This paper provides an overview of different electronic portfolio development tools and introduces a strategy for using Portable Document Format (Adobe Acrobat PDF) files to store and organize electronic teaching portfolios. A 12-step process for constructing electronic portfolios is described, as are storing the working portfolio, publishing the presentation (formal) portfolio, and authoring tools for multimedia portfolios. A list is provided of topics for training sessions that are being offered to students at the University of Alaska Anchorage School of Education to develop electronic portfolios, using Adobe Acrobat and either CD-ROM or videotape as the publishing medium. Standards for electronic portfolios are also discussed. (Contains 3 tables and 32 references.) (AEF)
ELECTRONIC TEACHING PORTFOLIOS

Dr. Helen Barrett
University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99504
Tel: 907-786-4423 Fax: 907-786-4444 E-mail: afhcb@uaa.alaska.edu

Abstract: As we move to more standards-based teacher performance assessment, we need new tools to record and organize evidence of successful teaching, for both practicing professionals and student teachers. This session will provide an overview of different electronic portfolio development tools and will introduce a strategy for using Portable Document Format (Adobe Acrobat PDF) files to store and organize Electronic Teaching Portfolios.

1. Introduction

This paper will briefly cover various strategies for authoring electronic portfolios and design for an electronic teaching portfolio, including goals/purpose of the portfolio, evaluation criteria, audience, content, context and multimedia materials to include in the portfolio. One strategy often overlooked in the development of electronic portfolios is the use of Adobe Acrobat’s Portable Document Format (PDF) to gather evidence from a variety of applications. There are other authoring software packages which allow the creation of hypertext links between goals, student work samples in multiple forms of media, rubrics, and assessment. The software used to create the electronic portfolio will control, restrict, or enhance the portfolio development process. Form should follow function as well, and the electronic portfolio software selected should match the vision, style and skills of the portfolio developer, as well as the technology available.

2. Background

A portfolio is a purposeful collection of student work that demonstrates effort, progress and achievement; a portfolio provides a richer picture of student performance than can be gained from more traditional, objective forms of assessment. Most traditional standards-based portfolios are 3-ring notebooks, organized with dividers and sections for paper-based documents demonstrating each standard. An Electronic Portfolio uses multimedia technology allowing students/teachers to collect and organize portfolio artifacts in many media types (audio, video, graphics, text) with hypermedia links connecting that evidence to the appropriate standards. Students/teachers can publish their Electronic Portfolios on CD-Recordable discs, video tape or the Internet. The benefits of Electronic Portfolios over traditional paper-based portfolios are:

1. Makes student work in many media accessible, portable, examinable, widely distributable
2. Makes performances replayable and reviewable; it is important to see more than once
3. Hypertext links allow clear connections between standards and portfolio artifacts
4. Creating an Electronic Portfolio can develop skills in using multimedia technologies
5. A teacher with an electronic portfolio will be more likely to have students with electronic portfolios.
6. It's easier to manage the portfolio process, especially storage, presentation, and duplication

3. Process for Constructing Electronic Portfolios

At the 1997 SITE Conference, Boulware, Bratina, Holt & Johnson described a process for developing Pre-Service Teacher Portfolio Process which was based on a portfolio development manual published by Campbell, Cignetti, Melenyzer, Nettles & Wyman (1997):

- Distinguish between a working and a presentation portfolio;
- Organize a working portfolio according to standards;
- Identify artifacts that denote accomplishments for each standard; and
- Produce a working portfolio.

In an article that was published in the Proceedings of the National Educational Computing Conference (1997) and updated in the October, 1998 issue of Learning & Leading with Technology, I outlined a process for developing electronic portfolios in contrast to the process normally used to develop multimedia presentations:
• decide on goals of portfolio based on learner outcome goals that should be based on national/state/local standards with associated evaluation rubrics
• decide on and describe the assessment context
• decide on and describe the audience(s) for the portfolio (student, parent, college, community?)
• decide on content of portfolio items (determined by context)
• decide which software tools are most appropriate for the portfolio context
• decide which storage and presentation medium is most appropriate for the situation
• gather multimedia materials to include in the portfolio which represent learner's achievement (preferably linked to standards, preferably in a relational database)
• record student self-reflection on work and achievement of goals
• record teacher feedback on student work and achievement of goals
• organize with hypermedia links between goals, student work samples, rubrics, and assessment
• present portfolio to appropriate audience (by student, in age-appropriate situations)
• evaluate effectiveness of portfolio related to the purpose and assessment context

3.1. Storing the Working Portfolio

There are many technologies that can be used to store digital portfolio artifacts during the development stages. Some of the most common include:
• Computer diskette
• CD-Recordable (CD-R) & CD-ReWritable (CD-RW)
• Video Tape
• High density floppy (Zip disk)
• WWW or Intranet
• Jaz disk
• DVD-RAM (coming soon)

3.2. Publishing the Presentation (Formal) Portfolio

Many of those same strategies will be used to publish the formal or presentation portfolio, including CD-R, Video Tape, WWW, DVD-RAM. The choice depends on the audience for the portfolio.

3.3. Authoring Tools for Multimedia Portfolios

It is important to choose software tools that allow teachers and students to create hypertext links between goals, outcomes and the various student artifacts (products and projects) displayed in multimedia format that demonstrate their achievement. Although there are some very good commercial electronic portfolio programs on the market, they often reflect the developer's style or are constrained by the limits of the software structure. I have found that many electronic portfolio developers want the freedom to create their own portfolio structure using appropriate off-the-shelf software.

3.3.1. Generic Construction Tools (off-the-shelf software)

There are a number of generic types of software with examples shown of brand name products.
• Relational Data Bases, such as FileMaker Pro 4.0 or Microsoft Access
• Hypermedia "card" formats, such as HyperStudio, HyperCard, Digital Chisel, or SuperLink + commercial electronic portfolio templates available.
• Multimedia authoring software, such as Macromedia Authorware, Macromedia Director
• Network-compatible hypermedia:
 • HTML/WWW Pages
 • Adobe Acrobat (PDF)
• Office "Suite" Multimedia slide shows, such as Microsoft PowerPoint, AppleWorks

3.3.2. Commercial Portfolio Software Packages

There are several commercial software packages that I think are appropriate for electronic teaching portfolios:
4. Skills for developing Electronic Portfolios

The skills necessary to develop an electronic portfolio are the same for developing multimedia presentations. Below is a list of topics for training sessions that are being offered to students at the University of Alaska Anchorage School of Education, to develop Electronic Portfolios, using Adobe Acrobat and either CD-ROM or video tape as the publishing medium:

1. Converting files from any application to PDF using PDFWriter or Acrobat Distiller
2. Scanning/capturing and editing graphic images
3. Digitizing and editing sound files
4. Digitizing and editing video files (VCR -> computer)
5. Organizing portfolio artifacts with Acrobat Exchange, creating links & buttons
6. Organizing multimedia files and pre-mastering CD-ROM using Jaz disks
7. Writing CD-Recordable disc using appropriate CD mastering software
8. Recording computer images with narration to video tape (computer -> VCR)

5. Electronic Portfolios and Standards

As I attend presentations at national and regional conferences, I see a lot of variations on the technologies used to develop electronic portfolios, but very little linkage to the actual benchmarks that students are supposed to be demonstrating. Too many of the current examples of electronic portfolios, both "classroom-grown" and commercial, focus on the glitz and glamour of high tech multimedia; very few commercial programs provide the capability of directly linking students' digital portfolio artifacts to the standards for which they demonstrate achievement. Most states have adopted standards for both students, practicing teachers, and new teachers. These standards form an ideal framework for organizing an electronic portfolio. I propose that a portfolio without standards is just a multimedia presentation or a fancy electronic resume or a digital scrapbook. Without standards as the organizing basis for a portfolio, the collection becomes just that...a collection, haphazard and without structure; the purpose is lost in the noise, glitz and hype. High technology disconnected from a focus on curriculum standards will only exacerbate the lack of meaningful integration of technology into teaching and learning. (portions of this section were originally published in the Proceedings of the Tel-Ed 98 Conference)

6. Conclusions

Electronic portfolios are a unique way to document student progress, encourage improvement and motivate involvement in learning. There are a variety of tools for constructing electronic teaching portfolios. The choice of software can either restrict or enhance the development process and the quality of the final product. I have posted another web-based article (noted in the Web References below) which outlines in more detail the advantages and disadvantages of each of the "off-the-shelf" development tools. Online research using these tools is now being conducted to determine the best technological strategy to use, based on a variety of human and technological factors. Results will be reported at future SITE conferences and posted on-line at http://transition.alaska.edu/www/portfolios.htm.

7. References

Articles

Books

Web References

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Limited experience with desktop computer - able to use mouse, menus, run simple programs</td>
<td>Level 1 PLUS proficiency with a word processor, basic e-mail and Internet browsing; enter data into a pre-designed database</td>
<td>Level 2 PLUS able to build a simple hypertext (non-linear) document with hypertext links (using either a hypertext program like HyperStudio, Adobe Acrobat Exchange, or an HTML WYSIWYG editor)</td>
<td>Level 3 PLUS able to record sounds, scan images, output computer screens to a VCR; design an original database</td>
<td>Level 4 PLUS multimedia programming or HTML authoring; create QuickTime movies live or from tape; program a relational database</td>
</tr>
</tbody>
</table>

Table 1: Level of Teacher Skill (Relative Ease of Use)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No computer</td>
<td>A single computer with 8 MB RAM, 80 MB HD, no AV input/output</td>
<td>One or two computers with 16 MB RAM, 250 MB HD, simple AV input (like QuickCam)</td>
<td>Three or four computers, one of which has 32+ MB RAM, 500+ MB HD, AV input and output, scanner, VCR, video camera, high-density storage device (such as Zip drive)</td>
<td>Level 4 PLUS CD-Recorder, at least two computers with 48+ MB RAM</td>
</tr>
</tbody>
</table>

Optional: video editing hardware and software

Table 2: Level of Technology Required
<table>
<thead>
<tr>
<th></th>
<th>Relational database</th>
<th>Hypermedia “card” file (including templates)</th>
<th>Multimedia authoring software</th>
<th>WWW Pages in HTML</th>
<th>Acrobat Reader (PDF files)</th>
<th>Integrated “Office” Software Slide Shows</th>
<th>Proprietary software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure & Links</td>
<td>Structured fields/records/files linked together by common fields</td>
<td>Electronic cards (screens) linked together by “buttons”</td>
<td>Icon-based or time-based multimedia authoring environment</td>
<td>WWW pages viewed with a Web Browser (Netscape or Explorer) using links created in HTML</td>
<td>Postscript-based pages that can be navigated sequentially, or using bookmarks, links, or buttons</td>
<td>Slide Shows (i.e., PowerPoint) for presentation or “Binder” (Office) to link documents together</td>
<td>Varied: Grady Profile has Hypercard base Persona Plus uses relational database engine</td>
</tr>
<tr>
<td>Player available</td>
<td>Yes</td>
<td>Yes</td>
<td>Self-contained</td>
<td>Browser (free)</td>
<td>Reader (free)</td>
<td>Yes (PowerPoint) No (AppleWorks)</td>
<td>Yes (Grady) ? (Persona)</td>
</tr>
<tr>
<td>Advantages</td>
<td>Flexible reporting Network-friendly Web accessible Cross-platform</td>
<td>Widely accessible in classrooms Construction tools included</td>
<td>Most flexibility in development CD-ROM Cross-platform</td>
<td>Web-accessible Cross-platform</td>
<td>Web-accessible Cross-platform Create files from any application Ideal for CD-R</td>
<td>Widely accessible software. Cross-platform</td>
<td>Pre-designed and structured</td>
</tr>
<tr>
<td>Dis-advantages</td>
<td>Limitation of size of files Requires player</td>
<td>Not web-accessible View limited to screen size Steep learning curve</td>
<td>Multimedia (video) not well integrated Complex authoring</td>
<td>Size of files Limited construction tools</td>
<td>Not directly web-accessible Ease of creating hypertext links Requires original application to read.</td>
<td>Grady: not Web-accessible, Mac only, inflexible Persona: highly complex</td>
<td></td>
</tr>
<tr>
<td>Ease of Use* (Table 1)</td>
<td>4 to develop 2 to use</td>
<td>3 to develop 5</td>
<td>2 with editor 4 without 2</td>
<td>3</td>
<td>2 (Grady) ? (Persona)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Required</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3-4</td>
<td>2 (Persona)</td>
<td></td>
</tr>
<tr>
<td>Cost (with Ed. discounts)</td>
<td>$49</td>
<td>$39-$199</td>
<td>$150-$1,000</td>
<td>$49-$79</td>
<td>$49</td>
<td>$49-$500</td>
<td>Grady $199 Persona ?</td>
</tr>
</tbody>
</table>

Table 3: Comparison of Portfolio Construction Tools
NOTICE

REPRODUCTION BASIS

☒ This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☐ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").