Refocusing Teacher Education: 21st Century Teacher Competencies and Related Factors.

Advances in information technology have introduced fundamental changes in business structures and work processes. These changes demand the development of new educational approaches that integrate the thinking of business and teacher education as a foundation for building teachers' skills to prepare their students for life and work in these organizations. This paper consists of four sections: (1) the 21st century teacher competencies that relate to people skills of negotiating, networking, creating, and sustaining both short- and long-term working relationships across cultures and functions, and task skills of designing group technology-based projects, data-driven analyses and problem solving, and keeping current skills in ways of thinking, learning, and dealing with change, copious amounts of data, and new technologies; (2) instructional best practices that foster group work, decision-making, project learning, and appropriate technology; (3) the changes needed in university infrastructures to enable teacher education to implement new instructional practices (i.e., adjusting internal load/rewards to promote faculty collaboration, specialized independent work units, university/school/business partnerships, and outcome-oriented evaluation criteria); and (4) components of teacher education programs that prepare teachers for the realities of life in the 21st century. (Contains 19 suggested readings.) (Author/SM)
Refocusing Teacher Education:
21st Century Teacher Competencies and Related Factors

Susan Trimble
College of Education
Georgia Southern Univ
Statesboro, GA 30456-8134
(Ph) 912-681-5092
susatrim@gsvms2.cc.gasou.edu

Tom Case
College of Business Administration
Georgia Southern Univ
Statesboro, GA 30460-8152
(Ph) 912-681-5205
tcase@peachnet.campuscwix.net

Abstract

Advances in information technology have introduced fundamental changes in business structures and work processes (e.g. delayering hierarchies, decentralizing/distributing decision making, building strategic alliances, expanding knowledge management capacities, and creating virtual corporations). These changes demand the development of new educational approaches that integrate the thinking of business and teacher education as a foundation for building teachers' skills to prepare their students for life and work in these organizations.

This paper consists of four sections: (1) the 21st century teacher competencies that relate to people skills of negotiation, networking, creating and sustaining both short- and long-term working relationships across cultures and functions, etc. and task skills of designing group technology-based projects, data-driven analysis and problem-solving, and keeping current skills in ways of thinking, learning, and dealing with change, copious amounts of data, and new technologies, (2) instructional "best practices" that foster groupwork, decision-making, project-learning, and appropriate technology, (3) the changes needed in university infrastructures to enable teacher education to implement new instructional practices, i.e., adjusting internal load/rewards to promote faculty collaboration, specialized independent work units, university/school/business partnerships, and outcome-oriented evaluation criteria, and (4) components of teacher education programs that prepare teachers for the realities of life in the 21st Century.
Additional Teacher Competencies for the 21st Century

Additional Content: Knowledge of:
- violence and safety
- character education
- learning styles
- basic statistics
- diversity issues with wide range of students: cultural, racial, gender, age-related issues; AP students with high risk students
- emerging technology as artificial intelligence, virtual reality, personal digital assistants

Additional People Skills: The ability
- to be part of a team
- to negotiate
- to network across cultural environments
- to collaborate on projects
- to relate to people of diverse backgrounds

Additional Pedagogy Skills:
- to manage complex classroom social interactions
- to be aware of societal forces (violence, suicide, gangs)
- to incorporate forms of character education
- to match teaching strategies and technology with needs of students and appropriate objectives
- to design learning experiences that create global cultural connections
- to scaffold learning experiences
- to assess student progress and outcomes
- to establish meaningful evaluation criteria
- to demonstrate a basic understanding of statistics
- to use learning theory to teach diverse learners
- to possess multiple learning strategies for a diverse student body (culture, AP, high risk)
- to incorporate forms of alternative assessment

Keeping Current Skills: Thinking/attitude skills to deal with increased pace of change and more information
- to learn continually
- to deal with complexity (prioritize, establish boundaries, small steps) and to tolerate ambiguity
- to establish criteria and evaluate multiple sources
- to use critical thinking and problem-solving
- to make data-based decisions
- to possess a global consciousness and an international perspective
- to know and use the value of interdependency
- to use change models for initiating and sustaining change
Range of Teacher Technology Competencies

<table>
<thead>
<tr>
<th>No Initiative</th>
<th>Involvement</th>
<th>Instructional Design</th>
<th>Decision-Making</th>
<th>Multiple Perspectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-INVOLVEMENT</td>
<td>INDIVIDUAL SKILL DEVELOPMENT</td>
<td>SKILL INTEGRATION with Content in Problem-Solving Situations</td>
<td>MULTI-SKILL CREATIVITY Global Projects</td>
<td></td>
</tr>
<tr>
<td>AWARENESS</td>
<td>Designing learning activities that may require</td>
<td>Designing interdisciplinary projects that include multiple skills and multiple problems, large data sets, work in teams, multiple skills and global connections across cultures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of technology when required by the school</td>
<td>answering real-world problems</td>
<td>global data analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure to others’ use of technology</td>
<td>choosing the best technology for the learning objective</td>
<td>designing collaborations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taking students to a computer lab where others coordinate instruction</td>
<td>evaluating Web-based information and sources</td>
<td>designing problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awareness of the variety of Web and software resources</td>
<td>aggregating data from multiple sources</td>
<td>expanding options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Making connections with others through the Internet using email, listserves, and chat rooms</td>
<td>linking interdisciplinary information sources</td>
<td>Teachers leave with a set of skills adaptable to any teaching situation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning to do Web searches</td>
<td>making connections & meaning to threads of information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>Skill Descriptions</td>
<td>Example</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel One</td>
<td>Decision-Making</td>
<td>Egg-Drops, Global Comparison of ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerated Reader</td>
<td>Decision-Making, Decisions;</td>
<td>Using GIS data base, for soil, natural resources, demographics, to define problems and seek solutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Josten Learning Programs</td>
<td>Jim LaBue’s molecular design</td>
<td>Internet Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NetMeeting</td>
<td>Project-based Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SunCity, etc.; Trail Series</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• to know and use the value of interdependency
• to use change models for initiating and sustaining change

Best Practices in Teacher Education

A. Extended experiences in schools incorporating the following:

- Alternating field work and campus classroom instruction
- Reflecting on experiences with a mentor, master teachers, instructor, peer group
- Working in high performing schools using technology
- Participating in schools with community & business partnerships - FIPSE

B. Learning classroom experiences that address competencies

- Combination of directed instruction and constructivists strategies that fit the technology to the student (Roblyer’s (1998), p. 59 for chart)
- Use of technology for support and instruction: Class Web Page for class resources, links; Web browsers to enrich scope of assignments, audio conferencing and computer conferencing tools, such as chat rooms and list serves, and video conferencing to support interpersonal communication (Microsoft Net Meeting and Ubique Virtual Places for 20 people to meet), PowerPoint slides; sport interactive white boards, variety of software for range of competencies, subject-specific software)
- Participation in group projects
- Connections with professor and other students, i.e., tutoring and mentoring
- Time for reflection, increased time allotted for learning and practicing skills
- Experts’ collaboration of subject area + pedagogy
- Learning environments and lesson plans that reflect systematically planned instruction (Gagne, Briggs, & Wager, 1992; Smith & /Ragan, 1993, Hamza & Alhalabi, 1998) and models such as the ASSURE model (Heinich et al., 1998) that outlines the following five steps of instructional planning (analyze learners, state objectives, select media and materials, use materials, require learner performance, evaluate and revise).
- Problem-solving techniques such as the H3 creative problem-solving model (from Hamza, Hafer, & Hall, 1998; view it as www.iste.org/L&L/). First, access the needs of the situation, search the current situation, assess solutions, select the ideal; distinguish between the problem itself and its symptoms; propose alternatives; implement, evaluate the results, and make adjustments.
- Encouragement of creativity through guest speakers, brainstorming session, case studies, CU-SeeMe technology (White Pine Software, www.wpine.com) for the addition of human interaction in distance education
- Gradual increase in complexity of skills (Korthagen & Kessels, 1999)]
- Use of case studies [FIPSE Pace University]
University Infrastructures to Support 21st Century Teacher Preparation Programs

<table>
<thead>
<tr>
<th>University Infrastructures to Support 21st Century Teacher Preparation Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundaryless universities that are electronically linked to appropriate external organizations to ensure a continuous influx of new ideas, initiatives, technologies, and evaluative feedback.</td>
</tr>
<tr>
<td>Synergistic inter-university partnerships that enable a superior educational experience for students at each institution.</td>
</tr>
<tr>
<td>Partnerships with business organizations and third-party training/educational institutes.</td>
</tr>
<tr>
<td>University policies that enable, not inhibit, student enrollment in valuable courses at other universities.</td>
</tr>
<tr>
<td>Ensure equitable distribution of technology resources across colleges and departments</td>
</tr>
<tr>
<td>Student-friendly policies and procedures that enable individual students to custom-design a program of study that optimally satisfies his/her needs.</td>
</tr>
<tr>
<td>Administrative processes that continuously review mechanisms for leveraging the resources within traditional budget units in order to enhance existing degree programs and create new ones.</td>
</tr>
<tr>
<td>A telecommunications infrastructure that facilitates the establishment of electronic and video-conferencing links among secondary schools, business organizations, and other universities.</td>
</tr>
<tr>
<td>Ready access to emerging instructional technologies and their rapid assimilation within teacher preparation curricula.</td>
</tr>
<tr>
<td>Technology demonstration/teaching centers focused on assisting university faculty in mastering new technologies and providing curriculum integration insights.</td>
</tr>
<tr>
<td>Forum for faculty sharing of technology-based teaching techniques.</td>
</tr>
<tr>
<td>University technology master plans that ensure the development of an appropriate telecommunications infrastructure.</td>
</tr>
<tr>
<td>Technology-oriented teaching centers for ongoing development for university faculty, students, and alumni.</td>
</tr>
<tr>
<td>Release time and/or cooperative experiences/internships that enable university faculty to stay abreast of technological realities and opportunities in secondary schools.</td>
</tr>
<tr>
<td>Creation/facilitation of peer mentoring mechanisms to ensure ongoing communication among teacher preparation program graduates.</td>
</tr>
<tr>
<td>Faculty and administration evaluation and reward structures that incent all of the above.</td>
</tr>
</tbody>
</table>
Components of Responsive Teacher Education Programs

A. Contextual factors

1. Federal Support and directives, e.g., from the

- National Council for the Accreditation of Teacher Education to enforce the integration of technology in teacher preparation
- Department of Education’s Preparing Tomorrow’s Teachers to Use Technology (www.ed.gov/teachtech/).
- Past initiatives that had no financial backing, as in 1996, the 21st Century Teachers Initiative and the McGuffey Project, of a Washington non-profit group.
- A current initiative of the University of Phoenix, a for-profit organization that specializes in on-line courses for adults. www.21ct.org, a place to exchange ideas and material

2. State funding: e.g., Texas’s $25 million to encourage teacher education programs to be more field-based and technology intensive.

3. State policies: deregulation, privatization, teacher certification, alternative certification, licensure of other agencies, associations, schools, and individual mentors as providers

B. Procedures: Various procedures enable traditional Schools of Education to become responsive organizations that provide the learning experiences that result in qualified teachers.

Responsive teacher education program do the following:

1. Purpose and Process

- Determine their purpose, i.e., to provide a broad-based education in the form of degrees & certification for technology-proficient individuals to promote learning with diverse students.
- Identify competencies, align instruction, and assess to match competencies
- Demonstrate and require technology-enriched instruction
- Focus on outcomes
- Monitor student progress and incorporate accountability into programs
- Speed up change process and course approval

2. Client-Focused

- Provide a variety of options to accommodate the learner (market-driven), increasing the variety of course times and locations, expanding teletraining, and granting credit for accredited educational offerings from public and private providers, i.e., Web-based, College of Ed-based, private corporate-based, school & district-based.
- Conduct market surveys and trend analysis to upgrade curriculum and address changing marketplace demographics
- Customize graduate degree programs to students’ needs

3. Faculty-Development

- Provide incentives for faculty and students to learn technology-expertise and to keep current in their field
- Provide internships in technology-rich schools and organizations, for faculty and students with other degrees
4. Making connections/partnerships/collaborations

- University departments + schools. Connect university math, science, technology, and business departments + schools, EX: multi-school Hands-on Universe program at the University of California at Berkeley and funded by the National Science Foundation.

- University + industry. Connect campus faculty with industry personnel involved in recent technology innovations and implementing project work. An international organization, The American Creativity Association (www.BeCreative.org) balances industry and academia interests.

- University departments + schools of education. Develop intra-university program partnerships between schools of education and college science, math, business, and technology departments.

- Schools of education + schools that use technology in instruction effectively.
Suggested Readings on Information Age Organization Structures

Suggested Readings on Technology and Teacher Education

Roblyner

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Sign here, please

[Signature]

Name/Address
P.O. Box 8134, GSU
Statesboro, GA. & 30458-8134

Organization/Address

Date: 9/22/99

Please check:

Level 1

Level 2A

Level 2B

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2nd Floor
Laurel, Maryland 20707-3498

Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
e-mail: ericfac@inet.ed.gov
WWW: http://ericfac.piccard.csc.com

EFF-088 (Rev. 9/97)
PREVIOUS VERSIONS OF THIS FORM ARE OBSOLETE.