An integer programming approach to item pool design is presented that can be used to calculate an optimal blueprint for an item pool to support an existing testing program. The results are optimal in the sense that they minimize the efforts involved in actually producing the items as revealed by current item writing patterns. Also, an adaptation of the models for use as a set of monitoring tools in item pool management is presented. The approach is demonstrated empirically for an item pool designed for the Law School Admission Test (LSAT). (Contains 2 tables and 30 references.) (Author)
An Integer Programming Approach to Item Pool Design

Wim J. van der Linden
Bernard P. Veldkamp
Lynda M. Reese, Law School Admission Council

faculty of
EDUCATIONAL SCIENCE
AND TECHNOLOGY

Department of
Educational Measurement and Data Analysis

University of Twente
An Integer Programming Approach to Item Pool Design

Wim J. van der Linden
Bernard P. Veldkamp
University of Twente
Lynda M. Reese
Law School Admission Council
Design of Item Pools

Abstract

An integer programming approach to item pool design is presented that can be used to calculate an optimal blueprint for an item pool to support an existing testing program. The results are optimal in the sense that they minimize the efforts involved in actually producing the items as revealed by current item writing patterns. Also, an adaptation of the models for use as a set of monitoring tools in item pool management is presented. The approach is demonstrated empirically for an item pool designed for the Law School Admission Test (LSAT).
An Integer Programming Approach to Item Pool Design

Recently, a variety of methods for automated assembly of test forms from an item pool have become available. Each of these methods can be classified as belonging to one of the following classes (van der Linden, 1998): (1) heuristics that select items sequentially to match a target for the test information function or to fit a weighted combination of the test specifications (e.g., Ackerman, 1992; Luecht, 1998; Sanders & Verschoor, 1998; Swanson & Stocking, 1993); (2) methods that model the test assembly problem as a 0-1 linear programming (LP) problem and then use a search algorithm to find a solution (e.g., Adema, Boekkooi-Timminga & van der Linden, 1991; Boekkooi-Timminga, 1987, 1990; Theunissen, 1985; Timminga & Adema, 1996; van der Linden, 1994, 1996; van der Linden & Boekkooi-Timminga, 1989), (3) methods based on network-flow programming with Lagrange relaxation and/or embedding of the network model in a heuristic (Armstrong & Jones, 1992; Armstrong, Jones & Wang, 1994, 1995; Armstrong, Jones & Wu, 1992) and (4) methods based on optimal design theory from statistics (e.g., Berger, 1994). Detailed descriptions and examples of these methods are given in a recent special issue of *Applied Psychological Measurement* on optimal test assembly (van der Linden, 1998).

These test assembly methods result in tests that are optimal or close to optimality. However, even when optimal, the results need not be satisfactory because an important constraint on the quality of the tests is imposed by the composition of the item pool. For example, an item pool can have enough items with the content attributes required by the test specifications but their statistical attributes may be off target in the sense that the items are too difficult or too easy. This case can easily occur if an item pool is frequently used and certain categories of items in the pool are depleted quickly. The result is then an optimal test with an information function too low on a relevant interval on the ability scale. Though the problem of item pool depletion is less likely to happen for larger item pools, it should not be inferred that larger item pools are necessarily optimal. On the
contrary, a well-known phenomenon in item pool management is that a considerable proportion of the items in the pool may never be used. The presence of such "wallflowers" can be the result of attribute values not needed by the test specifications or overrepresented in the pool. Since the costs of screening and pretesting items are generally high, items in either category typically involve a considerable loss of resources.

This paper presents a integer-programming method for item pool design. The method results in a blueprint for an item pool, that is, a document specifying what attributes the items in a new item pool or an update of an existing pool should have. As will become clear below, the blueprint is designed to allow for the assembly of a prespecified number of test forms from the pool each with its own set of specifications. At the same time, it is optimal in the sense that the efforts or "costs" involved in realizing the item pool are minimized. A favorable consequence of this objective is that the number of unused items is also minimized. (In practice, it may be prudent to have a few spare items though; see the discussion later in this paper.)

The actual task of writing test items to a blueprint is difficult. The main reason for it does reside not so much in the content attributes of the items as well as in their statistical attributes, such as p-values, item-test correlations, and IRT parameters. It is a common experience that the values of statistical attributes of individual items are only loosely predictable. At the same time, however, at the level of a pool of items, statistical attributes often show persistent patterns of correlation with content attributes. In this paper, these patterns are used to derive an empirical measure for item writing efforts that is minimized in the design model.

The point of view taken in this paper is that item pools are not static entities. Tests are assembled from the pool and subsequently released, or items may be removed from the pool because they become obsolete. In most testing programs, new items are therefore written and pretested on a continuous basis. Though presented as a method for designing a single pool, it is believed that in practice the models in this method will serve as tools for
monitoring the item writing process on a more continuous basis. The slight adaptation needed to use the models for item pool management is presented later in this paper. As will become clear below, if the models are used in this mode, possible differences between the statistical attributes of items in the blueprint and their actual values in the pretest are automatically compensated in the next application of the design models.

The problem of item pool design has been addressed earlier in Boekkooi-Timminga (1991) and Stocking and Swanson (1998). The former paper also uses integer programming to calculate the numbers of items needed for future test forms but follows a sequential approach maximizing the information function of each subsequent test under the Rasch or one-parameter logistic model. The results are then used to improve on the composition of an existing item pool. The model proposed in this paper directly calculates a blueprint for the entire item pool (though it is sometimes efficient to do the calculations sequentially). In addition, its objective is minimizing the costs of actually producing the pool by the current item writers rather than maximizing the test information functions. At the same time, the model guarantees that the targets for the test information functions are met. Finally, this model is not restricted to items calibrated under the Rasch model. The paper by Stocking and Swanson does not deal with the problem of designing an item pool as such. Rather, it presents a method for assigning items from a master pool to a set of smaller pools accessed randomly in an adaptive testing program to minimize item exposure among examinees.

The remainder of the paper is organized as follows: First, the problem of item pool design is analyzed, making an important distinction between test specifications based on categorical and quantitative item attributes. Then the design method is presented, and it is shown how its models minimize the existing costs involved in item writing. In addition, it is explained how the method can be used if the item pool has to support a testing program with sets of items related to common stimuli. The next section of the paper explains how the proposed models can be adapted for use as monitoring tools in item pool management.
Finally, an empirical application of the models to the problem of designing an item pool for the Law School Admission Test (LSAT) is presented.

Analysis of Design Problem

An important distinction between test specifications or constraints in mathematical programming models for test assembly is the one between constraints on categorical item attributes, on quantitative attributes, and constraints needed to represent inter-item dependencies (van der Linden, 1998). This distinction also plays a critical role in the item pool design model presented in this paper.

Categorical Constraints

The defining characteristic of a categorical item attribute, such as item content, cognitive level, format, author, or answer key, is that it partitions the item pool into a series of subsets. A test specification with respect to a constraint on a categorical attribute generally constrains the distribution of the items in the test over the subsets. If the items are coded by multiple attributes, their Cartesian product introduces a partition of the pool. Constraints on categorical attributes then address not only marginal distributions of items on attributes but also their joint and conditional distributions.

A natural way to represent categorical attributes is by a table. An example for the case of two categorical constraints with a few constraints on their distributions is given in Table 1. One attribute is item content, C (with levels C1, C2, and C3); the other is item format, F (with levels F1 and F2). In the first panel, the full distribution of the items in the pool is represented by the numbers \(n_{ij}, n_i, n_j, \) and \(n \), that are the numbers of items in cell \((i,j)\), row \(i\), column \(j\), and the total table, respectively. Likewise, in the second panel the numbers of items in the test are denoted as \(r_{ij}, r_i, r_j, \) and \(r \). The following set of constraints is imposed on the test:

\[r_{12} = 6; \]
Note that this set not only fixes certain numbers directly but also restricts the values possible for the other numbers in the table. For example, the first and last constraint together imply the constraint $r_{11} + r_{13} \leq 2$. This fact sometimes allows us to represent the same set of test specifications by different sets of constraints. Some of these sets may be smaller and therefore more efficient than others. The method in this paper, however, is neutral with respect to such differences.

In a test assembly problem, values for the numbers r_{ij} are sought such that the constraints on all distributions are met and the combination of the values optimizes an objective function. In so doing, the numbers n_{ij} of items in the pool are fixed and serve as upper bounds to the numbers r_{ij}. The basic approach to the item pool design problem in this paper is to reverse the role of these two quantities. The numbers n_{ij} are now taken as the decision variables and a function of them is optimized subject to all constraint sets involved by the specifications of the tests the pool has to support.

Quantitative Constraints

Examples of quantitative item attributes are word counts, exposure rates, values for item response theory (IRT) information functions, expected response times, and classical parameters as p-values and item-test correlations. Unlike categorical constraints, quantitative constraints do not impose bounds directly on numbers of items but on a function of their joint attribute values, mostly a sum or an average.

In IRT-based test assembly, important constraints are those on the information function of the test. These constraints typically require the sum of values of the item information functions to meet certain bounds. It is important to note that though each combination of item information functions defines a unique test information function, the reverse does not hold. Unlike categorical attributes, constraints with quantitative attributes...
have no one-one correspondence with item distributions but sets of distributions that are feasible with respect to the constraints. However, this property should not be viewed as a disadvantage. It can be exploited to choose an distribution to represent a quantitative constraint that is optimal with respect to an objective function. This paper follows this approach and translates all constraints on quantitative attributes into optimal distribution of the items over tables defined by a selection of their values.

The option of choosing an objective function for the selection of an optimal item distribution is used to solve a problem alluded to earlier, namely the one of the difficulty involved in writing items with prespecified values for their statistical attributes. More concretely, it is proposed to use the distribution of the statistical attributes for a recent item pool as an indicator of the efforts or costs involved in writing items with certain combinations of attribute values by the item writers. In so doing, the assumption is that items with combinations of attribute values with higher frequencies are easier or less "costly" to produce. More realistic information on item writing costs is obtained if the joint distribution of all quantitative and categorical attributes is used. If persistent differences between item writers exist, further improvement is possible by choosing item writers as one of the (categorical) attributes defining the joint distribution.

The idea will now be formalized for constraints on test information functions but can easily be generalized to constraints on other quantitative attributes (see the other examples later in this paper). In the empirical example below, the 3-parameter logistic model was used to calibrate the existing item bank:

\[p_i(\theta) = \text{Prob}\{U_i=1|\theta\} = c_i + (1-c_i)(1+\exp[-a_i(\theta-b_i)])^{-1}, \tag{1} \]

where \(\theta \) is the unknown ability of the examinee and \(a_i \in [0, \infty) \), \(b_i \in (-\infty, \infty] \), and \(c_i \in [0, 1] \) are the discrimination, difficulty, and guessing parameter for item \(i \), respectively (Lord, 1980, chap. 2). First, the parameters \(a_i \), \(b_i \), and \(c_i \) are discretized, that is, their scales of
possible values is replaced by a grid of discrete values, \((a_{id}, b_{id}, c_{id})\), with \(d=1, \ldots, D\) grid points. The number of points on the grid as well as their spacing is free. Let \(Q\) be the table defined by the product of these grids for all quantitative attributes, with arbitrary cell \(q\). The symbol \(C\) is used to represent the full table defined by the categorical attributes, with an arbitrary cell denoted by \(c \in C\). A cell in the joint table defined by \(C\) and \(Q\) is denoted as \((c,q) \in C \times Q\).

Let \(x_{cq}\) denote the frequency of the items in cell \((c,q)\) for a representative pool. These frequencies contain information on the efforts involved in writing items for the various cells in the table. Cells with relatively large frequencies represent combinations of categorical and quantitative attribute values that tend to go together often; apparently, such items are easy to produce. On the other hand, empty cells seem to point at combinations of attribute values that are difficult to produce. A monotonically decreasing function of \(x_{cq}\), denoted as \(\varphi(x_{cq})\), will be used as an empirical measure of the efforts involved in writing items with the various possible combinations of attribute values. The generic term "cost function" will be used for this function. In the model below, the costs for writing the new item pool will be minimized using this function.

A simple cost function is \(\varphi(x_{cq}) = x_{cq}^{-1}\), which requires \(x_{cq} > 0\). Other choices are possible. However, as will be obvious from the definition of the objective function in Equation 2 below, the choice of unit does not matter. Also, before calculating \(\varphi(x_{cq})\), it is recommended to collapse the \(C \times Q\) table over attributes that show no substantial dependencies on any of the other attributes. This operation will result in larger frequencies and hence a more stable estimate of the distribution over \(C \times Q\). If different patterns of correlation exist for different item writers, the cost function can be made more realistic by adding item writers as a categorical attribute to the table. If this option is used, a constraint has to be added to the design models below on the number of items or stimuli to be written by each item writer. The blueprint of the new item pool then automatically shows which types of items have to be written by which author.
It should be noted that the use of a cost function defined on item writing practices for a recent item pool is not conservative in the sense that old practices are automatically continued. The new item pool can be planned freely to support any new sets of test specifications, and the integer programming model guarantees that test forms can be assembled to these specifications. The point is, however, that a potentially large set of item pools can be expected to be feasible for the integer programming model. The cost function is used only to select a solution from this set that minimizes the costs of item writing.

Constraints on Interdependent Items

The constraints in this category deal with possible relations of exclusion and inclusion between the items in the pool. Two items exclude each other, for example, if one item contains a clue to the key on the other item ("enemies"). In 0-1 LP-based test assembly, it is possible to constrain the test to have no more than one item from each known set of enemies. However, the problem of enemies in the item pool is basically a problem of how to distribute them over different test forms if they happen to occur. Also, the number of enemies in an item pool is generally low. The position taken here is therefore that the presence of enemies is a problem of test assembly—not of item pool design. It will therefore be ignored in the remainder of this paper.

An important type of inclusion relation exists between items that are organized around common stimuli, for example, a reading passage in a reading comprehension test or a description of an experiment in a biology test. We will use "item sets" as a generic term for this part of a test. We will use "item sets" as a generic term for this part of a test. Typically, the items in these sets are selected from larger sets available in the pool. Selection of item sets often involves constraints on categorical (e.g., content) and quantitative (e.g., word counts) attributes for the stimuli. Several versions of 0-1 LP models for test assembly are available to deal with pools with item sets (van der Linden, in preparation).

The problem of designing a pool with item sets is solved by the following three-
stage procedure:

1. First, a blueprint for a pool of items is designed using the integer programming model in Equations 2-6 below ignoring the item set structure. The model constrains the distributions of the items over their categorical and quantitative attributes. The objective function minimizes a cost function for writing the items.

2. Next, a blueprint for a pool of stimuli for the item sets is designed using the same methodology as for the pool of items. The model now constrains the distribution of the stimuli over their categorical and quantitative attributes and the objective function minimizes a cost function for writing the stimuli.

3. Finally, items are assigned to the stimuli to form item sets. The assignment is done using a separate integer programming model formulated for this task. The constraints in the model control the assignment both for the numbers of items available in the various cells of the CxQ table and the numbers required in the item sets. The objective function is of the same type as above; its specific form will be explained later in this paper.

The fact that these steps are taken separately should not come as a surprise. They only serve to design an item pool with a set structure. Of course, if the design is realized, the actual stimuli and items in the sets are written simultaneously and in a coordinated fashion.

Models for Item Pool Design

In this section the various models announced above will be explained. First, the model for designing the pool of items is presented. Then the case of item sets is addressed and the models for designing a pool of stimuli and assigning items to stimuli are explained.

Pool of Items

The following notation is needed to present the model. Index $f=1,...,F$ will be used
to represent the individual test forms the item pool should support. Still, the symbols C and Q will be used to represent the tables defined by the categorical and quantitative attributes, respectively. As an example of a constraint on a quantitative attribute the information function of test form f will be required to approach a set of target values $T_f(\theta_k)$, $k=1,...,K$, from above. Using this attribute for the model in Equation 1 implies a three-dimensional table Q, with one dimension for each item parameter in (1). The information on θ in a response to an item in cell $q \in Q$ will be denoted as $I_q(\theta)$; this quantity is calculated, for example, substituting the midpoints of the intervals of the item-parameter values defining cell q of the table. The decision variables in the model are integer variables n_{fcq}. These variables represent the number of items in cell (c,q) needed in the pool to support form f. The complete pool is thus defined by the numbers $\sum f n_{fcq}$. The cost function is still denoted as φ_{cq}.

The model is as follows:

$$\min \sum \sum \sum \varphi_{cq} n_{fcq}$$

(subject to)

$$\sum \sum I_q(\theta_k) n_{fcq} \geq T_f(\theta_k), f=1,...,F, k=1,...,K,$$

$$c, q$$

(test information)

$$\sum \sum n_{fcq} \geq n_{fg}, f=1,...,F, g=1,...,G,$$

$$c \in V, q \in g$$

(categorical constraints)

$$\sum \sum n_{fcq} \geq n_f, f=1,...,F, c \in C, q \in Q.$$ (length of forms)

$$n_{fcq} = 0,1,..., f=1,...,F, c \in C, q \in Q.$$ (integer variables)

The objective function in Equation 2 minimizes the sum of the item writing costs across
Design of Item Pools

all items in the F forms. For each form the constraints in Equation 3 require the
information function to be larger than the target values at \(\theta_k \), \(k=1,\ldots,K \). The objective
function in Equation 2 guarantees that these bounds are approached from above. The
categorical constraints imposed on the forms are formulated in Equation 4. The sets \(V_{fg} \),
\(f=1,\ldots,F \) and \(g=1,\ldots,G \), are the sets of cells in C on which the constraints have to be
imposed. For example, in the test form in Table 1 the first constraint is imposed on the set
of cells consists only of cell (1,1), the second on the set of cells in Row 1, and the third
on the set of cells in Column 1. Lower bounds \(n_{fg} \) are set only; the objective function in
Equation 2 guarantees that the constraints are satisfied as an equality at optimality. The
same happens to the constraints on the lengths of the forms in Equation 5.

Other quantitative constraints can be added to the model following the same logic
as in Equation 3. Unlike LP models for simultaneous assembly with decision variables for
the individual items, in the current model it is not necessary to prevent the same item
from being assigned to more than one form. Thus the large number of extra constraints
required to preclude item overlap (Boekkooi-Timminga, 1987; van der Linden & Adema,
1998) need not bother us here.

For smaller CxQ tables, the optimal values of the variables in the model can be
calculated using one of the available implementations of the branch-and-bound algorithm
for integer programming. For larger tables optimal values can always be obtained relaxing
the model and using the simplex algorithm. The simplex algorithm is capable of handling
problems with thousands of variables in a small amount of time (Wagner, 1978).
Fractional values in the solution can then be rounded upwardly; as already noted, it is
always prudent to have a few spare items in the pool.

Pool of Stimuli

Tables C' and Q' are now defined for the sets of categorical and quantitative
attributes used to describe the stimuli in the test forms the item pool has to support. Since
psychometric attributes for stimuli are rare, table Q' is expected to be much smaller than
Q. Item sets do often have *aggregated* statistical attributes, such as sums of p-values or average b's. However, these aggregates belong to the set of items associated with a stimulus—not to the stimulus itself. Constraints on such aggregated attributes are dealt with in the item assignment model below.

The model is analogous to that in Equations 2-6. The cost function \(\varphi_{c',q'} \) is now defined for the distribution of stimuli in the previous item pool. Likewise, the bounds in Equations 3-4 are derived from the specifications for the item sets in the various test forms. As an example of a quantitative attribute for stimuli, word counts are used. Let \(w_{p'} \) be the number of words for a stimulus in cell \(q \) and \(w_f \) the target for the number of words for a stimulus in form \(f \). The constraints needed are:

\[
\sum_{c'q'} w_{q'} n_{fc'q'} \geq w_f, \quad f=1,\ldots,F.
\]

Again, because of minimization in Equation 2, the bounds in the constraints in Equation 7 are approximated from above and serve as targets for the number of words per stimulus.

The output from the model is an optimal array of frequencies \(n_{fc'q'} \) for form \(f \). The blueprint for the complete pool of stimuli is determined by the numbers \(\sum_f n_{fc'q'} \).

Assigning Items to Stimuli

To introduce the item assignment model, index \(s_f=1,\ldots,S_f \) is defined to denote the item sets in form \(f=1,\ldots,F \). Each of these sets is associated with one stimulus, that is, one of the cells \((c',q') \). The total number of stimuli associated with the cells satisfy the optimal numbers \(n_{fc'q'} \) from the model in the previous section. The association is arbitrary and assumed to be made prior to the item assignment. For each set the attribute values of its stimulus are thus assumed to be known; however, for notational convenience, the dependence of \(s_f \) on \((c',q') \) will remain implicit in this paper.

In addition, integer decision variables \(z_{sf'cq} \) are defined to denote the number of items from cell \((c,q) \) in the item table assigned to set \(s_f \). Finally, a cost function \(\varphi_{cqc'q'} \)
is defined on the Cartesian product of the tables $C \times Q$ and $C' \times Q'$. This function reflects the costs of writing an item with attributes (c, q) for a stimulus with attributes (c', q').

The item assignment model is as follows:

\[
\text{minimize } \sum_{f} \sum_{s_f} \sum_{c} \sum_{q} \phi_{cqcq} z_{sfcq} \quad \text{(minimizing costs)} \quad (8)
\]

subject to

\[
\sum_{c} \sum_{q} z_{sfcq} \geq n_{sf}, \quad s_f=1,...,S_f, \quad f=1,...,F, \quad (\# \text{ of items needed}) \quad (9)
\]

\[
\sum_{f} \sum_{s_f} z_{sfcq} \geq n_{cq}, \quad c \in C, \quad q \in Q, \quad (\# \text{ of items available}) \quad (10)
\]

\[
z_{sfcq} \in \{0,1,...,\} \quad s_f=1,...,S_f, \quad f=1,...,F, \quad c \in C, \quad q \in Q. \quad \text{(integer variables)} \quad (11)
\]

The constraints in Equation 9 assign n_{sf} items to item set s_f whereas the constraints in Equation 10 ensure that no more items are assigned from cell (c, q) than available in the blueprint for the item pool.

If constraints on aggregated quantitative item attributes have to be imposed on some of the item sets, the model has to be expanded. For example, if item set s_f has to have an average p-value between lower and upper bounds $p_{sf}^{(l)}$ and $p_{sf}^{(u)}$, respectively, the following two constraints should be added to the model:

\[
\sum_{c} \sum_{q} p_{cq} z_{sfcq} \geq n_{sf} p_{sf}^{(l)}, \quad s_f=1,...,S_f, \quad f=1,...,F, \quad \text{(lower bounds on } p) \quad (12)
\]

\[
\sum_{c} \sum_{q} p_{cq} z_{sfcq} \leq n_{sf} p_{sf}^{(u)}, \quad s_f=1,...,S_f, \quad f=1,...,F. \quad \text{(upper bound on } p) \quad (13)
\]
Models for Item Pool Management

As already indicated, item pools are not static entities. In most testing programs, tests are assembled from the pool and new items are pretested on a continuous basis. Hence, two important tasks of item pool management are: (1) monitoring the developments in the item pool; and (2) instructing item writers to write new items to complete the pool.

The models in this paper can easily be adapted for use in item pool management. The only thing needed is to correct the decision variables in the models for the numbers of items and stimuli currently available in the pool. The principle is illustrated for the model in Equations 2-6. Let v_{cq} be a constant representing the current number of items in cell (c,q) in the pool and η_{cq} a new decision variable denoting the number of items to be written for this cell. The only adaptation necessary is substituting $v_{cq} + \eta_{cq}$ for the old decision variables in the model.

If the current items in the pool reveal new patterns of correlation between categorical and quantitative attributes, the cost functions ϕ_{cq} can be updated by defining them on v_{cq} rather than the frequencies x_{cq} for the previous item pool, or perhaps on a weighted combination of both. This practice is recommended, for example, if the item writers form a categorical attribute in the definition of table QxC and new item writers have been hired.

Empirical Example

The method in this paper was used to design a new item pool for the Law School Admission Test (LSAT). The purpose of this study was only to illustrate the procedure. For security reasons, the exact item attributes and stimulus in this study are not revealed.

The pool has to support three different sections in the test, labeled here as A, B and C. The first two sections have items organized as sets with a common stimulus; the last section consists of discrete items. The three sections in the test are assembled to meet large sets of constraints on their composition dealing with such features as item
(sub)types, item-set structures in the pool, types of stimuli, gender and minority orientation of the stimuli, answers key distributions, word counts, and test information functions. As the authors of the items could not be identified, author was not used as an attribute in the analyses of the pool. The numbers of attributes for each section are given in Table 2.

The item pool was designed to support ten regular forms of the LSAT, ten forms with a target for the test information function shifted 0.6 to the left on the \(\theta \) continuum, and ten with a target shifted 0.6 to the right. The (integer) decision variables in these constraints represented the frequencies needed for the cells in the full attribute tables, \(CxQ \). The numbers of decision variables and constraints in the models for the item pool, stimulus pool, and assignment of the items to the stimuli are given in the fourth column of Table 2.

A previous pool of 5,316 items was available to define cost functions for the models. The functions were defined as \(\varphi (x_{cq}) = x_{cq}^{-1} \), with an arbitrary large value substituted for empty cells in the table. The items in the pool were calibrated using the 3-PL model in Equation 1. Before estimating the costs, the attribute tables were reduced in size. Since the values of the items for the guessing parameter in the model, \(c_i \), did not vary much, this parameter was left out as a dimension of the attributes table \(CxQ \), using its average value to calculate the information function values in the models. Also, the values of the \(a_i \) and \(b_i \) parameters were grouped into 8 and 10 intervals, respectively, using the midpoints of the intervals to calculate the information function values. Further, attributes that did not show any correlation with the item parameter values were identified, and the table was collapsed over these attributes. Finally, neighboring values of the same attribute with approximately the same (conditional) distribution were grouped. The purpose of all grouping and collapsing was to reduce the number of cells in the table and get more stable estimates of the frequencies in the cost function. Cells that are collapsed in the attribute tables received a value for the cost function based on their marginal frequencies.
As the three sections in the LSAT have no overlap in items, three independent models had to be solved. The numbers of constraints and decision variables in the integer-programming models are given in Table 2. The three sets of test specifications the pool was assumed to support involved no constraints on interdependent items between them. Also, the objective functions in the models are sums of costs across these sets which are minimal if the costs for each set are minimal. The models could therefore be solved independently for each set.

The best strategy to solve models of the size in the current application is through the simplex algorithm for the relaxed version of the models, that is, with the integer variables replaced by (nonnegative) real-valued variables, rounding the solutions upwardly. The simplex algorithm as implemented in the Consolve module in the test assembly software package ConTEST was used (Timminga, van der Linden & Schweitzer, 1996). The solution times for all models was approximately 1 second of CPU time on a PC. No rounding appeared to be necessary; the algorithm found a direct integer solution for all variables. This result happened because the matrix of coefficients for the models appeared to have a unimodular structure (for this property, see Nemhauser & Wolsey, 1988, chap. II.3). This feature does not generalize automatically to other applications of the integer programming models for item pool design in this paper. However, rounding the variables upwardly is a simple but effective strategy that always works.

Concluding Remarks

The previous example simulated how the integer programming models in this paper can be used to calculate blueprints for new item pools to support a testing program. Although not illustrated in the example, only a minor correction to the decision variables is necessary to use the models as tools for managing item pools in an ongoing program. The same correction can be used to cope with changes in test specifications and/or objective functions for the tests.

A case not dealt with in this paper is the one in which the tests assembled from the
pool are allowed to have item overlap. If overlap is allowed, the number of possible tests from a given pool goes up. Determining how many different tests are possible under this condition involves a complicated combinatorial problem (Theunissen, 1996). If the overlap is small, a wise strategy might be to just ignore this possibility, the result being an item pool somewhat too large but allowing for all planned tests to be assembled. However, the problem of how to design an item pool of minimal size to support tests for which large overlap is allowed remains still to be solved.
References

van der Linden, W.J. (1994). Optimum design in item response theory: Applications to test assembly and item calibration. In G.H. Fischer & D. Laming (Eds.), *Contributions to mathematical psychology, psychometrics, and methodology* (pp. 308-318).

van der Linden, W.J. (in preparation). Optimal assembly of tests with item sets.

Authors' Note

This study received funding from the Law School Admission Council (LSAC). The opinions and conclusions contained in the paper are those of the authors and do not necessarily reflect the position or policy of LSAC.
Table 1
Distribution of items in the pool and constrained distribution of items in a test form (case of two categorical attributes)

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>n_{11}</td>
<td>n_{21}</td>
</tr>
<tr>
<td>C2</td>
<td>n_{12}</td>
<td>n_{22}</td>
</tr>
<tr>
<td>C3</td>
<td>n_{13}</td>
<td>n_{23}</td>
</tr>
<tr>
<td></td>
<td>n_{1.}</td>
<td>n_{2.}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>r_{11}</td>
<td>r_{21}</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td>r_{22}</td>
</tr>
<tr>
<td>C3</td>
<td>r_{13}</td>
<td>r_{23}</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>r_{2.}</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Model</th>
<th>#Attributes</th>
<th>#Constraints</th>
<th>#Decision Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item Pool</td>
<td>5</td>
<td>70</td>
<td>1920</td>
</tr>
<tr>
<td>Stimulus Pool</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Assignment</td>
<td>*</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Section B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item Pool</td>
<td>6</td>
<td>97</td>
<td>6144</td>
</tr>
<tr>
<td>Stimulus Pool</td>
<td>4</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>Assignment</td>
<td>*</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Section C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item Pool</td>
<td>5</td>
<td>65</td>
<td>11520</td>
</tr>
</tbody>
</table>

Note. Cells with "*" are not applicable.
Titles of Recent Research Reports from the Department of Educational Measurement and Data Analysis. University of Twente, Enschede, The Netherlands.

RR-98-11 W.J. van der Linden, B.P. Veldkamp & L.M. Reese, An Integer Programming Approach to Item Pool Design

RR-98-10 W.J. van der Linden, A Discussion of Some Methodological Issues in International Assessments

RR-98-09 B.P. Veldkamp, Multiple Objective Test Assembly Problems

RR-98-08 B.P. Veldkamp, Multidimensional Test Assembly Based on Lagrangian Relaxation Techniques

RR-98-07 W.J. van der Linden & C.A.W. Glas, Capitalization on Item Calibration Error in Adaptive Testing

RR-98-05 W.J. van der Linden, Optimal Assembly of Educational and Psychological Tests, with a Bibliography

RR-98-04 C.A.W. Glas, Modification Indices for the 2-PL and the Nominal Response Model

RR-98-03 C.A.W. Glas, Quality Control of On-line Calibration in Computerized Assessment

RR-97-06 H.J. Vos, Applications of Bayesian Decision Theory to Sequential Mastery Testing

RR-97-05 W.J. van der Linden & Richard M. Luecht, Observed-Score Equating as a Test Assembly Problem

RR-97-04 W.J. van der Linden & J.J. Adema, Simultaneous Assembly of Multiple Test Forms

RR-97-03 W.J. van der Linden, Multidimensional Adaptive Testing with a Minimum Error-Variance Criterion

ERIC

RR-97-01 W.J. van der Linden & Lynda M. Reese, *A Model for Optimal Constrained Adaptive Testing*

RR-96-04 C.A.W. Glas & A.A. Béguin, * Appropriateness of IRT Observed Score Equating*

RR-96-03 C.A.W. Glas, *Testing the Generalized Partial Credit Model*

RR-96-02 C.A.W. Glas, *Detection of Differential Item Functioning using Lagrange Multiplier Tests*

RR-96-01 W.J. van der Linden, *Bayesian Item Selection Criteria for Adaptive Testing*

RR-95-03 W.J. van der Linden, *Assembling Tests for the Measurement of Multiple Abilities*

RR-95-02 W.J. van der Linden, *Stochastic Order in Dichotomous Item Response Models for Fixed Tests, Adaptive Tests, or Multiple Abilities*

RR-95-01 W.J. van der Linden, *Some decision theory for course placement*

RR-94-17 H.J. Vos, *A compensatory model for simultaneously setting cutting scores for selection-placement-mastery decisions*

RR-94-16 H.J. Vos, *Applications of Bayesian decision theory to intelligent tutoring systems*

RR-94-15 H.J. Vos, *An intelligent tutoring system for classifying students into Instructional treatments with mastery scores*

RR-94-13 W.J.J. Veerkamp & M.P.F. Berger, *A simple and fast item selection procedure for adaptive testing*

RR-94-12 R.R. Meijer, *Nonparametric and group-based person-fit statistics: A validity study and an empirical example*

RR-94-10 W.J. van der Linden & M.A. Zwarts, *Robustness of judgments in evaluation research*

RR-94-09 L.M.W. Akkermans, *Monte Carlo estimation of the conditional Rasch model*

RR-94-08 R.R. Meijer & K. Sijtsma, *Detection of aberrant item score patterns: A review of recent developments*

RR-94-07 W.J. van der Linden & R.M. Luecht, *An optimization model for test assembly to match observed-score distributions*

RR-94-06 W.J.J. Veerkamp & M.P.F. Berger, *Some new item selection criteria for adaptive testing*

...
NOTICE

REPRODUCTION BASIS

☑ This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☐ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").