This paper describes the graded response model. The graded response model represents a family of mathematical models that deal with ordered polytomous categories, such as: (1) letter grading; (2) an attitude survey with "strongly disagree, disagree, agree, and strongly agree" choices; (3) partial credit given in accord with an individual's degree of attainment; and (4) computerized cognitive diagnosis. Equations are given for the general model and for homogeneous and heterogeneous cases. Conditions are outlined for model selection, and estimation of the operating characteristics is described. (Contains 1 table, 10 figures, and 18 references.) (SLD)
GENERAL GRADED RESPONSE MODEL

FUMIKO SAMEJIMA
UNIVERSITY OF TENNESSEE

The 1999 Annual NCME Meeting
April 20, 1999
Montreal, Canada

Requests for reprints should be sent to Fumiko Samejima, Department of Psychology, 405 Austin Peay Bldg., University of Tennessee, Knoxville, Tennessee 37996-0900. E-mail: samejima@psych1.psych.utk.edu
Introduction

The graded response model represents a family of mathematical models which deal with ordered polychotomous categories, that include:

1. letter grading, A, B, C, D and F, in students’ performance evaluation;

2. strongly disagree, disagree, agree and strongly agree in an attitude survey;

3. partial credit given in accordance with an individual’s degree of attainment toward a problem solution;

4. computerized cognitive diagnosis; etc.

General Graded Response Model

• Framework

1. Operating Characteristic $P_{x_g}(\theta)$:

 Conditional probability, given θ, with which the individual with ability θ receives a score x_g, that is,

 $$P_{x_g}(\theta) \equiv \text{prob.}[X_g = x_g \mid \theta],$$
\(\theta \): latent trait (e.g., ability, attitude, etc.) that assumes any real number,

\(g \): an item, the smallest unit of manifest entity for measuring \(\theta \),

\(X_g \): a graded item response to item \(g \), with \(x_g (=0, 1, \ldots, m_g) \) as its realization.

2. **Response Pattern** \(V \):

A sequence of \(X_g \) for \(g = 1, 2, \ldots, n \), with its realization, \(v \) such that

\[
v = \{ x_1, x_2, \ldots, x_g, \ldots, x_n \}.
\]

3. **Local Independence** (Lord & Novick, 1968):

It is assumed that within any group of individuals all characterized by the same value of ability \(\theta \) the distributions of the item responses are all independent of each other, that leads to:

\[
P_v(\theta) \equiv \text{prob.}[V = v \mid \theta] = \prod_{x_g \in v} P_{x_g}(\theta),
\]

\(P_v(\theta) \): conditional probability, given \(\theta \), for the response pattern \(v \), also the likelihood function \(L(v \mid \theta) \) for \(V = v \).
• General Model

1. Processing Function \(M_{x_{g}}(\theta) \) \cite{Samejima1995, Samejima1997}:

 Joint conditional probability with which the individual completes the step \(x_{g} \) successfully, under the conditions that:

 (a) the individual's ability level is \(\theta \), and

 (b) the steps up to \((x_{g} - 1) \) have already been completed successfully.

Assume that \(M_{x_{g}}(\theta) \) is non-decreasing in \(\theta \), indicating that each item has some direct and positive significance to the ability measured.

\[
M_{x_{g}}(\theta) = \begin{cases}
1 & \text{for } x_{g} = 0 \\
0 & \text{for } x_{g} = m_{g} + 1
\end{cases}
\] \hspace{1cm} (1)

for all \(\theta \), indicating:

i. everyone can at least obtain the item score 0, and

ii. no one is able to obtain the item score \((m_{g} + 1) \).

2. Fundamental Formula:

\[
P_{x_{g}}(\theta) = \prod_{s \leq x_{g}} M_{s}(\theta) \left[1 - M_{(x_{g}+1)}(\theta) \right]
\] \hspace{1cm} (2)

\cite{Samejima1972}.
3. Cumulative Operating Characteristic \(P_{x_g}^{*}(\theta) \) (Samejima, 1995):

Conditional probability with which the individual of ability \(\theta \) completes the cognitive process successfully up to the step \(x_g \) or further. Thus

\[
P_{x_g}^{*}(\theta) = \prod_{s \leq x_g} M_s(\theta).
\] (3)

From Eqs. (2) and (3):

\[
P_{x_g}(\theta) = P_{x_g}^{*}(\theta) - P_{(x_g+1)}^{*}(\theta).
\] (4)

\(P_{x_g}^{*}(\theta) \) becomes the item characteristic curve (ICC), \(P_g(\theta) \), when \(m_g = 1 \), i.e., in the general dichotomous response model. \(P_{x_g}^{*}(\theta) \) is also non-decreasing in \(\theta \), and from Eqs. (1) and (3)

\[
P_{x_g}^{*}(\theta) \begin{cases} 1 & \text{for } x_g = 0 \\ 0 & \text{for } x_g = m_g + 1 \end{cases}
\]

for all \(\theta \).

An alternative interpretation of Eq. (3) is that, assuming that the factors affecting the individual’s attitude toward \(x_g \) can be classified into two distinct tendencies:

(a) being tentatively attracted by \(x_g \), and

(b) its simultaneous or later rejection (Samejima, 1972).
Homogeneous and Heterogeneous Cases

• Homogeneous Case

1. Family of models in which $P_{x_g}^*(\theta)$ s for $x_g = 1, 2, ..., m_g$ are identical in shape.

They are positioned alongside the abscissa in accordance with the item score x_g.

FIGURE 1: Example of a set of $P_{x_g}^*(\theta)$ in the homogeneous case.

2. General Formula:

$$P_{x_g}^*(\theta) = \int_{-\infty}^{a_g(\theta-b_{x_g})} \psi(t) \, dt ,$$

where

$$-\infty = b_0 < b_1 < b_2 < < b_{m_g} < b_{m_g+1} = \infty ,$$

$\psi(\bullet)$: some density function.

a_g: item discrimination parameter.

b_g: item score difficulty parameter.
3. Examples of Specific Models

(a) Normal ogive model (Samejima, 1969, 1972):

\[P_x(\theta) = \frac{1}{\sqrt{2\pi}} \int_{a_{x-1}}^{a_x} \exp \left[-\frac{t^2}{2} \right] \, dt \cdot \] \hspace{1cm} (6)

FIGURE 2: Typical operating characteristics, \(P_x(\theta) \).

FIGURE 3: \(M_x(\theta) \) 's and \(P_x^*(\theta) \) 's in the normal ogive model.

(b) Logistic Model (Samejima, 1969, 1972):

\[P_x(\theta) = \frac{\exp [-Da_g(\theta - b_{x+1})] - \exp [-Da_g(\theta - b_x)]}{1 + \exp [-Da_g(\theta - b_x)][1 + \exp [-Da_g(\theta - b_{x+1})]]} \cdot \] \hspace{1cm} (7)

\(D \): scaling factor, usually 1.7.

Rasch model is a special case of Eq. (7) when \(Da_g = 1 \).

FIGURE 4: \(M_x(\theta) \) and \(P_x^*(\theta) \) in the logistic model.

NOTE: Birnbaum (1968) proposed the logistic model for dichotomous responses as a substitute for the normal ogive model. On the graded response level, however, these two models are substantially different in \(M_x(\theta) \).
Heterogeneous Case

1. All models in which not all $P^*_x(\theta)$'s are identical in shape.

2. Examples of Specific Models

(a) Extended Bock's nominal model:

Bock's nominal response model (Bock, 1972):

$$P_{h_g}(\theta) = \frac{\exp[\alpha_{h_g} \theta + \beta_{h_g}]}{\sum_{s \in H_g} \exp[\alpha_s \theta + \beta_s]} .$$

h_g: a nominal response to item g.

H_g: the set of all h_g's.

$\alpha_{h_g} (> 0)$, β_{h_g}: item response parameters.

Samejima (1972) demonstrated that Bock's nominal response model can be considered as a graded response model in the heterogeneous case, if h_g in Eq. (8) is replaced by x_g, and

$$\alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_m ,$$

where a strict inequality should hold, at least, at one place.

Samejima did not pursue this further, for the reason that this model is based on the assumption that the conditional ratio, given θ, of the probabilities of any two discrete
responses to item g is invariant regardless of the set of alternatives selected from the answer space: the same assumption used in the individual choice behavior (Luce, 1959). This is not acceptable in graded response situations in general.

Later, however, Masters (1982) proposed his partial credit model and Muraki (1992) proposed his generalized partial credit model, both of which are special cases of Bock’s nominal model that satisfy Eq. (9) with a strict inequality everywhere.

i. Masters’ partial credit model:

\[\alpha_{x_g} = x_g + 1 \quad \text{for} \quad x_g = 0, 1, \ldots, m_g \]

ii. Muraki’s generalized partial credit model:

\[\alpha_{x_g} = (x_g + 1) a_g \quad \text{for} \quad x_g = 0, 1, \ldots, m_g \]

(b) Logistic positive exponent family of models (LPEF)

(Samejima, 1998b):

\[P^*_{x_g} (\theta) = [\Psi_g(\theta)]^{\xi_{x_g}} \] \hspace{1cm} (10)

where

\[\Psi_g(\theta) = \frac{1}{1 + \exp \left[-D \alpha_g (\theta - \beta_g) \right]} \] \hspace{1cm} (11)
\(\xi_{x_g} (> 0) \) : acceleration parameter.

FIGURE 5: Examples of \(P^*_x(\theta) \) in LPEF.

(c) **Acceleration model** (Samejima, 1995, 1997):

\[M_{x_g}(\theta) = \left[\Psi_{x_g}(\theta) \right]^{\xi_{x_g}} \] \hspace{1cm} (12)

\(\xi_{x_g} (> 0) \) : *step* acceleration parameter.

A family of models in which \(\Psi_{x_g}(\theta) \) in Eq. (12) is specified by a *strictly increasing*, five times differentiable function of \(\theta \) with zero and unity as its two asymptotes.

E.G., Problem solving that requires a number of subprocesses before attaining the solution.

Graded item scores, or partial credits, 1 through \(m_g \), are assigned for the successful completion of separate observable steps.

E.G.,

\[\Psi_{x_g}(\theta) = \frac{1}{1 + \exp \left[-D \alpha_{x_g}(\theta - \beta_{x_g}) \right]} \] \hspace{1cm} (13)

\(\alpha_{x_g} (> 0) \) : *step* discrimination parameter.

\(\beta_{x_g} \) : *step* location parameter.

Expanded LPEF for *cognitive diagnosis*, etc.
Model Selection

- Desirable Features

1. The principle and the set of assumptions behind the model should agree with the psychological reality in question.

FIGURES 6 and 7: Similarities of the operating characteristics provided by two or more different models. (Masters’ partial credit model vs. acceleration model.)

Figures 6 and 7 exemplify the fact that curve fitting alone is not a sufficient model validation.

This assures that the likelihood function of any response pattern consisting of such responses has a unique local or terminal maximum.

FIGURE 8: Illustrative examples of likelihood functions that has a unique modal point and multi-modal points, respectively.
Basic Function:

\[A_{x_\theta}(\theta) \equiv \frac{\partial}{\partial \theta} \log P_{x_\theta}(\theta) = \sum_{x\leq x_\theta} \frac{\partial}{\partial \theta} \log M_{\theta} + \frac{\partial}{\partial \theta} \log [1-M_{(x_\theta+1)}(\theta)] . \] (14)

(a) \(A_{x_\theta}(\theta) \) is strictly decreasing in \(\theta \), and

(b) its upper and lower asymptotes are nonnegative and non-positive, respectively.

FIGURE 9: Examples of a set of basic functions in the extended Bock model (Masters' model).

Item Response Information Function:

\[I_{x_\theta}(\theta) \equiv -\frac{\partial^2}{\partial \theta^2} \log P_{x_\theta}(\theta) . \] (15)

Alternatively, the unique maximum condition is satisfied if \(I_{x_\theta}(\theta) \) is positive for all \(\theta \).

3. The model should provide the ordered modal points of the operating characteristics in accordance with the item scores.

A sufficient, though not necessary, condition:

\[A_{(x_\theta-1)}(\theta) < A_{x_\theta}(\theta) \quad \text{for} \quad x_\theta = 1, 2, \ldots, m_\theta , \]

for all \(\theta \).
4. **Additivity** of the operating characteristics (Samejima, 1995, 1997).

The operating characteristics still belong to the *same* mathematical model under:

(a) *finer* recategorizations, and

(b) *combinings* of two or more categories together.

FIGURE 10: Example of additivity (acceleration model).

Graded item scores, or partial credits, are more or less *incidental*.

E.G. 1. Letter grades, A, B, C, D, and F, are combined to *pass-fail* grades.

E.G. 2. With the advancement of computer technologies, more abundant information can be obtained from the individual’s *performance in computerized experiments* as we proceed in research, and thus finer recategorizations of the whole cognitive process become possible.

The criterion *(a)* leads to:

5. *Generalizability of the model to a continuous model.*

TABLE 1: Evaluation of various models in terms of the above criteria.
Estimation of the Operating Characteristics

- Parametric Estimation

1. Multilog (Thissen, 1991):

 Direct expansion of Bock and Atkin’s (1981) EM solution of the marginal likelihood equations for dichotomous responses for Samejima’s logistic model and Bock’s nominal response model and its extentions to graded response models.

2. Parscale (Muraki and Bock, 1993):

 Essentially the same EM algorithm for the above models.

- Nonparametric Estimation and Parameterization

When the model has more than two item response parameters, as is the case with the LPEF, the acceleration model, etc., it is recommendable to use a nonparametric method of estimating the operating characteristics, such as Levine’s (1984) and Samejima’s (1998a), and then parameterize the outcomes, using a very general semiparametric method, such as Ramsay and Wang’s (1993).
This will ameliorate the problem of indeterminancy of the estimated item response parameters.

References

NCME99SL.TEX
April 16, 1999
NCME99: Figure 1

(6-7-88) ITEM CHARACTERISTIC FUNCTION IN THE NORMAL OGIVE MODEL
Normal Ogive Model; $a_g = 1.0$, $b_{g2} = -1.50, -0.50, 0.00, 0.75, 1.25$

(Taken from ONR/RR-79-4: page 18)
Normal Ogive Model

- prf, coc: grade 1
- prf: grade 2
- prf: grade 3
- prf: grade 4
- prf: grade 5
- coc: grade 2
- coc: grade 3
- coc: grade 4
- coc: grade 5

THETA

0.400 0.600 1.200 3.000 6.000
HOMO-NSML.DAT, INHOMOG, plotted by F. Samejima
Logistic Model

- prf, coc: gr. 1
- prf: grade 2
- prf: grade 3
- prf: grade 4
- prf: grade 5
- coc: grade 2
- coc: grade 3
- coc: grade 4
- coc: grade 5

PRC.F., CUM.OPR.CH.

THETA

SD-AERA95: 9502.F, PROCESSING FUNCTIONS, CUM.OP.CHARACTERISTICS, SCORES 1-5, LOGISTIC MODEL, HOMOGENEOUS CASE, AG=1.0, BXG=-3.5, -3.0, -2.0, 0, 3.0; 9502SFGR.RST2, 9502SFGR.RST3, 02/16/95
NCME99: Figure 5

Cum. Operating Character.

THETA

0.0 1.0 2.0 3.0 4.0 5.0 6.0

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

acc.pr. = 1.0
acc.pr. = 0.8
acc.pr. = 0.6
acc.pr. = 0.5
acc.pr. = 0.3
acc.pr. = 0.1
acc.pr. = 0.0
acc.pr. = 0.1
acc.pr. = 1.5
acc.pr. = 2.0
acc.pr. = 3.0
9302.F, SM930LF; OPERATING CHARACTER.; ITEM=KS10, STEPS 0-6, STP. 1, 2, 3: ALP. = 1, BET. = -1, GAM. = .5, .5, .5; STP. 4, 5, 6: ALP. = 1, BET. = 1, GAM. = .5, .5, .5; STP. 2 + 3, 2 + 3 APPR.; 9302ITMKS10MD.RST21, 9302HTRKS4.RST1, SM9301KS10.RST, 3/06/95

AERA95F7.DAT, INHTR93, plotted by F. Samejma
<table>
<thead>
<tr>
<th>Additivity</th>
<th>Normal Ogive & Logistic Models</th>
<th>Acceleration Model</th>
<th>LPEF</th>
<th>Extended Bock Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>#2</td>
<td>Yes</td>
<td>Robust</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Generalizability to a continuous response model</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Satisfaction of the unique maximum condition</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Orderliness of modal points</td>
<td>Yes</td>
<td>Robust</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
I. DOCUMENT IDENTIFICATION:

Title: General Graded Response Model

Author(s): Fumiko Sonejima

Corporate Source: University of Tennessee, Knoxville

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample sticker shown below will be affixed to all Level 1 documents

<table>
<thead>
<tr>
<th>Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Check Box]</td>
</tr>
</tbody>
</table>

Permit reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

The sample sticker shown below will be affixed to all Level 2A documents

<table>
<thead>
<tr>
<th>Level 2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Check Box]</td>
</tr>
</tbody>
</table>

Permit reproduction and dissemination in microfiche, and in electronic media for ERIC collection subscribers only.

The sample sticker shown below will be affixed to all Level 2B documents

<table>
<thead>
<tr>
<th>Level 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Check Box]</td>
</tr>
</tbody>
</table>

Permit reproduction and dissemination in microfiche only for ERIC archival collection subscribers only.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature:

Fumiko Sonejima

Printed Name/Position/Title:

Fumiko Sonejima / Professor

Telephone: 453-974-3008

E-Mail Address: Sonejima@psy.utk.edu

Date: 9-21-99

(over)
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

<table>
<thead>
<tr>
<th>Publisher/Distributor:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Price:</td>
<td></td>
</tr>
</tbody>
</table>

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
</tbody>
</table>

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

University of Maryland
ERIC Clearinghouse on Assessment and Evaluation
1129 Shriver Laboratory
College Park, MD 20742
Attn: Acquisitions

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2nd Floor
Laurel, Maryland 20707-3598
Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
e-mail: ericfac@inet.ed.gov
WWW: http://ericfac.pccd.csc.com

PREVIOUS VERSIONS OF THIS FORM ARE OBSOLETE.