This paper offers a brief description of the Taiwanese elementary school system. It also outlines the current teacher training system, emphasizing the differences between the old "Normal Education Art" and the new "Teacher Education Art". One section describes the three major reforms that Taiwan's mathematics curriculum has undergone in the last three decades. Another section proposes two approaches aimed at assisting teachers in effectively dealing with reforms in mathematics education, and describes the effect of these reforms on teacher development. The paper states that developing cases of teaching was found to be a rich vehicle through which to facilitate teachers' reflective thinking. In addition, cases of teaching can serve as prototypes for developing essential knowledge about teaching events and can be used as precedents to provide occasions to practice analysis. Analyzing children's solution patterns contributes to a better understanding of their thinking. Furthermore, group discussion provides a forum for debate and reflections. Social interactions, cognitive conflicts, and reflections upon research are catalysts for developing teachers' knowledge. The sharing of beliefs and experiences among teachers on a collaborative team serves teaching practice and supports change in teachers' beliefs and conceptualization of mathematics teaching and learning. (Contains 13 references.)
PROFESSIONAL DEVELOPMENT FOR ELEMENTARY MATHEMATICS TEACHERS IN TAIWAN

Pi-Jen Lin
linpj@nhctc.edu.tw

National Hsin-Chu Teachers College
Department of Mathematics and Science Education
521, Nan-Dah Road
Hsin-Chu City 300, Taiwan, R.O.C.

INTRODUCTION

The success of curriculum relies heavily on teachers’ professional knowledge and skills. In turn, the knowledge and skills teachers’ require to implement curricular materials relies on the assistance of curriculum innovators and researchers. This paper describes two approaches taken to assist classroom teachers in implementing the standards-oriented curricular materials in Taiwan’s 1993 mathematics curriculum reform. In addition, this paper illustrates the effects of these two approaches on teachers’ professional growth and classroom teaching practice.

In response to societal pressures and drastic changes in the educational conditions, Taiwan’s Ministry of Education completely overhauled the nearly twenty year-old “Normal Education Act” and enacted the new “Teacher Education Act” in 1994. The implementation of this new act represents an important milestone in Taiwan’s teacher education system. The first section offers a brief description of the Taiwanese elementary school system. From here, the second section outlines the current teacher training system, emphasizing the differences between the old “Normal Education Act” and the new “Teacher Education Act”.

The third section describes the three major reforms that Taiwan’s mathematics
curriculum has undergone in the last three decades. These reforms include the
Curriculum Standards for Elementary Mathematic issued in 1968, which was revised
and re-issued in 1993, and the upcoming reform, called the Nine Year Curriculum
Integration which was issued in 1998 and scheduled to be implemented in 2001. The
two current stages of Taiwan’s curricular reforms in mathematics and how these
reforms translate into expectation for in-service teachers are discussed in detail.

Finally, the fourth section proposes two approaches aimed at assisting teachers in
effectively dealing with reforms in mathematics education and describes the effect of
these reforms on teacher development. An important characteristic of the first
approach, termed the “curriculum investigation approach”, is teachers were better able
to understand the scope and the sequence by directly investigating curriculum in the
year-by-year field testing of the standards-oriented curriculum materials. As a
consequence, teachers who investigated the curriculum gained a better understanding
of the contents of each grade’s curriculum materials. With the support of the writing
curriculum team, teachers became more familiar with the meaning of learner-centered
approach and gained an advanced recognition of the philosophy, psychology, and
education sociology underpinning the 1993 version.

The second approach, the school-based professional development approach, was
investigated in terms of teacher development by the author of this paper. This teacher
professional development program, which utilized a collaborative action-oriented
approach was designed to promote the rethinking of teaching practices in light of the
1993 version of curriculum standards while, at the same time, fostering an
understanding of children’s learning (Lin, 1999). The philosophy behind this approach,
the methodology, and the influences on teachers’ conceptualizations are listed in the
final section.
THE SCHOOL SYSTEM IN TAIWAN

With a population of more than 21 million, Taiwan has roughly 2 million children aged from 6 to 12 in more than two thousands elementary schools. These schools are staffed by more than 90 thousand teachers and administrators. Taiwan's population is heavily concentrated in urban areas and, as a result, class sizes in city schools average around 50 students and those in suburban areas average around 35.

The school system in Taiwan is 6-3-3-4, as in the United States. Education is compulsory from elementary school through junior high school (from ages 6 to 15). Recently, however, the Ministry of Education has expanded this range to include 5 to 16.

Taiwan's highly centralized education system remained unchanged until the curriculum was revised in 1998. Prior to this version, the national curriculum standards outlined by the Ministry of Education dictates the names of courses to be offered from grades one to twelve, the contents of these courses, as well as the numbers of class sessions per week. The courses offered in Taiwan's elementary schools are Mandarin, mathematics, science, social study, ethic and health, music, art, and physical education. The proportions of class sessions per week in mathematics in grade 1-2, grade 3-4, and grade 5-6 are 3/26, 4/33, and 6/35 respectively. Class sessions are 40 minutes in length.

Since the re-enacted "Nine-Year Curriculum Integration" was outlined by the Ministry of Education in 1998, national curriculum standards have been decentralized. Currently, the "Nine-Year Curriculum Integration" headlines Taiwan's educational innovations, though it has yet to be implemented in schools. When implemented, courses offered in elementary and junior high schools will be shifted from...
subject-oriented to area-oriented. The seven learning areas will include 1) language, consisting of Mandarin and English, 2) mathematics, 3) science and technology, 4) social study, 5) health and physical education, 6) art, and 7) combined activities.

Elementary school teachers average 25 teaching sessions per week. Two thirds of teachers are responsible for teaching all areas to their class. The other one third specialize in courses like art, music, or science, and teach their course to different classes. This means two thirds of elementary school teachers teach mathematics to her or his own class.

The school week in Taiwan is from Monday morning to Friday afternoon. On the even weekends of each month, the week continues through Saturday. Wednesday afternoons off while their teachers attend in-service training. Each day includes seven class sessions: four in the morning and three in the afternoon. Classes are in session from 7:30 to 4:00 and the first hour of each day functions as a morning pre-session time in which students are educated in ethics and assignments are checked.

THE TRAINING SYSTEM FOR PROSPECTIVE TEACHERS IN TAIWAN

In a reaction to societal pressures and drastic changes in the educational conditions in Taiwan, the Ministry of Education has completely overhauled the nearly twenty-year old “Normal Education Act” and enacted the new “Teacher Education Act” in 1994. The implementation of the “Teacher Education Act” has greatly impacted the examination and qualification process for prospective teachers, representing an important milestone for Taiwan’s teacher education system.

Differences between the old “Normal Education Act” and the new “Teacher Education Act” include four major changes. The first change regards training. The old
“Normal Education Act” stipulates that prospective high school teachers must be trained only by normal universities while elementary school teachers must be trained only by teachers’ college. However, under the new “Teacher Education Act”, both high school and elementary school teachers can be trained by universities with teacher education programs. This is in addition to those programs already existing in Normal universities. The second change impacts tuition payment. The tuition fee for prospective teachers has changed from completely free to self-pay. Free tuition and scholarship are still, however, available to qualified students. The third change addresses teacher certification. To be a qualified teacher under the old “Normal Education Act”, one must be a Normal university graduate with one-year teaching practicum. After graduation, teachers are only required to register with the local bureau of education without further examination. However, the new “Teacher Education Act” required two phases of certifications. For the First phase, to become eligible to be a student teacher, one must complete the courses required by university teacher education programs. For the second phase, after one year of student teaching, the prospective teacher must pass a qualifying examination. Finally, the new “Teacher Education Act” emphasizes teachers’ processional development and educational studies, which were completely ignored by the old “Normal Education Act”.

Currently, teachers’ training programs for prospective elementary school and high school teachers remain separate. High school teachers are trained by three national Normal universities and universities with high school teacher education programs, while elementary school teachers are trained in ten national teachers’ colleges and universities with elementary school teacher education programs. To qualify as a high school or elementary school teacher, one must complete at least 26 credits for high school and 40 credits for elementary educational program in professional education subjects. Of the 40 credits required for elementary education
are credits are compulsory and 20 are elective credits offered by individual university. The subjects of the 20 compulsory credits consist of 1) basic teaching courses such as music and calligraphy; 2) basic education courses such as educational philosophy and educational psychology; 3) educational methodology such as educational statistics and research methods and, 4) practice teaching courses, including the pedagogy of various subjects. A breakdown of the total credits according the subject for elementary and high school teachers is provided in Table 1.

<table>
<thead>
<tr>
<th>Courses and Credits</th>
<th>Elementary School Teachers</th>
<th>High School Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Subjects</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Teaching Subjects</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Professional Education Subjects</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>Options</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>Total Credits required</td>
<td>148</td>
<td>154</td>
</tr>
</tbody>
</table>

EXPECTATIONS FOR TEACHERS UNDER VARIOUS MATHEMATICS CURRICULUM REFORMS

(1) **Two Former significant Curriculum Reforms**

The official unified mathematics textbook has been used by elementary schools all over Taiwan since the “Curriculum Standards for Elementary Mathematics” was issued by the Ministry of Education of Taiwan in 1968. The newly revised “Curriculum Standards for Elementary Mathematics”, issued in 1993, privatized textbook publishing. The official unified textbook used for the nearly three preceding
decades was replaced by the newly “approved textbook”, examined and approved by
review committees from the Ministry of Education. The government of Taiwan has
put considerable effort into the design of curriculum, textbooks, and editing and
reviewing on the newly revised “Curriculum Standards for Elementary Mathematics”.

The philosophy underpinning the 1993 version of the mathematics curriculum
reflects a constructivists’ perspective. This perspective posits that knowledge should
be constructed actively rather than passively. As such, mathematics classrooms are
expected to encourage an atmosphere of student problem solving in which the
teachers’ role switched from a problem solver to a problem poser and the students’
role switched from replicating teacher’s solutions to problem solving on their own.
For teachers in Taiwan, this means they face a complete paradigm shift.

This paper describes two approaches used in Taiwan to assist teachers
overcoming the difficulties associated with the curriculum reforms in 1993. In
addition, it describes the rationale behind utilizing these approaches and the effects on
teachers’ professional growth.

Some of the basic educational problems in Taiwan throughout the last 50 years
include educational rigidity and idleness, gap between school and society, educational
inequality, excessive focus on examinations, lack of versatility in teacher education,
and inefficiency in utilizing educational resources.

(2) Upcoming Curriculum Reform

Due to these persisting problems, the government desperately needs to reform its
educational system. As a step in this process, teachers will face another upcoming
curricular reform only seven years after the previous reform in 1993. The upcoming
curriculum reform called “Nine-Year Curriculum Integration” is scheduled to be
implemented in 2001. The new curriculum will focus on three major areas: stressing
basic ability as opposed to subject knowledge, integration of learning fields, and
designing of school based curriculum. The “Nine-Year Curriculum Integration” represents one of the largest educational reforms to date. Moreover, it represents not only a reform of curriculum, but also a reform of school culture, completely alternating the expectations placed on teachers.

Reform of school culture is the primary focus of the “Nine-Year Curriculum Integration”. In decades past, teachers lacked active exploration and research, collective learning when faced with problems in teaching, and professional dialogues because school meetings were the affairs of administration. Under the “Nine-Year Curriculum Integration”, curriculum reform and school culture will be actively oriented in terms of research and professional development.

One new expectation placed on elementary and high school teachers under the “Nine-Year Curriculum Integration” is the change their role from executioner of the official unified textbook to designer of school-based curriculum. Using the official unified textbook left teachers unable to design and develop curriculum. Most teachers began teaching with the textbook and teacher’s guide from the beginning of each semester, following it lesson by lesson. Their focus was helping students pass one examination after another and, as a result, teachers seldom took the educational needs of individual students into account.

To effectively deal with the school-based curriculum design and development outlined in the “Nine-Year Curriculum Integration”, teachers must rethink the content of curriculum, its organization, and the basic instructional approach to enhancing students’ abilities. Traditionally, the teacher has played a passive role in this process. teacher education programs commonly consisted of short-term workshops and institutes. Speakers in these workshops usually offered theoretically oriented teaching material and teaching demonstrations that, unfortunately, did not fully address the needs of day-to-day teaching practice. As a result, teachers often did not benefit from
what these workshops and institutes intended to provide. Consequently, the results are
doubtful (Pink, 1992). Moreover, teachers' participation in workshops tended to serve
the purpose of gaining credits for attending rather than truly reinforcing professional
growth.

If the implementation of the "Nine-Year Curriculum Integration" is to be
effective, the meaning and means of professional development should not be
restricted to such narrow conceptualization. Activities for professional development
must be more than workshops or institutes. Instead, teachers must be given to learn to
transform their thinking into actions and, in turn, reflect on these actions. Thus, the
roles of a teacher must be a professional, an individual in the process of developing, a
learner, and a researcher.

TWO APPROACHES AIMED AT ASSISTING TEACHERS IN ADJUSTING
TO CURRICULUM REFORM

(1) School-Based Collaborative Curricular investigation approach

The success of any curricular reform relies heavily on teachers' professional
knowledge and skills. In turn, the knowledge and skills teachers' require to implement
curricular materials relies on the assistance of curricular innovators of. The innovators
of mathematics curriculum consist of educators working in the Ministry of Education
and local bureau of education as well as classroom teachers. The current mathematics
curriculum reform is a good example. The prime innovators are both the members of
the Mathematics Curriculum Research and Development team from the Taiwan
Provincial Institute for Elementary School Teachers' In-service Education and the
members of the curriculum writing committee for private textbook-publishing. The
authors from the curriculum development teams introduce the philosophy, rationale, framework, and instructional approach. Besides, the disseminators of mathematics curriculum reforms are the professors of teachers college, educators in local bureaus of education, local mathematics consults, school administrators, and classroom teachers.

School-based collaborative curriculum investigation is an effective approach to support and help teachers move toward the vision espoused by the standards and promoting teachers growth. Curriculum investigation helps clarify impediments and provide supportive structures to standards-based mathematics curriculum reform. It also assists teachers in understanding the tendency and content outlined in the curriculum documentation. As a result, they are more likely to accept short-term workshops and institutes. This is one of the approaches aimed at helping teachers gain a better awareness and understanding of the 1993 version of national curriculum standards.

In Taiwan, field testing of curricular materials is usually conducted in one or two classes in each school which is involved in testing curricular materials. The field test discussed in this paper, however, involved each class of a particular school, which had 36 classes with six classes for each grade. The school discussed in this paper was one of 13 schools involved in testing the 1993 version of the curricular materials. At the beginning of the field testing, all six first grade classes used the drafted curricular materials. At that time, only materials for the first graders had been developed completely. The development of materials for the second graders was ongoing. In the second year, the all six second grade classes and new first grade classes used the drafted curricular materials. This pattern was repeated as the years progressed.

All third and fifth grade students are commonly rearranged and assigned a new
Each teacher teaches a class for a two-year cycle. As part of this cycle of teaching, teachers are divided into three categories: low grade teachers, middle grade teachers, and high grade teachers. Offering the opportunity for professional discourse for same grade teachers is an essential part of this approach to enhance teachers’ knowledge.

The principal of the school also played a part in the curriculum investigation, serving as researcher and discussion facilitator. In addition, each teacher assumed the role of an observer in addition to their existing role as an instructor. Teachers observed two classes in the same grade every Tuesday afternoon, and then took part in pedagogical discourse sessions after school. Initially, the first grade teachers investigating questions about teaching and student learning, the pedagogical discourse sessions became a dynamic interaction between the teachers and the principal. In sharing their experiences, the second grade teachers, who had an additional year of experience with the curricular materials, assisted the new first grade teachers. In her research, Chung (1999) found that the degree of teachers’ growth depends how many years they had investigated the field testing materials. She found that teachers using curricular materials for one or two years were not readily convinced of the feasibility of the learner-centered approach and that teachers who had been investigating curricular materials for three or four years were more likely to be convinced its advantages.

There are two conditions that foster success under the curriculum investigation approach. First, the teachers who investigated the 1993 version of the standards-oriented curriculum were in an elementary school that was one of the thirteen schools which were given the offer of investigating the experimental curriculum materials to be experimented. Because they were selected to do this investigation they were also given financial support for their effort. the school was
settings presents opportunities for more reflection and awareness of classroom practice. The emphasis of Taiwan's mathematics curriculum reform has shifted from teacher-centered to student-centered (Ministry of Education of Taiwan, 1993).

The second approach reported in this paper is part of the findings of author's research on teacher development project founded by the agency of National Science of Council. This teacher professional development program taking collaborative action-oriented as an approach was designed to promote the rethinking of teaching practices in light of the 1993 version of curriculum standards documentation while, at the same time, fostering an understanding of children's learning (Lin, 1999). This approach adopts a social constructivist view, positing teachers' knowledge of mathematics pedagogy and children's thinking is constructed via dialogue within the professional community. As part of this approach, a collaborative mathematics professional development team, consisting of a professor from a teachers college and six teachers, was set up in an elementary school. This team designed three learning activities--observing mathematics classrooms, developing cases of teaching, and analyzing children's solution patterns--and provided them to teachers.

The collaborative team met once per week for three hours. The regular weekly meetings provided a social forum for professional dialogues and reflection and exploring conflicts. These meetings proved crucial in enabling teachers to develop a common vision. Also in these meetings, teachers planned together and reflected on specific issues. They negotiated alternative solutions and provided support to one another. Teachers learned how to use each task provided by the collaborative team through reflecting on teaching practices. Discussions were initiated by the teachers' professional dialogues, and were not imposed by the researcher.

Each teacher participating in the research was both an observer and was observed in her or his implementation of the 1993 version of curricular materials.
Teacher's conceptualization of mathematics teaching and learning was reflected in their classroom observation. Initially, instructors' physical behaviors, including facial expressions, volume, pace of speech, and use of space, were frequently reported on observation forms. Immediately after each teaching observation, participants were invited to share what they had observed. The researcher, who also participated as a peer, deliberately reported on observations of children's learning patterns from a cognitive perspective. The researcher provided an opportunity for participants to express additional concerns about the observations process by showing a transparency which listed the dimensions of an observation at the following meeting. Group sharing of observations provided an opportunity for the participants to learn from one another's concerns.

By doing classroom observations, these teachers have expanded their perspective. Teachers whose orientation was teacher-centered gradually turned the focus of their observations to students' thinking and strategies. They learn to be more aware of children's thinking and more tolerate their mistakes. They noticed that the children intrinsically possessed the ability to engaging in meaningful discourse. As a result, they gained confidence in dealing with discussions with their students when they strayed from the topic.

In sum, we found that developing cases of teaching is a rich vehicle in facilitating teachers' reflective thinking. In addition, cases of teaching can serve as prototypes in developing essential knowledge about teaching events and can be used as precedents to provide occasions to practice analysis. Analyzing children's solution patterns contribute to a better understanding of their thinking. Furthermore, group discussion provides a forum for debate and reflections. Social interactions, cognitive conflicts, and reflections over research are catalysts for developing teachers' knowledge. The sharing of beliefs and experiences among teachers on a collaborative
team serves teaching practice and supports change in teachers’ beliefs and conceptualizations of mathematics teaching and learning.

References

program development and evaluation. 1995-1996 interim report. (National Science Foundation proposal 9459371). Arlington, VA.

I. DOCUMENT IDENTIFICATION:

Title: Professional Development for Elementary Mathematics Teachers in Taiwan

Author(s): Pi-Ten Lin

Corporate Source: Office of Educational Research and Improvement (OERI)

Publication Date: April 28, 2000

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample sticker shown below will be affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 1

The sample sticker shown below will be affixed to all Level 2A documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY, HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 2A

The sample sticker shown below will be affixed to all Level 2B documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 2B

Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only.

Check here for Level 2B release, permitting reproduction and dissemination in microfiche only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: Pi-Ten Lin

Printed Name/Position/Title: Pi-Ten Lin, Associate Professor

Organization/Address: National Hsin-Chu Teachers College, Taiwan

Telephone: 03-5257780

FAX: 03-5257780

E-Mail Address: linj@nict.edu.tw

Date: April 13, 2000
III. DOCUMENT-AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

<table>
<thead>
<tr>
<th>Publisher/Distributor:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Price:</td>
<td></td>
</tr>
</tbody>
</table>

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addresses, please provide the appropriate name and address:

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

- **University of Maryland**
 - ERIC Clearinghouse on Assessment and Evaluation
 - 1129 Shriver Laboratory
 - College Park, MD 20742
 - Attn: Acquisitions

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to: