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Abstract: This paper describes an object-oriented design and implementation of a
Web-based CAI system. The goal of this design is to provide a flexible CAI/ITS
framework with full extendibility and reusability as well as to exploit WWW-based
software technologies such as JAVA, ASP, or various plug-ins for customizing the
behavior and appearance of the material. Courseware objects are defined to
implement ITS courseware consisting of tree-structured material objects and the
learning target objects associated to the material objects. Each material object has
the method to invoke the tutoring strategy thus the strategy is easily customized or
replaced by the class inheritance. The page object, the leaf level object of the
material tree, is associated with the URL pointing to either the normal multimedia
data or the exercise script consisting of server-side script like ASP. The page object
communicates with the exercise script to dynamically generate the interactive
exercise. An example of courseware consisting of an interactive simulation is
implemented by making use of the exercise script. The proposed object-oriented
design has the potential to be extended for constructing the framework of distributed
courseware object.

1. Introduction
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As the World-Wide Web becomes more and more important, there have been a lot of researches or
projects on the WWW-based CAI/ITS systems[6, 5, 1, 11]. We have been working on a ITS on the Web
called CALAT[8, 9, 10].
CALAT, as well as the other WVVW-based CAI/ITS systems, is based on the conventional CAI system
or ITS shell on the standalone computer. The system consists of CAI logic on the WWW server and GUI
on the WWW client. It uses http for the multimedia data communication between the server and the
client. In this sense the WWW framework is used just as a multimedia communication platform.
Although CALAT allows multimedia data on the other WWW server to be incorporated as the static
courseware pages, the characteristics of the WWW as a distributed media platform it is not fully
exploited. In addition, the current WWW-based system based on the conventional CAI system inherits
the problem of the conventional system that it is often very difficult to modify, improve or extend the
functionality or behavior of the system. As pointed out in [3], this is due to the design in which the
module structure directly reflects the basic ITS functional components, namely tutoring engine, student
model, courseware scenario, courseware pages and GUI. This structure makes it very hard to make even
a slight function improvement, since the modification can not localized in one module but it causes
every module to be affected. This means that it is difficult to modify tutoring strategy as well as to
implement smart courseware pages/GUI by making use of new WWW-based software technologies like
JAVA, ASP, or various interactive plug-in programs.
To overcome these problem, an object-oriented architecture is employed to design new version of

CALAT. Courseware objects are defined to implement ITS courseware consisting of tree-structured
material objects and the learning target objects associated to the material objects. Each material object
has the method to invoke the tutoring strategy thus the strategy is easily customized or replaced by the
class inheritance. The page object, the leaf level object of the material tree, is associated with the URL
pointing to either the normal multimedia data or the exercise script consisting of server-side script like
ASP. The page object communicates with the exercise script to dynamically generate the interactive
exercise with variety of multimedia and GUI plug-in components. An example of courseware consisting
of an interactive simulation is implemented by making use of the exercise script.
This direction leads to the distributed ITS or distributed courseware on the WWW recently discussed[2,
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7], as well as the initial study motivation of the CALAT system[8].
This paper is organized as follows. The next section discusses the requirements and issues to be

considered in the new design. Then the current object-oriented design is described in the third section.
Application of the design to a particular courseware is presented in the following section. The
concluding section discusses the potential of the proposed design to be extended for constructing the
framework of distributed courseware object.

2. Design Issues

The current WWW-based ITS, including CALAT, are usually implemented based on the conventional
ITS shell as their kernel. Common ITS shell consists of the modules directly reflects the basic ITS
functional components, namely tutoring engine, student model, courseware scenario, courseware pages
and GUI. This module structure is quite intuitive and naive but even careful implementation based on
this structure tends to lack the flexibility for additional improvement and customization[3].
This is because there are very complex dependencies and references between each modules. For

example, to add a new parameter in the student model requires the new method in the tutoring engine to
calculate and interpret the parameter, the new behavior description in the courseware scenario to utilize
the parameter, and so on. From the software engineering point of view, numerous dependencies between
modules means the poor module design.
With this module structure, it is very difficult to incorporate the new WWW-based technology like

JAVA, ASP, or various interactive plug-in programs for courseware pages or GUI customization because
the existing pages or GUI module has the strong dependencies to the other modules. The concept of
distributed tutoring systems aiming at high reusability of the intelligent tutoring resources[8, 2, 7] is also
incompatible with this module structure in which the highly dependent modules form the closed
courseware world.

3. Implementation

The new object-oriented ITS platform is designed to overcome the design issues discussed in the
previous section. The design is intended to provide a increased flexibility for modification or
improvement in the tutoring strategy as well as to provide a generic interface to utilize the new WWW-
based technology for implementing easy-to-customize courseware pages. Extension to the distributed
tutoring environment is also in the scope of the new design.

3.1 Courseware objects

As mentioned in the previous section, it is very important to minimize the dependencies and references
between the system modules to achieve a high flexibility. Concept of the courseware object is introduced
for this purpose. Main classes of the courseware object are shown in Figure 1:

Tree-structured material objects. Objects of this class forms the usual tree structure of the text such
as chapter, section, subsection, ..., and text page. These objects have their own method invoking the
tutoring strategy, and the pointers to their upper and lower level objects. The page object, the leaf
level object of the tree, in addition has the pointer to the corresponding physical courseware page
represented as the URL, the method returning the available ITS command, the methods
corresponding to these commands, and the method controlling the GUI.
Learning target objects. This class is introduced to implement the learning target based ITS. Target
objects are associated to the material objects. State of the target object reflects the learner's state
concerning the learning target, which is referred and updated by the associated material objects.

Tree structure is employed with several reasons:

I. Each subtree of the courseware can have its own tutoring strategy. This means that courseware
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chapters or sections with various tutoring strategies can be combined to compose a courseware. For
example, it is possible to built the courseware such as: the first chapter has no ITS strategy, the
second chapter has the overlay strategy,and one section in the second chapter has the exercise
based on buggy model. It is rather easy to improve or specialize a tutoring strategy to be suitable
for a certain chapter without affecting the strategies of the other chapters in a courseware.

2. It is natural to build a large tree-structured courseware from the chunks of courseware subtrees
each associated with its own leaning targets. This is well-suited for the reuse of the tutoring
resource.
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3. From the practical point of view, tree-structured courseware material is valuable even without ITS
functionality. There already exist a lot of tree structured courseware material which can be a
starting point of ITS courseware.

3.2 Exercise object and exercise script

Among the tree-structured material objects, exercise object has several special characteristics because
of its interactive function between learner. In addition to the method and data of the usual page object, it
has the method for question initialization, error analysis, hint generation, and so on. There is also a
method to judge if the learner mastered the learning target associated to the exercise. The behavior of the
exercise page can be thus customized by modifying these methods. Similar to the usual page object, the
exercise object has the URL entry pointing to the physical WWW page. This URL can not only point to
a usual multimedia page but invoke a server-side script such as CGI, ASP, or Java Servlet which can
dynamically generate the physical exercise page. This server-side script is called "exercise script"
(Figure 2). The exercise object passes the exercise script parameters such as learner name, courseware
name, learning targets, etc. The physical exercise page generated by the exercise script send to the
exercise object the information reflecting the learners response for the presented questions. The exercise
object analyzes the learners response and determines if the exercise script should be invoked again or the
control should be returned to the upper level material objects. This structure has significant advantage
compared with the usual dynamic HTML page generation/modification employed in the other WWW-
based CAI systems. The other system has a HTML page with special syntax extension[6, 11] or the
HTML template with special keyword embedded[10]. These syntax or keywords are interpreted by the
system to generate the actual exercise page sent to the client. This schema has several drawbacks:

Lack of reusability. The HTML page with these special syntax or keyword has no interoperability
with other system.
Lack of extendibility. It is very hard to enhance the capability of dynamic page generation without
introducing very powerful language processing module into the CAI system.

In contrast to these drawbacks, the proposed exercise script scheme does not need special HTML syntax
but utilizes commonly used server-side scripting system. It means that the script itself can be
reused from any tutoring system as long as the invoking URL is identical. Moreover, these server-side
script is based on the complete programming language like Java Script, Visual Basic, or Java, making it
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possible to perform virtually any type of processing for exercise page generation. It is also possible to
generate HTML page including client-side script, Java applet, or interactive multimedia plug-ins. Of
course the courseware authors can choose favorable script language for them.

3.3 Event driven kernel and message passing between objects

Runtime control of the tree-structured material objects are taken care of by the small event-driven
kernel(Figure 3). This kernel receives the event from the learner such as "press NEXT button" and send
it as the command to the "current page" object which corresponds to the physical page presented to the
learner at that time.
The current page object receiving the learner's command tries to process it. For example, when "HINT"

command is sent to the exercise object, the object presents the appropriate hint by itself since it "knows"
the hints related to its questions.
On the other hand, when "NEXT PAGE" command is received, the current page object passes it to the

upper level material object such as section object since the page object does not know how to deal with
the command. This is because it is the responsibility of the section object to invoke the tutoring strategy
which selects most suitable next page object among the section pages by taking into account of the
student model. The selected page object will be the next "current page" object. If the section object has
no page to be selected, it again passes the "NEXT PAGE" command to its upper level section object, and
so on.
This bottom-up control scheme, in which the object of each level processes the command it can deal

with or otherwise it passes the command to the upper level, simplifies the dependencies between
material objects maximizing the modularity of the design.

4. Courseware Example

Simple courseware example[4] has been developed exploiting the features of the proposed architecture.
The courseware deals with the fax equipment which also functions as normal telephone and photo copy
machine. The courseware consists of a section object, explanation page objects and exercise objects
under the section object, and learning target objects corresponding to the operational steps for the fax,
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telephone and photo copy mode(Figure 4). The exercise page objects are associated with the exercise
script which invokes the interactive simulation of the fax equipment. The simulation program itself is
implemented with Java script and Macromedia Flush running on the client. The target function mode to
be learned is selected by the parameter passed from the exercise page object to the simulation program
via the exercise script. The simulation program stores the learners operation steps, compares the steps
with the correct operation, and returns the result to the exercise object. The exercise object judges if the
learner masters the learning target corresponding to each operation step, and pass control to its upper
level section object. Then the section object invokes the tutoring strategy to determine the next page
presented to the learner taking into account of the status of the learning target.
This courseware example demonstrates the flexibility of the exercise object and exercise script which

makes it possible to take advantage of the server-side script and the multimedia plug-in. The example
also indicates that the tree-structured material objects increases the modularity so that each object having
active method can be modified independently to some extent.

5. Conclusion

An object-oriented design and implementation of a Web-based CAI system has been described. Tree-
structured material objects have been introduced to allow teaching strategy customization whose affect
is localized to the relevant module. The exercise script is proposed to to exploit WWW-based software
technologies such as JAVA, ASP, or various plug-ins. Sample courseware has been implemented to
demonstrates the effectiveness of the proposed architecture. The sample courseware in this
demonstration is too small to completely justify the proposed design. Further trial is required to develop
more larger courseware consisting of various tutoring strategy to evaluate the effectiveness and
limitation of the proposed architecture.
It seems that the proposed architecture could be naturally extended to the distributed courseware object

framework. Exercise script could be regarded as a primitive distributed tutoring resource which is
possible to be reused from several coursewares. The bottom-up control scheme, minimizing the
interaction between the objects, could be adopted in the distributed environment. Further investigation
towards this direction could lead the distributed tutoring resource environment.
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