is unable to verify a page, it puts a question mark on the page’s icon.

To change information for any current bookmark or bookmark folder:

Click Bookmarks and choose Edit Bookmarks.
Select a bookmark or bookmark folder.
From the Edit menu, choose Bookmark Properties.
To make a change, type in a new name or URL. (The URL field is dimmed if a folder is selected.
Choose OK.
Type in new name or new URL
Overview of the Individual Technology Learning Plan

In the past, New Trier has offered a variety of incentives for staff development in technology. Staff computer purchases have been an ongoing program. The most recent purchase with a training option resulted in more than sixty staff members taking advantage of the program. New Trier has provided free standard software for the staff. Several teachers have been given technology-based projects of excellence. In the past, staff members were paid to attend summer training courses. There was not necessarily a well-organized flow to the courses taken nor was anyone specifically assigned to help a staff member determine his/her needs and shepherd him/her through the process.

The goal of the Individual Technology Learning Plan (ITLP) program developed will be to assist the staff member in reaching a higher level of technology skill as appropriate for his/her position at New Trier. The development of an individual technology learning plan for a staff member would improve the overall technology staff development program at New Trier. It will allow us to work with staff members in a more formal way and allow us to more readily assess training needs among the staff as well.

ITLPs will be developed based on the faculty or support staff technology expectations developed by the Greater Technology Committee. The goal of the ITLP would be to assist the staff member in mastering additional skills that will help them in his/her position. In addition to the ITLP, the process will also have teachers complete a classroom technology survey to assess current level of technology integration in the classroom. This same survey will be completed at the end of the ITLP process to be able to document technology growth directly related to student learning.

After a staff member volunteers to work on an ITLP, they will meet with a member of the technology staff to assess current skills against the skill expectations. They would then work with that consultant to review the self-assessment and build a technology learning plan that would best meet his/her individual and departmental needs. The ITLP will count towards satisfying the new staff development requirements for teaching certificate renewal.

The staff member would then participate in staff development courses, self-guided instruction or any other staff development opportunities that would help them complete his/her plan. Throughout the process, the consultant would work with the teacher to ensure that the staff development was appropriate and that the process was moving along smoothly. All ITLPs created would have a practical component to ensure that the staff member understood how to utilize the technology skills within his/her position. The average ITLP would most likely take approximately 30 hours of work to complete. ITLPs will be developed to be completed over either one or two years.

When the training is completed, the staff member would work with the consultant to assess the success of the plan and the effectiveness of the staff member’s new skills. When the participant has demonstrated successful completion of the ITLP, the IT consultant would recommend the staff member receive an appropriate stipend for completion. Stipends will range between $1000 and $2000 depending upon the amount of skill development.

After the initial completion of an ITLP, the staff member will be encouraged to continue to improve his/her skills through the staff development opportunities available through New Trier. In addition, some of those who complete an ITLP may desire to serve as trainers or consultants in the future. As technology advances and the New Trier skill expectations evolve, those who had already obtained skills from an earlier ITLP would be given modest incentives to upgrade their skills to the new level.

For more information or to volunteer to participate please contact Laura Bizar x2701.
Technology Skill Assessment for Jane Q. Trevian

All of the skills that the assessment shows you have are grayed out on the form below. You appear to have most of the skills at the beginning level. This would suggest a plan to obtain the advanced skills.

Operating System Skills

<table>
<thead>
<tr>
<th>General Computer Skills</th>
<th>Beginning</th>
<th>Intermediate</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identify computer parts</td>
<td>• Back up files to the server</td>
<td>• Remove viruses from a floppy disk and the hard drive</td>
<td></td>
</tr>
<tr>
<td>• Use and locate a printer</td>
<td>• Log on and navigate both platforms</td>
<td>• Convert files between platforms and file types</td>
<td></td>
</tr>
<tr>
<td>• Navigate and select menu items</td>
<td>• Learn to use either Mac OS8 or Windows 95/98</td>
<td>• Learn how to use both Mac OS8 and Windows 95/98</td>
<td></td>
</tr>
<tr>
<td>Operating System Skills</td>
<td>Intermediate</td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>• Log on and navigate both platforms</td>
<td>• Begin a document on one platform and finish on the other</td>
<td>• Convert files between platforms and file types</td>
<td></td>
</tr>
<tr>
<td>• Learn to use either Mac OS8 or Windows 95/98</td>
<td>• Rename files</td>
<td>• Learn how to use both Mac OS8 and Windows 95/98</td>
<td></td>
</tr>
<tr>
<td>Computer Troubleshooting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Check electrical and peripheral connections</td>
<td>• Clear printer jams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Check keyboard and mouse cables</td>
<td>• Check status of printer with the print monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Conduct a “forced quit”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Restart the computer after a system crash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Accurately report problems to the help desk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Production Skills

<table>
<thead>
<tr>
<th>Word Processing Skills</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Locate and open an existing document</td>
<td>• Change the formatting of a document</td>
<td>• Create a template</td>
</tr>
<tr>
<td>• Create an MS Word or ClarisWorks file</td>
<td>• Create tables</td>
<td>• Set up and use mail merge</td>
</tr>
<tr>
<td>• Understand and use tool bars</td>
<td>• Add graphics to a document</td>
<td>• Integrate a spreadsheet or a chart</td>
</tr>
<tr>
<td>• Cut, copy, insert and move text</td>
<td>• Use pre-existing templates</td>
<td></td>
</tr>
<tr>
<td>• Use grammar and spell check</td>
<td>• Save a .doc file as another file type</td>
<td></td>
</tr>
<tr>
<td>• Print files and adjust page setup as needed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Save files to multiple locations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database Software Skills</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pentamation</td>
<td>• Enter and edit data in a pre-existing file</td>
<td>• Define relationships between fields and files</td>
</tr>
<tr>
<td>• FileMaker Pro</td>
<td>• Add new fields to a database</td>
<td>• Use calculations</td>
</tr>
<tr>
<td>• TreviAC</td>
<td>• Create new layouts</td>
<td>• Use summary and subsummary type fields</td>
</tr>
<tr>
<td></td>
<td>• Create a new database file</td>
<td>• Set up and use mail merge</td>
</tr>
<tr>
<td>Spreadsheet Software Skills</td>
<td></td>
<td>Presentation Software</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>- Open an Excel workbook</td>
<td>- Insert, modify and delete rows and columns</td>
<td>- Open a PowerPoint file</td>
</tr>
<tr>
<td>- Enter and edit data in a pre-existing workbook</td>
<td>- Create or modify the layout</td>
<td>- Create a new presentation in both slide and outline format</td>
</tr>
<tr>
<td>- Save the workbook</td>
<td>- Create a range</td>
<td>- Present a prepared document</td>
</tr>
<tr>
<td>- Print a prepared report</td>
<td>- Enter a formula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sort data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Create a new worksheet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Create a chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation Software</td>
<td></td>
<td>Email Skills</td>
</tr>
<tr>
<td>- Open a PowerPoint file</td>
<td>- Format a presentation using a template</td>
<td>- Send and receive email</td>
</tr>
<tr>
<td>- Create a new presentation in both slide and outline format</td>
<td>- Use advanced search engine skills to find information</td>
<td>- Open an attachment</td>
</tr>
<tr>
<td>- Present a prepared document</td>
<td>- Use basic search engine skills to find information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Use bookmarks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Skills</td>
<td></td>
<td>Miscellaneous Skills</td>
</tr>
<tr>
<td>Web Skills</td>
<td></td>
<td>Voice Mail Skills</td>
</tr>
<tr>
<td>- Launch Netscape</td>
<td>- Download files from the Internet</td>
<td>- Retrieve messages</td>
</tr>
<tr>
<td>- Use hyperlinks</td>
<td>- Use basic search engine skills to find information</td>
<td>- Send messages</td>
</tr>
<tr>
<td>- Find a specific web site by typing in the URL</td>
<td>- Use bookmarks</td>
<td>- Record a greeting</td>
</tr>
<tr>
<td>- Use basic search engine skills to find information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Use bookmarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email Skills</td>
<td></td>
<td>Audio-Visual Skills</td>
</tr>
<tr>
<td>- Send and receive email</td>
<td>- Be able to operate the following:</td>
<td>- Be able to operate the following:</td>
</tr>
<tr>
<td>- Open an attachment</td>
<td>- Use advanced search engine skills to find information</td>
<td>- Classroom network hookups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Laserdisc player</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CD player</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Video projector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fax machine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Connect a laptop computer to the video system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Skills</td>
<td></td>
<td>Audio-Visual Skills</td>
</tr>
<tr>
<td>Voice Mail Skills</td>
<td></td>
<td>- Be able to operate the following:</td>
</tr>
<tr>
<td>- Retrieve messages</td>
<td>- Classroom network hookups</td>
<td>- Classroom network hookups</td>
</tr>
<tr>
<td>- Send messages</td>
<td>- Laserdisc player</td>
<td>- Laserdisc player</td>
</tr>
<tr>
<td>- Record a greeting</td>
<td>- CD player</td>
<td>- CD player</td>
</tr>
<tr>
<td></td>
<td>- Video projector</td>
<td>- Video projector</td>
</tr>
<tr>
<td></td>
<td>- Fax machine</td>
<td>- Fax machine</td>
</tr>
<tr>
<td></td>
<td>- Connect a laptop computer to the video system</td>
<td>- Connect a laptop computer to the video system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Individual Technology Learning Plan for Jane Q. Trevian

This plan is intended to be complete between 7/1/99 and 6/30/00

The skills that are grayed out were identified as already being held during the self-assessment.

Classroom integration activities are suggestions.

Operating System Skills

<table>
<thead>
<tr>
<th>General Computer Skills</th>
<th>Beginning</th>
<th>Training Method</th>
<th>Intermediate</th>
<th>Training Method</th>
<th>Advanced</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Identify computer parts</td>
<td></td>
<td>- Back up files to the server</td>
<td></td>
<td>- Remove viruses from a floppy disk and the hard drive</td>
<td>Managing Virus Protection (Class 121)</td>
</tr>
<tr>
<td></td>
<td>- Use and locate a printer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Taken 7/24/99 Reviewed w/ mentor 9/10/99</td>
</tr>
<tr>
<td></td>
<td>- Navigate and select menu items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating System Skills</th>
<th>Beginning</th>
<th>Training Method</th>
<th>Intermediate</th>
<th>Training Method</th>
<th>Advanced</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Log on and navigate both platforms</td>
<td></td>
<td>- Begin a document on one platform and finish on the other</td>
<td>Provided instruction sheets</td>
<td>- Convert files between platforms and file types</td>
<td>Moving Between Platforms I & II (Classes 842 & 843)</td>
</tr>
<tr>
<td></td>
<td>- Learn to use either Mac OS8 or Windows 95/98</td>
<td></td>
<td></td>
<td>Reviewed w/ mentor</td>
<td></td>
<td>Taken</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Taken</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reviewed w/ mentor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Troubleshooting</th>
<th>Beginning</th>
<th>Training Method</th>
<th>Intermediate</th>
<th>Training Method</th>
<th>Advanced</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Check electrical and peripheral connections</td>
<td></td>
<td>- Clear printer jams</td>
<td>Printer Care and Feeding (Class 107)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Check keyboard and mouse cables</td>
<td></td>
<td>- Check status of printer with the print monitor</td>
<td>Taken 7/29/99 Reviewed w/ mentor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Conduct a "forced quit"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Restart the computer after a system crash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Accurately report problems to the help desk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integration Activities: Check for viruses and remove same from student disks, Rename student disks for dual platform use, Assist students with printer problems in labs
Electronic Portfolios

Nancy Becker
Instructional Technology Specialist

Bobbie Welch
Instructional Technology Specialist

Prince George's County Public Schools
June 27, 2000
THE GREAT CHOCOLATE EXPERIENCE V

Contact Person: Glenda S. Bequette <gbequett@accessus.net>

Grades: Open to all K - 12 classes (private, public and home schoolers)

Description: The focus of the Great Chocolate Experience V is "m&m® Math or m&m® Fractional Math. Schools from all over the United States & Canada will be divided into 6 geographical regions. Students will estimate "fun-size" bags of m&m®'s to determine packaging patterns with regard to number, color and region. Schools will have the opportunity to participate in optional activities including the submission of stories, poems, recipes, etc.

Timeline: Begins January 16, 2001 - March 23, 2001 (See calendar). The last day to sign up for participation is Friday, January 5, 2001.

Objectives:

1. Develop Math Skills (computation, predicting, counting, graphing, addition, subtraction, multiplication, division, percentages, fractions, grouping information, relationships, and comparing);
2. Understand Science Processes (gathering and recording data, interpreting data estimating, classifying, predicting and sorting);
3. Develop Technology Skills (communicating via e-mail, use spreadsheets, databases, send documents via e-mail, word-processing skills, etc.);
4. Integration of Language Arts, Reading, Writing, and Social Sciences; and
5. Correlation with the Illinois Learning Standards and ISTE's Technology Profile Performance Indicators.

Participation: Each class participating will receive a copy of the recipe book and newspaper/newsletter developed through this project as well as, a certificate of participation. In addition, a Web site will be developed to showcase the schools involved.

Registration: Complete the registration form online at <http://www.iceberg.org/~gbequett/gceparti.html> A teaching packet will be sent to you after you have registered. The online form will be available after November 1, 2000.

Expectations: Each registered school is asked to participate in m&m® Math or m&m® Fractional Math. Additional activities (art, reading, writing, social sciences, geography, etc.) will be provided as part of the project packet, however, they are optional.

Regions:

Region 2: North Dakota, South Dakota, Wyoming, Colorado, New Mexico, Texas, Nebraska, Kansas, Oklahoma, and Arkansas (10 states).
The Great Chocolate Experience

Region 3: Illinois, Missouri, Iowa, Michigan, Wisconsin, Minnesota, Indiana, Ohio, Kentucky and Tennessee (10 states).

Region 4: Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina, North Carolina, Virginia, West Virginia, Maryland, and Washington, D.C. (10 states & 1 district).

Region 6: Canada

WWW Page: A WWW page is currently under construction. The address is: <http://www.iceberg.org/~gbequett/gce5.html>.

Volunteers are needed for the following positions:

One (1) Chocolate Central Coordinator/Class. Requirements:

1. An Energetic Teacher & class with lots of spirit and a love of CHOCOLATE;
2. Able to send and receive numerous e-mails from the Regional & Hub Coordinators on a daily basis;
3. An extremely reliable e-mail account;
4. Able to coordinate with the Regional & Hub Coordinators and Glenda on a daily basis; and
5. Access to e-mail on a daily basis. (preferably in your classroom)

Six (6) Regional Coordinators are needed for each of the regions. Requirements:

1. Access to e-mail on a daily basis (preferably at school);
2. Able to send and receive numerous e-mails from your regional schools on a daily basis;
3. A reliable e-mail account; and
4. Able to coordinate with Chocolate Central & your regional schools.

Seven (7) Hub Coordinators are needed for each of the Hub regions within the State of Illinois. Requirements:

1. Access to e-mail on a daily basis (preferably at school);
2. Able to send and receive numerous e-mails from your hub schools on a daily basis;
3. A reliable e-mail account; and
4. Able to coordinate with Chocolate Central, the Regional Coordinator & your hub schools.

Two (2) Recipe Book Coordinators. A Coordinator will be needed for the K - 2 Recipe Book and one for the K - 12 Recipe Book. Requirements:

1. Able to receive large amount of e-mail;
2. A reliable e-mail account;
3. Access to e-mail on a daily basis (preferably at school);
4. Able to coordinate with all of the schools involved in the Great Chocolate Experience IV;
5. Access to a software program that creates a Recipe Book;
6. Send 1 copy (original) via U.S. Postal Service to Glenda for duplication & distribution by the
7. These Recipe Books should be designed and word processed by the students, not the teacher.

One (1) Newspaper/Newsletter Coordinator. Requirements:

1. Able to receive large amount of e-mail;
2. A reliable e-mail account;
3. Access to e-mail on a daily basis (preferably at school);
4. Able to coordinate with all of the schools involved in the Great Chocolate Experience IV;
5. Access to a software program that creates a Newspaper/Newsletter;
6. Send 1 copy (original) via U.S. Postal Service to Glenda for duplication and distribution by the requested date; and
7. This newspaper should be designed and word processed by the students, not the teacher.

Eight (8) Certificate Coordinators. Requirements:

1. Coordinate with Glenda to design and print participation certificates for the Great Chocolate Experience IV participants;
2. Access to e-mail on a daily basis (preferably at school);
3. Able to receive large amounts of e-mail;
4. A reliable e-mail account;
5. Access to a software program that creates certificates;
6. Send certificates via the U.S. Postal Service to Glenda for distribution by the requested date; and
7. These certificates should be designed and printed by the students, not the teacher.

If you are interested in any of these positions, please notify Glenda or check the appropriate box on the participation form.
Permission to Publish on the Internet

I give permission for my photograph, picture and/or project to be published on the Internet at this web address http://. I understand that my last name will not be used with the published photograph, picture, and/or project and will be accessible for ____ days. This will help ensure my privacy.

Student’s signature Parent’s Signature

Date signed Date signed

Prented: [Signature]
The Great Chocolate Experience

CHOCOLATE TEST

1. How many Hershey's Kisses chocolates can be produced in a day?
 a. 12 million
 b. not enough
 c. 33 million

2. In what year were Hershey's Kisses chocolates first produced?
 a. 1921
 b. 1907
 c. before I was born

3. Which chocolate baking product can be included in fat-restricted diets?
 a. Hershey's cocoa
 b. Hershey's baking chocolate
 c. Hershey's chocolate chips

4. What was the first product advertised by Hershey Foods Corporation?
 a. Hershey's syrup
 b. Hershey's milk chocolate bar
 c. Mr. Goodbar chocolate bar

5. Approximately how many Hershey's Kisses chocolates are in a pound?
 a. 26
 b. don't know, but they taste great!
 c. 95

6. About how many cows are needed to provide enough milk for one day's production at the main plant in Hershey, Pa.?
 a. 50,000
 b. barnyard full
 c. 33,500

7. How many calories are there in a Hershey's Kisses chocolate?
 a. 25 calories
 b. none (little foods don't count)
 c. 50 calories

8. How many Hershey's chocolate chips are in a pound?
9. At about what temperature does chocolate begin to melt?
 a. 78 degrees F
 b. sunny and 90 degrees F
 c. 95 degrees F

10. What is our best selling product?
 a. Reese's peanut butter cups
 b. Hershey's milk chocolate bar
 c. Hershey's Kisses chocolates

11. What do the street lights on Chocolate Avenue in Hershey, Pa., look like?
 a. Hershey's Kisses chocolates
 b. Reese's peanut butter cups
 c. lanterns

12. What words are spelled out in hedges in front of the main plant in Hershey, Pa.?
 a. Welcome to Hershey
 b. Hershey Cocoa
 c. Hope you enjoy your visit

13. How long does it take to make a Hershey's milk chocolate bar?
 a. about 17 days
 b. about 21 days
 c. about 10 days

Presenter: Glenda S. Bequette
HOCOLATE COVERED TRIVIA

1. Where can you go in the United States and smell chocolate all the time?
 a. Cocoa Beach, Florida
 b. Hershey, Pennsylvania
 c. Carmel, California

2. Can you guess how many chocolate bars the largest chocolate factory makes each year?
 a. over a million
 b. over a billion
 c. over a trillion

3. It takes almost one quart (about 1 liter) of milk to make a one-pound bar of milk chocolate -- true or false?

4. White chocolate has real chocolate in it -- true or false?

5. What does "M & M®" stand for?

6. How did Hershey's Kisses® get their name?
 a. Mr. Hershey's wife kissed him after she tried his tasty new candy.
 b. They were first made for Valentine's Day gifts.
 c. "Kiss" is an old name for any small piece of chocolate wrapped in foil.

7. If you eat lots chocolate, you'll get lots of:
 a. cavities
 b. pimples
 c. both cavities and pimples
 d. neither cavities nor pimples

8. What was the name of the famous character who had his own chocolate factory?
 a. Charlie Brown
 b. ET
 c. Willy Wonka
 d. Donald Duck

9. Would the world's tallest chocolate egg have fit inside your bedroom?
 a. sure--it was about the size of a watermelon
 b. probably--it was about 7 feet (2 meters) tall
 c. no way--unless you have an 18-foot (51/2 meters) ceiling.

10. Where do you think the first chocolate bunny was made?
 a. England
b. Australia
c. Pennsylvania
d. Disney World

11. Which of these things do you think have been made out of chocolate?
a. jigsaw puzzle
b. chess set
c. model of a computer diskette
d. model of the Statue of Liberty
e. all of these

ANSWERS:
1. (B) Chocolate fans go wild in Hershey, the famous home of the Hershey® Chocolate Company. The town smells of different kinds of chocolate each day, depending on what the factory is making.
2. (B) Over a billion chocolate bars are made each year at Hershey's factory.
3. TRUE
4. FALSE. White chocolate contains lots of cocoa butter, which comes from cacao beans. But it doesn't have the secret ingredient of all "true chocolate": chocolate liquor.
5. (B) M & M® candies may be munchy and mouthwatering, but they were named after their inventors, Forrest Mars and Bruce Murrie
6. (C)
7. (D) As far as scientist can tell, Pure chocolate does not cause pimples. And chocolate may protect your teeth against cavities. It's the sugar and other things added to chocolate candy that cause problems.
8. (C) Willy Wonka and the Chocolate Factory was a movie that was based on the book Charlie and the Chocolate Factory by Roald Dahl.
9. (C) The giant egg was 17 feet, 9 inches (about 5 1/2 m) tall and it weighed over 2 1/2 tons (2250 kg).
10 (D)
11. (E) All of those things and more have been out of chocolate by chocolate makers all over the world.

Presenter: Glenda S. Bequette
choctri.doc
m&m FRACTIONAL MATH

1. Do not open your bag. Estimate how many m&m's are in your bag. ___________ Graph and write your estimate of each color.

 B = Blue G = Green O = Orange
 Y = Yellow R = Red DB = Dark Brown

 set B = __________ set G = __________ set O = __________
 set Y = __________ set R = __________ set DB = __________

2. Open your bag. Put your m&m's into sets by color. Graph your actual count of each color.

3. Write the number of m&m's in each set.

 set B = __________ set G = __________ set O = __________
 set Y = __________ set R = __________ set DB = __________

4. How many m&m's are in the bag? ___________

5. How far off was your estimate? ___________

6. Write the fraction for each color in your bag. The answer should be written with the lowest common denominator.

 B = __________
 Y = __________

 G = __________
 R = __________

 O = __________
 DB = __________

7. Write the percentage of each color in your bag.

 B = __________
 Y = __________

 G = __________
 R = __________

 O = __________
 DB = __________

8. Using the percentage that you discovered in number 7, write the decimal equivalent.

 B = __________
 Y = __________

 G = __________
 R = __________

 O = __________
 DB = __________

9. Using > or < or =, show the relationship between these sets.

 G _______ R
 O _______ G
 G _______ B

 Y _______ DB
 B _______ DB
 Y _______ R

 DB _______ Y
 DB _______ DB

10. Complete these problems.
The Great Chocolate Experience

\[B + DB = ____ \quad O \times G = ____ \quad O - B = ____ \]
\[R - O = ____ \quad R + Y = ____ \quad G \times B = ____ \]
\[R \times G = ____ \quad Y - B = ____ \quad DB \times R = ____ \]

Make up 4 problems (+, -, or x) of your own.

11. On a separate sheet of paper, draw a circle graph that illustrates the percentage of m&m's in your bag.

12. Are all bags of m&m's the same? Find out!! Compare graphs with four (4) other students.

13. m&m's have between ______ and ______ candies in a bag.

14. My least common color is ______.

15. My most common color is ______.

16. My class's least common color is ______.

17. My class's most common color is ______.

18. Be sure to title your graph in the space provided.

19. Congratulations you've succeeded in helping determine packaging patterns for m&m's. So enjoy -- eat them, save them or take them home.

Presenter: Glenda S. Bequette

WORK AREA:
CHOCOLATE FUN FACTS

On average, each American ate 11.5 pounds of chocolate in 1995. That's over 3 billion pounds total. The retail chocolate industry in the U.S. is worth $13 billion per year.

Valentine's Day still means Chocolate. Americans spend $665 million each Valentine's Day on candy, making it the fourth biggest holiday of the year for confectionery purchases (after Halloween, Christmas and Easter).

American men say they'd rather receive chocolate than flowers on Valentine's Day, especially those over the age of 50. Sixty-eight percent of men age 50 or older say they'd prefer receiving chocolate over flowers from their sweetheart on Valentine's Day, while just 22% said they'd rather have the flowers.

The first "chocolate box" was introduced by Richard Cadbury in 1868, when he decorated a candy box with a painting of his young daughter holding a kitten in her arms. Cadbury also invented the first Valentine's Day candy box. *

Chocolate manufacturers use 40% of the world's almonds, 20% of the world's peanuts and 8% of the world's sugar. Members of the Chocolate Manufacturers Association use about 3.5 million pounds of the whole milk each day to make milk chocolate. *

* from Chocolate Fads, Folklore and Fantasies, Linda K. Fuller, Ph.D., 1994

History of U.S. Per Capita Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>Chocolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>9.67</td>
</tr>
<tr>
<td>1984</td>
<td>10.0</td>
</tr>
<tr>
<td>1985</td>
<td>10.1</td>
</tr>
<tr>
<td>1986</td>
<td>10.1</td>
</tr>
<tr>
<td>1987</td>
<td>10.2</td>
</tr>
<tr>
<td>1988</td>
<td>10.4</td>
</tr>
<tr>
<td>1989</td>
<td>11.2</td>
</tr>
<tr>
<td>1990</td>
<td>11.5</td>
</tr>
<tr>
<td>1991</td>
<td>10.6</td>
</tr>
<tr>
<td>1992</td>
<td>10.6</td>
</tr>
<tr>
<td>1993</td>
<td>10.9</td>
</tr>
<tr>
<td>1994</td>
<td>10.8</td>
</tr>
</tbody>
</table>
Davis, Anne

"Blooming" Critical Thinkers
Bloom's Taxonomy Blue Ribbon Display
Bloom's Taxonomy Question Teaching Resources for Knowledge
Bloom's Taxonomy Question Teaching Resources for Comprehension
Bloom's Taxonomy Question Teaching Resources for Application
Bloom's Taxonomy Question Teaching Resources for Analysis
Bloom's Taxonomy Question Teaching Resources for Synthesis
Bloom's Taxonomy Question Teaching Resources for Evaluation
Current Events URLs
Original Author Submissions

Dede, Chris

Using Immersive Virtual Worlds in Real World Classrooms (pdf format)

Ditson, Mary

How to Create WEB PAGES with Inspiration (pdf format)
Brainstorming with an AlphaSmart (pdf format)
Textbook Notetaking with an AlphaSmart (pdf format)
Textbook Notetaking with an AlphaSmart (cont) (pdf format)
Making Your Inspiration Outlines TALK (pdf format)
Letting the Computer do the TYPING (pdf format)
Structured Writing Templates help students meet Writing Standards (pdf format)
Literary webs help students meet Language Arts Standards (pdf format)
Concept Maps help students meet Science Standards (pdf format)
Concept Maps help students meet Social Science Standards (pdf format)

Donohue, Pat

Linking Learning to Life: Model, Tools and Strategies Linking Electronic and Real Communities
Original Author Submissions

Drake, Kris

DLS Network News
Original Author Submissions

Evans, John

NASA's Education Program
Original Author Submissions

Fitzgerald, Sara
Putting TCO to Work
Original Author Submissions

Garton, Juli
Web Based Staff Development

Glotzbach, Joe
Trails Project Cyberneers: Integrating Technology with History
Original Author Submissions

Greenwood, Karen
Thin Client @ School: Thin-Client Solutions for K-12 Schools (pdf format)
Thin Client @ School: Enriching Education through Affordable Technology
Original Author Submissions

Griswold, Debbie
Integrating Technology into the Language Arts Curriculum
Listserv / Mailing Lists
Works Cited
Original Author Submissions

Guhlin, Miguel
Creating Web Based Lessons: WebQuests & Other Internet Projects
Creating Web Based Lessons: WebQuests & Other Internet Projects - Cover Page
Getting Graphics & Text
Creating a Web Page with FrontPage Express
Original Author Submissions

Guterman, Liz
Laptops Even the Score for Urban Learners
Original Author Submissions

Hallstrom, Barbara
Children and Search Engines: What's the Big Deal?
Original Author Submissions

Hawkins, Joyce
Musical Crossroads: The Rhythm of Technology Handouts
Lesson Plan for Standards-Based Technology-Integrated Instruction (pdf format)
Original Author Submissions
Hayes, Jeanne

K-12 Education Technology Update
Original Author Submissions

Hirsch, Jim

HyperInternet: Interactive Internet Activities (pdf format)

Horan, Mike

SeaTrek: Implementation of Telementors in Middle-School Science
Original Author Submissions

Houser, Mike

Computer! Heal Thyself!
Original Author Submissions

Howell, Tricia

GCPS Technology Assessment Model
Teaching and Learning - Definition and Scoring Rubric
Gwinnett County Technology Needs Assessment Survey
Technology Assessment Model Implementation Plan Template
Original Author Submissions

Hunt, Adrianne

Research, Replication, Results: INtegrating TECHnology from Georgia to Louisiana Classrooms
A Professional Development Model for Integrating Technology in the Student-Centered Classroom
Technology-Connected Lesson Plan
Original Author Submissions
"Blooming" Critical Thinkers for Tomorrow

Click to open author's original document.
Bloom's Taxonomy

Blue Ribbon Display

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Comprehension</th>
<th>Application</th>
<th>Analysis</th>
<th>Synthesis</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>recall</td>
<td>review</td>
<td>use</td>
<td>order</td>
<td>arrange</td>
<td>select</td>
</tr>
<tr>
<td>remember</td>
<td>explain</td>
<td>apply</td>
<td>group</td>
<td>organize</td>
<td>recommend</td>
</tr>
<tr>
<td>match</td>
<td>discuss</td>
<td>practice</td>
<td>categorize</td>
<td>plan</td>
<td>rate</td>
</tr>
<tr>
<td>define</td>
<td>summarize</td>
<td>construct</td>
<td>examine</td>
<td>predict</td>
<td>rank</td>
</tr>
<tr>
<td>describe</td>
<td>paraphrase</td>
<td>interpret</td>
<td>inspect</td>
<td>produce</td>
<td>critique</td>
</tr>
<tr>
<td>list</td>
<td>illustrate</td>
<td>dramatize</td>
<td>infer</td>
<td>design</td>
<td>evaluate</td>
</tr>
<tr>
<td>name</td>
<td>compare</td>
<td>show</td>
<td>analyze</td>
<td>develop</td>
<td>conclude</td>
</tr>
<tr>
<td>state</td>
<td>locate</td>
<td>demonstrate</td>
<td>contrast</td>
<td>invent</td>
<td>judge</td>
</tr>
<tr>
<td>tell</td>
<td>identify</td>
<td>give an example</td>
<td>detect</td>
<td>create</td>
<td>decide</td>
</tr>
</tbody>
</table>

Knowledge - You can recall or record information, concepts, and ideas in the approximate form that they were learned.

Comprehension - You can grasp and interpret prior learning.

Application - You can transfer information to a life problem or new task.

Analysis - You can examine, take apart, classify, predict, and draw conclusions.

Synthesis - You can originate, combine and integrate prior knowledge into a product, plan or new proposal.

Evaluation - You can appraise, assess or criticize on the basis of specific standards or criteria.
Bloom's Taxonomy
Question Teaching Resources for Knowledge

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Describe John Glenn's liftoff into space on October 29, 1998.</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Can you recall the youngest gold medallist in the Winter Olympics?</td>
</tr>
<tr>
<td>Knowledge</td>
<td>List the people you admire the most. (Jimmy Carter, Oprah Winfrey, Bill Cosby, Mother Teresa, Madeleine Albright, Ghandi, Michael Jordan, Princess Diana)</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Tell about the plight of the sea otter.</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Do you remember the name of Germany's president?</td>
</tr>
<tr>
<td>Knowledge</td>
<td>State the crash location of SwissAir Flight 111.</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Name the Secretary-General of the United Nations.</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Define the British Monarchy.</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Match these countries and currencies. (France-franc, Mexico-peso, Great Britain-pound, Japan-yen, Italy-lira, United States-dollar, Russia-ruble)</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Summarize the issues facing Benjamin Netanyahu and Yasser Arafat as they participate in the Middle East Peace Talks.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Discuss the advantages of Bilingual Education.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Compare inflation to deflation.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Identify the bacteria responsible for the contamination of hamburger meat in recent news.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Illustrate the new Furby.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Review the capture and release of the three American POWs in Kosovo.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Locate Iraq on a world map.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Explain the reasons for Pope John Paul's visit to Cuba.</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Paraphrase President Clinton's State of the Union Address.</td>
</tr>
<tr>
<td>Application</td>
<td>Show how a balanced budget affects our nation.</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Application</td>
<td>Demonstrate the African capoeira dance, now popular in Brazil.</td>
</tr>
<tr>
<td>Application</td>
<td>Put into practice a water conservation plan in your own household.</td>
</tr>
<tr>
<td>Application</td>
<td>Using the Congressional ruling for the salmon fishermen, tell why the sea lion population has tripled on the West Coast.</td>
</tr>
<tr>
<td>Application</td>
<td>Apply your knowledge of the Middle East Peace Talks, the Iraq Standoff, and the current crisis in Kosovo, and tell how the politics of one country can affect the entire world.</td>
</tr>
<tr>
<td>Application</td>
<td>Using your knowledge about Bill Gate's Microsoft empire, dramatize a make-believe community of businesses and consumers.</td>
</tr>
<tr>
<td>Application</td>
<td>Construct a replica of the Oklahoma tornado damage.</td>
</tr>
<tr>
<td>Application</td>
<td>Give examples of how the Clintons do things together.</td>
</tr>
<tr>
<td>Application</td>
<td>Interpret the significance of Yeltsin's firing of his political cabinet.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Appraise the significance of President Clinton's trip to Africa.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Analysis</td>
<td>Examine Eric Rudolph's disappearance.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Group the countries that are pro and con about the current conditions in Iraq.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Criticize the use of in-depth television during military warfare.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Analyze the similarities between the Holocaust and the current crisis in Kosovo.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Investigate the toxicity level of seabirds living off the Great Lakes in the U.S.</td>
</tr>
<tr>
<td>Analysis</td>
<td>Place in order a timeline of events depicting the collapse of Russia's economy.</td>
</tr>
<tr>
<td>Analysis</td>
<td>What can you detect about the Inca's way of life from the mummified children recently found by archaeologists?</td>
</tr>
<tr>
<td>Analysis</td>
<td>Research the long-simmering tensions between Serbian authorities and independence-seeking ethnic Albanians in Kosovo.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>International Women's Day has recently been introduced as a holiday. Predict a new holiday that will be created 20 years from now.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Develop a disaster plan for citizens to follow regarding the weird weather from El Nino.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Due to storms from El Nino, create an evacuation plan for people living near water.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Arrange in chronological order the flight path of the two hot air balloonists' trip around the world.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Design a wheeled apparatus for students to use, replacing heavy backpacks.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Organize a volunteer group to participate in Jimmy Carters' "Habitat for Humanity" organization.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Produce a planned agenda for your community to temporarily shelter ethnic-Albanian refugees.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>With the millennium fast approaching, prepare a presentation about how the Y2K problems might impact society if they are not addressed by the year 2000.</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Develop a list of resources for parents to use on counseling teenage behavior.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Judge the merits of the Northern Ireland Peace Talks.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Critique the role of television in shaping people's opinions.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Draw a conclusion about Maya Quest's effect on modern civilization.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Rate the importance of homework to the achievement of academic success.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Recommend constraints against industry to diminish global warming.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Select from the list of potential presidential candidates the individual you believe most capable of leading our country into the 21st century.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>How does Mark McGwire rank among other baseball greats?</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Decide how much impact Bill Clinton's impeachment will have on how history records his presidency.</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Evaluate certain ways our American society has desensitized its young people to violence.</td>
</tr>
<tr>
<td>Source</td>
<td>URL</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Scholastic News Online</td>
<td>http://teacher.scholastic.com/newszone/index.asp</td>
</tr>
<tr>
<td>Currents Events Theme Page</td>
<td>http://www.cln.org/themes/current.html</td>
</tr>
<tr>
<td>Weekly Reader (links to News Busters Game)</td>
<td>http://www.weeklyreader.com/features/ce.html</td>
</tr>
<tr>
<td>NewsCurrents Online</td>
<td>http://www.newscurrents.com/</td>
</tr>
<tr>
<td>CBC for Kids</td>
<td>http://www.cbc4kids.ca/regular/homepage.html</td>
</tr>
<tr>
<td>Twenty-five Great Ideas for Teaching Current Events!</td>
<td>http://www.education-world.com/a_lesson/lesson072.shtml</td>
</tr>
</tbody>
</table>

Art Today pictures used per license
Link to their site at http://www.arttoday.com
"Blooming" Critical Thinkers for Tomorrow
Within the next decade, via the videogame industry, "virtual reality" devices capable of multisensory immersion will be ubiquitous in rich and poor homes, urban and rural areas. To compete with the captivating, but mindless types of entertainment that will draw on this power, educators will need beautiful, fantastic, intriguing environments for learning. Our work is beginning to chart these frontiers, as well as revealing which of virtual reality's (VR) promising features for learning are useful, which are not. To engage in effective strategic planning, all educators need to understand the opportunities and challenges of "on the horizon" technologies such as VR.

Project ScienceSpace is a collection of virtual worlds we have designed to explore the potential utility of physical immersion and multisensory perception to enhance science education. Funded by the National Science Foundation over the past six years, ScienceSpace now consists of two worlds: NewtonWorld (for elementary students learning Newtonian dynamics and mechanics) and, MaxwellWorld (for secondary students learning electrostatics as an example of vector fields). We have conducted extensive laboratory research that demonstrates virtual reality has significant benefits for helping a broad range of students learn complex conceptual material. Research publications, Quicktime VR files, Quicktime movies, and images from our worlds can be downloaded from our website: http://www.virtual.gmu.edu

Practical advice for educators at every level about preparing for VR is important, because this technology is perhaps three years away in terms of desktop affordability and seven years away from being "under the Christmas tree" in videogames. Exploring the potential of home-based devices for learning is particularly important because of the high costs of keeping school-based instructional media current with technologies routine in business settings. The goal espoused by many today of multimedia-capable, Internet-connected classroom computers for every two to three pupils carries a staggering price tag—especially if those devices are obsolete five to seven years after installation.
While providing adequate, sophisticated school-based instructional technologies is extremely important, it is vital to leverage this investment via simultaneous utilization of entertainment and information-services devices in family and community settings. Using technology to aid educational reform through systemic innovation must occur on two levels simultaneously: drawing one boundary of the system around the school, with student-teacher-technology partnerships; and another system boundary around the society, with classroom-family-workplace-community-technology partnerships. Such an innovation strategy necessitates developing learning materials—including "edutainment"—for emerging technologies such as virtual reality that can empower learning both in and out of school.

In Spring, 2000, we placed VR systems into five public school classrooms to explore the strengths and limits of this emerging technology in real educational settings. We are developing findings about the integration of VR devices in real world classrooms. Issues include links to curricular science standards, student performance on conventional assessments, issues with simulator sickness, the durability of high-end VR devices, and special accommodations teachers must make. We are also studying the differences between how elementary and secondary pupils respond and are deriving the implications of our research for instructional design. Our website contains publications about this work. We appreciate any feedback you care to provide -- thanks!
How to Create WEB PAGES with Inspiration®

Easy as pie!

I. Create the content.
 Keep in mind that each of the "topics" (I, II, III, etc.) will be a separate page.
 Put all of the words for each page as NOTES under the topics.
 (If you add subtopics, these will appear on the web pages, but they won't BE separate web pages.)

II. Convert to HTML.
 In Inspiration®
 A. Choose File: Export...
 B. In the Export... dialog box, choose
 1. Outline Formats: HTML - Multiple Web Pages
 2. Export Options: One Page Per Topic
 3. Click OK
 a. A dialog box will cue you to:
 (1) Place it
 (2) Name it

 Note: Inspiration® then automatically creates separate, linked html documents for each of the topics you created!

III. See how it will look.
 Here are the steps:
 A. Open Netscape Navigator® (or other web browser)
 B. Choose File: Open
 Navigate to find the home page (by whatever name you just gave it).
 C. Voila!
 You will be able to click on the links to get to the other pages, and each has a "Home" button.
Get Inspirations ready.

- On your desktop computer, in Inspiration®, open the File menu, then “Application Properties...”
- Set “Rapid Fire/Smart Topic Insert” for “Return Key” and click “OK.” (On version 6, set “Return” key to give “New Topic”.)
- Make sure the words “Main Idea” are highlighted.

Send the AlphaSmart® ideas to Inspiration®.

- Press option-command-S and type “2” (slow).
- Hook up the AlphaSmart to the desktop computer, using it to replace the keyboard or adding it using a Y-cord.
- Press the “Send” key.
- Enjoy watching your words come to life!

Use Inspiration® to orchestrate and elaborate your ideas.

- Use the freedom of the electronic environment to work with your ideas. You can: Add ideas and delete ideas. Move and change symbols. Group ideas according to categories.
- Click “Outline” and work with the ideas in Outline view.
- The sky is the limit!
When to use it:
- You have an AlphaSmart®
- You want to learn from what you read.
- You want to be able to study your notes effectively.

How to do it:

1. **Type headings on the AlphaSmart®, one per file.**
 - Turn on the AlphaSmart and open File 1.
 - Type in the first heading in CAPS. Press the "Return" key. (On PC's, use the right-pinky "Enter" key.)
 - Open File 2. Type in the second heading in CAPS.
 - Proceed through the rest of the headings.
 - In the last file, type in the word VOCABULARY.

2. **Fill in the details on the AlphaSmart®.**
 - Go back to File 1. Read the material under the first heading.
 - Translate the first idea into a few key words, and type them in. Press the "Return" (or "Enter") key.
 - Add another few words, push "Return" (or "Enter").
 - Continue until you have put in all the important ideas under the first heading.
 - Emphasis "big" ideas, e.g. capitalizing them. Mark "small" ideas, e.g. by putting dashes before them.
 - Go to File 2 and repeat this process, then File 3, and so on.

3. **Add Vocabulary on the AlphaSmart®.**
 As you fill in the details (or afterwards), use your VOCABULARY file as a place to type in words you want to learn. Underneath each word, type the definition.

4. **Get Inspiration® ready.**
 - On your desktop computer, in Inspiration®, open the File menu, then "Application Properties..." and set "Rapid Fire/Smart Topic Insert" for "Return Key" and click "OK." (On version 6, set "Return" key to give "New Topic").

(Continued on next page...)
5 Get the AlphaSmart® ready.

- Instead of “Main Idea,” type in the name of the article/chapter.
- Push return for a new line; it will have the prefix “I.”

6 Send the notes to Inspiration®.

- Press the “Send” key.
- Enjoy watching your notes appear! This is a good way to absorb the material.
- Press the “Return” key (on either machine) to start a new line.
- Push option-command File 2 (F2) to open File 2. Press the “Send” key to add this material to the outline.
- Continue through all the files.

7 Use Inspiration® to manipulate (learn) the material.

- Go through the list and turn it into a real outline.
- Select a line and delete or move it (to indent, or move to the right, just push Tab).
- Add lines of information as you wish.
- The more you manipulate the material, the better you will learn it.

Hint: In the vocabulary section, move all the definitions to the right, under their words. This way you can use “Hide/Show Subtopics” (in Toolbar as “/” sub”, or by double clicking to the left of the line) to quiz yourself on the words!
Making Your Inspiration® Outlines TALK

Students are more motivated to write when they can make the computer SAY what they have written. For some students, being able to HEAR their notes or study outlines will make learning much easier.

I. Choose a program.
 A. All Macintosh computers are equipped with "Simple Text."
 B. Use Don Johnston’s WRITE: OUTLOUD
 C. Recent versions of Microsoft Word have the ability to "speak."

II. Using Simple Text
 A. Select and copy your outline (if the information is in a map, click "Outline" first).
 B. Open Simple Text
 C. Paste
 D. Highlight all (command-A)
 E. Choose Sound: Speak All (command-H)
 Note: You may want to go to Sound: Voices and choose a voice. Voice preference is individual.

III. Using WRITE: OUTLOUD
 A. In Inspiration
 1. Select your entire outline (command-A)
 2. Copy
 B. In a word processing program (e.g. Word)
 1. Open a new document
 2. Paste
 3. Replace carriage returns as follows:
 a. Choose Edit:Replace (command-H)
 b. Replace ^p with .^p
 4. Select entire document
 5. Copy
 C. In WRITE: OUTLOUD
 1. Open new document
 2. Paste
 3. Unselect "Highlight Word by Word"
 a. Use "Read Sentences" and/or "Read Paragraphs"
 4. Set up with desired voice and speed
 Princess at 180 wpm works well
 5. Set pointer so that clicking allows you to hear next sentence, and next, and next..
 Note: You may want to work with the "pronunciation" feature.
Letting the Computer do the TYPING

Technology is making it easier and easier for students to express themselves, even if typing and spelling are difficult!

I. Choose a program.
 A. Use Don Johnston's CO:WRITER for Word Prediction
 B. Consider voice recognition software
 1. Dragon Dictates' Naturally Speaking
 a. Use "preferred"
 b. Works best with Pentium III processors
 2. Try other voice recognition programs

II. Using CO:WRITER
 A. Launch CO:WRITER First!
 B. Then, open Inspiration
 C. To bring CO:WRITER to the front, use the "wake up key" +=
 D. Customize CO:WRITER
 1. Select number of words to suggest
 2. Format as desired
 3. Use "CO:WRITER Help" in Apple Menu to answer questions.
Structured Writing Templates help students meet Writing Standards

from: Structured Writing Process
by Chuck Haynes and Kathleen McMurdo
©1999 Haynes/McMurdo
Used by permission.
Literary webs help students meet Language Arts Standards

Example ©1999 Inspiration® Software, Inc.
Used by permission.

The Secret Garden

Setting

Characters

Problem or Conflict

Mary is lonely and not nice.

Events

1. Parents die, Mary moves to England
2. Meets Martha and Dikon and finds garden to grow things in.
3. Meets Colin, boy worse than her, makes him behave.

Resolution

- Garden gives Mary something to love and care for.
- Dikon and Martha become Mary's friends.
- They teach Colin how awful to be self-centered.
Concept Maps help students meet Social Science Standards

Example ©1999 Inspiration® Software, Inc. Used by permission.

Branches of the U.S. Government

LEGISLATIVE
Congress

EXECUTIVE
President, Vice President & Cabinet

JUDICIAL
Supreme & Federal Court

Makes Laws

Enforces Laws

Interprets Laws

435 members
100 members

House of Representatives

Senate

- Must be 35 years old
- Must be a U.S. citizen by birth
- Must be a U.S. resident for 14 years
- President has power to approve/ veto laws
- President makes treaties with foreign governments
- President nominates judges to Supreme Court

- Serve for life
- Can declare laws unconstitutional
- Can settle disputes involving the U.S.
- Chief Justice of the Supreme Court presides over the impeachment trial of the President

Representatives serve a two-year term
- Must be 25 years old
- Must be a citizen for seven years
- House can propose tax laws
- House can impeach President

Senators serve a six-year term
- Must be 30 years old
- Must be a citizen for nine years
- Senate can approve Presidential appointments
- Senate approves treaties with foreign governments
- Senate tries President after impeachment

Created by Thomas Fraiodi
8th grade Social Studies Teacher
Blaker-Kinser Junior High School
Ceres, CA
Linking Learning to Life: Model, Tools and Strategies Linking Electronic and Real Communities

Take a new point-of-view. Plunge into the NatureShift! world and experience your universe from five unique perspectives, each with a decisive technological and learning twist!

Explore the world of:

Ranger Rosie. Join an ecological mystery to discover why blackbirds are disappearing from the remote North Dakota prairie and take a bird's eye peek into the unique prairie pothole ecosystem.

Wounded Hawk. Journey with this Native American youth to the world of the North Dakota plains. Explore with the eyes of the Arikara people, the science, history, and cultures of the Northern prairie.

The Robot Lab. Probe the mysteries of robotics and experiment with the physics of light, sound, magnetism, and computer programming as you solve the riddle of the "Robot Attack!"

Memories & Stories. Become an historian. Delve into original recordings, artifacts, and other primary sources from North Dakota's past to discover your own interpretations of older worlds now gone.

Dakota Skies. Observe your world from the viewpoint of the moon and accept, if you dare, the Moon's Challenge -- to describe exactly where you live using the language of space -- astronomy.

http://www.natureshift.org
DSL Network News—We're on the Right Track!

Click to open author's original document.

DSL Network News!

by

Kris Drake

June 2000.

Pepperdine Doctoral Student.

Site Coordinator.

Della S. Lindley Elem.

31-495 Robert Road.

Thousand Palms, CA 92276.

(760) 343-7370.

kkdrake@earthlink.net.
NASA's Education Program
http://education.nasa.gov/

Your educational portal to NASA programs and resources for teachers and students in both formal and informal education.
Jancich, Helen

Beyond Standards: What We are Learning from Conduction TechAudits
Technology Management Audits: A New Service to School Districts
Original Author Submissions

Johnson, Kirsten

Online Learning for Teachers and Students - Agenda
Designing, Implementing, and Assessing Online Courses
Online Learning for Teachers and Students - References
Original Author Submissions

Johnson, Larry

42eXplore: An Approach to Internet Integration (pdf format)
Original Author Submissions

Kajioka, Vicki

Bridging the Digital Divide
Original Author Submissions

Krueger, Keith

Improving Teaching and Learning Through Technology at the Campus Level
Original Author Submissions

Lamb, Annette

Ringmasters, Clown, & Tightropes: Educational Technology Management and Leadership (pdf format)
Classroom Campfires: Don't Do Internet! Do Integrate! (pdf format)
Prairies, Pioneers, & Partnerships: Matching Standards, Resources, and Engaging Projects (pdf format)
Original Author Submissions

Laverty, Pamela

Online Interactive Lessons: Tools & Training
Original Author Submissions

Lindaas, Steve

Nature Shift! Linking Learning to Life - Light Me Up (pdf format)
Nature Shift! Linking Learning to Life - Explainer Hints (pdf format)
Nature Shift! Linking Learning to Life - Simple Motor Directions (pdf format)
Nature Shift! Linking Learning to Life - Robot Directions (pdf format)
Nature Shift! Linking Learning to Life - Sandwich Bot (pdf format)

Livingston, Pamela

AMY/CHA Mini Grant Proposal Request
Case Studies
LT3 - Minigrant Evaluation
Original Author Submissions

March, Tom

Grow What you Know with Web-and-Flow
Original Author Submissions

Marshall, Wendy

Step-by-Step Directions for Creating a Web Page using the Wizard in Netscape Communicator
Original Author Submissions

McCullen, Caroline

Digital Copyright...From the Teacher's Desk
Original Author Submissions

McGowan, John

Query Power: Using Microsoft Access in a Constructivist Classroom (pdf format)

McHaney, Larry

Lubbock ISD Instructional Technology Plan: Helping All Students Reach Higher
Original Authors Submissions

Micken, Kathleen

eEducation: Interdisciplinary Crossroads
Original Author Submissions

Milman, Natalie

Survey of Beliefs, Understanding and use of Technology I
Survey of Beliefs, Understanding and use of Technology II
Original Author Submissions

Moellendick, Jeanne

Students Gain Real-life Experience at Internet Stock Market Simulation
Original Author Submissions
Moore, Bradley
Setting Up & Maintaining A Web Server for the Novice

Moursund, David
Identifying Some of the Best IT Projects in the US
Original Author Submissions

Nelson, Joanne
Fear of Writing Papers? Overcome Fear With the "Write" Strategies and Tools
Original Author Submissions

Norris, Toni
Resources to "Tear Down the Walls"
Tearing Down the Walls, Taking Teacher Training to New Heights
Original Author Submissions

Nye, Sharyl
Promoting Professional Development On-line
Original Author Submissions
Beyond Standards: What We Are Learning from Conducting Tech Audits

NECC – June 27, 2000

Helen S. Jancich
Howard D. Mehlinger

BEST COPY AVAILABLE
Technology Management Audits
A New Service to School Districts
Helen Siukola Jancich and Howard Mehlinger

What Is a Technology Management Audit?

Technology Management Audits (TMA) are intended to assess all aspects of technology use in a school district. A TMA, conducted by an expert team of outside auditors, is a district-level examination of the alignment of educational purposes, technological power, infrastructure, and standards. The audit team reviews documents and survey results and makes on-site visits to conduct interviews and visit schools in order to answer specific technology-related questions. Auditors are responsible for creating and presenting the final audit report and the accompanying recommendations. Audit results can be used to guide future technology efforts in the school district.

Why Do a Technology Management Audit?

School systems have invested a great deal of money and resources in technology. Public officials, business leaders, and parents have high expectations for technology’s impact on schooling. Also, technology changes rapidly, making existing plans obsolete. Yet, in most districts there are few individuals who have a comprehensive view of how technology is used. Furthermore, some technology-related problems are difficult to solve without external help. Outside auditors can help because they have no investment in past decisions or future actions, they bring a broad perspective to bear, they are able to gather information swiftly, and they are dispassionate in their analysis of that information.

What Questions Are Addressed in a Technology Management Audit?

Technology Management Audits are comprehensive by their nature and focus ultimately on student learning. Technology is viewed as part of a dynamic school system in which each element affects the others. In an audit it is therefore necessary to pay attention to all the elements of the system. An audit typically analyzes technology use on four levels:
Purposes: What is your district striving to accomplish with technology? Is technology being used for such purposes as learning, teaching, management, communications, curriculum enhancement? How well does the technology you have chosen fit that mission?

Powers of Technology: Do all decision makers, teachers, and other staff members understand the power of technology in education? Do they understand the capacity of technology to compute, analyze, store, show, and recall information; to alter the use of time; and to inspire and empower the user? How well are those powers being harnessed in your district?

Infrastructure: Does the structure and operation of your school district enable you to realize the maximum benefit from technology? How well are personnel, equipment and networks, software, technical support, and information resources being utilized?

Standards: What role do standards - such as ISTE Standards for Students and Teachers, CEO Forum STaR Charts, and applicable state standards - play in planning? Is there an alignment between these standards and what actually occurs in the schools?

A Technology Management Audit will also concentrate time and attention on specific issues that are worrisome to you. For example, you may be concerned about whether your district has good technology policies, or adequate personnel to manage technology, or a system for coping with rapid obsolescence, or a productive approach to staff development, or a public that doesn't understand what technology means to school districts. Perhaps you are anticipating a future technology planning effort, a bond issue for technology, or a campaign of grant-writing, and you want to challenge your staff to think beyond and outside of its present experience.

Who Does a Technology Management Audit?

The TMA team includes a lead auditor who serves as the point of contact with your district, plans the audit with you, assembles and leads the team, and prepares and delivers the final report. The team also includes at least three other auditors, depending on the size of the district. These auditors, who provide a fresh perspective on your situation, have extensive experience with technology and education, including both K-12 schools and college and university settings. They are former teachers, technology...
Beyond Standards: What We Are Learning from Conducting Tech Audits

cordinators, superintendents, and other administrators, as well as experts in software and network design, evaluation, teacher education, and technology funding. None of these people has a vested interest in the past or future of what your district does. The audit team might also include interns.

What Is Involved in Doing a Technology Management Audit?

The process begins with a meeting (on-site and/or by phone) with a lead auditor who will review with you the rationale for an audit, the details of the process, and logistical issues related to the on-site visit. The lead auditor will also want to know what important issues lie behind your need for a TMA. From such a conversation will come a detailed plan for an audit.

Next, you will be asked to gather reports and documents about the use of technology in your district and to administer a districtwide survey to teachers and students. Surveys should be conducted at least two weeks - and preferably four weeks - prior to the audit team’s visit. The survey is developed and the results are analyzed by the Survey Research Center at Indiana University. The survey results are interpreted by TMA staff before the on-site visit.

A five-day on-site visit by the audit team follows. The auditors review the documents and reports collected, visit classrooms and technology labs, and conduct interviews with staff and faculty. You will want the audit team to visit during a week when visitors will least disrupt your district and when they will see your district in normal operation. Also, you should choose a week when all key personnel can be present during the first few days of the audit. Having more than one possible week in mind will facilitate scheduling.

After data are collected and analyzed, the lead auditor writes a draft report, shares it with the district for feedback, revises the report based on that feedback, and presents the final report to the district. The report consists of an executive summary, observations, recommendations, and appendices containing survey results, among other materials. Pictures, taken on-site, are used to illustrate key points.

What Do We Need to Do to Prepare for an Audit?

Once your district has accepted a TMA proposal, the lead auditor will ask you to collect reports and documents related to technology use in your district. You will also be asked to administer a survey to a sample of faculty and students. Finally, you will be asked to identify faculty and staff to be interviewed during the site visit and arrange for their interviews.

A Technology Management Audit is a serious investment of your district’s time and effort. It will be of most use if all goes smoothly. Typically, a school system will designate a senior official - perhaps a technology director, curriculum director, or business official - to be the liaison to the audit team.

How Long Does It Take to Complete an Audit?

An audit is normally completed in about two months - from initial contact to the delivery of the final report. The five-day, on-site visit can be scheduled as soon as the audit proposal is accepted by the district. Drafts and final versions of written reports are completed not more than one month after the site visit.

How Much Does an Audit Cost?

Technology Management Audits are customized to meet the needs of the individual client. The exact cost
Beyond Standards: What We Are Learning from Conducting Tech Audits

will depend upon the size of the school district, which affects the amount of time needed to analyze data and the number of auditors required to conduct the audit. Thus an audit for a typical school district consisting of eight elementary schools, three middle schools, one high school, and 10,000 students would cost in the range of $40,000 to $45,000. The price of an audit covers personnel expenses, travel, equipment, survey analysis costs, and the cost of producing the final report.

Districts can pay for audits from many sources. Consider not only school district budgets but also grants you have received; approach local foundations or businesses that have an interest in your school district; tap into state monies available for planning or evaluation.

Want to Learn More?

For more information, contact:

Phi Delta Kappa International

Center for Professional Development and Services

P. O. Box 789
Bloomington, IN
47402-0789

800/766-1156 or
812/339-1156, ext. 2500
FAX: 812/339-0018
E-mail: cpds@pdkintl.org
ONLINE LEARNING FOR TEACHERS AND STUDENTS
NECC '00, Atlanta, GA

Agenda

I. Introductions and Overview (20 min)

II. Web-Based Curriculum
 a. Overview and Purpose of Web-Based Curriculum (20 min)
 b. Group Investigation Activity: Use of Primary Resources, Online Expeditions, and Online Collaborative Projects (50 min)
 c. Online Tool Demonstrations (30 min)
 d. Hands-On Curriculum Development (60 min)

Lunch (60 min)

III. Online Professional Development
 a. Overview of Online Professional Development (30 min)
 b. Group Activity: Designing Curriculum for the Online Environment (30 min)
 c. Group Investigation: Threaded Discussion Tools and Techniques (30 min)
 d. Strategies for Online Facilitation (30 min)
 e. Examples of Online Professional Development Workshops (60 min)

Kirsten Johnson, Barbara Treacy, Susie Metrick

Center for Online Professional Education
Education Development Center, Inc., (EDC)
Newton, Massachusetts

©2000, EDC
Designing, Implementing, and Assessing Online Courses

When you are designing, implementing, and assessing an online course, you follow similar principles and procedures as you would if you were working on a face-to-face course. This handout walks through the main steps in this process, highlighting recommendations specific to the online medium.

We have organized our recommendations into five broad categories-audience, topic, curriculum, facilitation strategy, and assessment. These categories are strongly inter-related, and must be considered in relation to each other. For example, when you plan your workshop, you will do well to think simultaneously about the audience and the topic they wish to investigate. We encourage you to also consider each category separately; such an exercise teases apart each strand of your thinking and clarifies your choices.

Finally, our recommendations pertain specifically to the type of online course with which we are experienced—a course in which interesting materials or investigations provide a starting place for professional participants to exchange views and strategies. While the course curriculum and facilitator scaffold and guide the learning experience, in our courses the learners are teachers (and vice versa), and their discussions provide the primary learning arena. This type of course is patterned after a graduate seminar format, rather than a lecture course or self-paced tutorial.

Guiding Questions

1) Who is your audience?
2) What is your topic?
3) What is your curriculum?
4) What is your facilitation strategy?
5) What is your assessment strategy?

1) Recommendations for defining and understanding an audience

- There should be some special benefit to your audience in taking the course online rather than face-to-face, due to time and/or distance constraints.
- Explicitly specify a common set of desired outcomes. Clarity about common outcomes is even more important in the online medium than in face-to-face situations.
Online Learning for Teachers and Students

- The detail with which you define your audience is very important online. This detail informs your topic selection, curriculum design, and instructional strategies, and helps ensure that they satisfy your participants' expectations well enough to counterbalance the gaps of distance and time across which you will work. For example, you will want to know:
 a. What are your audience's goals? By "goals" we mean desired outcomes that they've stated explicitly. For example, a good definition of an audience goal might be "to learn how to use web-based resources in the middle-school classroom."
 b. What are your audience's needs? By "needs", we mean unstated requirements. For example, the audience will need to learn how to be comfortable using the web.
 c. What are their competencies and learning styles?
 d. What is their access to the technology they will need for your course, and how comfortable are they with it?
 e. How much time do they have available?
 f. What is their timeline? At what point during the school year will they need the information? At what point do you expect that they will be able to take the course?

2) Recommendations for defining a topic

- Assuming your goal is to take advantage of connecting people for discussion, (rather than simply to deliver rote content), then a successful topic will profit by reflection, exploration, brainstorming, and sharing.
- The web is a "cool" medium, so a "hot" or provocative topic will be most successful at engaging the audience to participate actively.
- The topic is amenable to a lag in response time. Pacing in an online course is slower than in face-to-face situations.
- The topic can be broken into specific outcomes that can be achieved in a limited amount of time.
- Define your topic in detail in order to make sure it will suit your audience, and also to inform your curriculum design, and instructional and assessment strategies.
For example, you will want to know:
 a. What outcomes are you trying to achieve?
 b. To achieve these outcomes, what components (subject matter, tasks) do you need to cover?
 c. For each task, what is your objective, and how will you know you are successful?

Checkpoint Question

When you compare your audience's desired outcomes with what you want to teach, is there something for everyone?

3) Recommendations for developing your curriculum

Keep in mind that the web medium shapes content in specific ways. What works in other formats may not work well on the web.
Due to the cool medium of the web, design assignments to actively engage participants. For example, fuel discussions by framing provocative questions, drawing on case examples, using collaborative activities, engaging in explorations, and encouraging sharing of ideas.

- Frame assignments in small, clear chunks.
- Include "we are all together" moments to segue from one chunk to the next. (Strategies for doing this are discussed under facilitation strategies.)
- Frame sessions so that they can survive and even benefit from a lag in response time; accommodate the fact that participants work at their own paces, and will be at different parts of the assignments during the same time period.
- Take advantage of web-based tools and resources.
- Make sure activities are technically feasible for your audience, and provide necessary technical support.
- Abide by guidelines of good web design and navigation. The goal is to provide a seamless and intuitive learning environment, where participants will not feel inhibited or hampered by the medium.

4) Recommended facilitation strategies

Online course facilitators, like classroom teachers, play a variety of roles. In the online medium, it is possible to divide the roles among several people. Whether or not there will be one or more people responsible for the online course, it is helpful to consider all of the various roles and strategies that go into successful online facilitation.

<table>
<thead>
<tr>
<th>Facilitator Roles</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greeter, encourager. Make everyone feel heard. Create a comfortable environment.</td>
<td>- Publicly respond to each person's messages in the beginning of the course. After everyone is comfortable, responses can become more global.</td>
</tr>
<tr>
<td></td>
<td>- Show your personality, so people feel like they know you.</td>
</tr>
<tr>
<td></td>
<td>- Respond to initial introductions using them as a springboard for discussion.</td>
</tr>
<tr>
<td></td>
<td>- Use bios, photos, introductions, emoticons (gestures represented via text), and an informal and friendly tone.</td>
</tr>
</tbody>
</table>
| **Foster communication between and among the participants.** | • Phrase responses to encourage further responses from participants, and draw connections between participants' comments.
• Avoid "over-facilitating", i.e., don't answer every question and settle every point so there is nothing for anyone else to say. If you respond to one question, push the discussion forward by raising another. |
| **Provide behind-the-scenes support via email.** | Email is a good way to respond to individual problems, or to prod people into participating without embarrassing them. If participants start saying interesting content-related comments via email, encourage them to post it to the discussion as well. |
| **Model accepted interactions for participants.** | • Pay attention to the tone of messages that you post, as a way of setting the workshop tone globally.
• Being inclusive and making connections between participants' comments will model this type of discussion for the participants as well. |
| **Keep the workshop alive; prevent stagnancy.** | • Post "acknowledgement" messages to participants' comments, even if you don't have anything fancy to contribute on that point.
• Be aware of time—participants don't check the discussions as frequently as we do. Don't let the lulls last too long though. If you keep the discussion alive, this is an incentive for participants to check more frequently.
• The facilitator, or at least one member of a team of facilitators, must read and contribute to the discussion every other day (minimum).
• Keep the majority of all communication in the public forum. Do not dilute the discussions with too much one-on-one email with participants. |
<table>
<thead>
<tr>
<th>Keep the discussions on track. Rein in long digressions. Push people forward on the topic.</th>
<th>Act as a parabola, reflecting the energy back towards a central focal point. Be creative with limited tools for getting people's attention. Use subtle/humorous messages, or perhaps a humorous graphic/photo. Send personal email if necessary.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guide participants through the curriculum.</td>
<td>Provide "we are all together" moments, such as: collaborative, consensus-building activities discussion summaries email messages that provide closure and thanks for previous session, and introduce and provide encouragement for next assignment surveys synchronous sessions</td>
</tr>
<tr>
<td>Make sure the audience and the curriculum are in sync.</td>
<td>Observe participants' behavior and responses to assignments, and adjust facilitation strategies and/or curriculum content and presentation as necessary. Encourage participants to explicitly reflect on the course experience and provide feedback (either in the online discussions or via email to the facilitator).</td>
</tr>
</tbody>
</table>

5) Recommended assessment strategies
- To measure whether you have reached your stated goals, it is useful to survey your participants with the same questions both pre- and post-workshop. You can use web-based survey forms to collect this information.
- Ask questions that can inform your future designs.
- Do follow-up inquiries to look for changes in behavior, attitude, usage, and practice. Email is a convenient method for doing this from a distance.
- Consider doing a detailed analysis of the stored messages that remain available after the course. (For example, you can look at quantitative data such as the number of messages posted by individuals, frequency of participation, and number of levels of responses within particular conversations. You can also look at qualitative information, such as the nature of the discussions, what common themes emerged, how participants related to each other and to the course content, etc.)
- In the last week of the course, invite participants to post messages reflecting on their experiences in the course and what they have learned, and to discuss what they plan to do next.
Online Learning for Teachers and Students

Online Learning for Teachers and Students, NECC '00
Kirsten Johnson, Barbara Treacy, Susie Metrick
Education Development Center, Inc. (EDC)

References

Articles about Online Learning

Archives of Leadership and the New Technologies (LNT) Online Workshops

The Leadership and the New Technologies (LNT) project, run by Education Development Center, Inc., has led several online workshops for education leaders on topics concerning the integration of technology into K-12 education. To view the archives of some of the LNT workshops, go to http://www.edc.org/LNT/workshop.htm
42eXplore: An Approach to Internet Integration
http://eduscape.com
Annette Lamb Larry Johnson
alamb@eduscapes.com ljohnson@mail.escapees.com

Foundation of Info
Sturdy chairs need 3 legs.
You need 3 good resources for a foundation of information.
42eXplore: You need four to explore!

Project Overview
Goal: encourage life-long learning
support classroom teachers
Target Age: everyone
Topics: interest, popular k12, requests
Postings: each Monday

Contents
Easy & Harder Description
4 Starters Activities
Additional Web Resources
Word List and Links
Indexes: Subject, Date

Locate Websites
Search Tools for children, for adults
http://www.rcls.org/ksearch.htm
http://www.rcls.org/search.htm

Select Materials
Choose based on:
Content Quality Readability
Varied info channels Multiple Perspectives
http://eduscape.com/42explore/smptomac.htm
http://sln.fl.edu/qa97/spotlight3/spotlight3.htm
http://www.science-tech.nmstc.ca/engine.cfm?function=link&idx=1394&language=english#simple

http://www.galaxy.net:80/~k12/machines/gears1.shtml

Organize Resources
Starting Points and Link Sites
References and Information
Learning Tools & Activities: WebQuests
By Kids, for Kids
By Teachers, for Teachers
http://eduscapes.com/42explore/poetry.htm
http://www.poetry4kids.com/links.html
http://www.gigglepoetry.com/
http://www.bordentown.k12.nj.us/mjs/Mr.%20O/pwebq.html
http://www.link.cs.cmu.edu/dough/rhyme-doc.html
http://7vsweekly.freeservers.com/
http://www.geocities.com/EnchantedForest/5165/index1.html
http://www.iron.k12.ut.us/schools/cms/resource/Welco.htm

Build Activities
Start with outcomes
Then, build: questions applications webquest project guides

http://eduscapes.com/42explore/teslatn.htm
http://penn.phm.k12.in.us/Math-Science/New_Folder/final.html
http://forum.swarthmore.edu/sum95/suzanne/tess.intro.html
http://library.thinkquest.org/16661/index2.html

Set the Stage
Guide learning: worksheets, diagrams
Transform information: write, draw, discuss
Share ideas: email, bulletin boards

Things to avoid - Don’t...
copy URLs by hand give too many options expect miracles waste time surfing

Things to do
Review the 42eXplore archives
Check 42eXplore weekly
Keep it simple Focus on specific pages
Match activities & outcomes
Bridging the Digital Divide

Learn how technology and telecommunications are used to meet the needs of diverse learners in remote locations. Hawaii’s E-School has leveraged the playing field to provide equity and excellence to students anytime from anywhere by developing virtual credit standards-based courses for teachers and students. The presenters will share their successes and challenges in offering educational opportunities to students in rural settings.

Abstract

Learn how technology and telecommunications are used to meet the needs of diverse learners in remote locations. Hawaii’s E-School has leveraged the technology infrastructure, recycled computers, developed online staff development and online high school courses to provide equity and excellence to students anytime from anywhere. This presentation will focus on the key ingredients in developing virtual credit standards-based courses for teachers and students. The presenters will share their successes and challenges in offering educational opportunities to students in rural settings.

The Hawaii Department of Education (HDOE) Electronic School (E-School) is a virtual school that offers high school credit courses to students through the use of multimedia technologies and the Internet. E-School breaks down the walls of the traditional classrooms and makes quality instruction available to students at more convenient times and more accessible places - "any place, any time, for everyone!"

In 1996, Hawaii’s public schools received a $4.7 million competitive grant for a five-year U.S. Department of Education Technology Innovative Challenge Grant to expand and enhance E-School. The major partners and contributors are Maui High Performance Computing Center (MHPCC) and Tech Corps Hawaii. Since its inception in 1996, E-School has developed 33 online courses.

The state-of-the-art HDOE telecommunication and technology infrastructure provide a technology perspective of the value of the infrastructure to the development and success of on-line courses. E-School includes both courses for students and a teacher education and in-service teacher training program.

E-School extends the traditional school schedule and expands awareness by including experiences from the community and the world. The project accomplishes these changes based upon these goals:

- Promote challenging standards that assist statewide systemic reforms.
- Develop curricula and teaching strategies exportable to other settings and communities.
- Benefit students by integrating acquired technologies into curriculum to enhance teaching, training and student achievement.
- Offer intensive professional development for teachers and staff on use of technology in all learning environments.
- Develop new learning environments for disadvantaged and technologically undeserved students.
- Create high-quality educational technology applications and services that can be marketed to other communities.

Collaboration with businesses have expanded the dimensions of E-School offerings. E-School is a successful model that has created multiple partnerships.
The School of the 21st Century throughout the wider community. Over 50 corporations and educational programs have pledged their support in building this virtual school. This support ranges from extended connectivity to schools, teacher training, and mentoring students to technical expertise in the areas of multimedia development.

E-School students come from varying geographic and economic backgrounds. Educationally disadvantaged students and technology underserved students have new educational opportunities. Using the interactive curricula, students have the ability to share their expertise and to explore in the learning process together, both locally and globally. Teachers facilitate the learning process and guide learners down pathways, working in a self-paced collaborative process.

Through the use of lecture/demonstration, participants will learn how Hawaii has drawn from various resources in offering high school credit courses to all students throughout Hawaii. They will take away ideas of a successful electronic, virtual model.

Urls:
Advanced Technology Research: atr.k12.hi.us
E-School: www.eschool.k12.hi.us
Magnet E-Academy: e-academy.k12.hi.us
Technology & Telecommunications for Teachers: www.k12.hi.us/~tethree
Technology Literacy Challenge Fund Summer Institute: www.k12.hi.us/~tlcf

Presenters:
Vicki Kajioka is an Educational Specialist with the Hawaii Department of Education. She is the Director of E-School, Hawaii's Electronic School, which provides on-line and web-based courses for secondary school students and staff development for teachers. Vicki is also a member of the TechCorps Hawaii Board of Directors.

Donna Min Shiroma is a Resource Teacher with the Hawaii Department of Education, Advanced Technology Research. She coordinates the Technology Literacy Challenge Fund Summer Institute Workshops for teachers and is an instructor in the Technology and Telecommunications for Teachers program sponsored by the HI DOE.
This NECC workshop is being offered as a preview of a one-day workshop offered by the Consortium for School Networking (CoSN) to assist building-level decisionmakers strengthen educational technology programs and planning. The actual training products and session, to be offered beginning in the Fall of 2000, and titled New and Emerging Competencies for Building-Level Technology Champions, was developed by CoSN, with support from BellSouth Foundation. Workshops will be presented to building-level technology decisionmakers and teams—principals, media specialists, campus technology coordinators, and others involved in campus-level planning for effective use of technology.

Focus, training objectives, and workshop deliverables:

Increasingly, accountability for technology purchasing, planning, and assessment is a major responsibility of school building-level administrators. District administrators, school boards, and communities have an investment, and therefore an interest, in technology utilization at individual campuses. While these district administrators focus on certain issues and functions that impact all campuses, there remains a significant role and responsibility that individual schools have for technology planning.

The primary objectives of the workshop are to help building-level technology decisionmakers and teams:

- to consider critical issues
- to locate resource information regarding technology use
- to develop new strategies for promoting effective use of technology in their school's classrooms

The components of the workshop include:

- Day-long training session
 - morning presentation on the following topics:
 - Linking Technology to Educational Goals
 - Budgeting: Taking Total Cost of Ownership (TCO) to the Classroom
 - Successful Models: How the E-rate Is Being Used As a Catalyst for Technology Planning
 - Measuring Success: How Will We Know When We Get There?
 - afternoon small group roundtable discussions
- Participant Workbook
 - narrative overview of each topic
 - copies of trainer's PowerPoint presentation slides
 - URL Resource List for each topic
 - additional resources

Overview of the key discussion topics to be addressed in the workshop:

Linking Technology to Educational Goals
Improving Teaching and Learning Through Technology at the Campus Level

Across our districts and campuses, in a myriad of settings and conditions, we can cite instances of how technology is changing teaching and learning—just as it is changing homes and businesses in our community and beyond. Many educators believe in the benefits of technology, but education has been somewhat remiss in gathering data needed to validate and improve on technology-based programs as well as in changing the culture of the school campus and classroom. The good news: there is a growing body of research studies now pointing to the effectiveness of technology use in schools.

Technology is helping teachers design effective learning activities that are more student-centered. Educators sometimes refer to this as moving from being a "sage on the stage" to a "guide on the side". As a "guide on the side", the teacher can combine more traditional teacher-centered activities with student-centered ones that allow for more active and engaged learning opportunities.

At the forefront of our minds must be a continuous emphasis on ensuring that the benefits of technology are within the reach of all of students and teachers. This requires thoughtful planning and policy in states and districts—and on individual campuses.

Discussion will address:
- student achievement
- educational equity
- workforce preparedness
- challenges for schools to address

Budgeting: Taking Total Cost of Ownership (TCO) to the Classroom

In what some might now call the "good old days", schools purchased computer equipment with a variety of funding sources, including not only district budgets, but also PTO money, bake sales, and cashed in soup labels—your school may still be using some of these strategies! Sometimes equipment was donated by community businesses or parents, though it was rarely state-of-the-art, latest-and-greatest technology.

It was the job of a technology coordinator (or more likely someone with technology responsibility, often in addition to teaching or other duties) to refurbish, repair, cannibalize and do whatever necessary to get the machines into service and keep them working.

After some number of years of this practice, schools began to acknowledge that this resulted in chaos, with a jumbled array of hardware, no standards for software, compatibility problems, and more.

Unfortunately, as schools juggle with existing budgets while trying to grow technology plans, this practice continues on some campuses.

A legendary figure in educational technology, LeRoy Finkel, wrote an article some years ago titled, "When Schools Cannot Afford to Accept Contributions of Computer Equipment". His main point was that when the resources required to maintain equipment donations were significantly out of proportion to the instructional benefits of using them, then the gift should not be accepted.
Improving Teaching and Learning Through Technology at the Campus Level

While this may not seem so astounding today, at the time it was a conceptual breakthrough for schools, many of whom were so hungry for computer technology that they would take anything offered to them. Finkel's article was surely a forerunner of the concept of Total Cost of Ownership (TCO) of technology in schools.

Discussion will address:

- what total cost of ownership means
- costs beyond the purchase of hardware
- determining where your campus is with TCO-and where it should be

Successful Models: How the E-rate Is Being Used As a Catalyst for Technology Planning

The Universal Service Fund (USF) for schools and libraries, or as we have come to more commonly know it-the E-rate-is a federal initiative that provides significant discounts on telecommunications and Internet technologies to K-12 schools and public libraries in the U.S. The E-rate discount program was authorized by Congress as part of the Telecommunications Act of 1996 and signed into law in February, 1996. The law left the details of the program to the Federal Communications Commission (FCC), which inaugurated the program in May, 1997.

Funded at up to $2.25 billion annually, the program provides discounts on telecommunication services, Internet access and internal connections for eligible schools and libraries in the United States. The Schools and Libraries Division (SLD) of the Universal Service Administrative Company (USAC) is responsible for administering the E-rate program through an application process.

Some would tell stories over the two-year history of the program of struggling through the application process, working feverishly to meet deadlines, and being frustrated by delays. But when all is said and done, the E-rate program is making a difference in the availability of technology to many of this nation's children. To date, thousands of schools and libraries from every state in the nation have participated in and benefited from the E-rate program.

Schools have always been eager to adopt technology, but prior to the E-rate many lacked funding to do so. The E-rate program is serving many schools and libraries across the nation and is benefitting entire communities by reaching remote and rural schools, large urban schools who lack resources, and small private schools.

Not only has the E-rate program changed many communities, but it is strongly supported by an overwhelming majority of Americans—a finding of a poll commissioned by members of the Education and Library Networks Coalition (EdLiNC).

On the other hand, getting a school wired is only the starting point-not the finish line. Once the hardware, wiring, and basic infrastructure are in place to allow for access, the real work begins: training, documenting progress, communicating results, and adapting plans as needed to meet ever-changing goals and needs.

Discussion will address:

- success stories from schools where use of E-rate funds is making a difference
Improving Teaching and Learning Through Technology at the Campus Level

- creating a broad plan and making your dollars count

Measuring Success: How Will We Know When We Get There?

In her adventures in Wonderland, Alice asked the Cheshire cat, "Would you tell me, please, which way I ought to go from here?"

"That depends a good deal on where you want to get to," said the Cat.

"I don't much care where...," said Alice.

"Then it doesn't matter which way you go," said the Cat.

And so it is with technology effectiveness on our campuses. If we don't have a plan in mind, it is difficult to know when we are making progress. And with today's significant focus on and monies invested in educational technology in our schools, it is no longer sufficient to be accountable only for the installation of hardware and connectivity. Educators and communities are asking, "And so...?"

Discussion will address:

- what we should be assessing
- planning for success
- research and evaluation findings to support evaluation of your plan
- what teachers should be accountable for-and how administrators should support them
- things to remember as you assess progress

Additional information about the CoSN workshop, New and Emerging Competencies for Building-Level Technology Champions, as well as a schedule for future workshops may be found by pointing your browser to the CoSN website at http://www.cosn.org (click on the Conferences and Workshops button) or by calling Toni Miller at 202-466-6296, x15.
Clowning Around
We've got answers to the big questions!
 Correct, Incorrect, Silly

1 Learning
Do computers really make a difference in kids' learning?
 Yes, no, maybe... It depends what we want children to learn!
Communicating
 Word processor, Graphics, Email, Chat
 Phone, Speaking / Audio, Movement / Video
http://quest.arc.nasa.gov/women/Intro.htm
Ask not what computers can do with children, but what children can do with computers.
http://teleeducation.nb.ca/nosignificantdifference/

Impact - NCET
 Flexibility to meet individual needs
 Reduce the risk of failure at school
 Present relevant information
 Motivate and stimulate learning
 Enhance special needs learning
 Encourage thinking & collaboration
 Promote "fresh" teaching

Impact - ACOT
 Enthusiasm & Collaboration
 Graduation Rate Increases
 Higher Ed Entry Increases
 Writing Increases
 Reduced Absentee Rates
 Basic Skill Learn Time Reduced
 Information Literacy Increases
http://fromnowon.org/

Impact: What are you measuring?
 Effectiveness, Efficiency, Appeal

Believers Unite
 Why are you a believer?
 Test scores, Anecdotes, Smiles
 How can you show nonbelievers?

2 Integration
What do you mean by the term "integration of the computer into the curriculum"?
 It's the opposite of segregation.
 Technology is a tool and resource that should be used as the learning need dictates.

Integration
 Ongoing Use, Regular Use, Project Use
 Teachable Moment
 Technology is transparent and interwoven like the voice, pencil, and books.

Inspiration
http://forum.swarthmore.edu/students/
http://www.digitaldog.com/

3 The Numbers
How many computers are enough?
 You need enough computers so that each student can access the technology, when it is needed.
http://parkscanada.pch.gc.ca/parks/main_e.htm

Expiration Dates
How do you handle aging technology in your schools?
 Develop a plan for retirement.
 Retire in phases.
 If it's green, it's biology
 If it stinks, it's chemistry
 If it has numbers, it's math
 If it doesn't work, it's technology

Planning Options
 Living Technology Plan
 Cross Your Fingers & Prayer

Big Infusions
 Big Chunk Local/Area/Gov't
 Huge Grant
 Pros: Get lots of stuff
 Cons: When will you get it again?
 Doesn't lead to evolution

Chunks of Tech
 Pro: What you need, when you need it

Annette Lamb • 1
Cons: When we get a grant, funding...
We’ll give it to squeaky wheels...
Requires a good tech plan

Hand-Me Downs
Buy constantly and shift equipment around
Pros: Repurposing adds life
Cons: Quiet people lose
Repurpose equipment until it fades away over time.

5 Assessment
How do you assess the IT program within your school?
What are your goals?
How well are you reaching your goals?
Look at your program from multiple perspectives
It said “Insert disk #3” but only two disks will fit in the little hole.
Press any key. Where’s the any key?
Windows installation complete, press your luck to continue.
Wow! Look at the cool cup holder on my computer!
What’s important?
Are students getting to the technology when they need it?
Are teachers using the technology when it could be used?
Are parents/community members happy with the results?

Assessment Tools
Standards, Testing, Portfolios, Interviews, Surveys & Polls, Documentation, Data

Assessment Keys
Be specific, Focus on a particular topic
Keep it short, Try it before use
Ask yourself:
Why am I collecting this data?
How will I use this data?

Make it work
Require it faculty meetings, get tech, do paperwork
Enjoy it interesting, food, rewards

6 Future - Trends
What coming trends should technology leaders be aware of?
Faster, cheaper, cooler, easier
Equity, access, copyright issues
Watch kids, television, mag, and techies

The future is that time when you’ll wish you’d done what you aren’t doing now.
Anything is possible if you don’t know what you are talking about.
The true test of intelligence is not how much we know how to do, but how we behave when we don’t know what to do.
John Holt, How Children Fail

Visual Communication
Video conferencing, Imaging, Animation, Digital video
http://www.gsn.org/cu/index.html

Authentic Projects
Communicating, Writing, Imaging
Real-world, data, experiences impact
http://www.ibiscom.com/

Collaborative Projects: Teachers, Students
Get person shares, contributes, assesses
http://ftp2.vc.attjens.co.jp/vc_66/index2countdown.html

7 Implementation
How do you get other teachers on staff to commit to integrating technology into their classroom activities?
Gifts, bribes, jealousy, threats OR Collaboration, sharing, support

There are two types of computer users:
Those that back up their files and those that will one day be upset that they didn’t.
Provide Choices Do A Do B Do C
There is no “none of the above”.

Build Teams
Burn the fire from both ends
Groups of 3, Teachers & Students
Administrator & Teacher

Lend Support
I’ll post the projects, you get them to me
I’ll make the page, you send me URLs
You take the pictures, I’ll download them

Drag Them Along
Baby steps
Repeated projects
Think small

Every expert was once a beginner!

8 Culture
How do you build the technology culture in your school?
Keep it simple Make it fun
Make it a part of the day
Work as a team Smile!
We believe that children are the future
We believe teachers shape their future...
We believe technology is cool
We believe teachers are cooler.

-Tom Snyder Productions

Start with Cool Projects
 Low "learn-time"
 Very little time
 Very little management
 High impact
 Real-world
 Make the curriculum fun!

http://www.clark.net/pub/cve/cveteeth.html

Share Cool Projects
 Reach Outside the Classroom
 Classroom or hall bulletin boards
 Library/lunchroom sharing
 School-wide activities
 Work across grades
 Share on the web!

http://members.aol.com/i12teach/pubpage.htm

Involve Everyone! Involve
 students in grant writing
 teachers in creating
 principals in judging
 parents in sharing

Build Fun Themes
 Schoolwide projects
 Logo contests
 Fund raising activities
 Lab/classroom fun:
 Beanie toppers, screen borders,
 mouse pads, mobiles

9 Motivation
How do you motivate teachers?
 Positive work environment
 Moral and technical support
 Praise
 Opportunities
 Early retirement incentives

The mediocre teacher tells
The good teacher explains
The superior teacher demonstrates
The great teacher inspires

-William Arthur Ward

Untie Teachers
 Blocks of time to plan
 Chances to work with others

Easy access to resources Opportunities

Inspiration
 Models Mentors
 Teaming Ideas
 Connections Step-by-step Help

Hardware without software is just junk, but
software without teaching is just noise.

Opportunities
 Teachers need lots of opportunities. Every
teacher that takes an opportunity is a success
Lists of ideas Link to sites
Cool examples

10 Dealing with Dips
How do you handle the implementation dip?
 Making it a habit
 Ongoing, supported projects
 Infusion of new ideas

Join Projects
 It's hard to quit once you get started.

http://k12science.stevens-tech.edu/curriculum/
 boilproj/index.html

Sharing Success
 Seeking out cool projects Each 1, teach 1
 Techie teacher in "convert pics"
 Highlight in newsletter

Mini Grants
 Support new ideas
 I just need...a digital camera, a field trip
 photo quality paper, a set of books
 a vacation???

Infusion Ideas
 I know the software, now what?
 Beyond PowerPoint
 Beyond HyperStudio
 Show examples

11 Configurations
What's the most effective way to configure
computers in schools - singles, clusters, labs?
 Effective, efficient, or appealing?
 It depends on your students, teachers, build
 ing structure, and curriculum.

I can please only one person per day.
 Today is not your day.
 Tomorrow isn't looking good either.

Think Use
 One person, one computer
 Two people, one computer
 Small group, one computer
 Mixed, computer clusters

Annette Lamb • 3

425
Entire class, computer lab
Entire class, projector

Think technology
Computers + scanners & digital cameras
probes/lab equipment printers
data projectors video cameras
microphones
http://www.stolaf.edu/other/snap/cyberseasons.html

12 Role of Internet
What's the role of the Internet in schools?
The Internet is a tool for information and
communication.

Keep Current: Current events
This day in history
http://www1.sympatico.ca/cgi-bin/on_this_day

Virtual Travel
Armchair traveler
Interactive field trips
Simulated explorations
http://www.dreamscape.com/frankvad/tours.html
http://www.rims.k12.ca.us/iditarod/index.html
http://www.globalearn.com/
http://www.goodearth.com/virtcave.html

Multiple Perspectives
Lumber Tobacco Exercise
Cloning Guns Endangered Animals
Recycling

Information
You need snow to ski.
You need data, resources, and tools to make
decisions
http://scriptorium.lib.duke.edu/collections/african-
american-women.html

Instruction
Tutorials Practice
Role Playing Simulations
http://www.japanese-online.com/

Communication
Interacting online
other teachers other classrooms
other students parents
community experts
http://agcwww.bio.ns.ca/schools/classrm.html

Collaboration
http://earthdaybags.org/

Creation
http://thinkquest.org/
http://www.gsn.org/cf/index.htm

http://www.schoolnet.ca/home/e/index.html
Share & Reflect
Drop in on other schools
Provide an audience for learning
http://www.sd81.k12.wa.us/Regal/DishmanHills/56DHill.htm
Teacher Tool
Search online: textbooks, television, software
http://www.teachtsp.com/classroom/timelineronline/tlineronline.html

13 Protection
How do we protect kids from inappropriate
materials?
Don't protect, prepare!
Internet is a reflection of our society, good
and bad

What's the Goal?
Protecting children from
inappropriate materials
Sheltering kids from "bad influences"
Preparing kids for the "real world"
Helping students make choices

14 Emphasis
Where do we put our emphasis - tool-based
software or curriculum-based software?
Let's emphasize learning.
What tools and resources will
engage learners?
Are we trying to turn out intelligent people,
or test-takers?" John Holt, How Children Fail
Do It All!
Make it meaningful Connect curriculum
Focused Tutorials WebQuests
Project-Based Learning
http://edweb.sdsu.edu/webquest/matrix.html

15 The Answers: Where can I find the answers?
Look to each other
When you feel like you're losing it...
...email a peer
When you have too many things going...
...ask for help.
When you're frustrated by the system...
...remember this workshop and smile!

Microsoft has announced that the release of
Office 2000 has been delayed until the
second quarter of 1901.
Macintosh - we may not get everything
right, but at least we knew the century was
going to end. Douglas Adams
Classroom Campfires:
Don’t Do Internet, Do Integrate!

Annette Lamb
alamb@eduscapes.com
http://eduscapes.com/activities/index.html

Sparks
You need matches to start the fire and logs to keep it going
Web-Based Resources
http://www.sandiegozoo.org/special/pandas/panda_baby_intro.html
http://www.globalschoolhouse.org/pr/index.cfm

Teacher Sparks
Good starting points
search tools for kids & adults
general starting points
teacher resource starters
Bookmark folders
Personal web page
http://www.rcls.org/search.htm
http://www.rcls.org/ksearch.htm
http://www.suite101.com/
http://tlc.ai.org/
http://www.gis.net/~peacewp/sear.htm
http://www.stemnet.nf.ca/CITE/themes.html

Sparks
What’s your teaching area?
What do students need to learn?
What resources do you already have available?
In what areas could you use some additional information, examples, or excitement to build the learning environment?
http://www.nutritionexplorations.org/

Selecting Sparks
Pick 1 OR Pick 4 assure 3 resources
varied perspectives
multiple sources
varied channels
Consider the needs & interests
http://www.stampsonline.com/gallery/ctc.htm
http://www.achievement.org/galleryachieve.html
http://www.biography.com/

http://members.home.net/klanxner/lives/index.html
http://www.s9.com/biography/
http://library.advanced.org/10320/Stamps.htm
http://library.advanced.org/10320/Carver.htm

Your Mission: Go to the Subject Area Sparks
Consider grade level, entry skills
reading ability
Bookmark (or favorite) a site for easy reference.

Purpose
What’s the purpose of your campfire?
Is it for warmth, to cook food, or simply for fun?
Question: Why are we making this campfire?

Learning Outcome
http://antoine.frostburg.edu/chem/senese/101/

Purpose
Draw students into web resources:
solve a problem
address an issue
answer a question

http://www.paducah.k12.ky.us/curriculum/webquests.htm

http://www.angelfire.com/wy/peacequest/

Learning Outcome
Identify a specific learning outcome.
What do you want your students to be able to do or talk about at the end of the activity?

Focus
It’s not about Internet, the specific website, or even the subject area.
It’s about learning a skill,
acquiring a concept,
or solving a problem that will transfer to other learning experiences down the road.

Outcomes
When identifying outcomes consider:
cognitive, social, affective, kinetic
metacognitive areas.
Your Mission: Go to the Active Alternatives page.
Not: state, list, describe
Focus on higher-level, thought-provoking activities.
Share your active words and learning outcome with a peer.
http://www.chariho.k12.ri.us/curriculum/MISmart/ocean/sandhome.htm

Embers
Embers are the hot, glowing remains of a fire.
It’s the time to put on the fry pan, roast the hot dogs, and make s’mores.
Don’t just watch the fire, use it!
Engaging Learners
Don’t just read information off the Internet, use it!
Consider:
How you will activate the learning environment?
How will you engage students and keep them excited about learning?
http://www.pbs.org/ktca/americanphotography/

Introduction
Student with an overview
Provide background information
Draw student interest
picture or cartoon, quotation statistic or problem
Hook your students
http://politicalgraveyard.com/index.html
Activity
Actively involve students in learning:
explore, evaluate, organize, analyze, apply,
solve, formulate, create, communicate
Let students paddle
http://www.gcse.com/Maths/pre.htm

Your Mission: Go to the Engaging Embers page.
Brainstorm some interesting products that students could create using the information found on the Internet.
http://cust3.iamerica.net/anyroddy/

Tools: Provide a range of tools
Word processing Database
Drawing, Painting Spreadsheet
Multimedia: audio, video Utilities
http://www.fl.edu/fellows/fellow3/jan99/coinproject/home.htm

Your Mission: Go to the Technology Tools page.
Identify those resources that might be available in your school.

Directions
Give good instructions
step-by-step instructions
list of requirements
examples & nonexamples
models & samples
Stay flexible!
http://www.gis.net/~peacwp/webquest.htm
Timeline
Unlike a tree, you don’t have centuries
How long will students be working on this project?
What’s realistic?
Give students guidelines
http://wneo.org/gasp/

Your Mission
Identify an engaging activity and design an project.

http://powayusd.sdsu.edu/pusdphs/dmoore/index2.html

Spotlight on Songs
Assess Student Learning
Spotlight student success.
Share a story or sing a song around the campfire.

Why Assess
What have your students learned?
Assessment isn’t about testing and report cards.
It’s about helping you and your students understand where you’ve been and where you still need to go to reach your learning outcomes.

Process Assessment
It’s the walk that matters
Product Assessment
It’s the view at the end that matters
http://edweb.sdsu.edu/triton/july/rubrics/Rubrics_for_Web_Lessons.html
http://memorial.sdsu.edu/LESSONS/WWII/WWIIunit/HyperStudiорubric.html

Your Mission: Go to Student Success
Identify ideas for assessing student performance.
Brainstorm alternative assessments to match your outcome and activity.

Make Camping Fun!
Ideas for Happy Campers!

Keep up to date
Find a home
Follow "new links" or "best links"
mailing list weekly hot list
http://school.discovery.com/schrockguide/sos.html
http://www.homeworkcentral.com/top8/vsl_top8_list.asp
http://www.stemnet.nf.ca/CITE/emaillists.htm
Match to standards
National State Local
http://clearinghouse.k12.ca.us/c/@BtxgI2Y.3H5to/bystandard.html
Do it regularly
Current events
This day in history
Word of the day
Math problem of the week
Project of the month
http://www.wordcentral.com/cgi-bin/bwwod.pl
Preselect Sites
Don't camp in the dark!
Plan ahead and preselect quality websites.
http://www.lausd.k12.ca.us/web_design/lighthouse_keeper/lighthouse_main.html
Remember Visuals
You remember what you see.
Use sites with lots of visual representations.
Ask students to create their own visuals.
http://www.thevirtualwall.org/
Chunk Your Project
You can't carry a tree, but you can carry chunks of wood.
Chunk your project into reasonable pieces.
http://members.aol.com/donnandlee/SiteIndex.html
Make Good Stew
Generate excitement!
Fun, flexible environment
http://www.artystro.com/
Authentic projects Real world audiences
http://www.universitylake.org/primarysources.html
http://www.horus.ics.org.eg/
Provide Resources
A stool needs three legs
Provide multiple resources
Adapt to change
http://eduscapes.com/42explore/poetry.htm
http://www.gigglepoetry.com/
Reflect
Take time to reflect
Allow time for sharing and enjoying your activities
http://www2.lhric.org/pocantico/taverna/taverna.htm
Encourage Uniqueness
Let students take their own path
Give students flexibility in the assignment
http://www.emulateme.com/
Watch from distance
Do demonstrate, guide, suggest, help
Don't do it
http://www.secretsatsea.org/
Don't Lose Anyone!
Keep them in sight
Use checklists, team meetings, and processfolios to keep track of progress.
http://home.earthlink.net/~tsdobbs/go.htm
Watch Out!
You never know when you might have a problem.
Watch for inappropriate links
Carefully save files
Stay organized
http://www.field-guides.com/trails.htm
Remember Water
Don't forget the water.
Remember the purpose of the activity.
http://www.askasia.org/adult_free_zone/afz_frame.htm
Watch the Food
Too many beans can spoil a trip.
Take baby steps, Select tutorial sites
http://mgd.nacse.org/hyperSQL/lichen_teach/
Be Prepared
Wear your boots, not your sneakers.
Plan student access:
bookmarks, worksheets, activity web pages
http://unidata.ucar.edu/staff/blynds/rnbw.html
Think Timeline
Finish before the snow falls
Be realistic
Build in a cushion
Be prepared Print out the sites
Provide support
Lend a hand Work with another teacher
Help each other! Team with another grade

Annette Lamb • 3
Prairies, Pioneers & Partnerships:
Matching Standards, Resources, and Engaging Projects
Annette Lamb alamb@eduscapes.com
http://eduscapes.com

Overview
Align Content/Standards
Transform Traditional Activities
Create WebQuests
Develop Project Partnerships
Manage Projects: Empowering Students

Content & Standards
Pioneers were disappointed to find how few supplies would fit into their wagon.

Identifying Standards
National Gov’t
National Groups
State Level
Local Level
http://www.negp.gov/
http://www.negp.gov/WEBPG10.htm
http://www.negp.gov/Reports/20nelson.htm
http://www.edweek.org/context/orgs/
http://www.aasa.org/index.htm
http://www.neat-schoolhouse.org/Office/Teacher/
Classroom_Related/Educational_Associations.html
http://www.nsta.org/
http://www.ncss.org/
http://www.ncss.org/standards/toc.html
http://www.edweek.org/context/topics/assess.htm

State Level
Compare state standards
Use other states for ideas
Look for online ideas
http://putwest.boces.org/Standards.html
http://putwest.boces.org/STSt/Illinois.html
http://www.isbe.state.il.us/ils/default.html
http://www.isbe.state.il.us/ils/intro/history.html
http://www.springfield.k12.il.us/standards/fourth/index.htm
http://admin.doe.k12.ga.us/gadoe/sla/qqccopy.nsf/
MainNav?OpenNavigator
http://www.uen.org/cgi-bin/websqfl/lessons/query_lp.hots?grade=4&area=3
http://www.ncrel.org/ncrel/sdrs/areas/gs0cont.htm
http://www.ncrel.org/ncrel/standards/
http://www.ncrel.org/standards/articles/8-questions.asp
http://www.ncrel.org/standards-benchmarks/
http://www.ncrel.org/resources/plus/

Lesson Plans
Take the easy route.
Find help!
http://encarta.msn.com/schoolhouse
http://www.microsoft.com/education/lesson/
default.asp
http://ericir.syr.edu/Virtual/Lessons/
http://scritec.org/track/
http://L2L.ed.psu.edu/success/L2L_INDX.HTM
http://thegateway.org/
http://sunsite.berkeley.edu/InternetIndex/

Pioneer Life
Don’t let standards scare you!
Create charts
Match content
Toss the rest!

Transforming Traditional Activities
To survive on the prairie, pioneers had to modify their old ways and learn new skills.

http://eduscapes.com/42explore/prairie.htm
http://mbgnet.mobot.org/sets/grassInd/main.htm
http://mbgnet.mobot.org/sets/grassInd/story/index.htm
http://www.highlands.w-cook.k12.il.us/prairie/prairie1.html
http://www.blackfootedferret.org/prairie.html#top
http://www.inhs.uiuc.edu/~kenr/tallgrass.html
http://www.tallgrass.org/
http://eduscapes.com/42explore/pioneer.htm
http://www.museum.state.il.us/exhibits/athome/1800/welcome.htm
http://lcweb2.loc.gov/ammem/today/may20.html
http://tqjunior.advanced.org/6400/
http://www.bright.net/%7etomhoman/page31.html
http://www.bright.net/%7etomhoman/page43.html
http://www.carlinville.macoupin.k12.il.us/west/frontier.htm
http://www.osv.org/kids/articles5.htm
http://eaves.math.utic.edu/williams/Pioneer/pioneer.html
http://eduscapes.com/42explore/farming.htm
http://eduscapes.com/42explore/oralhs.htm
http://eduscapes.com/42explore/journl.htm

Literature Ladders
Book Connections
Authors Lesson Plans Content Resources
http://eduscapes.com/ladders/index.html
http://eduscapes.com/newbery/86a.html
http://www.harperchildrens.com/howabook/pnmstate.htm
http://www.sdcoe.k12.ca.us/score/sarah/sarahtg.htm
http://collaboratory.nunet.net/bookclubs/sarah.html
http://www.amered.com/curr/mwspt.html

Explore Lesson Plans
Match to your outcomes
Transform a traditional activity
Action Word Ideas
Student Project Ideas

Plan Trips
Around Illinois
Trace a historic journey
Trace Sarah’s trip
http://mapquest.com

Use Graphics
Copy pictures
make postcards
write a story
write a letter
a day in the life
http://www.ukans.edu/carrie/kancoll/graphics/
http://www.ukans.edu/carrie/kancoll/graphics/elsmore.htm

Modify Photos
http://members.aol.com/ntgen/hrtg/wol.html
http://www.usps.gov/history/his1.htm

5Ws Project
Where are you?
Who’s with you?
What are you doing?

Sarah’s Prairie Life
Today and Yesterday
Compare Maine & Kansas
Prairie plant/animals
http://www.awaw.net/prairie/
http://www.awaw.net/prairie/prairie.html
http://www.wheatmania.com/

Sarah’s Maine
Seashore Ocean Shells Sealife
http://coa.acnatsci.org/conchnet/do.html
http://www.uwp.edu/academic/biology/bmsm/selshels.htm
http://www.wildlupine.com/
andrewruelphotography.htm

Use Photos
Postcards Poems
Reports News articles

Wildflowers
List the wildflowers from the book
Ragwort
Create a prairie mural
Build an online wildflower trail
http://history.cc.ukans.edu/heritage/prairie/prairie.html

Transforming Activities
Scanner
Scan seeds leaves
bark outdoor objects

Digital Camera
Photograph plants animals
people objects

Paint Software
Draw maps
Create landscapes
Sketch plants
Combine scanning, photos, clip art

Sounds
Animals Outside sounds
Folk music Instruments
Real Objects
 Describe Speculate
 Compare Create
 Create
 Combine
 word process clip art
 paper markers
 boxes
Expand
 Don't just scoop, apply... defend decide
 create persuade
Natural Area Projects
 What's a prairie?
 plants animals
 water objects
 http://www.sd81.k12.wa.us/Regal/DishmanHills/56DHill.htm
 http://imc.lisd.k12.mi.us/wayne/alsummer.html
 http://imc.lisd.k12.mi.us/wayne/august/flowers/august.html
Prairie Exploration
 Plants Animals Murals Recreations
 http://ngp.ngpc.state.ne.us/wildlife/critters.html
Try It
 http://ngp.ngpc.state.ne.us/sounds/sounds.html
 Copy a picture and a sound.
 Learn more about your animal!
History Projects
 Living history farms and museums Artifacts recording creating
 http://westville.org/
 http://www.museum.state.il.us/mic_home/
Pioneer Tools
 Trace the history of a tool: then & now Create a tool matching game Identify the purpose of tools
 http://www.connerprairie.org/cp/agimp.html
 http://www.lis.ab.ca/walton/old/
 http://www.lis.ab.ca/walton/old/butter.html
Pioneer Food
 Food Recipes Healthy eating
 http://www.iron.k12.ut.us/schools/north/cookbook/introduction.htm
 http://www.carlinville.macoupin.k12.il.us/west/kitchen.htm
 http://little.nhlink.net/nhlink/educatio/teaching/es/es03d.htm
 http://www.jerkyusa.com/recipes.html
 http://scholar.coe.uwf.edu/pacee/steps/two/west/day11.htm
 http://tqjunior.advanced.org/6400/recipes.htm
Pioneer Experience
 Compare pioneers from different areas and time periods
 http://heritage.uen.org/cgi-bin/websql/index.htm
Pioneer Arts & Crafts
 Write step by step instructions Take digital pictures
 http://users.drak.net/magick_manor/dip.html
 http://www.campbellusd.k12.ca.us/~kwoods/woodscor.htm
 http://www.ontariocorn.org/husk2.html
 http://www.jb.man.ac.uk/~caj/wheel.html
 http://www.lis.ab.ca/walton/old/soap/home.html
 http://www.millennium-ark.net/News_Files/INFO_Files/Soapmaking.html
 http://www.millennium-ark.net/News_Files/INFO_Files/Lye_Safety_Precautions.html
 http://seasonalchef.com/appledehyd.htm
 http://www.cityblues.com/dryfood.htm
 http://eagle.cc.ukans.edu/~mdpear/jayhawk.html
 http://highlightpro.com/text.htm
 http://www.kinderart.com/littles/pquilt.htm
Explore Books
 Prairie Pioneer Nature History
 Sarah, Plain and Tall Patricia MacLachlan Kansas Prairie
 Quilt-Block History of Pioneer Days Mary Cobb Pioneer Crafts
 Prairie Born Dave Bouchard Canadian Prairie
 Pioneer Workshop Judy Cole Mary Minturn Pioneer Crafts
 Prairie Songs Pam Conrad Nebraska Prairie
Brainstorm Intros
- Picture
- Quote
- Poem
- Situation
- Song

Task
- Something doable & interesting
- series of questions
- summary to be created
- problem to be solved
- position to be debated
- creative work
- require thinking!

Information Resources
- Specific, appropriate resources
- web documents
- experts available via Internet
- searchable databases on the net
- books and other documents
- real objects

Process
- List of activities
- Step-by-step instructions
- Timeline

Learning Advice
- Describe how to organize info
- Guiding questions
- Directions to complete
- checklists, timelines
- concept maps
- cause-effect diagrams
- action plan

Evaluation
- Assess student work
- checklists
- rubrics

Conclusion
- Bring project to closure.
- Remind learners about what they’ve learned
- Encourage learners to extend the experience

Other Elements
- Roles to play
- Group collaboration guidelines
- Motivating scenario
- Teacher Resources

Introduction
- Dig In
- Motivation
- Sets the stage
- Provides background information

http://projects.edtech.sandi.net/chavez/batquest/batquest.html

http://www.stbernard.org/WebQuest%20Activities/pioneer.html

http://inst.augie.edu/~jamounta/west/quest.htm

http://projects.edtech.sandi.net/chavez/batquest/teacher.html
Explore & Evaluate
Explore a webquest
Evaluate a webquest
Create a webquest
http://edweb.sdsu.edu/webquest/webquest.html
http://edweb.sdsu.edu/webquest/matrix.html
http://edweb.sdsu.edu/people/bdodge/webquest/buildingblocks.html
http://edweb.sdsu.edu/webquest/webquestrubric.html

Brainstorm Topics
- Prairies & Pioneers
 quilts crafts
 plants animals
Create a webquest

Developing Project Partnerships
Although they often lived miles apart, pioneers relied on one another.
http://askanexpert.cm/
http://www.vrd.org/locator/subject.html
http://www.gsn.org/project/index.html
http://www.eduplace.com/projects/how2.html
http://www.siec.k12.in.us/~west/onlin/join.htm
http://www.kidlink.org/KIDPROJ/
http://www.pitsco.com/p/Respages/collab.html
http://home.talkcity.com/academydr/nicknacks/NNindex.html
http://cleo.terc.edu/cleo/cleo-home.cfm
http://www.eduplace.com/hmco/school/projects/online.html

Connect with Class
Another
county state country
http://www.epals.com
http://www.ks-connection.com/penpal/penpal.html
http://www.keypals.com/

Manage Projects
Empower your students so they can survive on the cyber-prairie!
Build an environment
Provide...
 A variety of tools
 A place to start
 An engaging, classroom environment

Provide support
Step-by-step help sheets
Each one, teach one
Ask three before me

Create a headquarters
Bulletin board
Folders
Website

Make it happen
- Focus on individual needs
- Keep it simple
- Find friends to help
- Make it real-world!
- Make it engaging!

Have Fun!
Annette Lamb
alamb@eduscapes.com
http://eduscapes.com

Books by Annette Lamb
Newbery's and the Net:
- Thematic Technology Connections
 Annette Lamb & Larry Johnson
 ISBN 1-891917-02-1 c2000 $28.95

Virtual Sandcastles:
- Teaching and Learning at a Distance
 Annette Lamb & William Smith
 ISBN 1-891917-01-3 c1999 $23.95

Cruisin' the Information Highway:
- Internet in the K-12 Classroom (2nd Edition)
 Annette Lamb & Larry Johnson
 ISBN 0-9641581-6-7 c1995, 1997 $23.95

Surfin' the Internet:
- Practical Ideas from A to Z (2nd Edition)
 Annette Lamb, Nancy Smith & Larry Johnson

Spinnin' the Web:
- Designing & Developing Web Projects
 Annette Lamb

Building Treehouses for Learning:
- Technology in Today's Classrooms (2nd Edition)
 Annette Lamb
 ISBN 1-891917-00-5 c1996, 1999 $34.95

The Magic Carpet Ride: Integrating Technology into the K-12 Classroom (2nd Edition)
Annette Lamb

Contact Nancy Smith for order and shipping information:
Vision to Action, Inc.
Order & Distribution Center
PO Box 2003
Emporia, Kansas 66801
email: vision2a@cadvantage.com
website: http://eduscapes.com/v2a
Voice Mail or Fax: 316 343 7989

Send Check or PO to Vision to Action.
Add 10% shipping/handling with $4.95 minimum.
Online Interactive Lessons
Tools & Training

Volusia County Schools

Pamela Laverty
Curriculum Technology Specialist

Becky Ling
Science Teacher
Title: Light Me Up

Concept or Theme: Electricity - constructing an electrical circuit.

Discover Question: How can you light up a light bulb?

Background: None needed

Supplies/Materials:
- Flashlight bulb (1.5 Volt)
- Battery (C size works well)
- Nail (approximately 3 inches)
- Penny
- String, ribbon, cardboard, piece of plastic
- Special foil (approximately 6 in. x 6 in.). To make special foil stick clear contact paper onto the shiny side of aluminum foil. This is easiest if both rolls are 16 inches wide.

Place all supplies, except batteries, in a plastic (ziploc) bag. Provide masking tape on each table (this is very useful!).

Procedures:
This activity takes approximately 45 minutes with 1st to 3rd graders. Depending on learners' prior experience this time may need to be extended or shortened.
1. You can introduce the activity any way that is appropriate for your class. I have told learners that they need to help NASA repair the Mars Rover which has some broken wires. Thus NASA has asked them to figure out how circuits work.
2. Hand out the ziploc bags with the materials and a battery to each learner. I usually do not tell learners names for the objects but refer to them as "shiny stuff", colored stuff, etc.
3. Record learners' observations on the board. "The shiny stuff gets hot when I wrap it around the battery!" "There are 2 shiny ends to the batteries." "There are two shiny ends on the light bulbs."
4. Ask questions that are open-ended "What have you tried?" "What else could you try?" "What do you notice about your objects?"
5. Once some one has success encourage further exploration.
 - Can you light the bulb any other way?
 - What is the smallest amount of shiny stuff you can use to light the bulb?
 - What other objects work and don't work to light the bulb?
6. Introduce the idea of a circuit.
7. Make a list of what can and can not light the bulb. Explore other objects as well like pencils, pens, scissors, chair or desk legs etc.
8. Talk about list of objects that can light the bulb. What do they have in common - shiny, hard, conduct electricity, conduct heat... Scientists refer to these objects as metal.
9. Discuss results from other extensions you may have explored.

Internet Resource:
None required. This is part of a NatureShift unit on electricity and magnetism that can culminate in controlling the Mars Rover telerobot.

Assessment Ideas:
Can the learner turn on the light bulb?
How many different materials can a learner use to turn on the light bulb?

Extensions:
- "Now that you have it light, make it bright?" Provide extra batteries of various sizes (AA, C, D). Does the size of the battery make a difference?
- Make a flashlight.
- Cut up a string of Christmas tree lights and hand out. Light one or a whole bunch with a friend.
- Make a game like "operation".
- Make a game where a loop has to trace a curvy wire. If they touch a light turns on.
- Make a robot with eyes and a nose that lights.
- Make a buzzer or motor work.
- Light a L.E.D. (light emitting diode)
- Discuss serial and parallel connections

Age/grade level/accessibility adaptations:
This activity has been used successfully with 1st to 3rd graders as well as college undergraduates.

Safety Considerations:
- Drop anything that gets hot. This will happen if a battery is "short circuited" by connecting the top and bottom with a conductor like the aluminum foil.
- If this is a multi-day activity collect batteries.

Steve Lindaas lindaas@dakota-science.org

http://www.natureshift.org
Explainer Hints

- Inquiry
- Critical Thinking

Hands-on Learning
Hands-off Teaching

Questions/approaches to use:
- What have you tried?
- What worked well?
- What could you do next?
- What else can you try?
- How many ways can you do this ...
- Can you use different materials?

Don't steal the joy of discovery!

1. **Do** - let students find on/off buttons!
2. **Do** - let students do weird stuff!
3. **Do** - Encourage sharing!
4. **Do** - Encourage exploration
 (breaking stuff can be okay)

Steve Lindaas lindaas@dakota-science.org
http://www.natureshift.org
You will be building a simple motor using the materials you have been provided. This will require you to make a circuit (which you did when you made the light bulb light up), use the permanent magnet and make an electromagnet.

1. Use the enamel wire. Leaving a 3 cm tail on either side, wind the wire into a coil with a diameter slightly larger than 1 cm. Wrap each tail a couple times around the coil to hold it together. The wooden spool allows you to coil and make the finish wrap in its slots.

2. Remove the enamel from the top of both tails. If you place the spool with the wire coil on it in the groove of the wooden base you can scrape the enamel off of both sides using the sandpaper board.
3. Secure the safety pins to the battery ends with tape or a rubber band. Place the magnet on top of the battery and position the wire coil through the hinged ends of the safety pins that should be sticking above the magnets.

4. Troubleshooting:
 - If your wire just rocks adjust the balance. Balance is crucial so try bending/straightening the coil and tails. You can also add a small piece of tape to the coil to adjust the balance.
 - If your wire coil does not spin, make sure that enough enamel is removed from the tops of both tails. You may have to scrape the wire with the sandpaper some more.
 - If your wire coil does not spin, make sure that the enamel is removed from just one side of each tail and that it is the same side. **NOTE:** If you took off too much enamel, you can use a permanent marker to replace the missing enamel. Just draw a mark where you want to replace enamel.
Robot Directions

The following are some hints to help you carry out your role as a multi-purpose robot today.

WHAT:
The Learners will be writing down instructions for a "multi-purpose" robot to make frosting and graham cracker snacks. [You are the "multi-purpose" robot!]

PURPOSE:
Demonstrate that a computer program
1. is a set of instructions.
2. must be exact to avoid problems
3. is not always fool-proof

TASK:
You MUST follow the directions literally! For instance, if the direction is to "Take the frosting out" you could get up and walk out (side) and continue down the sidewalk. The programmers will have to run up with a "stop and return" command written on a paper to get you to come back. Or perhaps if the direction is to "Take the frosting out and spread on the cracker" then you should take the frosting package and place it on the cracker package or place it on a cracker and smash it. Any of the following can cause a robotic meltdown or unexpected robotic behavior.

- They must specify which frosting to use.
- They must specify a utensil to use. (You can use the wrong end of the knife if you are being mischievous.)
- They must be specific in opening and closing packages. If a package is closed and you have no directions to open it you might spread frosting on the package. If a package is open and you have directions to open it you might have a robotic meltdown.
- They must be specific in locating objects. There will basically be two places for objects - inside the "box" or on the table. If they do not specify the location your default is to look in the "box". If you do not find the object you can have a robotic meltdown.
- They should specify what is to be done with the snack (hopefully "feed to a human"). A mischievous robot might eat the snack and then have a robotic meltdown. If nothing is specified a robot may walk over to the trash and throw a frosting sandwich away.
- If you are having trouble reading the directions you can ask one of the RoboTechs to read what they have written. I don't want to worry too much about neatness.

Try to think of any way to follow the letter but not the intent of the program. Obviously, if the frustration index gets to high you can choose to be a tad less picky. Overall have fun!

Robotic Meltdown
A robot that is having a meltdown may make weird sounds, zaps or make weird twitching motions. After the meltdown the robot can not move (at least not much) until it is restarted and given new instructions.

Steve Lindaas
lindaas@dakota-science.org

NatureShift! Linking Learning to Life
O'Neill, James

Energized, Paperless Research Projects
Original Author Submissions

Ostrager, Jennifer

Cablevision and Bethpage, NY: Partnering to Build a Lifelong Community of Learners
Cablevision and Bethpage Unified Free School District: Timeline of a Partnership
1999 CTPAA Beacon Award Winner
Cablevision Collaborates with Educators for powertolearn.com
Cablevision Teaches Seniors How to Surf the Net
Kramer Lane Teacher Creating Internet Curriculum
School's Out
Original Author Submissions

Palacio, Joycelin

Beyond Multiple Choice and Scores: The IMMEX Problem-Solving Assessment Approach
(pdf format)

Petersen, Ruth

Glenn Learning Technologies Project
NASA Glenn Distance Learning Program
Original Author Submissions

Pook, Charlanne

The Kids are Running the School, School Network that is!
Original Author Submissions

Porter, Karin

Empowering Teachers Through CFBISD's Technology Integration Academy

Price, Catherine

What is the Learning Cycle?
Planning a Learning Cycle
Technology Self-Report
Original Author Submissions

Reid, Susan

Online Learning with Amazon River Dolphins (pdf format)

Resta, Paul
Creating a Virtual Tour of the American Indian
A Virtual Tour of the National Museum of the American Indian Exhibitions: Creation’s Journey and All Roads Are Good
Original Author Submissions

Ritter, Catherine
Selena On The Move: Bridging Internet Learning
Original Author Submissions

Roberts, Serena
Multiple Intelligences Survey
Enhancing Cross-Curricular Projects with Technology - Agenda
Original Author Submissions

Simeone, Mary
Original Author Submissions

Sindhikara, Jean
“Workshops that Work”: List of Electronic Handouts
Internet Searches for Science Teachers
Using a Digital Camera to Enhance Learning
Computer Graphics for Teachers
“Workshops that Work”: Computer Skills Template
Original Author Submissions

Siwinski, Carol
Jump Start Integration with the Internet
General Information for Web Graphics and Publishing a Site
Fireworks: Attaching Text to a Path
Fireworks: Making an Animation
Fireworks: Masking an Object
Fireworks: Saving a Fireworks Document
Fireworks: Working with Text
Fireworks: Working with Bars and Buttons
Original Author Submissions

Sprague, Debra
Project DEVISE: Creating Virtual Reality Environments for Learning Disabled Students
(pdf format)

Stabler, Hank
Policy-Driven Technology Reform and Implementation
Original Author Submissions

Steinhaus, Kurt

Communicating a Strategic Vision of Education Technology to Key Decision Makers
Original Author Submissions

Stephens, Tammy

Using Computer Manipulatives in Elementary Math Instruction
Original Author Submissions

Sun, Jeff

Evaluating Technology's Impact on Teaching and Learning
Technology Evaluation, Organizing Questions
Developing Indicator Statements
Mapping Your District Technology Plan
technology Funding
Original Author Submissions

Taylor, Lydotta

Professional Development: A Comprehensive Approach ...
Original Author Submissions

Thurston, Catherine

CTER OnLine: Developing a community of practitioners via advanced technologies
Original Author Submissions

Tichenor, Caylen

Moving Beyond Hidden Roadblocks to Successful Technology Programs
Original Author Submissions
Energized, Paperless Research Projects

James O’Neill and Carleen Smith
Buffalo Grove High School
1100 West Dundee Rd.
Buffalo Grove, IL 60089

PH: 847.718.4075
FX: 847.718.4022
joneill@dist214.k12.il.us
csmith@dist214.k12.il.us

Each of the following will link to the appropriate site for information on the paperless research project.

Planning and Resources

1. Rationale for Research Project, a list of reasons teachers give research assignments and how these paperless research projects meet most of them.

2. List of Disaster Topics, over 50 researchable disasters (some of them are Chicago-area based),

3. List of Contemporary Problems Topics, taken from back issues of CQ Researcher, these 100+ topics are divided into categories for easy student selection.

4. Calendar for Project, a calendar from a past use of this project illustrating how students spend their time researching and learning the software.

5. Bibliographic Forms, MLA format bibliographic entries for the most popular sources students use in their Works Cited pages.

6. Guide to Referencing Research, a guide that shows students how to incorporate internal referencing into their written work for various types of sources.

Idea Processing

7. Idea Cache, a method to assess student’s knowledge of the topic and generate ideas that will guide the research.

8. The Double Entry Journal, a guide for the student on how to take notes and to make assessments and generate questions about the information gathered as he takes notes.

Presentation Project

9. Presentation Project Assignment, a list of requirements for the project based on the rubric the teacher will use to assess the student’s work.
10. **Rubric for Presentation Project**, a ten-point descriptive rubric that covers everything from use of graphics and speaking ability to accuracy of information and audience participation.

Web Page Project

12. **Web Page Project Assignment**, a list of requirements for the project based on the rubric used to assess the student’s work.

13. **Rubric for Web Page Project**, a ten-point descriptive rubric that covers everything from use of graphics and workable links to accuracy of information and referencing technique.

Cablevision Systems and Bethpage, NY: Partnering to Build a Lifelong Community of Learners

Presenters: Terrence Clark, Bethpage Schools
Tamara Black, Cablevision Systems
Jennifer Ostrager, Cablevision Systems

Cablevision Systems and the Bethpage Union Free School District formed an educational partnership in 1998 to study the impact of technology on a community. Focusing on technology as an agent for positive change, Cablevision and Bethpage Schools identified four major technology issues facing school districts. Using Bethpage as a model, the partnership tried to find solutions that could be replicated in other school districts. The four areas of concern and the proposed solutions include:

1. **Staff Development**
 a. Teacher Institutes
 b. Collegial Circles
 c. Teacher Conference Days
 d. E-Mail Training

2. **Emerging Technologies/Total Cost of Ownership (TCO)/Obsolescence**
 a. Thin-Client Lab
 b. Web Server housed at Cablevision
 c. E-Mail Server housed at Cablevision

3. **Gender Equity**
 a. Planning K-12 Forum planned for next year
 b. Work with District Personnel, PTA, Cablevision, Possibly Local College

4. **Home-School and Community Connections**
 a. Bethpage Community Web Site, connecting schools, businesses, civic/religious, and recreational facilities.
 b. Senior Citizen Training (two years)
 c. High School Computer Lab open to Community Members
 d. Assist as mentors for 8th Grade Curriculum- Web Folios
 e. Internet Safety Seminar for Parents
Cablevision and Bethpage, NY: Partnering to Build a Lifelong Community of Learners

BETHPAGE
UFSD

CABLEVISION
Cablevision and Bethpage, NY: Partnering to Build a Lifelong Community of Learners

Click to open author's original document.

The Power to Learn

Cable in the Classroom Magazine, March 2000

Cablevision Collaborates with Educators for Powertolearn.com

Cablevision enhanced its commitment to providing high-speed Internet connections to every public and private school and community library in its service areas with the launch of the Power to Learn Web site, an interactive educational site. From the beginning, educators played a vital role in developing both the site's educational content and its virtual community, an area that supports technology-enriched learning experiences.

To facilitate participation in this virtual community, Cablevision worked hands-on with a group of educators from the Bethpage school district in Long Island, N.Y., to develop authentic educational activities and resources. For five weeks, from December 1999 to January 2000, the educators met weekly for two-hour Curriculum Collaboration sessions. The group spent part of its time searching the Internet for resources that its members would use in their classrooms and recommended to other educators. Educators rated the sites and posted their reviews on Power to Learn. In addition, the teachers integrated the Web-based resources that they found into their curriculum as they designed lessons for use in their own classrooms. They posted their lessons online, where they are free to all educators who visit the site.

Gina Rufano, a fourth-grade teacher in Bethpage, who participated in the group, located and evaluated the Tenement Museum Web site (http://wnet.org/archive/tenement) during her work in Curriculum Collaboration. "My students were able to take a field trip to the Tenement Museum without leaving the classroom," she explained. "The kids can read about the history of immigration and walk through several restored tenements using their mouse."

The Curriculum Collaboration group at Bethpage is one of the many ways that Cablevision is supporting the education community as they move toward integrating technology into the classroom. One goal of the sessions was to provide educators with the necessary tools to design lessons incorporating the Internet. But it was just as important for participants to gain a greater understanding of the potential that technology offers education.

To take advantage of the online resources offered by Cablevision, go to the Power to Learn Web site (http://www.powertolearn.com).
Cablevision and Bethpage, NY: Partnering to Build a Lifelong Community of Learners

Click to open author's original document.

THE POWER TO LEARN

Cablevision Teaches Seniors How To Surf The Net

Bethpage High School recently had a new type of student, surfing the Web - senior citizens. The Cablevision Education Department conducted an Internet training seminar for senior citizens in the Bethpage community. The three-part seminar was designed to familiarize local area residents with how to use the Internet.

Participants were introduced to the layout of a Web page, basic Internet vocabulary and learned how to use the Web as an effective research tool. Upon completion of the seminar, seniors left with the knowledge and confidence needed to navigate the Web and utilize free e-mail accounts.

"Many of today's older citizens have a keen desire to learn about computers and the available technology," said Joan Hendricks, Senior Director of Community Affairs, Cablevision. "Cablevision was happy to reach out to the community and provide this fantastic opportunity."

Pictured is Donna DeSoto, Education Manager, instructing this group of seniors.
Bethpage Educator Creating Internet Curriculum - Vincent Perez, a teacher at the Kramer Lane School, is working with Cablevision to use a commercial free web site, powertolearn.com, that allows teachers to leverage the power of the Internet by coordinating cyberspace lessons with classroom activities. Recently students using powertolearn.com found themselves "speaking" to Nobel laureate Dr. James Watson, co-discover of DNA, as part of the web site's effort to help teachers expand the horizons of their students. Joining Mr. Perez is Dominic Antonacci (left) Cablevision Education Manager for Long Island.
Cablevision and Bethpage, NY: Partnering to Build a Lifelong Community of Learners
Cablevision and Bethpage, NY: Partnering to Build a Lifelong Community of Learners

Click to open author's original document.
Beyond Multiple Choice and Scores: The IMMEX Problem-Solving Approach

What is IMMEX?

- Interactive
- Multimedia
- Exercises

Authoring + Content + Problem Solving + Assessment
Front End--Interactive Problem Solving

Back End--Mapping of Students' Problem-Solving Strategies

Search-Path Map

Multidisciplinary Catalogue of Content-Rich Simulations

Mett in the Classroom

What strategy do you think this student used?
IMMEX PROBLEM SOLVING
True Roots: A Genetics Problem Set of 5

Considerations when Integrating Technology into the Classroom

- Learning Outcomes
- Teacher Considerations
 - Course Content Preparation
 - Learning Styles/Special Needs
 - Grade Level Appropriateness
 - Affiliating/Subscription Issues
- Student Considerations
 - Readiness
 - Multiple Intelligences
 - Affiliating/Subscription Issues
- School Considerations
 - Professional Development
 - Technology Plan & Student Beliefs
 - Technical Support
 - Hardware/Software

Integrating IMMEX into the Classroom
1. “Software Review and Problem Selection”
Integrating IMMEX into the Classroom

II. “Alignment of IMMEX to the Curriculum & Standards”

Integrating IMMEX into the Classroom

III. “Construction an Implementation Plan Linked to Content”

Sample Implementation Plans

IV. “Creation an Implementation Calendar”

Sample Implementation Calendar: Milestone Activities

BEST COPY AVAILABLE
Integrating IMMEX into the Classroom

II. Student Preparation: Problem Solving Hands-on Activities

1. Projects on Mendel's Contribution to Genetics
 - Structure
 - News article on Mendel's discovery
 - TV report on Mendel's discovery (video)

2. Blood Typing Simulation Lab

3. Fingerprinting Lab

4. Three Generation Genetic Family Tree

Integrating IMMEX into the Classroom

III. “Student Engagement in IMMEX Problem Solving”

- Hypothesis Generation
- Data Analysis
 - Application of Knowledge
 - Synthesis of Data

- Draw Conclusion
- Accept/Reject Hypothesis

Integrating IMMEX into the Classroom

IV. “Teacher and Student Assessment”

- Student self-assessment

[Page 462]
Integrating IMMEX into the Classroom

VIII. "Tracking Student Progress Over Time"

First Problem Performance
Second Problem Performance

15 Solutions - 51 Minutes
10 Solutions - 41 Minutes

**Electronic reconstruction of student performances shows not only if the problem was solved, but how it was solved.

Integrating IMMEX into the Classroom

IX. "Sample Student Progress Over Time"

High School & Undergraduate
First and Subsequent Performances

Behind The Scenes:
Assessing Students' Problem-Solving Strategies and Use of Data
Solving True Roots—The Optimal Approach: Elimination & Data Reduction

Rank the Strategy Activity

UCLA IMMEX STAFF
Ron Stevens, Ph.D., Project Director
Adrian Cailius, M.D.
Stan Chen
Susan Kannwuth Klein, Ph.D.
Joyce Chin Pacioto-Castano, Ph.D. (Extension 25)
Teresa Rice
Agnis Dye
John Stallings
Peter Wang

IMMEX Software Development Laboratory
UCLA School of Medicine
5601 West Shamoon Avenue, Suite 225
Culver City, California 90230
Telephone: 310-605-6558 Fax: 310-605-6559
Web Site: www.immex.ucla.edu
Aeronautic Educational Resources

Beginner's Guide to Aeronautics
- Beginner's Guide to Aerodynamics
- Beginner's Guide to Propulsion
- EngineSim
- FoilSim

Aeronautics Lessons and Activities
- Aeronautics Activities
- Rocket Activities
- Wind Tunnel Experiments for Grades 8-12

FREE SOFTWARE!!!
- FoilSim
 - Download and Installation Instructions
 - Manual and Problem Sets
- National Math and Science Standards

Distance Learning
- Report on Distance Learning Survey Results
- Student/Teacher Videoconferencing Workshops
- WVIZ/NASA Educational Channel
- NASA Distance Learning

Profile Proficiency Skills
- Proficiency Resource List
- 9th Grade Math Practice Exam
- Links to Online Sites to Improve 9th Grade Science Proficiency

Teacher Created Web Pages
- Summer Workshop Projects

Internet Access Research

Wireless LAN
- Whitney Young Middle School Wireless LAN Project

Digital Audio Testbed
- Live Cybercast

BEST COPY AVAILABLE
Descriptions of Student Presentations

<table>
<thead>
<tr>
<th>General Topic</th>
<th>Presentation Title</th>
<th>Grade Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautics - Space Transportation</td>
<td>Aeronautics; High Speed Flight; Incredible Lever, The Aircraft Safety and Icing Research, Meet a NASA Employee Involved in Aeronautical Research</td>
<td>K-12</td>
</tr>
<tr>
<td></td>
<td>Introduction to EngineSim, Introduction to FoilSim, Topics in Aerodynamics and Propulsion, Tours of NASA Glenn Research Center Facilities</td>
<td>7-12</td>
</tr>
<tr>
<td></td>
<td>History of Humans in Space, History of Rocketry Propulsion</td>
<td>5-12</td>
</tr>
<tr>
<td>Human Exploration and Development of Space</td>
<td>Human Exploration and Development of Space, Human Exploration of Mars and the Solar System</td>
<td>K-12</td>
</tr>
<tr>
<td></td>
<td>Advanced Space Propulsion Concepts</td>
<td>9-12</td>
</tr>
<tr>
<td></td>
<td>Humans to Mars, Exploring Mars: Parts 1-5</td>
<td>4-12</td>
</tr>
<tr>
<td>Earth Science</td>
<td>Mission to Planet Earth</td>
<td>K-12</td>
</tr>
<tr>
<td></td>
<td>Space Communications Office Workshop Series (The workshops are listed in the order in which they are to be presented.): Introduction to Telecommunication Concepts, Two Forms of Electronic Communications, Getting More Users on a Single Telecommunications System, Networks and the Internet, Satellites and their Orbits, and Satellite Communications.</td>
<td>9-12</td>
</tr>
<tr>
<td>Space Science</td>
<td>Mars; Moon, The; Scaling the Cosmos; Space Science; Space and the Solar System; World of Robots, The Elements of Space</td>
<td>K-12</td>
</tr>
<tr>
<td></td>
<td>Energy from the Sun</td>
<td>9-12</td>
</tr>
<tr>
<td></td>
<td>Comets</td>
<td>5-8</td>
</tr>
<tr>
<td></td>
<td>Travel to Distant Stars</td>
<td>5-12</td>
</tr>
<tr>
<td></td>
<td>Cassini Mission to Saturn, Exploration of the Solar System, Galileo Mission to Jupiter, Space Questions</td>
<td>4-12</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Fermi's Piano Tuner - Making Estimates in Physics; Have You Looked at Your Calendar Recently?; Mathematics: Science of Numbers</td>
<td>9-12</td>
</tr>
</tbody>
</table>

Teacher Workshops
The following workshops are offered for grades 3-12 math and science teachers:

- Introduction to Aerodynamics and FoilSim
- Introduction to Propulsion and EngineSim
- Using NASA Educational Internet Sites in the Science Classroom.

Registration Information

1. At least four weeks before the video conference, complete the online registration form.

2. Videoconferences for students can be scheduled Monday through Friday during the regular school day, Eastern Standard Time (EST). Mornings are the best time to schedule student videoconferencing workshops. Teacher workshops are normally scheduled at the close of the regular school day, but they may be scheduled at other times upon request.

3. Videoconferences are scheduled on a first-come, first-served basis. All events are subject to cancellation pending adequate registration. Video conferences may be preempted by official NASA programs.

4. Preference is given to consortiums with three to four sites participating.

5. NASA Glenn does not charge a content provider fee for the workshops. In order to continue the program, however, fees may have to be charged in the future.

6. A test connection with NASA Glenn should be scheduled for first-time participating sites. Ruth or Carol will make arrangements for a test connection.

7. You will be expected to place the calls to connect to the NASA Glenn videoconferencing room for the test and the presentation.

8. If necessary, notify your videoconferencing network provider of the conference and schedule the time. Allow time to connect and test the connection at the beginning of the videoconference and for questions from participants at the end.

9. Participants are asked to complete an online evaluation form at the close of the videoconference.

10. To register for a conference, please complete the online registration form.

For additional information contact:

Ruth Petersen at Ruth.A.Petersen@grc.nasa.gov or (216) 433-9714, or Carol Galica at Carol.A.Galica@grc.nasa.gov or (216) 433-5112.
The Kids are Running the School, School Network that is!

Presented by
Charlanne Pook
District Technology Coordinator
Jessamine County Schools
cpook@jessamine.k12.ky.us

and

Barbara Barr
Technology Integration Specialist
Jessamine County Schools
bbarr@jessamine.k12.ky.us
Opportunities for All Ages
Activities in which our students participate:

Infrastructure

Technological
 Preventative Maintenance
 Trouble Shooting
 Repairs
 Phone Support

KTLN/CenterNet (Video Tele-conferencing)

Special Projects
 Authentic involvement

Training
 Manuals
 In-Service
 Just In Time Training
Planning and Organization

Planning Meetings
Meet with vendors
Make arrangements
Office assistance

Structuring the Helpdesk Program

♦ Begin with the end in mind!
♦ Planning
♦ Rules/guidelines
♦ Real world work experience
♦ System of checks and balances
♦ Flexibility
♦ Building process
♦ Student Handbook

⇒ General Information
⇒ Responsibilities
⇒ Day to Day
⇒ Contacts
⇒ Purchasing
⇒ Personal Growth
⇒ Technical Procedures

Jessamine County Schools
District Technology Office
Hiring Procedures
The Kids Are Running the School (Network, That Is)

- Student employees must be recommended by a teacher or staff member.
- Student must be a member in good standing with their school STLP.
- Students must fill out an application.
- Student must get 2 letters of recommendation.
- Student must submit application, resume, and letters of recommendations to the District Technology Office.
- Student must schedule an interview.
- Student must attend orientation training.

Jessamine County Schools
District Technology Office
Expectations of Student Workers

- Keep a weekly time sheet
- Check email daily as most information is relayed this way.
- Adhere to school dress code
- Be pleasant to co-workers and visitors to the District Technology Office
- Keep a portfolio of their work
- Clean up after themselves
- Attend training sessions
- Call if unable to work at a scheduled time
- Always be courteous and professional in each work environment

Jessamine County Schools
District Technology Office
Student Work Procedures

Procedure Upon Arrival at Work:
♦ Check in with the Help Desk Coordinator
♦ Check work folder for the specific school where you will be working that day
♦ Look over Help Desk Tickets to make sure you understand the specific problems to be addressed.
♦ Check with MAC or PC technician to explain what you would do to solve each Help Desk ticket.

Work Procedures:
♦ When you arrive at the school, remember to check in with the STC/TRT.
♦ Introduce yourself to the teacher/staff in the room/office where you are working.
♦ Be willing to call from individual schools to receive additional technical support for problems.
♦ Upon completion of the work assignment, explain to the teacher/staff what was done.
♦ If the problem cannot be resolved, explain the next step or action.
♦ Clean up after yourself and put things back!
♦ Before proceeding to the next Help Desk Ticket, write a detailed explanation of the steps taken to resolve the problem.
♦ Upon returning to the District Technology Office, report each specific problem you worked on or the specific steps which need to be taken to complete the job.
Empowering Teachers Through CFBISD's Technology Integration Academy

Carrollton-Farmers Branch Independent School District

NECC 2000 Presentation

by

CFBISD's Instructional Technology Specialists
(LaDonna Conner, Barbara Hunt, Jan Jaeger, Karin Porter)

- NECC PowerPoint Presentation
- TIA Resources
 - Proposal
- Faculty Introduction of TIA PowerPoint Presentation
- Application Cover Sheet
- Application
- Application Evaluation Rubric
- Request for Donations Letter
What is the Learning Cycle?

The learning cycle consists of three instructional phases.

A. Exploration Phase
1. The students work in cooperative groups of two to five individuals.
2. The students are provided instructions to follow, or a problem to solve.
3. The students actively manipulate materials, make observations and predictions, gather data and information.

B. Concept Invention or Term Introduction Phase
1. The teacher asks a series of "guiding" questions (verbal, written) that lead students to discovering the main idea(s) of the activity.
2. Students discuss then write this "idea" as a group.
3. Students present their group idea to others, verbally or on the board.
4. Using students' explanations and/or drawings, the teacher points out or asks students to indicate similarities among the responses from the groups. The teacher allows discussion to take place and allows groups to change explanations if they wish.
5. With teacher assistance, the class comes to consensus using their own language. The teacher writes the class idea for all students to see and record.
6. The teacher provides the term(s) for that concept/idea that the students invented.

C. Expansion or Application Phase
1. This phase is completed to help students organize the new idea they have invented with that which they already know (i.e., connect/attach thought with thought).
2. Activities in this phase could include almost anything (further experimentation, projects, Internet searches, videos, presentations, writing, etc.).
3. The expansion helps students connect new ideas with occurrences in their everyday lives.
Planning a Learning Cycle

Planning for student exploration
Students must have concrete materials and experiences if they are to learn concrete concepts. Abstract concepts are largely inappropriate, even with concrete materials, until at least age 15 for most pupils. Use these guiding questions:

- What do I want the children to learn? (goals, objectives, attitudes, processes, products)
- What concept(s) will be invented?
- What activities must the students do to find and to construct the needed data?
- What kinds of records should the students keep?
- What kinds of instruction and encouragement will the students need?

Planning for concept invention
The main purpose of this phase is to reach mental equilibrium through accommodation, as described in the theory of Jean Piaget. Here the students must focus on their primary findings from the exploration, and the teacher must assist them by introducing proper language or concepts labels. The teacher's task is to lead students through a discussion (individually, small group, or whole class) so that students can discover the concept by inventing it for themselves. The teacher's technique is to question skillfully so that students use the experiences of their explorations to construct scientific meaning. The teacher acts as a facilitator and introduces any special vocabulary that must accompany the concept. Plan this step carefully so that it remains a student-centered activity, lectures must be minimal. Use these questions as you plan for this part of your lesson:

- What kinds of information or findings are students expected to provide?
- How will the students' findings from the exploration phase be reviewed and summarized?
- How can I use the students' findings and refrain from telling them what they should have found, even if they are incorrect or incomplete?
- What are the proper concept labels or terms that must be attached to the concept?
- What reasons can I give the students if they ask me why the concept is important? (This question leads to the next phase: Expansion)

Planning for expansion
The purpose of this phase is to help students organize their thinking by applying what they have just learned to other ideas or experiences that relate to the lesson's concept and to assist the students in expanding their ideas. It is very important to use the language of the concept during the expansion of the idea phase. Plan this phase for student involvement. Consider using these questions to guide your thinking:

- What previous experiences have the students had that are related to the concept? How can I connect the concept to these experiences?
- What are some examples of how the concept and the activities encourage the students' science inquiry skills?
What examples can be used to illustrate the interrelationship of science and technology and the contributions of each to society and the quality of life?

In what ways has science benefited the students personally?

What are examples of how science has influenced our society, policies, and laws?

What have been the dominant ideas of science throughout recorded history, and how have those ideas and the nature of science changed over time?

What new experiences do the students need in order to expand on the concept?

What is the next concept related to the present one? How can I encourage exploration of the next concept?

Planning for evaluation

Go beyond standard forms of testing. Learning must occur in small increments before larger leaps of insight are possible. Your evaluation can be planned in terms of outcomes and pupil performances. Several types of records are necessary to form a holistic evaluation of the students' learning and to encourage conceptual understanding as well as process skill development. Continual evaluation is needed, not just end-of-chapter or end-of-unit testing. Evaluation can occur at any point in the lesson. Consistent evaluation can help reveal misconceptions before they become deeply rooted. Ask yourself:

- What key questions should I ask to encourage deep exploration?
- What questions can I ask to help students think about their data in an effort to construct realistic concepts?
- What questions will expand conception and achieve several science goals?
- What behavior (mental, physical, attitudinal) can I expect from the students?
- What hands-on assessments can the students do to demonstrate the basic skills of observation, classification, communication, measurement, prediction, and inference?
- What assessments can students do to demonstrate the integrated skills of identifying and controlling variables, defining operationally, forming hypotheses, experimenting, interpreting data, and forming models?
- What pictorial assessments can students do to demonstrate how well they can think through problems that require both knowledge and the integration of ideas?
- What reflective question assessment will indicate how well the students recall and use what has been learned?
Technology Self-Report

Computer Skills

Following is a list of general computer skills which would be useful for success in technology-integrated instruction. Read each item and check the response which describes your skill.

I can:

1. Start up, reboot, and shut down a computer
2. Start and quit a program stored on the hard drive
3. Save, copy and retrieve files to and from a floppy or the hard drive
4. Save the same file in more than one version
5. Open and close menus and windows
6. Move and resize windows on your desktop
7. Navigate a directory structure to find files
8. Type at least 40 words a minute
9. Create a word processing document
10. Print a word processing document
11. Use spell checking to help revise my work
12. Cut/copy text from one document and paste it onto another
13. Use a projection device to show and share computer output
14. Cut/copy text from one application to another
15. Log onto the local network
16. Retrieve and delete e-mail messages
17. Create, send, forward and reply to e-mail messages
18. Distinguish between an e-mail address and a web address
19. Send e-mail to a group
20. Post messages to online discussion lists or bulletin boards
21. Locate and access information using WWW search tools
22. Apply common online etiquette, rules and safeguards
23. Check the credibility of Internet resources
24. Save and manage a list of favorite web addresses
25. Use the online catalog system in the library

Computer Resources

This section asks about the computer resources which are available to you at home and at work.
26. Which of the following describes your home computer? (check if sure; ? if not sure; blank if no)
 ___ Do not have home computer
 ___ Computer has modem
 ___ Computer has CD ROM Drive
 ___ Computer has sound card & speakers
 ___ Computer has printer
 ___ Phone line available to computer
 ___ Connected to Internet Service Provider
 ___ My e-mail account is accessible there

27. Which of the following describes your workplace computer? (check if sure; ? if not sure; blank if no)
 ___ Do not have workplace computer
 ___ Computer has modem
 ___ Computer has CD ROM Drive
 ___ Computer has sound card & speakers
 ___ Computer has printer
 ___ Phone line/network line available to computer
 ___ Connected to Internet Service Provider
 ___ My e-mail account is accessible there

Learning about and with Technology

Please circle the letter of the response which best describes you.

28. When I am asked to use software or technologies that I haven't used before:
 a. I look forward to it.
 b. I feel apprehensive, but try anyway.
 c. I put it off or try to avoid it.

29. When learning new technology, I believe I learn best:
 a. when I can listen to an explanation or see a demo first.
 b. when I can read manuals or written materials first.
 c. by trial and error and discovery.

30. I prefer learning:
 a. on my own.
 b. with a peer or two.
 c. as part of a group led by an instructor.

Open-Ended Response

For what do you currently use a computer in your home and workplace?
Philosophy

Virtual Explorers' *Amazon River Dolphins* promotes and supports science investigation in a project-based learning environment. The website is geared for grades five through eight, although elements are applicable in primary and secondary classrooms.

Teachers worldwide are provided with experience in web-delivered instruction, enabling them to facilitate an active and meaningful learning experience in their own classrooms.

Students benefit from learning scientific observation and research skills, helping them to develop their own understanding and appreciation of biodiversity and conservation.

Special emphasis is placed on females as role models and leaders in science and technology.

Five sections enhance interdisciplinary study

Getting Ready
- Meet the team, volunteers, and researcher.
- Learn about the extensive expedition preparation, including necessary travel papers, vaccinations, equipment and clothing.

River Dolphins
- Read what scientists already know about river dolphins.
- Find out what new information the researcher hopes to gain in her ongoing study.

Daily Highlights
- Identify the quickly surfacing boto from tuxuci dolphins using QuickTime video.
- Experience village life along the river through extensive photos and QuickTime.
- View 360° of an Amazon tributary through QuickTime VR.
- Follow the adventures from start to finish through the daily log.

Peru and Its People
- Find out about the history of Peru, its people and how their ancient culture influences their lives today.
- Meet the Peruvian crew of the research boat.
- Read the myths of the river people.

Taking Action
- Learn how people can make a difference by becoming involved in their local and global communities.
- Take action and initiate change in your local community using the provided resources.

A free and safe website

The Virtual Explorers website
- is free.
- doesn't require passwords.
- has no advertising banners on its pages.
- uses guest book e-mail addresses only for updates.
- links only to teacher-approved sites.

www.virtualexplorers.org
Join us as we learn about Amazon river dolphins.

Virtual Explorers' initial trip in August of 1999 with researcher Tamara McGuire aided in a conservation effort and study of the elusive Amazon river dolphins. Archived data, photographs and video are currently available to students and teachers on the website.

A second expedition is planned for November 13-24, 2000. Once again, the team will daily post research, travel updates and photos live via satellite phone.

Meanwhile, Tamara is continuing her dolphin research in Peru through the EarthWatch Institute. Her data, research findings, and journal entries will continue to be posted on the website.

www.virtualexplorers.org
Van Walleghan, Pam

Unity in Community: Urbana Middle School - University of Illinois
Original Author Submissions

Wagner, Hazel

Starship School: Creating productive, safe, family-oriented educational communities
Original Author Submissions

Wall, Mary

Quality in Distance Education Courses: A C.A.S.E. Study
Original Author Submissions

Walts, Jennifer

Wired for Success: A Cross-Curricular Collaboration
Original Author Submissions

Warlick, David

ClassWeb: Cultivating the Internet for Learning
Finding it on the Net
Teacher-Crafted Educational Web Environments: ClassWebs (pdf format)
Finding it on the Net: Being a Digital Detective (pdf format)
Original Author Submissions

Webb-Upham, Michelle

Technomaniacs
Original Author Submissions

Weller, B. Jean

Agenda
Evaluation Checklist for Internet Projects
Resources Checklist
Original Author Submissions

Wininger, Denaya

Creating Virtual Tours With QuickTime Virtual Reality
Creating Virtual Tours With QuickTime Virtual Reality: List of Resources
Original Author Submissions

Wissick, Cheryl

Developing multimedia tools to support functional and community training
Quick Starts: Web Toolboxes to Support Technology Integration
Original Author Submissions

Woytonik, Marlene

Little Village to Global Village: Chicago, Illinois
Original Author Submissions

Yohe, Paula

Technology Creates Enthusiasm For Reading! (pdf format)
Original Author Submissions

Zaorski, Agnes Patterson

Videoconferenced POW-WOWs With Native American Keypals: Online Culture Sharing
WOW-KITE Keypals & Videoconferencingpals
Keypals Correspondence Template
WOW-KITE Videoconferencingpals Lesson Plan
Original Author Submissions
The "Unity in Community" project is a collaboration between the College of Education at the University of Illinois at Urbana-Champaign and Urbana Middle School. The goal is to use service learning and computer technology to create a student centered, project based curriculum. Students, teachers, and pre-service teachers will: (a) move the nexus of learning from the classroom to the community; (b) act as agents of positive change in the community; (c) use technology as the integral connection between all phases of the program; and (d) create a web based clearinghouse of service opportunities in the community.

Service Learning

Service -- Students provide valuable services to their community; and

Learning -- Students reflect on that experience in structured ways that enhance their learning.

Some key elements:

- Young people themselves are involved in planning and leading the effort
- They are involved in important work that makes a difference for the community, the agency, and the young people themselves
- Their service experiences contribute to and are enhanced by their academic learning and personal growth

For more information about service learning, contact:
The Close-Up Foundation <http://www.closeup.org/servlern.htm>

Apple and the Apple logo are trademarks of Apple Computer, Inc. registered in the U.S.A. and other countries. Use of the trademark on this site does not constitute an endorsement and Apple assumes no responsibility for content contained herein.
Starship School

Creating productive, safe, family-oriented educational communities

Hazel Wagner, Ph.D.
Quality in Distance Education Courses: A C.A.S.E. Study

Dr. Mary Wall, Dean of Academic Computing and Distance Education
wall@atlantic.edu
Dr. Joyce Grohman, Dean of Instruction
Grohman@atlantic.edu

Atlantic Cape Community College
Mays Landing, NJ http://www.atlantic.edu

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty to faculty</td>
<td>Academic integrity responsibility of the academic department</td>
</tr>
<tr>
<td>Faculty to student</td>
<td>Quantitative assessment</td>
</tr>
<tr>
<td>Student to student</td>
<td>Qualitative assessment</td>
</tr>
<tr>
<td>College to college</td>
<td>Types of quantitative assessment</td>
</tr>
<tr>
<td>Faculty mentoring</td>
<td>1-5 scale student evaluation of instruction</td>
</tr>
<tr>
<td>Collaborative assignments such as:</td>
<td>Student evaluation of technology</td>
</tr>
<tr>
<td>Debates</td>
<td>Student success rate</td>
</tr>
<tr>
<td>Group work</td>
<td>Types of qualitative assessment</td>
</tr>
<tr>
<td>Discussions</td>
<td>Ethnographic studies</td>
</tr>
<tr>
<td>One-day workshops on online teaching</td>
<td>Written student comments</td>
</tr>
</tbody>
</table>

Student Support	Admissions:
Admissions:	Online admissions
Dean of Students:	Online registration
Placement tests	Online advisement
Online counseling	Technology support
Contact person for online students	
Encouragement and Support of Faculty	Before putting courses online:
· Instructional technologists
· Software such as WebCT and FirstClass
While teaching online:
· Class size limit of 20
· First time classes not more than 15
· Clerical help |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Before courses are put online</td>
<td>E</td>
</tr>
<tr>
<td>· While teaching online</td>
<td></td>
</tr>
</tbody>
</table>
Wired for Success: A Cross-Curricular Collaboration

Presented by: Dr. Sharon Joiner, Media/Technology Director
sjoiner@infoave.net

Liberty County School System
County Technology Office
Lewis Frasier Middle School
910 Long Frasier Street
Hinesville, GA 31313

Jennifer Walts, Media Specialist
jwalts@liberty.k12.ga.us
Regina Baker, Fourth Grade Teacher
rbaker@liberty.k12.ga.us
Cathy Lane, Second Grade Teacher
clane@liberty.k12.ga.us

Liberty County School System
Taylors Creek Elementary School
378 Airport Road
Hinesville, GA 31313

Our Research: "Why bother?"

Information literacy is here to stay.
National Education Technology Standards have been established
They can be seen at:

http://www.iste.org
International Society for Technology in Education

The proposed technology QCCs are at
http://www.glc.k12.ga.us
Georgia Learning Connections

Research studies have proven that incorporating technology into the curriculum helps teachers shift education from:

1. linear to non-linear
2. instruction to construction
3. teacher-centered to student-centered
4. knowing the answer to finding the answer
5. memorization to life-long learning
6. total group to customized instruction
7. ho-hum to fun

Our Timeline: "No, it didn't happen overnight!"

1994: Model Technology Grant
1995: The "Dream Big" five-year technology plan.
1996: Farallon Grant provides Internet connectivity throughout the building.
1997: The E.L.I.T.E. (Enriching Learning through Implementing a Technologically-rich Environment) project was born. This project has moved Taylors Creek forward in our efforts to seamlessly infuse technology into all areas of instruction.
1999: Vanguard classrooms with trained teachers have served as model technology environments. We are better able to use what we have and to perceive technology as a tool.

Our Collaboration: "You take the high road, I'll take the low road, but we'll get there faster together!"

The role of the teacher
The role of the media specialist
The role of the technology specialist

Our Ideas: "Yes, two brains ARE better than one."

Planning and collaboration are cornerstones of success. Technology can fit into all areas of the curriculum. The key is to write the lesson first and then fit the technology into those places where it enhances the instructional design. Technology is NOT always the best way to go, but in many instances it will "Bring Learning to Life!"

Our Proof: "A picture is worth a thousand words. A video is worth a billion."

This is technology in action. The following samples will help you remember all the exciting, yet simple, ideas you have seen and heard about in the session.

Notes:
We are moving "from preparing students for jobs we know......to preparing students to solve problems they have never seen, using technologies that have not been invented, in jobs that have not been created."

--- Ian Jukes & Ted McCain
David Thornburg Center

ClassWeb
Cultivating the Internet for Learning

David F. Warlick
Technology Educator & Author
Raleigh, North Carolina
david@landmark-project.com
919-571-3292
Finding It on the Net

We are moving "from preparing students for jobs we know to preparing students to solve problems they have never seen, using technologies that have not been invented, in jobs that have not been created."

-- Ian Jukes & Ted McCain
David Thornburg Center

Presented by
David F. Warlick
18 Year Technology Educator & Author
Raleigh, North Carolina

919-571-3292

david@landmark-project.com

BEST COPY AVAILABLE
Teacher-Crafted Educational Web Environments

ClassWebs

By David Warlick
August 17, 1999

Problems

What is the Internet's place in K-12 education? This question is often asked and often answered by school administrators, teachers, parents, and government officials. The question comes from the needs to finance the infrastructure that pipes the Internet into classrooms, media centers, and computer labs; the cost of maintaining that infrastructure; and the need to help educators learn to use and utilize the technology.

The answer varies depending on the media's latest twist, the grade level being addressed, and the level of knowledge, experience, and the level of imagination of the person considering these questions. It is essential for anyone who attempts to answer this question to understand the puzzle into which we are trying to fit this brand new technology.

First of all, our teachers are managing classrooms of 20 to 30 (and sometime more) students, each an individual with unique experiences, intellectual strengths and weaknesses, and styles of learning. Teachers are charged with assuring that each student exits the classroom at the end of the year with specific skills and knowledge as described by state or local standards and capable of applying those skills and knowledge in real world situations. Increasingly, teachers are also being asked to prepare students to take high stakes tests, which determines the school's ranking, teacher pay bonuses, or whether the state takes over the school.

With this much being asked of our teachers, the puzzle that makes up their classroom leaves little room for broad nebulous technologies no matter how impressive and global they are. This is especially true when the technology also presents the teacher with a new set of problems and challenges to address, including:

- Evaluating information from the Internet
- Supervising student use of the Internet to protect them from offensive or otherwise inappropriate information
- Protecting each student's identity on the Internet
- Precious time that is often wasted surfing the net for information
- Dealing with brand new plagiarism and copyright issues.

Classroom Web Sites

In order for the Internet to fit positively and productively in the busy and over stressed classroom, it must be reshaped to fit in where it is needed. It must be molded and packaged to meet the needs of the students, the demands of the curriculum and the instructional style of the teacher. If a teacher can shape the Internet to meet specific needs, then it can become a mortar that can hold together those puzzle pieces, making a seamless learning environment. A tall order, admittedly.

It is almost rare to find a school district or even school without a web site. Nearly half of the workshops I have been asked to teach during the past four years have been for teachers and school administrators who want to build a web site for their school institution. Class web sites designed for students to use have been slower to appear, the rare ones created by a few techno-enthusiastic teachers. There are several reasons why Class web sites have been slower to appear:

- Few teachers have the skills to create and maintain a class web site.
- Few school districts provide web space for class web sites.
The class web site, when designed for students use, does not easily fit into the model of most institutional sites, making it more difficult to visualize what it might look like or how it might be used.

The potentials benefits for creating effective learning environments have not been openly or thoroughly explored.

To many students do not have access to the Internet at home in order to take advantage of class web sites. Perhaps the last issue in the list above should be addressed first. Assuring equitable access to technology is a vital concern for educators and for society. However, a question we as educators must start asking is, when is the access sufficient that we can start relying on the Internet outside of the school and school day for teaching and learning?

In the 50s and 60s many homes had their own encyclopedias, but certainly not all homes. Students were still expected to conduct outside research regardless of their access to book. If you didn’t have the resources at home for your research, then you were expected to go to the public library, or you arrived at school early or stayed late to use the school’s library.

Here in Raleigh, North Carolina, every forth grade teacher in the city assigns their students to do a special project on one of North Carolina’s lighthouses. The assignment is made at pretty much the same time every year. I can attest to the fact that there are not enough books in this city about lighthouses to go around to every forth grader in Wake County. However, with the emergence of web sites about this state’s lighthouses, access has become much greater, and probably more equitable, regardless of who has computers at home.

There is much said and discussed today about distance learning – using computers and the Web to span distances between the teacher and students. However, there are also distances within the classroom to be covered, sometimes vast distances between student and curriculum. Teacher designed and constructed web sites may provide a way of spanning those distances by aligning selected and linked web resources, with powerful collaborative tools, and with standard courses of study.

Many teachers are still confounded by what exactly their students should be doing at their Internet-connect classroom and lab computers. They know and use the World Wide Web and e-mail, but have not moved beyond think of the Net in they classrooms for anything other than a fancy encyclopedia. A teacher-constructed class web site can give students a place to start that is designed to send them to specific Internet resources within the context of the class goals and the real world application of the available knowledge and skills. This context would take the form of text, images, and other media that is embedded in the web page and wrapped around the information that they are accessing.

Assuming agreement with these conclusions, the time has come where educators can start constructing learning environments for their students through classroom web sites.

What is a ClassWeb?

A ClassWeb is a web page or web site constructed by a teacher (or other educator) to help his or her students learn specific curriculum content and skills. ClassWeb can be extremely flexible in design and construction, but they should:

- Utilize the unique qualities of the Internet -- rich information resources, collaboration, contributive expression,
- Proactively point the student toward educationally appropriate Internet resources,
- Provide for workspace for students to conduct their work, preferably interactive space,
- Provide a context for what the student is learning,
- Be constructed more easily and in less time than it takes to prepare a paper work sheet.

There are three aspects of using the Internet that are especially suited to help teachers teach and students learn.

- Rich & Interactive Information Resources
- Collaboration
Contributive Expression

Rich & Interactive Information Resources

The Internet represents a vast amount of information on nearly any topic imaginable, and probably some topics that you and I probably wouldn't imagine. This vastness of information is part of the problem facing teachers as they try to integrate the Net into their curriculum. It can take students precious time to find the resources that they need, time that is not necessarily productive and is certainly inefficient.

A teacher constructed ClassWeb can help make the student's time on the Internet more efficient and productive by providing links to specific web resources identified, evaluated, and selected by the teacher. If a goal of the assignment is for students to conduct an Internet search, then links can be provided to the appropriate search engines and tips embedded in the page that helps the student develop search strategies that will end up with the desired outcome.

In conclusion, providing students with links to specific Internet resources through a teacher-constructed ClassWebs affords these advantages:

- Saves valuable time for the student and teacher.
- Dramatically decreases the chance that students will uncover offensive, unhealthy, or otherwise inappropriate web pages.
- Provides students access to web pages that have been previewed and selected by the teacher for specific instructional objectives.
- Allows the teacher to logically sequence the links based on the instructional objectives.
- Perhaps the most important benefit of teacher-designed web link pages is the fact that the teacher can provide a context for the web resources. The hyperlinks can be preceded and followed by text, images, and other media that packages the web resources specifically for the instructional objectives of the activity.

Collaboration

If you use the Internet, then you collaborate. It may be through e-mail, newsgroups, discussion forums, chat rooms, or other collaborative tools, but one of the most important things that people do on the Net, it communicate with other people. With ClassWebs, teachers can create web pages that either link to collaborative tools or embed the tools directly into the page. In the same way that a teacher might have students gather into small groups for cooperative learning activities, the teacher might gather students through a chat room or message board to work together on an activity.

In very much the same way that the web links have been wrapped in context, the students' collaborative work space would also be surrounded by texts, images, and other media that connects the activity to the curricular objectives and to real world applications. In exactly the same way that teachers can surround web links with context, they can also assign students to collaborate over the Internet within the context of curriculum objectives.

Participating in online collaborative activities has several advantages over face-to-face collaborations.

- It is difficult to measure student's participation in face-to-face discussions. Online discussions can be easily measured because the entire discussion is archived. Both the quality and the quantity of the participation can be measured and graded. The teacher might say that one original article and two responses to other articles will earn a "C", two original articles and three responses will earn a "B", etc.
- Since students have time to reflect and craft their responses, shy or otherwise reluctant students are more likely to participate with more confidence.
- Perhaps the most important benefit of online discussion is the fact that students can reflect on the information before sharing their perspectives. They can also craft their responses on the information before sharing their perspectives.

using word processing features. In processing their ideas through written texts, students can become more fluent in the concepts than keeping up with an oral collaboration.

Self-Expression

One of the earliest lessons that we learned about students using e-mail was that they write better when writing to an authentic audience. This might have been a keypal, or a distant classroom, or increasingly broad audiences through student-created web pages. ClassWebs can facilitate opportunities for students to express themselves in a contributive way by providing venues for writing and even uploading other types of files such as art work, maps, diagrams, and other media.

ClassWebs

ClassWebs are web sites created by teachers for their students. They create virtual learning spaces for students that provide access to selected information, encourage collaboration with peers and experts, and include opportunities for students to express their knowledge and experience to authentic audiences.

ClassWebs are unlike paper based learning activities (work sheets). They leverage technical and application aspects of computers and the Internet that are not possible on paper, such as virtually limitless access to information, collaborative working space, and virtual access to the activity by the teacher.

ClassWebs are unlike traditional web-based activities. A growing virtual library of dynamic and effective educational web sites is appearing on the Internet. However, these sites are developed by people who do not know your students, the scope and sequence of your classroom, nor your teaching style. ClassWebs remember that teachers are the instructional leaders of our classrooms, and empowers them to fully utilize the Internet for their students.

ClassWebs are unlike traditional interactive classroom activities. The Internet transcends space and time. Students can participate in the activity within the same room at the same time, or they can work together from their own homes or other locations, benefiting from ongoing monitoring and support from their teacher(s).

An Example

A seventh grade social studies teacher is bringing closure to a unit on China. He has introduced Confucius on several occasions during the unit. As a final activity, he assigns students to scan some of the Analects of Confucius, which are saying either directly attributed to him or to others who taught Confucian philosophy after his death. Each student is asked to select one or more of the Analects and then write a short essay (one or two paragraphs) that describes how the idea relates to today's society.

As a ClassWeb, the assignment would take the form of a web page, which begins with an introduction that sets the context of the students' work. Then clear instructions are included in appropriate places on the page. The web page also links to a web site(s) that include the information being considered, the Analects of Confucius. Finally, a work space is provided. In this case, students are asked to use a discussion forum or message board. They are each asked to post at least one original articles describing how their Analect applies to contemporary society. Finally, students are asked to respond to at least two articles posted by classmates, expanding on their ideas. On the next page is an image of how such a ClassWeb might look.
ClassWeb Techniques

Web Building Many teachers today have learned to build web pages. New HTML editing tools are available and have been purchased by schools enabling teachers with the same tools used by professional web masters.

However, teachers are not full time web masters. They are full time teachers. Therefore, one of the foundations of ClassWebs is that they should be easy to build and can be constructed in very little time, less time than it takes to create a paper worksheet.

In the last year, a number of services have appeared commonly called communities. These are web sites that enable non-professional web masters to create web pages easily and quickly, the goal being to create a place for members to come and access information. Since many of these community services also include collaborative tools, community members can also interact with each other.

These and other community services make idea tools for creating classroom web sites for students (and parents and other classroom stakeholders) and also ClassWebs as instructional tools for students.

bigchalk.com http://www.bigchalk.com
SchoolCity http://www.schoolcity.com
LightSpan http://www.lightspan.com
HighWire http://www.highwire.com

Web Links One of the most powerful features of ClassWebs is the ability to provide for students access to a wealth of diverse information. Many of the above mentioned community tools offer the ability to create lists of links for students. However, to avail one of the most important features of ClassWebs, wrapping content with context, teachers may need to know a little HTML coding to place links to web sites in specific spots on the page. Here is how you can do this.

1. You need two pieces of information in order to create a hyperlink: a) the text (or image) that the student will click to access the web page, b) the URL or web address of the page to be accessed.

2. The link text (to be clicked) is entered into the web page along with context building materials that directs students in how they use the linked information.

3. The following HTML code is entered to the left of the link text, where the URL of the accessed page replaces URL.

4. The following HTML code is entered to the right of the link text.

5. The hyperlink will look like this:

 Link Text
In the late summer this year, a web site and mailing list were established for the further discussion and exploration of ClassWebs. The mailing list now involves nearly three-hundred educators from 19 different countries, and discusses available Internet Tools, staff development necessary to help teachers learn to build class webs, essential skills, and examples.

The ClassWeb support site provides links to tools on the Internet that can be incorporated into ClassWebs. They include:

 A free web service that allows you to create a web fill-out form where students can answer questions or post writings and have the information e-mailed to the teacher, to a panel of experts, or to a mailing list.

- **Server.Com** – http://www.server.com

 This site creates online threaded discussion forums where students can discuss with each other online issues that they might normally discuss in class. However, with the discussion forum they can reflect and craft their discussion ideas and the teacher (and students) have an archive of the entire discussion.

 This web site produces code that can be pasted into your ClassWeb page to produce a secure chat room on your web page.

- **Egroups** – http://www.eorouos.com/

 This site facilitates mailing lists, chat rooms, online calendars, and many other collaborative tools.

All of these are free to teachers and there are many others on the ClassWeb support site. Also on the site are access to the mailing list archive, links to various articles and tutorials, links to example ClassWebs, and much more.

One of the goals of the ClassWeb support site and mailing list is to find ways to make the creation of ClassWebs more accessible to all teachers. One project that we are engaged in is a tool that will allow teachers to create rubrics that can be displayed on web pages. It consists of a web form that the teacher (or student) completes describing the objectives of the work and the performance indicators. After completing the form, the tool constructs a web page that displays the rubric.

The group also plans to create a similar tool that will allow a teachers to complete a form to construct an entire ClassWeb. The goal is to make ClassWebs easier for a teacher to construct than a paper work sheet.

Conclusion

ClassWebs are about solving problems. They overcome the challenges of the Internet, allow teachers to shape the technology to their specific needs, and require the least amount of technical training.

Perhaps the greatest challenge facing teachers today is the lack of time that we have to do our jobs. Creating effective learning experiences for our students takes a great deal of time, for more than teachers are paid for. Those who succeed, do it on their own time at the expense of their families and even their health. One thing that we as educators need to be doing is figuring out just what students learn better in the traditional classroom, and what they learn better at computers. It is
possible that at some point in the future, perhaps near future, we can restructure our schools so that students spend one three or four hours in traditional classrooms under the instructional supervision of their teachers, and three or four hours a day at computers or engaged in other self-directed and less supervised learning activities – while professional teachers are planning, collaborating, designing and building, gaining skills, and inventing educational environments.

ClassWebs could be a healthy movement in that direction.
Handouts for Finding it On the Net: Being a Digital Detective

By David Warlick

Raleigh, North Carolina USA
david@landmark-project.com
919-571-3292
http://www.landmark-project.com/dfw

Excerpted from Raw Materials for the Mind: Teaching & Learning in Information & Technology Rich Schools
Copyright © 2000 by David Warlick
All Rights Reserved

Please contact David Warlick for permission to reproduce any or all of these materials.
Finding People

Finding Experts

There are a number of services on the Internet that connect students and teachers with the appropriate expert. Here are just a few:

<table>
<thead>
<tr>
<th>Service</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey Network Infrastructure in Education’s Ask an Expert Page</td>
<td>http://njnie.dl.stevens-tech.edu/curriculum/aska.html</td>
</tr>
<tr>
<td>The Mad Scientist Network</td>
<td>http://medinfo.wustl.edu/~ysp/MSN/</td>
</tr>
<tr>
<td>The Franklin Institutes’ Ask a Scientist Page</td>
<td>http://sln.fl.edu:80/tfl/publications/askexp.htm</td>
</tr>
</tbody>
</table>

Strategies for Locating Experts in Academia

If you are looking for an expert in a particular area of interest, such as the migration of Monarch butterflies, and you do not count an entomologist among your friends, your detective work begins. A good first place to start may be the academic community. Authority is an important advantage of finding people in this way. Their universities have hired them because they are experts.

1. We will begin with a university in Mississippi, because we know that Monarchs travel through that state. First of all, we go to Mississippi’s state government home page to find a listing of universities there.

 The URLs for all state government resource pages are basically the same:

 www.state.ms.us

 ...where the ms is the abbreviation for the state. For California, it would be

 www.state.ca.us

2. Here I find a link to Mississippi State University. From the Mississippi State University home page I click Academics and find a link to the Department of Entomology. Many university web pages use the term Academics to point toward their individual colleges and departments.

3. After I get the page for the Entomology Department, I click on faculty where I found experts on insect morphology, insect systematics, and insect population. Each of these faculty members has a personal home page.

4. Clicking on one of the scientists we see his picture, a list of his publications, and his e-mail address.
Finding Communities

The Internet has become a very important tool for scientists and other experts, especially for use in communicating with each other about their particular fields of study. In many cases, the Internet has become an online and extended conference, where specialists can discuss with large numbers of fellow experts the current issues about their areas of interest. One Internet tool that specialists frequently use for establishing these online discussion forums is the Internet mailing list. If we could join a mailing list that is used by experts in our area of interest, then we can tap into or eavesdrop on their conversations.

How do you find Internet Mailing Lists?

An excellent way to learn about mailing lists is through other mailing lists. One of the best sources for this and other types of Internet information is Net-Happenings, a very old mailing list that is moderated by Gleason Sackman in Fargo, North Dakota. To subscribe to this list, address an e-mail message to:

listserv@cs.wisc.edu

In the body of the message, type:

Subscribe NET-HAPPENINGS <your name>

There are also a number of databases of mailing lists available on the Internet. They include.

- Title Net
- The Directory of Scholarly E-Lists
- Liszt Directory of Email Discussion Groups
- Publicly Accessible Mailing lists
- Search the List of Lists

Finding Peers

Teachers can usually find peer teachers to collaborate with over education mailing lists. Much of the time you can use these same contacts to find student collaborators.

Strategies for Finding Peers on the Internet

However, if you want to locate a class in Italy with whom you want your students to correspond about the monuments of Rome, then the mailing list may not do the trick. This is easier than you might think. To find our Roman class, we can use Web66, a very old and valuable web site.

http://web66.umn.edu/
1. From the Web66 home page we click on International Registry of Schools on the Web.

2. The Registry of Schools is a database of schools from around the world who have registered their school website so that other people can find it. There are a number of other registries, but Web66 is the oldest and biggest.

3. A map of the United States appears. We click the word Europe so that we can get the Europe registry page.

4. When the map of Europe appears, we click the outline of Italy and receive a list of elementary and secondary schools with websites.

5. Our science teacher will then view a number of the websites, looking for some that feature student work, an indicator that teachers are involved in the implementation of the site and not a parent or other outside agency. Send our introductory e-mail to the teachers or webmaster of the Italian site.

When searching for Italian schools through Web66, I received a list of 22 elementary and 100 secondary schools.

Finding Digital Resources

Topic Oriented Directories

Using topic-oriented directories is very much like browsing a library. You look for the shelves that hold books about the subject for which you are looking. Then you walk along those shelves looking for the book(s) on your specific topic of interest.

Topic-oriented directories organize Internet resources logically, by subject. They organize the resources in a hierarchical structure providing a list of general subjects, each subject leading to a list of topics within that subject, each topic leading to sub-topics, and usually to more subtopics. Eventually, you are presented with a list of Internet resources or websites, each related to the final subtopic that you selected.

<table>
<thead>
<tr>
<th>Service</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yahoo</td>
<td>http://www.yahoo.com</td>
</tr>
<tr>
<td>Yahooligans</td>
<td>http://www.yahooligans.com</td>
</tr>
<tr>
<td>Galaxy</td>
<td>http://galaxy.es.net</td>
</tr>
<tr>
<td>NewHoo</td>
<td>http://www.newhoo.com</td>
</tr>
<tr>
<td>Netscape Netcenter</td>
<td>http://home.netscape.com</td>
</tr>
<tr>
<td>Internet Start</td>
<td>http://home.microsoft.com</td>
</tr>
<tr>
<td>LookSmart</td>
<td>http://www.snap.com</td>
</tr>
<tr>
<td>Snap</td>
<td>http://www.looksmart.com</td>
</tr>
<tr>
<td>Apali</td>
<td>Spanish Languages Directory</td>
</tr>
<tr>
<td>Native Search</td>
<td>Directory of Native American web resources</td>
</tr>
</tbody>
</table>
ClassWeb
Cultivating the Internet for Learning

We are moving "from preparing students for jobs we know...... to preparing students to solve problems they have never seen, using technologies that have not been invented, in jobs that have not been created."

– Ian Jukes & Ted McCain
David Thornburg Center

David F. Warlick
Technology Educator & Author
Raleigh, North Carolina

BEST COPY AVAILABLE
Search Engines

Search engines are the miracle of the Internet. These sophisticated tools seem to reach right into the global network, and scour its contents at your command. In reality, they do not work exactly in this way, although the true nature of search engines is no less fascinating.

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta Vista</td>
<td>http://www.altavista.digital.com</td>
</tr>
<tr>
<td>Excite</td>
<td>http://www.excite.com</td>
</tr>
<tr>
<td>HotBot</td>
<td>http://www.hotbot.com</td>
</tr>
<tr>
<td>Infoseek</td>
<td>http://www.infoseek.com</td>
</tr>
<tr>
<td>Lycos</td>
<td>http://www.lycos.com</td>
</tr>
</tbody>
</table>

Kid Friendly Search Engines (Crawler style search engines that work to filter out adult material)

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ask Jeeves</td>
<td>http://www.ajkids.com/</td>
</tr>
<tr>
<td>Disney Internet Guide (DIG)</td>
<td>http://www.disney.com/dig/today/</td>
</tr>
</tbody>
</table>

Meta Search Engines (search engines that search other search engines)

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetaCrawler</td>
<td>http://www.metacrawler.com</td>
</tr>
<tr>
<td>DogPile</td>
<td>http://www.dogpile.com</td>
</tr>
<tr>
<td>Highway 61</td>
<td>http://www.highway61.com</td>
</tr>
</tbody>
</table>

The Language of Search Engines

Search engines are your helpers. They are information assistants who aid you in finding the information that you need to solve a problem, answer a question, or make a decision. Like any other assistant, the degree to which they are able to help depends on the degree to which you are able to tell them what you want. Therefore, communicating with your search engine is a critical part of the search process.

Search engines need to know what information you seek, and they need this information communicated in a logical way -- they are, after all, computers. The language that we traditionally use to talk with computer-based searching tools is called boolean, named after George Boole, a mathematician of the 19th century.

In Boolean Logic we use keywords to describe what words to look for when searching the index. We also use operators to describe the relationships between our keywords and the information that we need. The basic operators are AND, OR, and NOT.

Let's use an example to explore how we would use Boolean Logic to search for information on the Internet. We will look for information about Native Americans in the state of Ohio. In the table below we will explore several concepts involved in speaking Boolean and relate these concepts to our search.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Explanation/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>A keyword is a word or term that we want the search engine to consider in looking for relevant information. In our example one word that would likely appear in a web page about Native Americans is Indian.</td>
</tr>
<tr>
<td>Example</td>
<td>Indian</td>
</tr>
<tr>
<td>Concept</td>
<td>Explanation/Example</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>OR</td>
<td>In many cases, there may be a synonym of our keyword that might appear in the web page instead of the keyword we have already chosen. So we will want to expand the number of pages that the search engine sends us to include the ones using the synonym. In the case of our example, many web pages would likely use the term Native American, which is more commonly used today than Indian. In this case we would use the operator, OR, to say that we want web pages with either the word Indian or the term Native American.</td>
</tr>
<tr>
<td></td>
<td>Example: Indian OR Native American</td>
</tr>
<tr>
<td>AND</td>
<td>Since we are looking for information about Native Americans in the state of Ohio, then an additional keyword will be Ohio. We want to narrow the web pages that we get to only those about Native Americans in Ohio, so we will say that both terms must be present. Here is where we will use AND.</td>
</tr>
<tr>
<td></td>
<td>Example: Indian OR Native American AND Ohio</td>
</tr>
<tr>
<td>NOT</td>
<td>As we think through the information that we are likely to receive, we realize that there is a baseball team in Cleveland, Ohio called the Indians. We will want to filter out all web pages about the baseball team. So we will add a new keyword, baseball, and connected it to our search expression with the operator, NOT. We are saying that the acceptable web page should NOT have the keyword baseball in it.</td>
</tr>
<tr>
<td></td>
<td>Example: Indian OR Native American AND Ohio NOT baseball</td>
</tr>
<tr>
<td>Quotes</td>
<td>Just as we use commas, question marks, and other punctuation to help communicate with people, we use special symbols to clarify what we want from a search engine. In our example, Native American is going to look like two separate words to the search engine that could each appear any place in the web page. To communicate that these two words belong together as a distinct phrase, we use quotes.</td>
</tr>
<tr>
<td></td>
<td>Example: Indian OR "Native American" AND Ohio NOT baseball</td>
</tr>
</tbody>
</table>

Parentheses

Each operator in a search expression defines a distinct keyword concept. Keyword 1 AND Keyword 2 Keyword 3 OR Keyword 4 Keyword 5 NOT Keyword 6 A keyword concept can consist of:

- A single keyword or phrase
- Two single keywords or phrases connected by an operator
- Keyword concepts connected by an operator to other keyword concepts or single keywords or phrases.

Individual keyword concepts are marked by enclosing them in parentheses. In our example, the following are distinct keyword concepts:

Indian
(Indian OR "Native American")
((Indian OR "Native American") AND Ohio)

The final keyword concept, the one that includes all constituent keyword concepts is called our search expression.

Example: ((Indian OR "Native American") AND Ohio) NOT baseball

Admittedly, Boolean Logic is not the simplest thing to understand or teach. However, it is a very effective way of communicating with search engines your information needs.

To make things easier for casual users, Internet search engines have developed alternatives to traditional Boolean Logic. One of the most common conventions is the use of pluses (+) and minuses (-), to indicate which terms must (+) and must not (-) be present in the returned documents. Each search engine has developed its own version of these searching conventions, each trying to improve upon these standards, and this evolution of the search language continues. None is perfect and you will find that finding information from the Internet is more a process than the click of a button.

An Alternative Search Convention

Pluses (+)	Any keywords in your search expression that MUST appear in your target web page should be preceded by a plus symbol (+).
	If the keyword is a phrase, then it should be enclosed by quotes
Example:	+basketball +"Mike Jordan"
Net-Smarts

Net-smarts is perhaps your most valuable tool in finding information on the Internet. It is a growing awareness of what is available on the Internet and how it works, and a growing sense of "where is the best first place to start?" As mentioned earlier, searching the Internet involves investigating an information environment, turning over stones, checking for fingerprints, examining strands of hair. It means having an idea of what you are looking for, and at the same time being open for the unexpected.

More than anything, being net-smart involves asking questions. Here are some questions that must be asked and considered when embarking on an information safari on the Internet.

1. What do you want to find?
2. Will the information most likely be found in articles, company web pages, software, conferences, discussion groups, or people. The answer to this question helps you decide on a search strategy.
3. Why would someone publish this information on the Internet?
4. Who would publish this information on the Internet?
5. Who would host this information on the Internet?
6. What would a web page with the information I seek look like?

Questions two through five would each help us in developing our search phrase.

7. Are you wanting to broaden your knowledge of a general topic or do you want more narrow, specific information?

Broad or general information is usually best found in topic-oriented directories. More information on more specific topics is best found with search engines.

The S.E.A.R.C.H. Process

Conducting effective searches of the Internet is rarely a matter of typing in a single keyword and being presented with the solution to your problem. It is much more frequently a series of searches, each revealing more clues about the information that is available, and where that information can be found.

Developing a search process can be difficult, because each person's process depends on their personal style of using information and the particular types of information that they typically need. However, there is a process that can be used as a springboard to the personal procedures that you develop with experience. The process is called S.E.A.R.C.H. It is an acronym for the process that has you Start with a small database search tool, Edit your search expression, Advance to a larger database search tool, Refine your search phrase, Cycle back and advance again, and finally, Harvest your information gems.

On the next page is a larger representation of the S.E.A.R.C.H. process.
Search Strategy

Search

Search with a key term on Yahoo or another small index search tool.

You start with a small index search tool for two reasons:

1. You will receive a limited and manageable number of hits.
2. The hits that you get will be representative of what is available on the subject.

Examine the hit pages collecting words that are common among the relevant hits and words that are common among the irrelevant hits.

Edit

Edit the search expression with terms gleaned from the initial search.

Add words collected from the initial search, including words common among relevant and irrelevant pages. Construct a boolean search expression that effectively communicates the information that you seek.

Advance

Advance into more advances and extensive search engines

Enter the edited search phrase into a larger index search tool. Examples are:

- Excite http://www.excite.com
- InfoSeek http://www.infoseek.com
- HotBot http://www.hotbot.com

Refine

Refine the search expression

Explore the pages reported by the larger search engine and refine the expression even more, further defining the relevant hits, and filtering the irrelevant. Again, examine both good hits and bad hits.

Cycle

Cycle back and Advance again.

Return to the advanced search engine that you used before or use another search engine.

Harvest

Harvest the results

Collect the needed information by printing, downloading, forwarding by e-mail or just reading.
Web Pages Worth Bookmarking

Educational Web Directories

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landmarks for Schools</td>
<td>This website is dedicated to providing teachers with links to information raw materials with which they can create learning resources and their students can construct information products.</td>
<td>http://www.landmark-project.com/</td>
</tr>
<tr>
<td>Kathy Schrock’s Guide for Educators</td>
<td>This is a rich and regularly updated list of links organized specifically for teachers.</td>
<td>http://school.discovery.com/schrockguide/sos.html</td>
</tr>
<tr>
<td>Education World</td>
<td>This is a long-standing and content rich site that whose history include the old Weekly Reader. The site includes lists of links organized by subject area. This site also includes articles written for and by teachers.</td>
<td>http://www.education-world.com</td>
</tr>
<tr>
<td>Blue Web’n</td>
<td>Another old resource with lots of annotated sites organized by content or by subject. The site also includes a very powerful search tool for finding sites at the subject area and grade level for you. A real time saver for busy teachers.</td>
<td>http://www.kn.pacbell.com/wired/bluewebn/</td>
</tr>
<tr>
<td>Global SchoolNet Foundation</td>
<td>Recently purchased by Lightspan, Inc., the people at GSN probably know more about online instructional projects than anyone else. Their projects are among the best in the world, and their Projects Registry tool allow teachers from all over to develop and publish their project ideas for collaborators.</td>
<td>http://www.gsn.org</td>
</tr>
<tr>
<td>ThinkQuest</td>
<td>ThinkQuest is not just a project for students to create web pages, but it is also a library of more than a thousand web sites created explicitly to help people learn.</td>
<td>http://www.thinkquest.org/</td>
</tr>
</tbody>
</table>

Commercial & Public Sites

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS Online</td>
<td>This website offers a wide variety of resources for teachers to be used in conjunction with PBS programming.</td>
<td>http://www.pbs.org/</td>
</tr>
<tr>
<td>Discovery Channel Online</td>
<td>Like PBS, this website offers materials and other opportunities to be used with their programming.</td>
<td>http://www.discovery.com/</td>
</tr>
<tr>
<td>The History Channel</td>
<td>This site has a wealth of material. One of the most interesting resources is Great Speeches, an archive of recordings (Real Audio files) of great speeches of our century. The include Mahatma Gandhi, Jimmy Hoffa, , LBJ, George Bernard Shaw, and Babe Ruth.</td>
<td>http://www.historychannel.com</td>
</tr>
<tr>
<td>CNN Interactive</td>
<td>This rich website hold a large number of resources for teachers of just about any discipline. On valuable resource is the Transcripts service which stores the text transcripts for CNN programming over the past week or so.</td>
<td>http://cnn.com/TRANSCRIPTS/</td>
</tr>
<tr>
<td>Video Archive</td>
<td>Video Archive is another useful service. It is a searchable database of video files (QuickTime). A search of biotechnology returned 76 clips.</td>
<td>http://cnn.com/video_vault/</td>
</tr>
<tr>
<td>CNN Custom News</td>
<td>CNN offers another service that could be useful for teachers. Called Custom News, teachers can indicate the specific issues that they are interested in based on current and upcoming units of study, and CNN will build a custom page with links to current stories on those issues.</td>
<td></td>
</tr>
</tbody>
</table>

511
<table>
<thead>
<tr>
<th>Educational Web Directories Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Science Enterprise from NASA</td>
<td>This rich resources provides links to a wide variety of web sites falling under each of the following categories: air, water, land, life, sun. http://www.hq.nasa.gov/office/ese/science/</td>
</tr>
<tr>
<td>Earth Science Enterprise also has an archive of images that can be used in learning materials. http://www.hq.nasa.gov/office/ese/gallery/</td>
<td></td>
</tr>
</tbody>
</table>
Technomaniacs

Susan LaValley and Michelle Webb-Upham

A Short (Always Under Construction) List Of Recommended Software for K-3

Reading and Language Arts

<table>
<thead>
<tr>
<th>Title</th>
<th>Publisher</th>
<th>Age Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to Zap</td>
<td>Sunburst</td>
<td>3-7</td>
</tr>
<tr>
<td>Arthur's Reading Race</td>
<td>Broderbund</td>
<td>4-7</td>
</tr>
<tr>
<td>Arthur's Teacher Trouble</td>
<td>Broderbund</td>
<td>6-10</td>
</tr>
<tr>
<td>The Amazing Writing Machine</td>
<td>Broderbund</td>
<td>5-10</td>
</tr>
<tr>
<td>The Cat in the Hat</td>
<td>Broderbund</td>
<td>3-7</td>
</tr>
<tr>
<td>Carmen San Diego Word Detective</td>
<td>Broderbund</td>
<td>7-12</td>
</tr>
<tr>
<td>Dr. Seuss's ABC</td>
<td>Broderbund</td>
<td>3-7</td>
</tr>
<tr>
<td>Easy Book</td>
<td>Sunburst</td>
<td>5-12</td>
</tr>
<tr>
<td>Green Eggs and Ham</td>
<td>Broderbund</td>
<td>4-7</td>
</tr>
<tr>
<td>Hyperstudio</td>
<td>Roger Wagner Publishing</td>
<td>6-adult</td>
</tr>
<tr>
<td>Imagination Express Series</td>
<td>Edmark</td>
<td>5-13</td>
</tr>
<tr>
<td>Just Grandma and Me</td>
<td>Broderbund</td>
<td>3-7</td>
</tr>
<tr>
<td>Kid Pix Deluxe</td>
<td>Broderbund</td>
<td>4-10</td>
</tr>
<tr>
<td>Kid Works Deluxe</td>
<td>Davidson</td>
<td>4-8</td>
</tr>
<tr>
<td>Let's Go Read-Island</td>
<td>Edmark</td>
<td>4-6</td>
</tr>
<tr>
<td>Let's Go Read-Ocean</td>
<td>Edmark</td>
<td>6-8</td>
</tr>
<tr>
<td>Millie and Bailey's Schoolhouse</td>
<td>Edmark</td>
<td>4-7</td>
</tr>
<tr>
<td>Kindergarten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>My Personal Tutor</td>
<td>Microsoft Windows only</td>
<td>3-6</td>
</tr>
<tr>
<td>Orly's Draw-a-Story</td>
<td>Broderbund</td>
<td>5-10</td>
</tr>
<tr>
<td>Ready to Read With Pooh</td>
<td>Disney Interactive</td>
<td>3-6</td>
</tr>
<tr>
<td>Stanley's Sticker Stories</td>
<td>Edmark</td>
<td>4-8</td>
</tr>
<tr>
<td>Thinking Things I, II</td>
<td>Edmark</td>
<td>4-8, 6-12</td>
</tr>
</tbody>
</table>
Math

<table>
<thead>
<tr>
<th>Title</th>
<th>Publisher</th>
<th>Age Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Graph Club</td>
<td>Tom Snyder</td>
<td>5-12</td>
</tr>
<tr>
<td>Logical Journey of the Zoombinis</td>
<td>Broderbund</td>
<td>6-12</td>
</tr>
<tr>
<td>My Personal Tutor</td>
<td>Microsoft Windows only</td>
<td>3-6</td>
</tr>
<tr>
<td>Preschool Apple Bundle</td>
<td>Apple</td>
<td>4-7</td>
</tr>
<tr>
<td>Patterns/Geometry, Blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bugs in a Box, etc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ready for Math With Pooh</td>
<td>Disney Interactive</td>
<td>4-7</td>
</tr>
<tr>
<td>Trudy's Time and Place House</td>
<td>Edmark</td>
<td>4-7</td>
</tr>
<tr>
<td>Wild West Math</td>
<td>Micrograms</td>
<td>7-10</td>
</tr>
</tbody>
</table>

Science and Social Studies

<table>
<thead>
<tr>
<th>Title</th>
<th>Publisher</th>
<th>Age Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammy's Science House</td>
<td>Edmark</td>
<td>4-7</td>
</tr>
<tr>
<td>Claris Works for Kids</td>
<td></td>
<td>4-10</td>
</tr>
<tr>
<td>Imagine Express Series</td>
<td>Edmark</td>
<td>7-Adult</td>
</tr>
<tr>
<td>Magic School Bus</td>
<td>Microsoft</td>
<td>6-10</td>
</tr>
<tr>
<td>Neighborhood Map Machine</td>
<td>Tom Snyder</td>
<td>5-12</td>
</tr>
</tbody>
</table>

Literature Links

- Rosie’s Walk - Pat Hutchins
- Arthur Writes a Story - Marc Brown
- Ten Black Dots - Donald Crew
- I Can Write - Theo LeSieg
- Chicka Chicka Boom Boom - Bill Martin Jr.
- I See Patterns
- Bugs In A Box - David A. Carter
- Annos Counting Book - Mitsumasa Anno
Software Resources

Edmark 1-800-362-2890 www.edmark.com
Apple www.apple.com
Tom Snyder 1-800-342-0236 www.teachtsp.com
Broderbund 1-800-474-8840 www.broderbund.com/education
Davidson/Knowledge Adventure 1-800-545-7677 www.davd.com
Disney 1-800-900-9234

Notes

Let's Go Read

Kid Works

Millie's Math House

Kid Pix
Neighborhood Map Machine

Claris Works for Kids
Internet Project-Based Learning for the Classroom Teacher
NECC 2000

B. Jean Weller and Kate Santhuff

Agenda

Introduction
Projects: What Are They?
Types of Projects (Powerpoint)
 Judi Harris' Virtual Architecture
 WebQuests
Guided Browsing
 Hyperlinks
 Checklist
Share Your Treasures!
Implementing Projects in the Classroom
Creating Your Own Projects
 Judi Harris' Guidelines
 WebQuests
 Filamentality
Questions?

Contact us!
Jean: jweller@montwell.com
Kate: kate@3rdWaveWeb.com
Evaluation Checklist for Internet Projects

Academic Goals:

Process-Oriented Goals:

Project Name:
Site URL:
Grade Level(s):
Curriculum Tie-in:
Time Frame:

➤ How often are we required to be online?
 _One Time Only __Everyday __Every few days __Every week __Every two weeks __Sporadic

➤ What level of support for linking our class with other classes is built in to the project?
 _Link to others is part of project __No link to others; need to recruit our own partners
 __Not necessary for this project

➤ Do we know how to use all of the technology required?
 _Yes __Most __Some __None

➤ Do we have good support for the technology needed?
 _Yes __No

➤ How much extra preparation of the students needs to be done before we start (either academics or skills)?
 _We’ve already done it __1 or 2 lessons __A week __More than a week

➤ What types of activities will students do?
 _Whole group work __Small group work __Individual work
 __Computer intensive __Web intensive

Comments and Impressions:
Resources Checklist
(Adapted from NickNacks, http://home.talkcity.com/AcademyDr/nicknacks/)

The Basics

<table>
<thead>
<tr>
<th>Computer/Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM size (mb/gig)</td>
<td></td>
</tr>
<tr>
<td>Hard Drive Size (mb/gig)</td>
<td></td>
</tr>
<tr>
<td>Processor Speed (mhz)</td>
<td></td>
</tr>
<tr>
<td>Internet Connection</td>
<td>Modem/Dial-up</td>
</tr>
<tr>
<td>E-mail Software</td>
<td></td>
</tr>
<tr>
<td>Compression Software</td>
<td></td>
</tr>
<tr>
<td>A/V Ready?</td>
<td></td>
</tr>
</tbody>
</table>

Software (List titles and versions)

TEXT: Word Processing	
GRAPHICS:	
Draw/Paint Software	
Imaging Software	
Digital Camera and Software	
Graphing/Works Software	
Scanner and Software	
SPREADSHEETS: Software	
SPECIAL:	
Free Players (i.e., Acrobat)	
Page Layout/Desktop Publishing	
Presentation Software	
Movie/Animation Software	
SOUNDS:	
Digital Microphone	(Internal: YES NO)

Note:
- The checklist is adapted from NickNacks and can be accessed at the provided URL.
<table>
<thead>
<tr>
<th>Music Player Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedia Player (i.e., Quicktime)</td>
</tr>
<tr>
<td>Live Web Player</td>
</tr>
<tr>
<td>WWW:</td>
</tr>
<tr>
<td>HTML Editor</td>
</tr>
<tr>
<td>URL for Posting</td>
</tr>
<tr>
<td>FTP Server (directory)</td>
</tr>
<tr>
<td>FTP Software</td>
</tr>
<tr>
<td>CONFERENCING:</td>
</tr>
<tr>
<td>Video Camera</td>
</tr>
<tr>
<td>Digitizer Software</td>
</tr>
<tr>
<td>IRC Software</td>
</tr>
<tr>
<td>Video Software</td>
</tr>
<tr>
<td>Other:</td>
</tr>
<tr>
<td>CROSS-PLATFORM:</td>
</tr>
<tr>
<td>MacLink Plus/PC Exchange</td>
</tr>
<tr>
<td>JPEG/GIF Conversion Software</td>
</tr>
<tr>
<td>Sound Conversion Software</td>
</tr>
</tbody>
</table>
Creating Virtual Tours
With
QuickTime Virtual Reality

NECC 2000
Atlanta, Georgia
Creating Virtual Tours with QuickTime™ Virtual Reality

Agenda

1:30 - 2:00
- Introduction
- Statement of objective
- Overview of suggested requirements
- Equipment needs and options

2:00 - 2:45
- Practice gathering pictures
- Compiling VR Panoramas

2:45 - 3:30
- Practice gathering pictures
- Compiling VR Objects

3:30 - 4:00
- Creating VR Scenes

4:00 - 4:30
- Follow Up Questions
- Contact Information

System Requirements

Minimum system configuration
- Mac OS-based computer with a Power PC processor
- 16 MB RAM available for the QuickTime VR Authoring application program
- 40 MB of space available on your hard disk
- CD-ROM drive
Creating Virtual Tours with QuickTime™ Virtual Reality

System requirements for playing QTVR media

Mac OS

- QuickTime extension version 2.5 or later
- QuickTime VR extension version 2.0.1 or later
- MoviePlayer version 2.5 or SimpleText

Windows

- 486 or Pentium processor
- QuickTime for Windows version 3.0 or later
- QuickTime VR components version 2.1 or later
- MoviePlayer version 3.0 or later

Over the Internet

- If you are playing QTVR media over the internet, you need a World Wide Web browser with the QuickTime plug-in version 2.0 or later installed

Open software
- Select New from the File menu, then select Panorama Stitcher
- Type a name for your Panorama Stitcher document
- Select Save
Creating Virtual Tours with QuickTime™ Virtual Reality

- Select your lens in the Lens pop-up menu

- Click Add Images
- Select the images you want to use (PICT, TIFF, JPEG, GIF)
- Click to select the wrap images box (360 degrees)

- Click Image Alignment

- Enter appropriate angle (16 pictures = 22.5 degrees) and Click OK

BEST COPY AVAILABLE

524
- Click the appropriate arrow to rotate your pictures.
- Click the appropriate Sort button to change the order of your images.
- Check or UN-Check which files you want to save/not save (PICT, Tile, Pano).
- Change the name and/or location of your file/s.
- Click settings.

Output Files:

- [] PICT... Macintosh HD:...ntation:test.pict
- [] Tile... Macintosh HD:...ntation:test.tile
- [] Pano... Macintosh HD:...ntation:test.pano

Settings...
Creating Virtual Tours with QuickTime™ Virtual Reality

- Click Image tab: Blend, Fill, Deskew, Sharpen, Stretch, Crop, Auto Size
- Click Compression tab: Auto, Settings
- Click Playback tab: View Size, Pan Range, Default Tilt, Tilt Range, Default Zoom
- Click Imaging tab: Static Quality and Correction, Motion Quality and Correction
- Click File tab: Flattening, Copyright
- Click OK

- Click Stitch Pano

Object Maker
Creating Virtual Tours with QuickTime™ Virtual Reality

- Open software
- Select New from the File menu, then select Object Maker
- Type a name for your Object Maker document
- Select Save
- Object Maker window appears

- Click Define Object

- Enter the number of rows and columns

- Click Add Files
- Select the images you want to use (PICT, TIFF, JPEG, GIF)
· Click the appropriate arrow to rotate your pictures
· Click the appropriate Sort button to change the order of your images
· Check or UN-Check which files you want to save/not save (Movie, Object)
· Change the name and/or location of your file/s
· Click settings

· Click Compression tab: Settings
· Click Object tab: Horizontal & Vertical Controls, Animate View Frames, Auto-play Views, Scaleable, Mouse Scale Factor
· Click Playback tab: User frame Size, Default Pan, Default Tilt, Default Zoom, Default View State, and Mouse Down View State
· Click File tab: Flattening, Preload, Copyright
· Click OK
Creating Virtual Tours with QuickTime™ Virtual Reality

- Click Make Object
Creating Virtual Tours with QuickTime™ Virtual Reality

1. Open software
2. Select New from the File menu, then select Scene Maker
3. Type a name for your Scene Maker document
4. Select Save
5. Scene Maker window appears

- Click Add Map (optional)
- Select a map file for your scene
- Click to change the name and/or location of your file(s) (Hot Spots, Scene)

Scene Components:
- Panorama Stitcher;
- Panorama Maker;
- Object Maker;
- URL;
- Blob
- Click and drag to the Scene Maker window all Panoramas and Objects

Output File

- Hot Spots...
- Macintosh HD:Desktop Folder:scene.hat
- Scene...
- Macintosh HD:Desktop Folder:scene.scene

Create Nodes:

BEST COPY AVAILABLE
Creating Virtual Tours with QuickTime™ Virtual Reality

- For URL and Blobs, Click the appropriate icon
- Move the cursor to the Scene window and click
- An icon representing the URL of Blob appears
- The node's name, Untitled, appears just below it
- Click the Set Dual Links button or One-way Links button
- The Dual Link icon allows you to go back and forth between Panoramas and Objects
- You cannot create a Dual Link to an URL or a Blob
- After selecting the Link, place pointer over a node and drag the pointer to another node
- Click the Arrow icon to select a node
- (The Hand icon allows you to move the map)
· Place the pointer over the linked panorama node, then press and hold.
· A pop-up menu appears.
· (Edit Hot Spot - Opens the Hot Spot Editor window)
· (Open - Opens the panorama or object)
· (Make - Processes the node)
· Choose Edit Hot Spot
· The Hot Spot Editor window appears

- Define the hot spot by selecting one of the geometric shapes in the Hot Spot Editor window.
- Click and drag the pointer over the area that you want to define as a hot spot.
· Click the Set Destination in the Hot Spot Editor window which will display an image of the destination mode.
· Select the view that fits well with the view from which the viewer will be linked.
· Chose Set Destination.
· Close the Set Destination window.
· Click Save.
· Repeat as necessary.
· Click Settings: Playback; File.
Creating Virtual Tours with QuickTime™ Virtual Reality

- Click the Blob or URL button
- in the Scene Maker window
- Create a one-way link from a panorama or object
- Place the pointer over the node and select Edit Hot Spots
- Follow the steps described earlier
- Click and hold down on the URL icon
- Select Open

Create Nodes

- Type the complete URL in the window that appears
- Click OK
- Blobs are used with a programming tool or scripting language to define what action is taken when the user clicks the Blob link
Creating Virtual Tours with QuickTime™ Virtual Reality

- Click the Make Scene button in the Scene Maker window
- When finished, a playback window opens
- Check links and make adjustment as needed
Creating Virtual Tours
With
QuickTime Virtual Reality

LIST OF RESOURCES

- QuickTime VR Authoring Studio
 - Apple Computer, Inc
- The QuickTime VR Book
 - Susan A. Kitchens
 - Peachpit Press
 - ISBN: 0-201-69684-3
- www.kaidan.com
- www.vrtoolbox.com
- www.apple.com
- www.smgVR.com
 - mapsaVR
 - soundsaVR
- www.adessosoftware.com

NECC 2000
Developing multimedia tools to support functional and community training

Dr. Cheryl Wissick, University of SC, Columbia, SC
Dr. John Langone, University of Georgia, Athens, GA
Charles de Krafft, Richland District Two, E.L. Wright 8th Grade Algebra Teacher
Windy Schweder, Doctora
Poster Session: June 26, 2000

I. Why Multimedia?
II. Examples of Multimedia
 - Web-based
 - PowerPoint
 - HyperStudio
III. How to create Multimedia
IV. Works in Progress

Web References:
World Wide Web Toolboxes
http://www.ed.sc.edu/caw/toolbox.html
Buying Lunch at the Cafeteria
http://www.ed.sc.edu/caw/cafe/cafeteria_photo/cafe1.htm
Grocery Shopping Links
http://www.ed.sc.edu/caw/toolboxshop.html

References:
Langone, J., Shade, J., Clees, T., and Day, T. (In press). Effects of multimedia instruction on teaching...
Quick Starts: Web Toolboxes to Support Technology Integration

For more information contact:
Dr. Cheryl Wissick
cwissick@sc.edu

"How-To" Page
Creating Concept Slides with PowerPoint

Creating slides with one photo per page:

Introducing concepts with one slide and one word,

Teaching students with examples and not-examples

1. Start PowerPoint and choose Blank Presentation.
2. Insert new slide
3. Choose "title only" Autolayout
4. Insert - Picture - From File (EX: open clipart used instead of photo to save space)
5. Review pictures until you locate one you want, click on Insert
6. Wait until the photo appears
7. Adjust photo to the center side of page.

8. Use the crop tool to adjust edges that you do not want.
9. Drag on the Corners only to resize in proportion.
10. Label with the concept. (example: FULL)
11. Repeat the steps to include all photos and all concepts.
12. Remember to Save your Show.

Directions for creating PowerPoint Concepts Slides:
Tutoring or evaluation activity - two photos per slide.

1. Insert new slide
2. Choose "title only" autolayout
3. Insert - Picture - From File (example: tray empty)
4. Review pictures until you locate one you want, click on Insert
5. Wait until the photo appears
6. Adjust photo to the left/right side or top/bottom of page.
7. Use the crop tool to adjust edges that you do not want.
8. Drag on the Corners only to resize in proportion so that it only take half the page.
9. Insert - Picture - From Slide
10. Choose photo that is opposite in concept but same location (example: tray full is the opposite of tray empty)
11. Wait until the photo appears
12. Adjust photo to the right side of page.
13. Use the crop tool to adjust edges that you do not want.

14. Drag on the Corners only to resize in proportion so that it only take half the page.

15. Label with one concept. (example: FULL)

16. Repeat the steps to create the same slide but label with the opposite concept. (example, next time label it empty)

17. Save the presentation.

For this activity, students will work with the teacher or peer tutor to point to the correct photo for the concept listed.

Directions for creating PowerPoint Concepts Slides - Creating feedback buttons

Activity with buttons and feedback - two photos per slide.

1. Use the presentation you created with two photos per slide. Save as a different name.

2. Go to the first page with two photos.

3. Create a blank button to cover the part of the page that you do not want to have the students click to go on.
 a. From the draw menu select autoshapes - action buttons.
 b. Choose the button with no design.
 c. Drag the button to cover the part of the page you want.
 d. The button will be in a color but we will change that.
 e. For the Hyperlink - choose NONE.
 f. When finished click - DONE.
 g. Now doubleclick on the button for the color and lines.
 h. Choose No fill for color and No Lines for lines

4. Now create a button for the correct answer.
 a. From the draw menu select autoshapes - action buttons.
 b. Choose the button with no design.
 c. Drag the button to cover the part of the page you want.
 d. The button will be in a color but we will change that.
 e. For the Hyperlink - choose Hyperlink to: Next Slide
 f. Click the button in front of Play Sound, then choose the sound to play.
 g. When finished click - DONE.
 h. Now doubleclick on the button for the color and lines.
 i. Choose No fill for color and No Lines for lines

5. Create as many buttons as needed to cover the whole page. You may choose to provide feedback when the student does not get the correct answer.

 Button goes over the top part of the page, to create a blank button so that students cannot accidentally move to the next page.
Button goes over the Empty tray to provide Feedback that it is not correct

Button goes over the Full tray to provide feedback that it is correct and to move to the next slide.

Wissick, Langone, de Krafft, & Schweder, June 2000
NOTICE

Reproduction Basis

☐ This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☐ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").

EFF-089 (3/2000)