Theory of mind research focuses on children's understanding of other people's minds, their desires, intentions, and beliefs. Currently, there is much debate as to what is the substrate for children's theory of mind development; socio-cognitive skills, linguistic development, a simulation of one's own mental states, and the maturation of innate brain structures have all been proposed as possibilities. Few studies have looked at the influences of language and culture on the development of theory of mind. This study compared the performance of 3- and 4-year-old Mandarin-Chinese speakers to that of 3- and 4-year-old English speakers on four theory of mind-related tasks: (1) appearance-reality; (2) Level 2 perspective-taking; (3) an unexpected contents false belief task; and (4) an unexpected transfer false belief task. No significant differences were found between the performance of the Chinese and American children. (Author/KB)
A Comparison of Chinese and English-Speaking Children on a Series of Theory of Mind-Related Tasks

Peggy Goetz
University of Michigan
pjgoetz@umich.edu

ABSTRACT

Theory of mind research focuses on children's understanding of other people's minds, their desires, intentions and beliefs. Currently there is much debate as to what is the substrate for children's theory of mind development; socio-cognitive skills, linguistic development, a simulation of one's own mental states, and the maturation of innate brain structures have all been proposed as possibilities. Few studies have looked at the influences of language and culture on the development of theory of mind. This study compares 3- and 4-year-old Mandarin-Chinese speakers to 3- and 4-year-old English speakers in four theory of mind-related tasks: appearance-reality, Level 2 perspective-taking, and an unexpected contents and unexpected transfer false belief task. No significant differences were found between the performances of the Chinese and American children.
INTRODUCTION

A number of researchers have argued that language is a major contributor to the development of a mature theory of mind. Some have focused on children's general language skills (Jenkins & Astington, 1996), others on specific elements of syntactic acquisition (de Villiers & Pyers, 1996), and others on the semantics and acquisition of mental state terms (Bartsch & Wellman, 1995; Shatz et al, 1995).

The Chinese language has some interesting differences with regard to the system of mental state verbs in comparison with English. The word xiang3 (number represents tone) can be translated as “think,” and it is commonly used by adults in sentences such as "Wo3 xiang3 ta1 bu4 zhi1 dao4." [I don't think she knows.]. It also can be translated as "want," however, and this is the use that children first learn (Tardif & Wellman, 1998). In the natural language data of Mandarin-speaking children at the one- and two word stages, Tardif and Wellman found that Mandarin-speaking children used desire terms earlier than their English-speaking counterparts; however, their use of terms for "thinking" was very infrequent, even for the Mandarin-speaking adults. Mandarin Chinese also has the word, yi3 wei2, which is frequently used to mean "I thought incorrectly" as in the sentence, "Wo3 yi3 wei2 ta1 shim xue2sheng1." [I thought (incorrectly) he was a student.] These characteristics of mental state language in Chinese are interesting in light of Wellman and Bartsch's (1995) theory that children develop from a desire to a

Mandarin is also interesting because, unlike English, the complement form for a desire term like "want" can be the same as that for a belief term like "think." For Mandarin speakers, there is not necessarily any increasing syntactic complexity in moving from desire statements to belief statements as there is in English.

There have been few studies of Chinese children's development of theory of mind. Flavell et al (1983) tested 3- to 5-year-old children from the People's Republic of China on the appearance-reality distinction and found that their performance paralleled that of children in the United States. Chen & Lin (1994), however, found that both 3- and 4-year-old children from the People's Republic of China performed badly on false belief tasks. They suggest that cultural differences in child-rearing practices and the focus of traditional children's stories may account for these differences.

METHODS

SUBJECTS

Sixty-four subjects were tested, 16 3-year-old and 16 4-year-old Mandarin Chinese speakers from Beijing, People's Republic of China, and 16 3-year-old and 16 4-year-old English speakers from Ann Arbor, MI. Children were matched according to the education level of the primary wage earner, and all children were tested in university daycares.

PROCEDURE

Each child was given the following testing measures, with the second forms of the test given a week after the first forms:
1. Two forms of an appearance-reality task

 Deceptive objects: rock-sponge and fish-pen
 Appearance test question: "What does this look like? does it look like a rock or does it look like a sponge?"
 Reality test question: "What is this really? Is it really a rock or is it really a sponge?"

2. Two forms of a level 2 perception-taking task

 Materials: Turtle picture, elephant picture
 Child's perspective: "When you look at the turtle right now, does it look like it's standing on its feet or lying on its back?"
 Test question: "When I look at the turtle right now, does it look like it's standing on its feet or lying on its back?"

3. Two forms of the unexpected contents false belief task

 Materials: M&M's box with car, crayon box with chocolate
 Test false belief question: "X hasn't seen inside this box. What will he/she think is inside before he/she opens it? Will she think there is candy inside or crayons inside?"

4. Two forms of the “Sally-Anne” unexpected transfer false belief task.

 Materials: dolls and toy drawers, dolls and toy pails
 Test false belief question: "Where will Yang-yang look first for the chocolate? Will he look in the red drawer or the blue drawer?"

RESULTS

Children were given a "theory of mind" score (scale 0-4) based on whether they passed the above tasks. A 2(age) by 2(language) by 2(form/order) repeated-measures ANOVA was performed with age and
language as between-subjects factors and form/order as a within-subjects factor. A main effect for age was found, with 4-year-olds doing significantly better than 3-year-olds, $F(1, 31)=38.46, p < .001$. There was also a significant difference between the children's performance at the first testing time (TOM1) and the second testing time (TOM2), $F(1,31)=15.29, p < .001$ with the children performing better at the second testing. There was no overall effect of language on the children's performance on these tasks and no significant interactions.

Table 1

Mandarin Chinese and English speakers' mean TOM scores

<table>
<thead>
<tr>
<th></th>
<th>Mandarin Speakers</th>
<th>English Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOM1</td>
<td>TOM2</td>
</tr>
<tr>
<td>3-year-olds</td>
<td>0.88 (.806)</td>
<td>1.06 (.854)</td>
</tr>
<tr>
<td>4-year-olds</td>
<td>2.25 (.931)</td>
<td>3.0 (.817)</td>
</tr>
</tbody>
</table>

The means and standard deviations for the four individual theory of mind-related tasks (appearance-reality, level 2 perspective-taking, unexpected contents false belief, and unexpected transfer false belief) combined over the two testing sessions are presented in Table 2 for both language groups. A 2(age group) by 2(language) general factorial analysis of variance was performed for each individual theory of mind-related task with age and language as fixed factors and the individual task scores as the
dependent factor. A main effect of age group was found for each of the individual tasks; for ARtot, F(1, 31)=5.12, p < .05; for PTtot, F=7.13, p = .01; for FBbtot, F=18.44, p < .001; for FBstot, F=31.64, p < .001 with 4-year-olds performing significantly better than 3-year-olds for each task. There was no effect for language and no significant interaction in any of the individual tasks.

Table 2

Mandarin Chinese and English speakers' mean scores and standard deviations on the individual TOM tasks combined over the two testing sessions

<table>
<thead>
<tr>
<th></th>
<th>Combined Score over both Forms/Testing Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chinese speakers</td>
</tr>
<tr>
<td>Appearance-Reality</td>
<td></td>
</tr>
<tr>
<td>3-year-olds</td>
<td>.875 (.806)</td>
</tr>
<tr>
<td>4-year-olds</td>
<td>1.5 (.73)</td>
</tr>
<tr>
<td>Perspective-Taking</td>
<td></td>
</tr>
<tr>
<td>3-year-olds</td>
<td>.625 (.806)</td>
</tr>
<tr>
<td>4-year-olds</td>
<td>1.31 (.873)</td>
</tr>
<tr>
<td>False-Belief (Contents)</td>
<td></td>
</tr>
<tr>
<td>3-year-olds</td>
<td>.25 (.577)</td>
</tr>
<tr>
<td>4-year-olds</td>
<td>1.0 (.894)</td>
</tr>
<tr>
<td>False-belief (Transfer)</td>
<td></td>
</tr>
<tr>
<td>3-year-olds</td>
<td>.188 (.403)</td>
</tr>
<tr>
<td>4-year-olds</td>
<td>1.44 (.814)</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Overall there seems to be no effect of the linguistic and cultural differences between Mandarin- and English-speakers on the children's performance. Both Chinese and English children showed similar patterns of development between the ages of 3 and 4. The lack of a more complicated syntax for mental verbs, less talk about "thinking," and different child-rearing practices seem to have no clear effect on Chinese children's acquisition of theory of mind skills.

REFERENCES

Comparison of Chinese- and English-speaking children on a series of theory of mind-related tasks

Peggy Goetz

Level 1

Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Margaret (Peggy) Goetz

CAS Department

3200 Burton S.E.

Grand Rapids, MI 49546

E-mail Address: pgoetz@calvin.edu

Date: 3/2/00
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

Karen E. Smith, Acquisitions Coordinator
ERIC/EECE
Children’s Research Center
University of Illinois
51 Gerty Dr.
Champaign, Illinois, U.S.A. 61820-7469

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2nd Floor
Laurel, Maryland 20707-3598

Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
E-mail: ericfac@inet.ed.gov
WWW: http://ericfac.piccard.csc.com