Virtual reality (VR) is a new computational paradigm that redefines the interface between human and computer. VR may result in a significant improvement over traditional instruction because it is not only a multimedia interactive tool but also a learning environment extremely close to reality. Few empirical studies have been done on the use of VR as compared to that of other computerized or noncomputerized educational tools. It is necessary to examine VR both in different scenarios and for different applications in learning and teaching. The evaluation plan reported in this paper addresses the effect of VR support as compared to that of video support in tenth graders' learning of world geography. Videos are popular in world geography classes but may not be as effective as VR because they are two-dimensional and passive. One world geography class selected for this experiment is composed of five units. A rotation of the treatment is used: each group uses VR for two units and videos for two units; in addition, one unit is optional for every student. To determine: (1) the effect of VR support, administer competency tests, (2) student attitudinal responses toward VR, students complete survey and interview, and (3) tendency of returning to VR, students opt to attend VR lab with attendance taken. Results have implications for the design and implementation of VR support in school curricula. The student questionnaire is appended. (Author/AEF)
EVALUATION PROPOSAL: VIRTUAL REALITY SUPPORT VERSUS VIDEO SUPPORT IN A HIGH SCHOOL WORLD GEOGRAPHY CLASS

Yukiko Inoue, Ph.D.
The University of Guam

Department of Educational Research
College of Education
UOG Station, Mangilao
Guam 96923 U.S.A.
E-mail: yinoue@uog.edu
Phone: 671-745-2447/Fax: 671-734-3651

EVALUATION PROPOSAL: VIRTUAL REALITY SUPPORT VERSUS VIDEO SUPPORT IN A HIGH SCHOOL WORLD GEOGRAPHY CLASS

Yukiko Inoue
The University of Guam

Abstract

Virtual reality (VR) is a new computational paradigm that redefines the interface between human and computer. VR may result in a significant improvement over traditional instructions because it is not only a multimedia interactive tool but also a learning environment that is extremely close to reality. Yet there have been few empirical studies on the use of VR as compared to that of other computerized or noncomputerized educational tools. It is thus necessary to examine VR both in different scenarios and for different applications in learning and teaching. The evaluation plan reported here in this paper addresses one aspect of such an assessment, specifically the effect of VR support as compared to that of video support in tenth graders' learning of world geography. The reason why "World Geography" was selected was that students could "travel" to any place in the world via VR. Videos are popular in world geography classes but may not be as effective as VR because they are two-dimensional graphics and passive. One world geography class (N = 36) selected for this experiment will be composed of five units. A rotation of the treatment is going to be used: Each group is using VR for two units and videos for two units; in addition, one unit is optional for every student. Three procedures are used for data collection and analysis: (1) to determine the effect of VR support, competency tests are administered; (2) to determine student attitudinal responses toward VR, students are required to complete a survey and are interviewed; and (3) to determine the tendency of returning to VR, students are given the option of attending the VR lab and the attendance is taken. This investigation is going to be very important but will be limited in several respects (e.g., data come from a sample of students in a single class who may not be representatives of the population). Like any other technological innovations when used for teaching purposes, VR needs to be accepted by teachers before it can be used productively. Thus the results of this evaluation will be valuable in expediting the design and the implementation of the VR support in school curricula. Although this evaluation focuses on the High School World Geography, it can be expanded to such university courses as Archaeology, Biology, and Zoology.
EVALUATION PROPOSAL: VIRTUAL REALITY SUPPORT VERSUS VIDEO SUPPORT IN A HIGH SCHOOL WORLD GEOGRAPHY CLASS

Yukiko Inoue
The University of Guam

We live in a physical world whose properties we have come to know well through long familiarity. We sense an involvement with this physical world which gives us the ability to predict where objects will fall, how well known shapes look from other angles, and how much force is required to push objects against friction. A display connected to a digital computer gives us a chance to gain familiarity with concepts not realizable in the physical world. It is a looking glass into a mathematical wonderland (Ivan Sutherland, The Ultimate Display, 1965).

Introduction

General Description of the Area of Concern

"Virtual reality (VR) is coming, make of it what you may" (Bricken, 1990, p. 7). VR may have a significant impact on educational systems of tomorrow. Current educational systems have been designed for an era in which human minds, textbooks, and pencils were the major tools to the storage and the processing of information. That is no longer the case. Upon entering the 21st century, education must become responsive to changing social needs and become more effective in the learning and teaching process. Generally, VR refers to a new computational paradigm, which fundamentally redefines the interface between human and computer. Technically, in Glenn’s (1991) words, “VR refers to an environment or a technology that provides artificially generated sensory cues sufficient to engender in the user some willing suspension of disbelief” (p. 12). In the VR world, people believe that what they are doing is real, even so it is an artificially simulated phenomenon. Sophisticated VR can simulate sight, sound, touch, and combine these senses with a computer-generated input to people’s eyes, ears, and skin. Many people can share and interact in the same environment. VR is thus a powerful medium for learning and training.

Purpose of the Proposed Evaluation

Currently, most of the media attention on VR lies in the area of entertainment (such as VR arcade machines), yet possibilities of VR seem almost limitless. Many educators, researchers, industry trainers, and software vendors predict that the use of VR for supporting school subjects may result in a significant improvement over traditional instructions, providing unparalleled and unprecedented opportunities because VR is not only a multimedia interactive tool but also a learning environment that is extremely close to reality. Students can actively participate in and
learn by experimenting with all the options of the VR program. In spite of these promising predictions, there have been few empirical studies on the effect of VR as compared to that of other computerized or noncomputerized educational tools. It is thus necessary to evaluate the effect of VR both in different scenarios and for different applications in educational settings.

The evaluation plan reported here in this paper addresses one aspect of such an assessment, specifically the effect of VR support as compared to that of video support in a high school class. The reason why "World Geography" was selected for this evaluation was that students could "travel" to any place in the world via VR. Although videos (which combine the text, picture, voice, and animation) are popular in world geography classes, they may not be as effective as VR because they are two-dimensional (2D) graphics and passive. In contrast, VR is a three-dimensional (3D) environment, challenging students to play an active role by experiencing for themselves the "inside" of an environment, such as a jungle, a desert, or the top of an iceberg.

Audience of the Evaluation

The issue of the effectiveness of VR as an educational tool will be of interest to educators as well as researchers, particularly those who are interested in teaching with technology. The second group of potential audience includes educational administrators and educational planners at the federal, state, county, city, and school levels. Success of VR may have important implications for course planning, budgets, purchasing of computers, and supporting software development. Finally, both hardware and software vendors may be interested in this evaluation.

Feasibility of Doing the Proposed Evaluation

This proposed evaluation requires a VR program to enhance the learning of a high school world geography. Although a well developed VR program for world geography is not available now, it is possible to develop the necessary one by modifying existing commercial systems. For instance, Isaac Asimov's Science Adventure 2.0, Animal Adventure (Newsbytes, 1993, April 6), and WorldToolkit for Windows (Computer Select, 1994, February) can be suitable for this purpose. Software vendors may be willing to absorb the associated developmental costs. Finding researchers and appropriate schools for this evaluation should be no problem. Interest in multimedia educational tools in general, and particularly in VR programs is abundant. Funding may be secured from the National Science Foundation (NSF) or other sponsoring agencies. Once the program for demonstrating VR is developed, it is reasonable to assume that VR educational programs will become economically feasible. The proposed evaluation is therefore feasible.
Review of the Literature

Theory Relevant to the Evaluation

Technology is expanding human capacity and enhancing human reasoning ability as well as facilitating information processing that promotes new insight and the depth of thinking (Lowenstein & Barbee, 1990). New technologies have vital roles to play in the transformation of educational systems, which are concerned with how people can learn most effectively. VR has a potential to be the most effective method whereby students can learn and remember best (Taitt, 1993). This technology enables difficult tasks to become simpler when students practice in the VR world, in which mistakes are only temporary and the learning process is streamlined when students experience events at first hand. Many theories or beliefs suggest that educators can design the best curricula for students by using VR. For instance, (1) Ashton (1992) sees VR as helping educators to break down barriers of race and gender because students are able to visit different countries and experience different cultures, (2) Biocca (1992) compares the introduction of VR to that of televisions in 1941, (3) Nilan (1992) defines the characteristics of the cognitive space where VR is used as distinguished from the physical space, (4) Schwier (1993) believes that in the VR world students and the system are mutually adaptive, which is extremely important to the enhancement of learning, (5) Shapiro and McDonald (1992) assert that the increased sensory richness of VR may influence the unconscious cognitive mechanism so that the memory of what students experienced in the VR world will be judged as real events, (6) Winn and Bricken (1992) believe that students learn best when they construct understanding for themselves and that VR does teach an active construction of the environment, and (7) Woodward (1992) emphasizes the possible contributions of VR technology to educational services for students with disabilities.

Current Empirical Studies

In order to support the aforementioned theories or beliefs, it is useful to examine some empirical studies that have documented learning and training available in the VR world.

Study 1: Bricken and Byrne (1992) conducted an experiment in a summer day-camp, in which 59 students (age: 10-15) used VR to construct and explore their own virtual worlds. Data collected by using videos captured what was going on for a ten-minute VR experience for seven days. Students answered opinion analyses about VR experiences. Informal observations were made for studying social behaviors and broad patterns of student responses to VR. The results showed that the students were fascinated by VR and expressed strong satisfactions with VR.
They spent a lot of time and made efforts to prepare their VR experiences and demonstrated rapid comprehensions of complex concepts and skills, such as computer graphics, batch renderings, Cartesian coordinate spaces, and 3D modeling techniques. This experiment concluded that VR would provide a significantly compelling creative environment for learning and teaching.

Study 2: The relationship between VR and abilities of children to create, manipulate, and utilize mental images for problem-solving exercises was studied by Merickel (1992). 23 elementary school students (age: 8-11) were divided into two groups: One group worked with VR and the other with a regular computer system. Then four cognitive ability tests were administered to the participants: The Differential Aptitude Test, Minnesota Paper Form Board Test, Mental Rotation Test, and Torrance Test of Creative Thinking. The results of the tests indicated that VR was a highly promising technology deserving extensive development as an instructional tool.

Study 3: Many students experience difficulties in learning algebra, chiefly because the symbol systems of algebra provide major stumbling blocks to the development of conceptual models, which are especially useful in learning algebra. Winn and Bricken (1992) created an experimental algebraic environment, in which students could learn through direct interactions with the algebraic systems. In this case, VR was used in ninth-grade algebra classroom settings.

Study 4: In a research by Shlechter, Bessemer, and Kolosh (1992), an interactive visual simulation involving VR was investigated for its effectiveness as a training device. VR allowed a role playing by soldiers. A group of several hundred students were trained with the VR system and were compared to a group trained in concentration methods. Subjective evaluations by the instructors were conducted twice during the field exercises, using standard military evaluation questionnaires. Complex statistical tests were designed to analyze the data. Empirical support was found for the relative training effectiveness of the VR system over the traditional training methods. Of special interest was the increased pace of learning during the exercises.

Overview of Contents

VR is a unique computerized technology whose features are perhaps not available in other technologies. Teachers may help keep students' interest by using the VR program to provide multisensory simulated environments occurring in real time. Students can see different parts of the world and have feeling that they are there. They can touch things (and even smell with the sophisticated VR); anyway, experience in the VR world is almost real. In addition, VR is interactive and students can manipulate and control their learning environment. Thus VR has
potential to "revolutionize" the learning process. It is indeed interesting to read the following scenarios of virtual learning that Wishnietsky (1992) has envisioned:

Students who enter the virtual world could find themselves touring any city in the world. They could view the Washington Monument, the buildings of the Smithsonian Institution, and the Capitol in Washington, DC. Each student would decide which buildings to visit and what to explore: while one student visits the Capitol, another may be taking the elevator to the top of the Washington Monument. Each student decides a destination based on his interests and needs.

Classes will also be able to travel to virtual reality destinations as a group. The teacher's and each student's head-mounted display will be connected to the same computer. If the computer modeled Paris, a French teacher would be able to direct students through the streets of Paris. The group could travel by boat down the Seine and eat lunch at a French cafe, where students would order their lunch in French. After the teacher finishes the tour, students are free to explore Paris on their own or exit virtual reality and return to the physical world (p. 31).

These scenarios indicate the potentialities of VR to revolutionize the learning and teaching process. Proving that VR can enhance the learning of world geography may increase the chances that VR is used in other high school subjects. The proposed evaluation can be the first step in a series of similar evaluations to examine the effectiveness of VR for supporting school subjects.

Method

Evaluation Questions/Focus

The idea for this evaluation came from a study by Regian, Shebilske, and Monk (1992), who recommended VR for instructional technology for the following reasons: (1) there could be benefits to learning because students are experimentally engaged in the learning context; (2) the highly visual features of VR could capitalize the disproportionately visual capabilities of the human brain; and (3) VR may one day prove to be an extremely cost-effective interface for simulation-based learning. In sum, the "realistic" and "active" learning of VR technology are beneficial for information processing because students are able to engage in the full body-mind kinesthetic learning. And the following evaluation questions are raised:
1. How is learning enhanced by VR support as compared to video support in a high school world geography class?

2. What are the differences of the effects between VR support and video support in a high school world geography class?

3. In what ways are students' satisfactions with VR support enhance their learning in a world geography as compared to video support?

4. What a kind of research is needed to assist instructional designers in developing effective VR learning environments?

Goals and Objectives

This evaluation examines the effect of VR support in tenth graders' learning of world geography. Based on the above research questions, the three major evaluational goals are raised: (1) to develop or improve students' academic performances in a high school world geography class; (2) to develop or enhance students' positive attitudes toward the learning of a high school world geography; and (3) to develop or improve students' involvements with the learning of a high school world geography (its objectives are measured by the attendance records taken when using VR is option). Table 1 presents goals, objectives, evaluation methods, and the student virtual reality experience questionnaire (SVREQ) items related to each of the objectives.

Information Collection Plan

Design of the Evaluation. One world geography class selected for this experiment will be composed of five units. In the experiment, a rotation of the treatment is going to be used; each group will be using VR for two units and videotapes for two units. In addition, one unit is optional for every student. The design of the unit assignment is illustrated below.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VR</td>
<td>Video</td>
</tr>
<tr>
<td>2</td>
<td>Video</td>
<td>VR</td>
</tr>
<tr>
<td>3</td>
<td>VR</td>
<td>Video</td>
</tr>
<tr>
<td>4</td>
<td>Video</td>
<td>VR</td>
</tr>
<tr>
<td>5</td>
<td>Option</td>
<td>Option</td>
</tr>
<tr>
<td>Goals</td>
<td>Objectives</td>
<td>Evaluation Methods</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>1. To improve students' academic performance in world geography.</td>
<td>1. Students when using VR will score higher on tests than will when using video.</td>
<td>1. Competency tests</td>
</tr>
<tr>
<td>2. To enhance students' positive attitudes toward taking the world geography class.</td>
<td>1. Students will positively rate the multimedia interactive experience with VR.</td>
<td>1. SVREQ #3, 4, 14, 15</td>
</tr>
<tr>
<td>3. To improve students' voluntary participation in the VR supporting.</td>
<td>1. Eighty percent of students will attend the VR lab when the use of VR is optional.</td>
<td>1. Attendance record</td>
</tr>
</tbody>
</table>
Sampling Procedure. This evaluation concerns the comparisons of two classes (e.g., regular and gifted); however, in order to keep the initial experiment simple, only one class is examined. The one world geography class \(N = 36 \) is randomly divided into two groups: Group A and Group B. Students randomly assigned to Group A are exposed to the VR program during units 1 and 3, and students assigned to Group B to the VR program during units 2 and 4.

Procedures for Gathering Information. Three procedures are used. First, to determine the effect of VR support, four tests are administered to the students: two are administered following units when VR is used and two are administered following units when video is used. The testing instrument could be a kind of standardized test (preferably one that is given state-wide), and a closed-ended, multiple-choice format designed specifically to correspond to the area supported by VR (but should be non-cumulative, one after each unit). Researchers should identify the test questions relevant to VR. Second, to determine student attitudinal responses toward the VR support, students are required to complete a survey at the end of the semester and are interviewed as a follow-up to the survey. Third, to determine the tendency of returning to the VR support, students are given the option of attending the VR lab and their attendance records are taken.

Overview of Evaluation Instruments

The above four competency tests will be used for Goal 1 and SVREQ with interviews (for the entire SVREQ, see Appendix A) will be used for Goal 2, respectively.

Competency tests, which measure the world geographical knowledge level, is of utmost importance. An unreliable test instrument can introduce serious errors into the experiment of the evaluation (internal validity). The tests should be designed specifically to correspond to the areas supported by the VR program. The best approach is to look for an existing test that has been validated; in such a case, there is no need to pilot test this instrument. If a special instrument is designed, however, it should be pilot tested to assure that the students understand the meanings of questions and that the questions really measure the knowledge of geography.

SVREQ (Survey Questionnaire) has three parts (attitudinal responses, open-ended questions, and demographic information) with a total of 30 items developed for SVREQ: 20 items measure the satisfaction and the usefulness of VR support; 10 items measure the perception of computers in general. Each item consists of a statement and a 5-point Likert scale (1 = strongly disagree, 2 = disagree, 3 = not sure, 4 = agree, 5 = strongly agree). To avoid any response bias, all the items are arranged in a random order. SVREQ includes demographic data regarding gender and ethnical backgrounds, which may impact the perception of the VR program.
Validity and Reliability

Since the proposed experiment will be well controlled, it should be fairly validated. The following areas, however, need special attention:

Validity. As stated before, competency tests should measure the knowledge level in world geography, and the best way is to use the existed tests that have been validated. If special tests are designed, they should be pilot tested to assure that students will understand the meaning of each question. Regarding the survey instrument (SVREQ), one effective way to determine the content validity of it is to use a panel of persons to judge how well the instrument has met the standards. Several judges (e.g., computer instructors, VR experts, educational consultants, measurement experts, and the teacher of the class) will examine all the items in SVREQ. In order to have adequate content coverage, it is important for the judges not to define "content" too narrowly.

Reliability. In this evaluation, reliability can be improved if external sources of variation are minimized: thus the researchers can achieve enhanced equivalence through the improved investigator consistency by using only well trained, supervised, and motivated persons to conduct this evaluational research. With measurement instruments such as competency and attitude, the researchers can increase equivalence by improving the internal consistency of the tests.

Pilot-Testing. The preliminarily SVREQ is pilot tested to ensure that students will respond in accordance with instruction. It will be revised and pilot tested again with personal interviews on students. After the third trial, there should be only minor adjustments for further revision in reproducing the final version of the SVREQ (for the draft of SVREQ, see Appendix A).

Protection of the Participants. Since participation in the experiment could have a negative impact regarding the grade achieved in the class (thus some students may be negatively effected), precautions should be made in order to protect the participants against any psychological or other harms. It is advisable to obtain the consent of the students and possibly their parents.

Overview of the Data Analysis and Interpretation

Scores are determined for each student using the results of competency tests when the student is supported by VR, and, when the student is supported by video. t-test is performed to determine if significant differences exist in academic performance between the VR support and the video support. Analysis of variance (ANOVA) is performed to determine group differences and interactive effects. Additional tests will be conducted to determine if any significant difference exits, mainly, due to student gender, ethnicity, and computer experience. Descriptive statistics indicating means and standard deviations will be generated by the results of the survey instrument.
to assess the student attitudinal responses toward the VR support. The results of student comments and suggestions in interviews are used to determine if the results of the survey are reflecting actual complements or criticisms. Finally, VR lab attendance records for those students participating in this experiment are analyzed. The data will be used to determine frequencies and percentages of those students electing to continue using VR when the use is optional.

Closing Comments

Virtual reality (VR) could become the most important computerized multimedia technique in educational systems of the 21st century. Thus this investigation is going to be very important, but it will be limited in several respects. First, it will be based on data from a relatively small sample of students in a single class who may not be representatives of the population. Second, there is no randomization because every student in the class participates in this experiment. The only randomization is regarding being in Group A or Group B. Third, VR support is given at different times: If sequence is not important, and if there is enough VR equipments, it is possible to use VR at the same time in the two groups. Fourth, only one teacher will be involved. If the teacher is biased for (or against) the VR support, it may influence the results of the evaluation.

In conclusion, however, as Taitt (1990) maintains, VR has potential to be the most effective learning technology or environment whereby students can accelerate their learning and retention of information. It usually takes ten years for a new technology to be widely accepted, but it is necessary to prepare for the day that VR is readily available as a learning tool. More important, like any other technological innovations when used for teaching purposes, VR needs to be accepted by teachers before it can be used productively in educational systems. The results of this evaluation, therefore, will be valuable in expediting the design and the implementation of VR support in high school curricula. Although this evaluation plan has focused on a high school subject, World Geography, it can be expanded to such university courses as Archeology, Biology, and Zoology. After all, the 21st century students must master sophisticated information age learning media, having access to more powerful learning resources than students of today.
References

APPENDIX A

STUDENT VIRTUAL REALITY EXPERIENCE QUESTIONNAIRE

Part I - Perceptions of the VR and the Video Programs
Please use the following scale to rate each statement and circle the number that best describes your answers. (Note: Virtual reality is abbreviated as "VR" in the statements)

1 2 3 4 5
Strongly Disagree(SD) Disagree Not Sure Agree Strongly Agree (SA)

Factor One: Usefulness and Satisfaction of the VR Program (Circle One)

1. I found the VR program easy to use. 1.... 2 3.... 4 5
2. The VR program motivated me to learn. 1.... 2 3.... 4 5
3. The VR program was dull and uninteresting. 1.... 2 3.... 4 5
4. I would prefer to learn from the VR program rather than from the video program. 1.... 2 3.... 4 5
5. The VR program was enjoyable and educational. 1.... 2 3.... 4 5
6. The VR program was not easy to understand. 1.... 2 3.... 4 5
7. I believe that the VR program was not effective for educational use. 1.... 2 3.... 4 5
8. The VR program was user-friendly. 1.... 2 3.... 4 5
9. I could learn faster using the VR program than using the video program. 1.... 2 3.... 4 5
10. The VR program did not help increase my understanding of the world geography context. 1.... 2 3.... 4 5
11. I could not clearly understand the material presented in this VR program. 1.... 2 3.... 4 5
12. I believe that the VR program would be an excellent educational tool. 1.... 2 3.... 4 5
13. Three-dimensional presentations helped me to learn. 1.... 2 3.... 4 5
14. I would prefer to learn with a video-based class rather than from a VR-supported class. 1.... 2 3.... 4 5
15. I believe that I could learn more in other subjects if VR programs such as this one were available. 1.... 2 3.... 4 5
16. The simulated environment of the VR program enhanced its educational value.

17. The VR program was not an effective way to learn about world geography.

18. I would appreciate the interaction with the simulated world provided by the VR program.

19. More VR programs are needed for enhancing student learning in other subjects.

20. The pictures, graphs, and sound in the VR program did not help me learn the material presented.

Factor Two: Computer as a Learning Tool (Circle One)

1. Computers are important to my future goals.

2. I feel at ease learning by using computers.

3. If given a choice, I do not want to learn from VR type of computer program.

4. I feel confident in my abilities to work with computers.

5. I do not think that computer technologies will be useful to learn school subjects.

6. I would rather read a textbook than learn from a computer lesson.

7. I believe that the use of computers is not an effective method of instruction.

8. Interactive computers such as VR computers are more exciting than lectures.

9. I would prefer to learn in a traditional instructor-based class than in a computer-supported class.

10. The layout of the computer screens makes it easy to follow the content of lessons.

Part II - Comments and Suggestions About the VR Program

For the following questions, write your answers about the VR program you have used in the world geography class.

1. In what ways do you think the VR program was effective as an educational tool?

2. Name the two major strengths and two major weaknesses of the VR program.
 Strengths:
 (1)
 (2)
Weaknesses:
(1) __
(2) __

1. Are you (check one): ______ Male ______ Female

2. Are you (check one):
 ___ American Indian ___ Asian/Oriental ___ Black/African-American
 ___ Hispanic/Latin ___ White/Caucasian ___ Other, please specify: __________

3. Do you have a computer at home? (Check one)
 ______ Yes ______ No

4. How often do you use computers at home or at school? (Check one)
 ___ Always ___ Frequently ___ Sometimes ___ Seldom ___ Never

5. In what way do you use computers at home or at school? (Check all appropriate answers)
 ___ Word processing
 ___ Drill-and-practice
 ___ Internet
 ___ Electronic mail
 ___ Games
 ___ Others, please specify: __

6. Did you know about "virtual reality" before taking this course? (Check one)
 ___ I knew nothing about virtual reality.
 ___ I had some knowledge about virtual reality.
 ___ I had lots of knowledge about virtual reality.
 ___ I experienced the virtual reality environment.

7. Would you like to use VR programs in other school subjects? (Check one)
 ______ Yes ______ No

8. If "yes," in which school subjects would you like to use VR support? (Name high school subjects)
 __

Thank you very much for your cooperation!
I. DOCUMENT IDENTIFICATION:

Title: Evaluation Proposal: Virtual Reality Support Versus Video Support in a High School World Geography Class

Author(s): Yukiko Inoue

Corporate Source:

Publication Date:

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract Journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample sticker shown below will be affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 1

The sample sticker shown below will be affixed to all Level 2A documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY, HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 2A

The sample sticker shown below will be affixed to all Level 2B documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 2B

Documents will be processed as indicated provided reproduction quality permits.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Signature: Yukiko Inoue

Printed Name/Position/Title: Yukiko Inoue/Assistant Professor

Organization/Address: UNIVERSITY OF GUAM

UOG Station, Mangilao, Guam 96923 USA

Telephone: 671-735-2447 FAX: 671-734-4914

E-Mail Address: Yinoue@uog.edu

Date: 6/18/99
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

<table>
<thead>
<tr>
<th>Publisher/Distributor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

<table>
<thead>
<tr>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

THE UNIVERSITY OF MARYLAND
ERIC CLEARINGHOUSE ON ASSESSMENT AND EVALUATION
1129 SHRIVER LAB, CAMPUS DRIVE
COLLEGE PARK, MD 20742-5701
Attn: Acquisitions

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2nd Floor
Laurel, Maryland 20707-3598

Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
e-mail: ericfac@inet.ed.gov
WWW: http://ericfac.piccard.cac.com