The National Assessment of Educational Progress (NAEP) is the only nationally representative and continuing assessment of what students in the United States know and can do in various academic subjects. The 1996 NAEP in mathematics assessed the current level of mathematical achievement as a mechanism for informing education reform. In 1996, 44 states, the District of Columbia, Guam, and the Department of Defense schools took part in the NAEP state mathematics assessment program. The NAEP 1996 state mathematics assessment was at grade 4 and grade 8, although grades 4, 8, and 12 were assessed at the national level. The 1996 state mathematics assessment covered the five content strands: (1) Number Sense, Properties, and Operations; (2) Measurement; (3) Geometry and Spatial Sense; (4) Data Analysis, Statistics, and Probability; and (5) Algebra and Functions. In Texas, 2,413 students in 104 public schools were assessed at the fourth-grade level and 2,245 students in 100 public schools and 166 students in 9 nonpublic schools were assessed at the eighth-grade level. This report describes the mathematics proficiency of Texas fourth- and eighth-grade students, compares their overall performance to students in the West region of the United States and the entire United States (using data from the NAEP national assessment), presents the average proficiency for the five content strands, and summarizes the performance of subpopulations (gender, race/ethnicity, parents' educational level, Title I participation, and free/reduced lunch program eligibility).
Results are also presented for nonpublic school students at grade 8 for the 1996 state mathematics assessment. To provide a context for the assessment data, participating students, their mathematics teachers, and principals completed questionnaires which focused on: school characteristics (attendance); instructional content (curriculum coverage, standards; amount of homework); delivery of mathematics instruction and its characteristics; use of technology in mathematics instruction; students' own views about mathematics; and conditions facilitating mathematics learning (hours of television watched, parental support, home influences). On the NAEP fields of mathematics scales that range from 0 to 500, the average mathematics scale score for fourth grade students in Texas was 229 compared to 222 throughout the United States and the average mathematics scale score for eighth grade students in Texas was 270 compared to 271 throughout the United States. The average mathematics scale score of fourth grade males did not differ significantly from that of females in either Texas or the nation. The average mathematics scale score of eighth grade males was higher than that of females in Texas; nationwide, however, the performance of males did not differ significantly from that of females. At the fourth grade, White students in Texas had an average mathematics scale score that was higher than that of Black and Hispanic students. At the eighth grade, White students in Texas had an average mathematics scale score that was higher than that of Black and Hispanic students but was not significantly different from that of Asian/Pacific Islander students. (ASK)
What is The Nation's Report Card?

THE NATION'S REPORT CARD, the National Assessment of Educational Progress (NAEP), is the only nationally representative and continuing assessment of what America's students know and can do in various subject areas. Since 1969, assessments have been conducted periodically in reading, mathematics, science, writing, history/geography, and other fields. By making objective information on student performance available to policymakers at the national, state, and local levels, NAEP is an integral part of our nation's evaluation of the condition and progress of education. Only information related to academic achievement is collected under this program. NAEP guarantees the privacy of individual students and their families.

NAEP is a congressionally mandated project of the National Center for Education Statistics, the U.S. Department of Education. The Commissioner of Education Statistics is responsible, by law, for carrying out the NAEP project through competitive awards to qualified organizations. NAEP reports directly to the Commissioner, who is also responsible for providing continuing reviews, including validation studies and solicitation of public comment, on NAEP's conduct and usefulness.

In 1988, Congress established the National Assessment Governing Board (NAGB) to formulate policy guidelines for NAEP. The Board is responsible for selecting the subject areas to be assessed from among those included in the National Education Goals; for setting appropriate student performance levels; for developing assessment objectives and test specifications through a national consensus approach; for designing the assessment methodology; for developing guidelines for reporting and disseminating NAEP results; for developing standards and procedures for interstate, regional, and national comparisons; for determining the appropriateness of test items and ensuring they are free from bias; and for taking actions to improve the form and use of the National Assessment.

The National Assessment Governing Board

Honorable William T. Randall, Chair
Former Commissioner of Education
State of Colorado
Denver, Colorado

Mary R. Blanton, Vice Chair
Attorney
Salisbury, North Carolina

Patsy Cavazos
Principal
W.G. Love Accelerated Elementary School
Houston, Texas

Catherine A. Davidson
Secondary Education Director
Central Kitsap School District
Silverdale, Washington

Edward Donley
Former Chairman
Air Products & Chemicals, Inc.
Allentown, Pennsylvania

Honorable James Edgar
Member Designate
Governor of Illinois
Springfield, Illinois

James E. Ellingson
Fourth-Grade Classroom Teacher
Probsfield Elementary School
Moorhead, Minnesota

Thomas H. Fisher
Director, Student Assessment Services
Florida Department of Education
Tallahassee, Florida

Michael J. Guerra
Executive Director
Secondary Schools Department
National Catholic Educational Association
Washington, DC

Edward H. Haertel
Professor of Education
Stanford University
Stanford, California

Jan B. Loveless
District Communications Specialist
Midland Public Schools
Midland, Michigan

Marilyn McConachie
Former School Board Member
Glenbrook High Schools
Glenview, Illinois

William J. Moloney
Superintendent of Schools
Calvert County Public Schools
Princeton Frederick, Maryland

Honorable Annette Morgan
Former Member
Missouri House of Representatives
Jefferson City, Missouri

Mark D. Musick
President
Southern Regional Education Board
Atlanta, Georgia

Mitsugi Nakashima
First Vice-Chairperson
Hawaii State Board of Education
Honolulu, Hawaii

Michael T. Nettles
Professor of Education & Public Policy
University of Michigan
Ann Arbor, Michigan

Honorable Norma Paulus
Superintendent of Public Instruction
Oregon State Department of Education
Salem, Oregon

Honorable Roy Romer
Governor of Colorado
Denver, Colorado

Honorable Edgar D. Ross
Judge
Territorial Court of the Virgin Islands
Christiansted, St. Croix
U.S. Virgin Islands

Fannie L. Simmons
Mathematics Coordinator
District 5 of Lexington/Richland County
Ballentine, South Carolina

Adam Urbanski
President
Rochester Teachers Association
Rochester, New York

Deborah Voltz
Assistant Professor
Department of Special Education
University of Louisville
Louisville, Kentucky

Marilyn A. Whirry
Twelfth-Grade English Teacher
Mira Costa High School
Manhattan Beach, California

Dennie Palmer Wolf
Senior Research Associate
Harvard Graduate School of Education
Cambridge, Massachusetts

Ramon C. Cortines (Ex-Officio)
Acting Assistant Secretary
Office of Educational Research and Improvement
U.S. Department of Education
Washington, DC

Roy Truby
Executive Director, NAGB
Washington, DC
Table of Contents

HIGHLIGHTS .. 1

INTRODUCTION .. 11
 - What Was Assessed? .. 11
 - Who Was Assessed? .. 13
 - Reporting NAEP Mathematics Results .. 22
 - Interpreting NAEP Results .. 24
 - How Is This Report Organized? ... 25

PART ONE The Mathematics Scale Score Results for Fourth- and Eighth-Grade Students .. 27

 CHAPTER 1 Students' Mathematics Scale Score Results 29
 - Comparisons Between Texas and Other Participating Jurisdictions 33
 - Performance on the NAEP Mathematics Content Strands 39

 CHAPTER 2 Mathematics Scale Score Results by Subpopulations 43
 - Gender .. 44
 - Race/Ethnicity .. 47
 - Students' Reports of Parents' Highest Education Level 51
 - Title I Participation .. 55
 - Free/Reduced-Price Lunch Program Eligibility .. 57
 - Type of Location ... 59
 - Type of School .. 62

PART TWO The Mathematics Achievement Level Results for Fourth- and Eighth-Grade Students .. 65

 CHAPTER 3 Students' Mathematics Achievement Level Results 69
 - Description of NAEP Mathematics Achievement Levels 69
CHAPTER 4 Mathematics Achievement Level Results by Subpopulations

- Gender ... 78
- Race/Ethnicity ... 80
- Students' Reports of Parents' Highest Education Level 83
- Title I Participation .. 87
- Free/Reduced-Price Lunch Program Eligibility 88
- Type of Location ... 90
- Type of School ... 92

PART THREE Finding a Context for Understanding Students' Mathematics Performance in Public Schools

- Emphasis on Mathematics in the School 95
- Resource Availability to Teachers 97
- In-School Teacher Preparation Time 102
- Parents as Classroom Aides 104
- Student Absenteeism .. 106

CHAPTER 5 School Characteristics Related to Mathematics Instruction

- Emphasis on Mathematics in the School 95
- Resource Availability to Teachers 97
- In-School Teacher Preparation Time 102
- Parents as Classroom Aides 104
- Student Absenteeism .. 106

CHAPTER 6 Classroom Practices Related to Mathematics Instruction

- NCTM Standards .. 110
- Course-Taking Patterns ... 114
- Instructional Emphasis ... 118
- Communicating Mathematical Ideas 122
- Collaboration in Small Groups 126
- Mathematics Homework .. 128
- Calculator and Computer Use in the Mathematics Classroom .. 133

CHAPTER 7 Influences Beyond School That Facilitate Learning Mathematics

- Discussing Studies at Home 145
- Literacy Materials in the Home 148
- Television Viewing Habits .. 151
- Parental Support .. 154
- Student Mobility .. 156
- Students' Views About Mathematics 158
Monitoring the performance of students in subjects such as mathematics is a key concern of the citizens, policy makers, and educators concerned with educational reform efforts. The 1996 National Assessment of Educational Progress (NAEP) in mathematics (as well as the two previous NAEP assessments in mathematics in 1990 and 1992) assessed the current level of mathematical achievement as a mechanism for informing education reform. This report contains results for public school students only for those years in which Texas participated and for which minimum participation rate guidelines were met. Results are also presented for nonpublic school students at grade 8 for the 1996 state mathematics assessment.

What Is NAEP?

The National Assessment of Educational Progress (NAEP) is the only nationally representative and continuing assessment of what students in the United States know and can do in various academic subjects. NAEP is authorized by Congress and directed by the National Center for Education Statistics of the U.S. Department of Education. The National Assessment Governing Board (NAGB), an independent body, provides policy guidance for NAEP.

Since its inception in 1969, NAEP’s mission has been to collect, analyze, and produce valid and reliable information about the academic performance of students in the United States in various learning areas. In 1990, the mission of NAEP was expanded to provide state-by-state results on academic achievement. Participation in the state-by-state NAEP is voluntary and has grown from 40 states and territories in 1990 to 48 in 1996.

NAEP has also become a valuable tool in tracking progress towards the National Education Goals. The subjects assessed by NAEP are those highlighted at the 1989 Education Summit and later legislation. The NAEP 1996 assessment in mathematics marks the third time the subject has been assessed with the new framework in the 1990s, enabling policy makers and educators to track mathematics achievement since the release of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics in 1989.

NAEP 1996 Mathematics Assessment

The NAEP mathematics assessment has been in constant evolution since its inception in 1973. Major changes took place in the 1990s to complement the *Curriculum and Evaluation Standards for School Mathematics*, that was published by the National Council of Teachers of Mathematics (NCTM) in 1989. The NAEP 1990 mathematics assessment saw the inclusion of short constructed-response questions — questions that asked students to provide the answer they calculated for a numerical problem or to write a sentence or two describing the solution to a problem. Also added in 1990 were a number of questions on which students could use calculators, protractors, or rulers.

In 1992 the assessment included an increased number of short constructed-response questions and, for the first time, contained extended constructed-response questions. Extended constructed-response questions required students to produce both a solution and a short paragraph describing the solution or its interpretation in the context of the task. As such, these questions served as indicators of students' growth in the areas of reasoning, communication, and problem solving — important processes receiving heavy emphasis in the NCTM *Standards*.

In 1996 the NAEP mathematics assessment continued to be revised, most notably by continuing to increase the use of constructed-response questions. In 1990, students spent about 30 percent of testing time on constructed-response questions. By 1992, this percentage had increased to 35 percent, and in 1996 it exceeded 50 percent of the time spent by students on the assessment.

The 1996 assessment maintained the same five content strands used for the 1990 and 1992 assessments — Number Sense, Properties, and Operations; Measurement; Geometry and Spatial Sense; Data Analysis, Statistics, and Probability; and Algebra and Functions. Two of these strands, Number Sense, Properties, and Operations and Geometry and Spatial Sense, were revised to reflect the NCTM *Standards*’ emphases on developing and assessing students’ abilities to make sense of both number/operation and spatial settings.

The changes made to the NAEP 1996 mathematics assessment refined and sharpened the assessment to reflect more adequately recent curricular emphases and objectives; to include what teachers, mathematicians, and measurement experts think should be in the assessment; and to maintain the connection with the 1990 and 1992 assessments to permit the measurement of trends in student performance since 1990.

Tables H.1 and H.2 show the distribution of mathematics scores and the percentage of students at or above the *Basic*, *Proficient*, and *Advanced* achievement levels for fourth- and eighth-grade students attending public schools in Texas in 1996.
TABLE H.1 — GRADES 4 AND 8

Distribution of Mathematics Scale Scores for Public School Students

<table>
<thead>
<tr>
<th>Grade 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Scale Score</td>
<td>10th Percentile</td>
<td>25th Percentile</td>
<td>50th Percentile</td>
<td>75th Percentile</td>
</tr>
<tr>
<td></td>
<td>229 (1.4)</td>
<td>190 (2.8)</td>
<td>209 (1.7)</td>
<td>230 (1.7)</td>
<td>249 (1.1)</td>
</tr>
<tr>
<td>Texas</td>
<td>219 (2.1)</td>
<td>177 (4.0)</td>
<td>197 (2.0)</td>
<td>220 (2.9)</td>
<td>240 (2.6)</td>
</tr>
<tr>
<td>West</td>
<td>222 (1.0)</td>
<td>180 (1.5)</td>
<td>201 (1.3)</td>
<td>224 (1.3)</td>
<td>244 (1.0)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 8</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Scale Score</td>
<td>10th Percentile</td>
<td>25th Percentile</td>
<td>50th Percentile</td>
<td>75th Percentile</td>
</tr>
<tr>
<td></td>
<td>270 (1.4)</td>
<td>225 (2.2)</td>
<td>247 (2.0)</td>
<td>271 (1.7)</td>
<td>295 (1.6)</td>
</tr>
<tr>
<td>Texas</td>
<td>268 (2.4)</td>
<td>219 (4.8)</td>
<td>244 (3.0)</td>
<td>269 (1.7)</td>
<td>284 (3.4)</td>
</tr>
<tr>
<td>West</td>
<td>271 (1.2)</td>
<td>222 (2.0)</td>
<td>247 (1.2)</td>
<td>272 (1.1)</td>
<td>296 (1.4)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

TABLE H.2 — GRADES 4 AND 8

Percentage of Public School Students Attaining Mathematics Achievement Levels

<table>
<thead>
<tr>
<th>Grade 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced</td>
<td>At or Above Proficient</td>
<td>At or Above Basic</td>
<td>Below Basic</td>
</tr>
<tr>
<td></td>
<td>3 (0.5)</td>
<td>25 (1.5)</td>
<td>69 (1.9)</td>
<td>31 (1.9)</td>
</tr>
<tr>
<td>Texas</td>
<td>2 (0.5)</td>
<td>16 (1.8)</td>
<td>57 (3.0)</td>
<td>43 (3.0)</td>
</tr>
<tr>
<td>West</td>
<td>2 (0.3)</td>
<td>20 (1.0)</td>
<td>62 (1.4)</td>
<td>38 (1.4)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 8</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced</td>
<td>At or Above Proficient</td>
<td>At or Above Basic</td>
<td>Below Basic</td>
</tr>
<tr>
<td></td>
<td>3 (0.4)</td>
<td>21 (1.5)</td>
<td>59 (1.8)</td>
<td>41 (1.8)</td>
</tr>
<tr>
<td>Texas</td>
<td>3 (0.8)</td>
<td>21 (2.0)</td>
<td>58 (2.4)</td>
<td>42 (2.4)</td>
</tr>
<tr>
<td>West</td>
<td>4 (0.6)</td>
<td>23 (1.2)</td>
<td>61 (1.3)</td>
<td>39 (1.3)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

Major Findings for Texas

- The average mathematics scale score for fourth graders in Texas was 229. This average was higher than that for the nation (222).

- In terms of achievement levels established for the NAEP mathematics assessment, 25 percent of the fourth-grade students in Texas performed at or above the Proficient level. This percentage was larger than that of students nationwide (20 percent).

- From 1992 to 1996 in grade 4, there was an increase in the average scale score of students both in Texas and across the nation. The observed increase for Texas was larger than the increase for the nation.

- The average mathematics scale score for eighth graders in Texas was 270. This average did not differ significantly from that for the nation (271).

- In terms of achievement levels, 21 percent of the eighth-grade students in Texas performed at or above the Proficient level. This percentage did not differ significantly from that of students nationwide (23 percent).

- From 1992 to 1996 for eighth graders, there was an increase in the average scale score of students in Texas and somewhat of an increase in that of students across the nation. The observed increase for Texas was not significantly different from the increase for the nation.

- The average scale score for eighth graders in Texas in 1996 (270) was higher than that in 1990 (258).

3 The NAEP mathematics scale ranges from 0 to 500.
4 The Proficient achievement level represents solid academic performance for each grade assessed. Students reaching this level have demonstrated competency over challenging subject matter, including subject-matter knowledge, application of such knowledge to real-world situations, and analytical skills appropriate to the subject matter.
Major Findings for Student Subpopulations

The preceding section provided a global view of the mathematics performance of fourth- and eighth-grade students in Texas. It is also important to examine the average performance of subgroups within these populations. Typically, NAEP presents results for demographic subgroups defined by gender, race/ethnicity, parental education, and location of the school. In addition, in 1996 NAEP collected information on student participation in Title I programs and eligibility for the free/reduced-price lunch component of the National School Lunch Program (NSLP).

The 1996 state assessment in mathematics also continued a component first introduced with the NAEP 1994 state assessment in reading — assessment of a representative sample of nonpublic school students.

The reader is cautioned against using NAEP results to make simple or causal inferences related to subgroup membership. Differences among groups of students are almost certainly associated with a broad range of socioeconomic and educational factors not discussed in NAEP reports and possibly not addressed by the NAEP assessment program.

Results for 1996 related to gender and race/ethnicity are highlighted below. A comparison of public and nonpublic school results is also presented. More complete results for the various demographic subgroups examined by the NAEP mathematics assessment can be found in Chapters 2 and 4 of this report, the NAEP 1996 Mathematics State Report for Texas.

- The average mathematics scale score of fourth-grade males did not differ significantly from that of females in both Texas and the nation.
- The average mathematics scale score of eighth-grade males was higher than that of females in Texas; nationwide, however, the performance of males did not differ significantly from that of females.
- At the fourth grade, White students in Texas had an average mathematics scale score that was higher than that of Black and Hispanic students.
- At the eighth grade, White students in Texas had an average mathematics scale score that was higher than that of Black and Hispanic students but was not significantly different from that of Asian/Pacific Islander students.
- In Texas, the average scale score of public school eighth graders (270) was lower than that of nonpublic school students (301).
Finding a Context for Understanding Students' Mathematics Performance in Public Schools

The mathematics performance of students in Texas may be better understood when viewed in the context of the environment in which the students are learning. This educational environment is largely determined by school characteristics, by characteristics of mathematics instruction in the school, by home support for academics and other home influences, and by the students' own views about mathematics. Information about this environment is gathered by means of the questionnaires completed by principals and teachers as well as questions answered by students as part of the assessment.

Because NAEP is administered to a sample of students that is representative of the fourth- and eighth-grade student populations in the schools of Texas, NAEP results provide a view of the educational practices in Texas which may be useful for improving instruction and setting policy. However, despite the richness of context provided by the NAEP results, it is very important to note that NAEP data cannot establish a cause-and-effect relationship between educational environment and students scores on the NAEP mathematics assessment.

The following results are for public school students.

School Characteristics Related to Student Performance

- The percentage of fourth-grade students in Texas attending public schools that reported that mathematics was a priority (95 percent) was greater than the national percentage (76 percent).

- The percentage of Texas eighth graders in public schools that reported that mathematics was a priority (95 percent) was greater than that of students nationwide (74 percent).

- The percentage of fourth graders attending public schools in Texas that reported absenteeism was a moderate to serious problem (18 percent) was not significantly different from that of fourth graders across the nation (13 percent). The percentage of students in Texas public schools reporting that absenteeism was a moderate to serious problem did not change significantly from 1992 (18 percent) to 1996 (18 percent).

- The percentage of eighth graders attending public schools in Texas that reported absenteeism was a moderate to serious problem (29 percent) was not significantly different from that of eighth-grade students nationwide (25 percent). There was no significant change from 1992 (27 percent) to 1996 (29 percent) in the percentage of eighth graders attending schools that reported that absenteeism was a moderate to serious problem.

More detailed results related to school characteristics can be found in Chapter 5 of this report, the NAEP 1996 Mathematics State Report for Texas.
Classroom Practices6

- A small percentage of the fourth-grade students in Texas (4 percent) had mathematics teachers who reported being very knowledgeable about the NCTM Standards. This percentage was smaller than the percentage whose teachers reported having little or no knowledge of the Standards (58 percent).

- A small percentage of the eighth-grade students in Texas (8 percent) had mathematics teachers who reported being very knowledgeable about the NCTM Standards. This percentage was smaller than the percentage whose teachers reported having little or no knowledge of the Standards (18 percent).

- In eighth grade, less than half of the students reported taking eighth-grade mathematics (39 percent), compared to 33 percent taking prealgebra and 25 percent taking algebra. The percentage of students taking algebra did not differ significantly from that for the nation (24 percent).

- Less than half of the eighth-grade students expected to take prealgebra (7 percent) or algebra (34 percent) in the ninth grade. Another 23 percent anticipated taking a geometry class.

- The percentage of fourth graders in Texas whose teachers reported spending four hours a week or more on mathematics instruction (80 percent) was greater than the percentage for the nation (69 percent). The percentage for Texas in 1996 did not differ significantly from the percentage in 1992 (83 percent).

- The percentage of eighth graders in Texas whose teachers reported spending four hours a week or more on mathematics instruction (34 percent) was not significantly different from the percentage for the nation (34 percent). The percentage for Texas in 1996 did not differ significantly from the percentage in 1992 (38 percent).

- Teachers of 70 percent of the fourth-grade students reported that they addressed the development of reasoning and analytical ability a lot. In contrast, 3 percent had teachers who reported spending little or no time addressing this topic.

- Teachers of 59 percent of the eighth-grade students reported that they addressed the development of reasoning and analytical ability a lot. A small percentage of the students (6 percent) had teachers who reported spending little or no time addressing this topic.

6 More detailed results related to classroom practices can be found in Chapter 6 of this report, the \textit{NAEP 1996 Mathematics State Report for Texas}.
According to their teachers, 7 percent of the fourth graders in Texas were asked to write about solving a mathematics problem and 43 percent were asked to discuss solutions with other students almost every day. By comparison, 34 percent were asked to write about and 5 percent were asked to discuss mathematics solutions never or hardly ever.

According to their teachers, 4 percent of the eighth grade students in Texas were asked to write about solving a mathematics problem and 48 percent were asked to discuss solutions with other students almost every day. By comparison, 42 percent were asked to write about and 8 percent were asked to discuss mathematics solutions never or hardly ever.

According to their teachers, 3 percent of the fourth graders in Texas were not assigned any mathematics homework each day. In addition, almost all of the students were assigned 15 minutes (59 percent) or 30 minutes (33 percent) of homework each day.

According to their teachers, 5 percent of the eighth graders in Texas were not assigned any mathematics homework each day. In addition, more than half of the students were assigned 30 minutes (39 percent) or 45 minutes (20 percent) of homework each day.

Less than half of the fourth graders in Texas reported that there was no computer at home (46 percent) and another 27 percent reported never or hardly ever using their home computer to do homework. Less than one fifth of the students reported using a computer at home for homework almost every day (6 percent) or once or twice a week (10 percent).

Less than half of the eighth-grade students reported that there was no computer at home (41 percent) and another 17 percent reported never or hardly ever using their home computer to do homework. About one quarter of the students reported using a computer at home for homework almost every day (10 percent) or once or twice a week (16 percent).

About one fifth of the fourth graders in Texas had teachers who reported that students used a calculator in mathematics class almost every day (4 percent) or once or twice a week (16 percent). Less than half of the students never or hardly ever used a calculator (41 percent).

More than half of the eighth graders had teachers who reported that students used a calculator in mathematics class almost every day (31 percent) or once or twice a week (23 percent). About one quarter of the students never or hardly ever used a calculator (27 percent).
Influences Beyond School That Facilitate Learning Mathematics:

- More than half of the fourth graders (56 percent) said they discussed their schoolwork at home almost every day. This percentage was larger than the percentage who said they never or hardly ever had such discussions (17 percent).

- In Texas, less than half of the eighth-grade students (40 percent) said they discussed their schoolwork at home almost every day. This percentage was larger than the percentage who said they never or hardly ever had such discussions (22 percent).

- The percentage of fourth graders in Texas who reported watching six or more hours of television a day (17 percent) was somewhat smaller than the percentage for the nation (20 percent).

- The percentage of eighth graders in Texas who reported watching six or more hours of television a day (16 percent) was not significantly different from the percentage for the nation (14 percent).

- Overall, almost all of the fourth-grade students attended schools where principals characterized parental support as very positive (53 percent) or somewhat positive (45 percent).

- Overall, almost all of the eighth-grade students attended schools where principals characterized parental support as very positive (32 percent) or somewhat positive (61 percent).

More detailed results related to influences beyond the school can be found in Chapter 7 of this report, the *NAEP 1996 Mathematics State Report for Texas*.
Improving education is often seen as an important first step as the United States maps out a strategy to remain competitive in an ever-increasing global economy. Mathematics and science education continued to receive considerable attention at the 1996 Governor’s Summit in Palisades, New Jersey, where the President and the governors reaffirmed the need to strengthen our schools and to strive for world-class standards.

Monitoring the performance of students in subjects such as mathematics is a key concern of the state and national policy makers and educators who direct educational reform efforts. The 1996 National Assessment of Educational Progress (NAEP) in mathematics is a key source of information on what the nation’s students can do and how mathematics achievement has progressed during the 1990s.

What Was Assessed?

The NAEP assessment measures a mathematics domain containing five mathematics strands (number sense, properties, and operations; measurement; geometry and spatial sense; data analysis, statistics, and probability; and algebra and functions). Questions involving content from one or more of the strands are also categorized according to the domains of mathematical abilities and mathematical power. The first of these, mathematical abilities, describes the nature of the knowledge or processes involved in successfully handling the task presented by the question. It may reflect conceptual understanding, procedural knowledge, or a combination of both in problem solving. The second domain, mathematical power, reflects processes stressed as major goals of the mathematical curriculum. Mathematical power refers to the students’ ability to reason, to communicate, and to make connections of concepts and skills across mathematical strands, or from mathematics to other curricular areas.
The mathematics framework for the NAEP 1996 assessment is a revision of that used in the 1990 and 1992 assessments. Changes were made to the earlier framework in light of the NCTM Standards and changes taking place in school mathematics programs. The previous NAEP mathematics framework was refined and sharpened so that the 1996 assessment would: (1) more adequately reflect recent curricular emphases and objects and yet (2) maintain a connection with the 1990 and 1992 assessments to measure trends in student performance. Prior to the 1996 assessment, investigations were conducted to ensure that results from the assessment could be reported on the existing NAEP mathematics scale. The conclusion drawn from these investigations was that results from the 1990, 1992, and 1996 assessments could be reported on a common scale and trends in mathematics performance since 1990 examined. Appendix B briefly highlights selected changes in the current NAEP mathematics framework.

The conception of mathematical power as reasoning, connections, and communication has played an increasingly important role in measuring student achievement. In 1990, the NAEP assessment included short constructed-response questions as a way to begin addressing mathematical communication. In 1992, the extended constructed-response questions included on the assessment required students not only to communicate their ideas but also to demonstrate the reasoning they used to solve problems. The 1996 assessment continued to emphasize mathematical power by including constructed-response questions focusing on reasoning and communication and by requiring students to connect their learning across mathematical content strands. These connections were addressed within individual questions reaching across content strands and by families of questions contained within a single content strand.

In real life, few mathematical situations can be clearly classified as belonging to one content strand or another, and few situations require only one fact of mathematics thinking. Therefore, many of the questions are classified in a number of ways. In addition to being classified by all applicable content strands, each question was classified by its assessment of applicable mathematical abilities (procedural knowledge, conceptual understanding, and problem solving) and mathematical powers (reasoning, communication, and connections). The content strands, mathematical abilities, and mathematical power combine to form the framework for the NAEP assessment. (A brief description of the five content strands is presented in Appendix B.)
The framework continued the shift from multiple-choice questions to questions that required students to construct responses. In 1996, more than 50 percent of student assessment time was devoted to constructed-response questions. Two types of constructed-response questions were included — (1) short constructed-response questions that required students to provide answers to computation problems or to describe solutions in one or two sentences, and (2) extended constructed-response questions that required students to provide longer responses when answering the questions.

Who Was Assessed?

Fourth- and Eighth-Grade School and Student Characteristics

Tables I.1A and I.1B provide profiles of the demographic characteristics of the fourth- and eighth-grade students in Texas, the West region, and the nation. These profiles are based on data collected from the students and schools participating in the 1992 and 1996 state and national mathematics assessments at grade 4 and the 1990, 1992, and 1996 state and national mathematics assessments at grade 8. This report contains results for public school students only for those years in which Texas participated and for which minimum participation rate guidelines were met. Results are also presented for nonpublic school students at grade 8 for the 1996 state mathematics assessment. As described in Appendix A, the state data and the regional and national data are drawn from separate samples.

In 1996, approximately 93 percent of eighth graders in Texas attended public schools, with the remaining students attending nonpublic schools (including Catholic and other private schools). For the nation, 89 percent of students at grade 8 attended public schools in 1996.

To ensure comparability across jurisdictions, NCES has established guidelines for school and student participation rates. Appendix A highlights these guidelines, and jurisdictions failing to meet these guidelines are noted in tables and figures in NAEP reports containing state-by-state results. For jurisdictions failing to meet the initial school participation rate of 70 percent, results are not reported.
TABLE 1.1A — GRADE 4

Profile of Students in Texas, the West Region, and the Nation

<table>
<thead>
<tr>
<th>Demographic Subgroups</th>
<th>1992</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Public</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percentage</td>
</tr>
<tr>
<td>RACE/ETHNICITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>49 (1.8)</td>
<td>49 (2.1)</td>
</tr>
<tr>
<td>Black</td>
<td>14 (1.8)</td>
<td>14 (1.9)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>34 (2.3)</td>
<td>33 (2.6)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>2 (0.4)</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>American Indian</td>
<td>1 (0.2)</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>64 (1.7)</td>
<td>61 (2.4)</td>
</tr>
<tr>
<td>Black</td>
<td>10 (1.7)</td>
<td>10 (1.7)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>17 (1.6)</td>
<td>22 (1.8)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>5 (1.0)</td>
<td>5 (0.7)</td>
</tr>
<tr>
<td>American Indian</td>
<td>2 (0.3)</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>69 (0.4)</td>
<td>66 (0.6)<</td>
</tr>
<tr>
<td>Black</td>
<td>17 (0.4)</td>
<td>15 (0.4)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>10 (0.2)</td>
<td>14 (0.4)></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>3 (0.3)</td>
<td>3 (0.2)</td>
</tr>
<tr>
<td>American Indian</td>
<td>2 (0.2)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>TYPE OF LOCATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central city</td>
<td>47 (3.1)</td>
<td>47 (3.4)</td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td>34 (4.6)</td>
<td>39 (4.4)</td>
</tr>
<tr>
<td>Rural/Small town</td>
<td>19 (3.7)</td>
<td>14 (2.6)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central city</td>
<td>32 (3.0)</td>
<td>28 (2.9)</td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td>40 (3.6)</td>
<td>46 (3.6)</td>
</tr>
<tr>
<td>Rural/Small town</td>
<td>28 (2.9)</td>
<td>26 (2.8)</td>
</tr>
<tr>
<td>PARENTS' EDUCATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not finish high school</td>
<td>7 (0.8)</td>
<td>6 (0.5)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>13 (0.8)</td>
<td>11 (0.8)</td>
</tr>
<tr>
<td>Some education after high school</td>
<td>8 (0.8)</td>
<td>7 (0.5)</td>
</tr>
<tr>
<td>Graduated from college</td>
<td>33 (1.6)</td>
<td>38 (1.6)</td>
</tr>
<tr>
<td>I don’t know</td>
<td>39 (1.4)</td>
<td>39 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not finish high school</td>
<td>4 (0.5)</td>
<td>4 (0.7)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>12 (1.0)</td>
<td>11 (0.7)</td>
</tr>
<tr>
<td>Some education after high school</td>
<td>7 (1.0)</td>
<td>7 (0.7)</td>
</tr>
<tr>
<td>Graduated from college</td>
<td>38 (1.3)</td>
<td>34 (1.8)</td>
</tr>
<tr>
<td>I don’t know</td>
<td>39 (1.3)</td>
<td>44 (2.2)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not finish high school</td>
<td>4 (0.3)</td>
<td>4 (0.4)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>13 (0.6)</td>
<td>13 (0.7)</td>
</tr>
<tr>
<td>Some education after high school</td>
<td>7 (0.4)</td>
<td>7 (0.4)</td>
</tr>
<tr>
<td>Graduated from college</td>
<td>38 (1.1)</td>
<td>38 (1.2)</td>
</tr>
<tr>
<td>I don’t know</td>
<td>36 (0.8)</td>
<td>37 (1.0)</td>
</tr>
<tr>
<td>GENDER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>49 (0.9)</td>
<td>51 (1.1)</td>
</tr>
<tr>
<td>Female</td>
<td>51 (0.9)</td>
<td>49 (1.1)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>52 (1.5)</td>
<td>50 (1.6)</td>
</tr>
<tr>
<td>Female</td>
<td>48 (1.5)</td>
<td>50 (1.6)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>50 (0.7)</td>
<td>51 (0.7)</td>
</tr>
<tr>
<td>Female</td>
<td>50 (0.7)</td>
<td>49 (0.7)</td>
</tr>
</tbody>
</table>

(continued on next page)
TABLE I.1A — GRADE 4 (continued)

Profile of Students in Texas, the West Region, and the Nation

<table>
<thead>
<tr>
<th>Demographic Subgroups</th>
<th>1992</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>(...)</td>
<td>32 (3.4)</td>
</tr>
<tr>
<td>Did not participate</td>
<td>(...)</td>
<td>68 (3.4)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>(...)</td>
<td>28 (3.1)</td>
</tr>
<tr>
<td>Did not participate</td>
<td>(...)</td>
<td>72 (3.1)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>(...)</td>
<td>24 (1.5)</td>
</tr>
<tr>
<td>Did not participate</td>
<td>(...)</td>
<td>76 (1.5)</td>
</tr>
<tr>
<td>FREE/REDUCED-PRICE LUNCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td>(...)</td>
<td>43 (3.1)</td>
</tr>
<tr>
<td>Not eligible</td>
<td>(...)</td>
<td>52 (3.0)</td>
</tr>
<tr>
<td>Information not available</td>
<td>(...)</td>
<td>6 (2.3)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td>(...)</td>
<td>35 (3.2)</td>
</tr>
<tr>
<td>Not eligible</td>
<td>(...)</td>
<td>53 (4.1)</td>
</tr>
<tr>
<td>Information not available</td>
<td>(...)</td>
<td>12 (4.8)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td>(...)</td>
<td>34 (1.6)</td>
</tr>
<tr>
<td>Not eligible</td>
<td>(...)</td>
<td>52 (2.5)</td>
</tr>
<tr>
<td>Information not available</td>
<td>(...)</td>
<td>13 (3.1)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. The percentages for Race/Ethnicity may not add to 100 percent because some students categorized themselves as "Other." * Characteristics of the school sample do not permit reliable regional results for type of location. --- Title I and Free/Reduced-Price Lunch results are not available for the 1992 assessment. **** Standard error estimates cannot be accurately determined.

TABLE I.1B — GRADE 8

Profile of Students in Texas, the West Region, and the Nation

<table>
<thead>
<tr>
<th>Demographic Subgroups</th>
<th>1990</th>
<th>1992</th>
<th>1996</th>
<th>Public</th>
<th>Public</th>
<th>Public</th>
<th>Nonpublic</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percentage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RACE/ETHNICITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>47 (2.1)</td>
<td>48 (1.9)</td>
<td>56 (8.4)</td>
<td>48 (1.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>13 (1.3)</td>
<td>12 (1.6)</td>
<td>12 (1.3)</td>
<td>2 (0.8)</td>
<td>11 (1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>36 (2.1)</td>
<td>36 (2.0)</td>
<td>37 (2.2)</td>
<td>31 (8.4)</td>
<td>36 (2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>2 (0.6)</td>
<td>3 (0.4)</td>
<td>3 (0.6)</td>
<td>9 (1.3)</td>
<td>3 (0.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
<td>1 (0.2)</td>
<td>0 (****)</td>
<td>1 (0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>63 (1.9)</td>
<td>63 (1.5)</td>
<td>58 (2.6)</td>
<td>62 (6.1)</td>
<td>58 (2.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>7 (2.0)</td>
<td>8 (1.3)</td>
<td>8 (1.9)</td>
<td>4 (2.3)</td>
<td>8 (1.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>21 (1.5)</td>
<td>21 (1.7)</td>
<td>26 (1.6)</td>
<td>23 (7.5)</td>
<td>26 (1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>4 (1.3)</td>
<td>5 (0.8)</td>
<td>7 (1.1)</td>
<td>9 (3.1)</td>
<td>7 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian</td>
<td>4 (2.3)</td>
<td>2 (0.7)</td>
<td>1 (0.3)</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>70 (0.5)</td>
<td>69 (0.4)</td>
<td>68 (0.5)</td>
<td>80 (3.4)</td>
<td>69 (0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>16 (0.3)</td>
<td>16 (0.2)</td>
<td>15 (0.4)</td>
<td>7 (2.5)</td>
<td>14 (0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>10 (0.4)</td>
<td>10 (0.3)</td>
<td>13 (0.3)</td>
<td>9 (2.0)</td>
<td>12 (0.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>2 (0.5)</td>
<td>2 (0.2)</td>
<td>3 (0.3)</td>
<td>3 (0.7)</td>
<td>3 (0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian</td>
<td>2 (0.7)</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>1 (0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE OF LOCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central city</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>49 (3.1)</td>
<td>50 (3.7)</td>
<td>68 (14.1)</td>
<td>51 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>32 (4.0)</td>
<td>31 (4.8)</td>
<td>32 (14.1)</td>
<td>31 (4.6)</td>
<td></td>
</tr>
<tr>
<td>Rural/Small town</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20 (3.3)</td>
<td>19 (3.1)</td>
<td>0 (****)</td>
<td>18 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central city</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>30 (2.9)</td>
<td>29 (2.7)</td>
<td>69 (6.8)</td>
<td>33 (2.7)</td>
<td></td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>42 (3.9)</td>
<td>38 (3.4)</td>
<td>22 (6.1)</td>
<td>36 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Rural/Small town</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>28 (3.1)</td>
<td>33 (3.1)</td>
<td>9 (4.2)</td>
<td>30 (2.9)</td>
<td></td>
</tr>
<tr>
<td>PARENTS’ EDUCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not finish high school</td>
<td>17 (1.1)</td>
<td>16 (1.0)</td>
<td>13 (1.1)</td>
<td>1 (0.5)</td>
<td>12 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>23 (1.1)</td>
<td>21 (1.0)</td>
<td>21 (1.0)</td>
<td>6 (2.4)</td>
<td>20 (0.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some education after HS</td>
<td>15 (0.6)</td>
<td>18 (0.8)</td>
<td>15 (1.0)</td>
<td>11 (3.4)</td>
<td>15 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduated from college</td>
<td>34 (1.5)</td>
<td>34 (1.6)</td>
<td>38 (2.0)</td>
<td>60 (6.0)</td>
<td>41 (1.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I don’t know</td>
<td>10 (0.8)</td>
<td>11 (0.8)</td>
<td>12 (1.1)</td>
<td>3 (1.0)</td>
<td>12 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not finish high school</td>
<td>10 (1.3)</td>
<td>9 (1.1)</td>
<td>9 (0.8)</td>
<td>2 (1.1)</td>
<td>8 (0.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>19 (2.5)</td>
<td>19 (1.5)</td>
<td>20 (1.2)</td>
<td>8 (0.8)</td>
<td>19 (1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some education after HS</td>
<td>16 (1.2)</td>
<td>18 (1.2)</td>
<td>19 (1.5)</td>
<td>15 (1.8)</td>
<td>19 (1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduated from college</td>
<td>42 (4.0)</td>
<td>43 (2.9)</td>
<td>36 (2.2)</td>
<td>64 (3.6)</td>
<td>36 (2.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I don’t know</td>
<td>13 (1.2)</td>
<td>11 (0.9)</td>
<td>15 (1.6)</td>
<td>11 (2.2)</td>
<td>15 (1.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not finish high school</td>
<td>10 (0.8)</td>
<td>8 (0.6)</td>
<td>8 (0.5)</td>
<td>2 (0.4)</td>
<td>7 (0.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>25 (1.2)</td>
<td>25 (0.8)</td>
<td>23 (0.8)</td>
<td>13 (1.5)</td>
<td>22 (0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some education after HS</td>
<td>17 (0.9)</td>
<td>18 (0.8)</td>
<td>19 (0.8)</td>
<td>16 (0.9)</td>
<td>19 (0.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduated from college</td>
<td>39 (1.9)</td>
<td>40 (1.4)</td>
<td>40 (1.4)</td>
<td>61 (2.7)</td>
<td>42 (1.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I don’t know</td>
<td>9 (0.7)</td>
<td>9 (0.5)</td>
<td>11 (0.6)</td>
<td>9 (1.6)</td>
<td>11 (0.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENDER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>50 (1.0)</td>
<td>49 (0.9)</td>
<td>47 (1.3)</td>
<td>48 (3.3)</td>
<td>47 (1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50 (1.0)</td>
<td>51 (0.9)</td>
<td>53 (1.3)</td>
<td>52 (3.3)</td>
<td>53 (1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>55 (2.1)</td>
<td>51 (1.4)</td>
<td>54 (1.3)</td>
<td>46 (3.3)</td>
<td>53 (1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45 (2.1)</td>
<td>49 (1.4)</td>
<td>46 (1.3)</td>
<td>54 (3.3)</td>
<td>47 (1.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>51 (1.1)</td>
<td>52 (0.8)</td>
<td>52 (0.9)</td>
<td>53 (2.1)</td>
<td>52 (0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>49 (1.1)</td>
<td>48 (0.8)</td>
<td>48 (0.8)</td>
<td>47 (2.1)</td>
<td>48 (0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
TABLE I.1B — GRADE 8 (continued)

Profile of Students in Texas, the West Region, and the Nation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Nonpublic</td>
<td>Combined</td>
</tr>
<tr>
<td></td>
<td>Percentage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>22 (2.9)</td>
<td>0 (***</td>
<td>20 (2.7)</td>
</tr>
<tr>
<td>Did not participate</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>78 (2.9)</td>
<td>100 (***)</td>
<td>80 (2.7)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>17 (3.5)</td>
<td>0 (***</td>
<td>16 (3.2)</td>
</tr>
<tr>
<td>Did not participate</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>83 (3.5)</td>
<td>100 (***)</td>
<td>84 (3.2)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>13 (1.8)</td>
<td>2 (1.2)</td>
<td>12 (1.6)</td>
</tr>
<tr>
<td>Did not participate</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>87 (1.5)</td>
<td>98 (1.2)</td>
<td>86 (1.6)</td>
</tr>
<tr>
<td>FREE/REDUCED-PRICE LUNCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>37 (2.2)</td>
<td>1 (***</td>
<td>34 (2.1)</td>
</tr>
<tr>
<td>Not eligible</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>57 (2.7)</td>
<td>32 (12.6)</td>
<td>55 (2.7)</td>
</tr>
<tr>
<td>Information not available</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>6 (1.3)</td>
<td>68 (12.8)</td>
<td>10 (1.8)</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>30 (2.7)</td>
<td>1 (***</td>
<td>28 (2.5)</td>
</tr>
<tr>
<td>Not eligible</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>48 (4.1)</td>
<td>30 (8.2)</td>
<td>47 (3.5)</td>
</tr>
<tr>
<td>Information not available</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>22 (5.6)</td>
<td>69 (8.7)</td>
<td>26 (4.9)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>30 (1.6)</td>
<td>4 (1.5)</td>
<td>27 (1.4)</td>
</tr>
<tr>
<td>Not eligible</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>56 (2.6)</td>
<td>53 (7.5)</td>
<td>55 (2.4)</td>
</tr>
<tr>
<td>Information not available</td>
<td>(--.--)</td>
<td>(--.--)</td>
<td>14 (3.1)</td>
<td>43 (7.6)</td>
<td>17 (2.9)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation » («) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > () appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. The percentages for Race/Ethnicity may not add to 100 percent because some students categorized themselves as "Other." * Characteristics of the school sample do not permit reliable regional results for type of location. --- Type of location results are not available for the NAEP 1990 mathematics assessment, and Title I and Free/Reduced-Price Lunch results are not available for the 1990 and 1992 assessments. **** Standard error estimates cannot be accurately determined.

Schools and Students Assessed

Tables I.2A and I.2B summarize participation data for schools and students sampled in Texas for the 1996 state assessment program in mathematics and previous NAEP state assessments in mathematics.\(^8\)

In Texas, 104 public schools participated in the 1996 fourth-grade mathematics assessment. This number includes participating substitute schools that were selected to replace some of the nonparticipating schools from the original sample. The weighted school participation rate after substitution in 1996 was 97 percent for public schools, which means that the fourth-grade students in this sample were directly representative of 97 percent of all the fourth-grade public school students in Texas.

At the eighth grade, 100 public schools and 9 nonpublic schools in Texas participated in the 1996 mathematics assessment. These numbers include participating substitute schools that were selected to replace some of the nonparticipating schools from the original sample. The weighted school participation rates after substitution in 1996 were 95 percent for public schools and 93 percent for nonpublic schools, which means that the eighth-grade students in this sample were directly representative of 95 percent and 93 percent of all the eighth-grade public and nonpublic school students, respectively, in Texas.

In each school, a random sample of students was selected to participate in the assessment. In 1996, on the basis of sample estimates, 14 percent of the fourth-grade public school population were classified as students with limited English proficiency (LEP). At the eighth grade, 6 percent of the public school population and 0 percent of the nonpublic school population were classified as students with limited English proficiency. At the fourth grade, 13 percent of the students in public schools had an Individualized Education Plan (IEP), and at the eighth grade, 11 percent of students in public schools and 1 percent of students in nonpublic schools had an IEP. An IEP is a plan written for a student who has been determined to be eligible for special education. The IEP typically sets forth goals and objectives for the student and describes a program of activities and/or related services necessary to achieve the goals and objectives.

\(^8\) For a detailed discussion of the NCES guidelines for sample participation, see Appendix A of this report or the Technical Report of the NAEP 1996 State Assessment Program in Mathematics. (Washington, DC: National Center for Education Statistics, 1997).
Schools were permitted to exclude certain students from the assessment, provided that the following criteria were met. To be excluded, a student had to be categorized as LEP or had to have an IEP or equivalent and (in either case) be judged incapable of participating in the assessment. The intent was to assess all selected students; therefore, all selected students who were capable of participating in the assessment should have been assessed. However, schools were allowed to exclude those students who, in the judgment of school staff, could not meaningfully participate. The NAEP guidelines for exclusion are intended to assure uniformity of exclusion criteria from school to school. Note that some students classified as LEP and some students having an IEP were deemed eligible to participate and not excluded from the assessment. The students in Texas who were excluded from the assessment because they were categorized as LEP or had an IEP represented 13 percent of the public school population in grade 4 and 9 percent of the public school population and 1 percent of the nonpublic school population in grade 8.

In Texas, 2,413 public school fourth-grade students were assessed in 1996. The weighted student participation rate was 96 percent for public schools. This means that the sample of fourth-grade students who took part in the assessment was directly representative of 96 percent of the eligible public school student population in participating schools in Texas (that is, all students from the population represented by the participating schools, minus those students excluded from the assessment). The overall weighted response rate (school rate times student rate) was 93 percent for public schools. This means that the sample of students who participated in the assessment was directly representative of 93 percent of the eligible fourth-grade public school population in Texas.

In Texas, 2,245 public school and 166 nonpublic school eighth-grade students were assessed in 1996. The weighted student participation rates were 92 percent for public schools and 92 percent for nonpublic schools. This means that the sample of eighth-grade students who took part in the assessment was directly representative of 92 percent of the eligible public school student population and 92 percent of the eligible nonpublic school student population in participating schools in Texas (that is, all students from the population represented by the participating schools, minus those students excluded from the assessment). The overall weighted response rates (school rate times student rate) were 88 percent and 86 percent for public and nonpublic schools, respectively. This means that the sample of students who participated in the assessment was directly representative of 88 percent of the eligible eighth-grade public school population and 86 percent of the eligible eighth-grade nonpublic school population in Texas.
TABLE I.2A — GRADE 4

Profile of the Population Assessed in Texas

<table>
<thead>
<tr>
<th></th>
<th>1992 Public</th>
<th>1996 Public</th>
<th>Nonpublic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHOOL PARTICIPATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted school participation rate before substitution</td>
<td>93%</td>
<td>95%</td>
<td>64%</td>
</tr>
<tr>
<td>Weighted school participation rate after substitution</td>
<td>98%</td>
<td>97%</td>
<td>64%</td>
</tr>
<tr>
<td>Number of schools originally sampled</td>
<td>111</td>
<td>107</td>
<td>10</td>
</tr>
<tr>
<td>Number of schools not eligible</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Number of schools in original sample participating</td>
<td>100</td>
<td>102</td>
<td>4</td>
</tr>
<tr>
<td>Number of substitute schools provided</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Number of substitute schools participating</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total number of participating schools</td>
<td>105</td>
<td>104</td>
<td>4</td>
</tr>
<tr>
<td>STUDENT PARTICIPATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted student participation rate after makeups</td>
<td>96%</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>Number of students selected to participate in the assessment</td>
<td>3,118</td>
<td>2,830</td>
<td>109</td>
</tr>
<tr>
<td>Number of students withdrawn from the assessment</td>
<td>162</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>Percentage of students who were of Limited English Proficiency</td>
<td>9%</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>Percentage of students excluded from the assessment due to Limited English Proficiency</td>
<td>4%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Percentage of students who had an Individualized Education Plan</td>
<td>9%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>Percentage of students excluded from the assessment due to Individualized Education Plan status</td>
<td>5%</td>
<td>8%</td>
<td>3%</td>
</tr>
<tr>
<td>Number of students to be assessed</td>
<td>2,722</td>
<td>2,527</td>
<td>106</td>
</tr>
<tr>
<td>Number of students assessed</td>
<td>2,623</td>
<td>2,413</td>
<td>101</td>
</tr>
<tr>
<td>Overall weighted response rate</td>
<td>94%</td>
<td>93%</td>
<td>61%</td>
</tr>
</tbody>
</table>

Texas failed to meet one or more established participation guidelines in 1996. See Appendix A for details.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
TABLE I.2B — GRADE 8

Profile of the Population Assessed in Texas

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>1992</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHOOL PARTICIPATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted school participation rate before substitution</td>
<td>88%</td>
<td>95%</td>
<td>90%</td>
</tr>
<tr>
<td>Weighted school participation rate after substitution</td>
<td>97%</td>
<td>99%</td>
<td>95%</td>
</tr>
<tr>
<td>Number of schools originally sampled</td>
<td>107</td>
<td>107</td>
<td>110</td>
</tr>
<tr>
<td>Number of schools not eligible</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Number of schools in original sample participating</td>
<td>92</td>
<td>99</td>
<td>95</td>
</tr>
<tr>
<td>Number of substitute schools provided</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Number of substitute schools participating</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total number of participating schools</td>
<td>101</td>
<td>103</td>
<td>100</td>
</tr>
<tr>
<td>STUDENT PARTICIPATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighted student participation rate after makeups</td>
<td>96%</td>
<td>94%</td>
<td>92%</td>
</tr>
<tr>
<td>Number of students selected to participate in the assessment</td>
<td>3,049</td>
<td>3,181</td>
<td>2,719</td>
</tr>
<tr>
<td>Number of students withdrawn from the assessment</td>
<td>196</td>
<td>182</td>
<td>174</td>
</tr>
<tr>
<td>Percentage of students who were of Limited English Proficiency</td>
<td>5%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Percentage of students excluded from the assessment due to Limited English Proficiency</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Percentage of students who had an Individualized Education Plan</td>
<td>8%</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>Percentage of students excluded from the assessment due to Individualized Education Plan status</td>
<td>5%</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Number of students to be assessed</td>
<td>2,657</td>
<td>2,794</td>
<td>2,427</td>
</tr>
<tr>
<td>Number of students assessed</td>
<td>2,542</td>
<td>2,614</td>
<td>2,245</td>
</tr>
<tr>
<td>Overall weighted response rate</td>
<td>93%</td>
<td>93%</td>
<td>88%</td>
</tr>
</tbody>
</table>

In 1990 in Texas, one or more schools in the original sample initially declined and then decided to participate after their substitute(s) had also agreed to participate. Further, assessments were conducted in both the original and substitute schools. For these cases the substitute school is included in the number of substitute schools provided and in the number of substitute schools participating. The state's estimate will be based on the student responses from the original school only.

In accordance with standard practice in survey research, the results presented in this report were based on calculations that incorporate adjustments for the nonparticipating schools and students. Hence, the final results derived from the sample provide estimates of the mathematics performance for the full population of eligible fourth- and eighth-grade students in Texas. However, in instances where nonparticipation rates are large, these nonparticipation adjustments may not adequately compensate for the missing sample schools and students.

In order to guard against potential nonparticipation bias in published results, the National Center for Education Statistics (NCES) has established minimum participation levels as a condition for the publication of 1996 state assessment program results. NCES also established additional guidelines addressing four ways in which nonparticipation bias could be introduced into a jurisdiction’s published results (see Appendix A). In 1996 Texas met minimum participation levels for public schools at grades 4 and 8 and for nonpublic schools at grade 8. However, Texas failed to meet minimum participation levels for nonpublic schools at grade 4. The weighted participation rate for the initial sample of nonpublic schools at grade 4 was less than 70%. Hence, results for public schools at grade 4 and for both types of schools at grade 8 are included in this report. Texas met all other established NCES participation guidelines for public schools at grades 4 and 8 and for nonpublic schools at grade 8 (see Appendix A).

In the analysis of student data and reporting of results, nonresponse weighting adjustments have been made at both the school and student level, with the aim of making the sample of participating students as representative as possible of the entire eligible fourth- and eighth-grade population. For details of the nonresponse weighting adjustment procedures, see the Technical Report of the NAEP 1996 State Assessment Program in Mathematics.

Reporting NAEP Mathematics Results

The NAEP 1996 state assessment program in mathematics provides a wealth of information on the mathematical abilities and skills of the fourth- and eighth-grade students in participating jurisdictions. To maximize usefulness to policy makers, educators, parents, and other interested parties, the NAEP results are presented both as average scale scores on the NAEP mathematics scale and in terms of the percentage of students attaining NAEP mathematics achievement levels. Thus, NAEP results not only provide information about what students know and can do, but also indicate whether their achievement meets expectations of what students should know and should be able to do. Furthermore, the descriptions of skills and abilities expected of students at each achievement level help make the reporting of assessment results more meaningful.
The Mathematics Scale

Students' responses to the NAEP 1996 mathematics assessment were analyzed to determine the percentage of students responding correctly to each multiple-choice question and the percentage of students responding in each of several score categories for constructed-response questions. Item response theory (IRT) methods were used to produce across-grade scales that summarized results for each of the five mathematics content strands discussed earlier. Each of the content-strand scales, which range from 0 to 500, was linked to its corresponding scale from 1990 and 1992 through IRT equating.

An overall composite scale was developed by weighting the separate content-strand scales based on the relative importance to each content strand in the NAEP mathematics framework. The resulting scale, which was also linked to the 1990 and 1992 mathematics composite scales, is the reporting metric used in Parts One and Three to present results. (Details of the scaling procedures are presented in Appendix C of this report, in the NAEP 1996 Technical Report, and in the Technical Report of the NAEP 1996 State Assessment Program in Mathematics.)

Mathematics Achievement Levels

Results for the NAEP 1996 assessment in mathematics are also reported using the mathematics achievement levels that were authorized by the NAEP legislation and adopted by the National Assessment Governing Board. The achievement levels are based on collective judgments about what students should know and be able to do relative to the body of content reflected in the NAEP mathematics assessment. Three levels were defined for each grade — Basic, Proficient, and Advanced. The levels were defined by a broadly representative panel of teachers, education specialists, and members of the general public.

For reporting purposes, the achievement levels for each grade are placed on the NAEP mathematics scale. Figure 1 presents the policy definitions of the achievement levels, while Chapter 3 contains specific descriptions for the levels at each grade.

Figure 1. Policy Definitions of NAEP Achievement Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>This level denotes partial mastery of prerequisite knowledge and skills that are fundamental for proficient work at each grade.</td>
</tr>
<tr>
<td>Proficient</td>
<td>This level represents solid academic performance for each grade assessed. Students reaching this level have demonstrated competency over challenging subject matter, including subject-matter knowledge, application of such knowledge to real-world situations, and analytical skills appropriate to the subject matter.</td>
</tr>
<tr>
<td>Advanced</td>
<td>This level signifies superior performance.</td>
</tr>
</tbody>
</table>
It should be noted that setting achievement levels is a relatively new process for NAEP, and it is still in transition. Some evaluations have concluded that the percentage of students at certain levels may be underestimated. On the other hand, critiques of those evaluations have asserted that the weight of the empirical evidence does not support such conclusions. A further review is currently being conducted by the National Academy of Sciences.

The student achievement levels in this report have been developed carefully and responsibly, and the procedures used have been refined and revised as new technologies have become available. Upon review of the available information, the Commissioner of Education Statistics has judged that the achievement levels are in a developmental status. However, the Commissioner and the Governing Board also believe that the achievement levels are useful and valuable for reporting on the educational achievement of students in the United States. Part Two presents results reported in terms of the mathematics achievement levels.

Interpreting NAEP Results

This report describes mathematics performance for fourth and eighth graders and compares the results for various groups of students within these populations — for example, those who have certain demographic characteristics or who responded to a specific background question in a particular way. The report examines the results for individual demographic groups and for individual background questions. It does not include an analysis of the relationships among combinations of these subpopulations or background questions.

Because the percentages of students in these subpopulations and their average mathematics scale scores are based on samples — rather than on the entire population of fourth and eighth graders in a jurisdiction — the numbers reported are necessarily estimates. As such, they are subject to a measure of uncertainty, reflected in the standard error of the estimate. When the percentages or average scale scores of certain groups are compared, it is essential to take the standard error into account, rather than to rely solely on observed similarities or differences. Therefore, the comparisons discussed in this report are based on statistical tests that consider both the magnitude of the difference between the means or percentages and the standard errors of those statistics.

The statistical tests determine whether the evidence — based on the data from the groups in the sample — is strong enough to conclude that the averages or percentages are really different for those groups in the population. If the evidence is strong (i.e., the difference is statistically significant), the report describes the group averages or percentages as being different (e.g., one group performed higher than or lower than another group) — regardless of whether the sample averages or sample percentages appear to be about the same or not. If the evidence is not sufficiently strong (i.e., the difference is not statistically significant), the averages or percentages are described as being not significantly different — again, regardless of whether the sample averages or sample percentages appear to be about the same or widely discrepant. The reader is cautioned to rely on the results of the statistical tests — rather than on the apparent magnitude of the difference between sample averages or percentages — to determine whether those sample differences are likely to represent actual differences between the groups in the population. The statistical tests are discussed in greater detail in Appendix A.

In addition, some of the percentages reported in the text of the report are given quantitative descriptions (e.g., relatively few, about half, almost all, etc.). The descriptive phrases used and the rules used to select them are also described in Appendix A.

How Is This Report Organized?

The NAEP 1996 Mathematics State Report for Texas is a computer-generated report that describes the mathematics performance of fourth- and eighth-grade students in Texas, the West region, and the nation. A separate report describes additional fourth- and eighth-grade mathematics assessment results for the nation and the states, as well as the national results for grade 12. The State Report consists of five sections:

- An Introduction provides background information about what was assessed, who was sampled, and how the results are reported.
- Part One shows the distribution of mathematics scale score results for fourth- and eighth-grade students in Texas, the West region, and the nation.
- Part Two presents mathematics achievement level results for fourth- and eighth-grade students in Texas, the West region, and the nation.
Part Three relates fourth- and eighth-grade public school students' mathematics scale scores to contextual information about school characteristics, instruction, and home support for mathematics in Texas, the West region, and the nation.

Several Appendices are presented to support the results discussed in the report:

Appendix A Reporting NAEP 1996 Mathematics Results for Texas
Appendix B NAEP 1996 Mathematics Assessment
Appendix C Technical Appendix
Appendix D Setting the Achievement Levels
Appendix E Teacher Preparation
Appendix F Discussion of the Grade 8 Asian/Pacific Islander Sample
The Mathematics Scale Score Results for Fourth- and Eighth-Grade Students

The following chapters describe the average mathematics scale scores of fourth- and eighth-grade students in Texas. As described in the Introduction, the NAEP mathematics scale is a composite of the five content strands that comprise the assessment and ranges from 0 to 500. The performance of both fourth- and eighth-grade students is reported on this one scale.

This part of the report contains two chapters. Chapter 1 compares the overall mathematics performance of public school students in Texas to the nation. (Results for the West region are also presented.) Chapter 2 summarizes mathematics performance for subgroups of public school students defined by gender, race/ethnicity, parental education, location of the school, participation in Title I programs and services, and eligibility for the free/reduced-price lunch component of the National School Lunch Program. The second chapter also provides the combined results for public and nonpublic school students, as well as the results for only nonpublic school students.
Students' Mathematics Scale Score Results

The delivery of education to the millions of school-age students in our country is primarily a function of the states. Therefore, monitoring the performance of students in subjects such as mathematics is a key concern of those policy makers directing educational reform at the state level. Monitoring the mathematics performance of students is also a concern at the national level.

The need to assess the current level of mathematical ability as a mechanism for informing education reform efforts is highlighted by the current National Assessment of Educational Progress (NAEP) in mathematics (as well as the two previous NAEP assessments in mathematics in 1990 and 1992) and the Third International Mathematics and Science Study (TIMSS) conducted in 1994 and 1995 with support from the U.S. Department of Education.\(^\text{12}\)

The mathematics community has taken a lead in communicating the importance of mathematics in today's society. With the release of the National Council of Teachers of Mathematics (NCTM) *Curriculum and Evaluation Standards for School Mathematics* in 1989, mathematics educators have accepted the challenges set forth by the national and state policy makers.\(^\text{13}\) Based on drafts of the NCTM *Standards*, NAEP developed the 1990 and 1992 mathematics assessments.\(^\text{14}\) The framework and specifications for the NAEP 1996 mathematics assessment was refined to better reflect the NCTM *Standards*.\(^\text{15}\) Results from the 1996 assessment can be compared to those from the 1990 and 1992 assessments, regardless of the refinement of the framework.

\(^\text{12}\) The Third International Mathematics and Science Study was conducted in 1994 in the southern hemisphere and in 1995 in the northern hemisphere.

The NAEP 1996 state mathematics assessment at grades 4 and 8 continues the state-level NAEP component begun in 1990 with the NAEP Trial State Assessment (TSA) in mathematics at grade 8, which was followed by the 1992 TSA in mathematics at grades 4 and 8.\(^\text{16}\) The current assessment is also the largest with 48 participating jurisdictions.\(^\text{17}\) The following results from the NAEP 1996 state mathematics assessment represent a current picture of the mathematics performance of fourth- and eighth-grade students in Texas and the nation.

Table 1.1A shows the distribution of mathematics scale scores for fourth-grade students attending public schools in Texas, the West region, and the nation. Results are presented for the 1992 and 1996 assessments and comparisons between the two years are indicated.\(^\text{18}\) The 1992 and 1996 mathematics assessments examined the performance of two independent samples of fourth-grade students (i.e., cross-sectional performance). NAEP does not measure the growth of a group of students (i.e., longitudinal performance), but rather collects data for the same grade levels at different points in time. Table 1.1B presents similar results for eighth-grade students.

\(^\text{16}\) Based on positive evaluations of the 1990, 1992, and 1994 TSAs, the “Trial” designation has been removed from the 1996 state-level NAEP assessment.

\(^\text{17}\) Jurisdictions refers to states, territories, the District of Columbia, and Department of Defense Education Activities schools.

\(^\text{18}\) Mathematics was not assessed at grade 4 in 1990.
Texas

1996, Public School Students, Grade 4
The average mathematics scale score in Texas was 229. This average was higher than that for the nation (222).19

1992 vs. 1996, Public School Students, Grade 4
From 1992 to 1996, there was an increase in the average scale score of students both in Texas and across the nation. The observed increase for Texas was larger than the increase for the nation.

<table>
<thead>
<tr>
<th>1992</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
<th>1996</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale Score</td>
<td>218 (1.2)</td>
<td>218 (1.5)</td>
<td>219 (0.8)</td>
<td>229 (1.4)</td>
<td>219 (1.2)</td>
<td>219 (1.5)</td>
<td>222 (1.0)</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>179 (2.4)</td>
<td>175 (2.7)</td>
<td>176 (1.1)</td>
<td>190 (2.6)</td>
<td>177 (4.0)</td>
<td>180 (1.5)</td>
<td></td>
</tr>
<tr>
<td>25th Percentile</td>
<td>196 (1.4)</td>
<td>197 (2.1)</td>
<td>197 (0.9)</td>
<td>209 (1.7)</td>
<td>197 (2.0)</td>
<td>201 (1.3)</td>
<td></td>
</tr>
<tr>
<td>50th Percentile</td>
<td>218 (1.5)</td>
<td>221 (1.9)</td>
<td>220 (1.0)</td>
<td>230 (1.7)</td>
<td>220 (2.9)</td>
<td>224 (1.3)</td>
<td></td>
</tr>
<tr>
<td>75th Percentile</td>
<td>239 (1.8)</td>
<td>240 (2.3)</td>
<td>241 (1.1)</td>
<td>249 (1.1)</td>
<td>240 (2.6)</td>
<td>244 (1.0)</td>
<td></td>
</tr>
<tr>
<td>90th Percentile</td>
<td>256 (2.3)</td>
<td>258 (2.5)</td>
<td>259 (0.9)</td>
<td>266 (1.7)</td>
<td>259 (2.1)</td>
<td>261 (1.0)</td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Table 1.1B shows the distribution of mathematics scale scores for eighth-grade students attending public schools in Texas, the West region, and the nation. Results are presented for the 1990, 1992, and 1996 assessments and comparisons among the three years are indicated.

1996, Public School Students, Grade 8
The average mathematics scale score in Texas was 270. This average did not differ significantly from that for the nation (271).

1992 vs. 1996, Public School Students, Grade 8
From 1992 to 1996, there was an increase in the average scale score of students in Texas and somewhat of an increase in that of students across the nation. The observed increase for Texas was not significantly different from the increase for the nation.

1990 vs. 1996, Public School Students, Grade 8
The average scale score in Texas in 1996 (270) was higher than that in 1990 (258).

<table>
<thead>
<tr>
<th>TABLE 1.1B — GRADE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of Mathematics Scale Scores for Public School Students</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>258 (1.4)</td>
<td>213 (1.9)</td>
<td>234 (1.5)</td>
<td>258 (1.5)</td>
<td>283 (1.4)</td>
<td>303 (2.2)</td>
</tr>
<tr>
<td>West</td>
<td>261 (2.6)</td>
<td>211 (3.0)</td>
<td>235 (3.2)</td>
<td>262 (1.6)</td>
<td>286 (2.6)</td>
<td>309 (4.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>262 (1.4)</td>
<td>241 (1.8)</td>
<td>273 (1.7)</td>
<td>263 (1.4)</td>
<td>287 (1.7)</td>
<td>307 (1.9)</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>265 (1.3)<a></td>
<td>217 (2.0)</td>
<td>239 (1.3)</td>
<td>265 (1.6)<a></td>
<td>290 (1.9)<a></td>
<td>312 (2.1)<a></td>
</tr>
<tr>
<td>West</td>
<td>266 (2.1)<a></td>
<td>219 (2.6)</td>
<td>243 (3.1)</td>
<td>269 (2.7)</td>
<td>294 (1.9)</td>
<td>314 (3.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>267 (1.0)<a></td>
<td>219 (1.5)</td>
<td>242 (1.4)</td>
<td>268 (1.2)<a></td>
<td>293 (1.5)</td>
<td>314 (1.4)<a></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>270 (1.4)>a</td>
<td>225 (2.2)>a</td>
<td>247 (2.0)>a</td>
<td>271 (1.7)>a</td>
<td>295 (1.6)>a</td>
<td>314 (1.6)>a</td>
</tr>
<tr>
<td>West</td>
<td>268 (2.4)>a</td>
<td>219 (4.8)</td>
<td>244 (3.0)</td>
<td>269 (1.7)>a</td>
<td>294 (3.4)</td>
<td>314 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>271 (1.2)>a</td>
<td>222 (2.0)>a</td>
<td>247 (1.2)>a</td>
<td>272 (1.1)>a</td>
<td>298 (1.4)>a</td>
<td>316 (2.0)>a</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation (+<*) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation (> (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Comparisons Between Texas and Other Participating Jurisdictions

The maps on the following pages provide a method for making appropriate comparisons of the average mathematics scale scores for public school students in Texas with those of other jurisdictions participating in the NAEP 1996 mathematics assessment. The different shadings of the states on the map show whether or not the average scale scores of public school students in the other jurisdictions were statistically different from that of public school students in Texas ("Target State"). States with horizontal lines have a significantly lower average mathematics scale score than Texas and states in gray have a significantly higher average scale score. The unshaded states have average scale scores that did not differ significantly from the average for Texas. Several states, those with large crosshatching, did not meet minimum participation rate guidelines established by NCES for the NAEP assessments. A description of the statistical procedures used to produce the data represented in these maps is contained in Appendix A.
The NAEP 1996 State Assessment
Comparisons of Overall Mathematics Scale Scores at Grade 8
Texas Public School Students

Target state
State has statistically significantly higher average scale score than target state.
State shows no statistically significant difference in average scale score from target state.
State has statistically significantly lower average scale score than target state.
State did not meet minimum participation rate guidelines.
State did not participate.
Performance on the NAEP Mathematics Content Strands

The framework and specifications that guided the development of the NAEP mathematics assessments are anchored in broad strands of mathematical content similar to the content standards in the NCTM Standards. These content strands are:

- Number Sense, Properties, and Operations
- Measurement
- Geometry and Spatial Sense
- Data Analysis, Statistics, and Probability
- Algebra and Functions

Tables 1.2A and 1.2B show the distribution of content strand scale scores for Texas, the West region, and the nation. Appendix B describes the five content strands, and Appendix C contains a more extensive discussion of the scaling procedures used to develop the five content-strand scales as well as the composite NAEP mathematics scale.

1996, Public School Students, Grade 4

Students in Texas performed higher than students nationwide in number sense, properties, and operations; data analysis, statistics, and probability; and algebra and functions. The performance of students in Texas did not differ significantly from that of students nationwide in measurement and geometry and spatial sense.

1992 vs. 1996, Public School Students, Grade 4

The performance of students in Texas improved between 1992 and 1996 in number sense, properties, and operations; measurement; data analysis, statistics, and probability; and algebra and functions. The performance of students in Texas did not change significantly between 1992 and 1996 in geometry and spatial sense.

20 At the fourth-grade level, the Algebra and Functions strand was treated in informal and exploratory ways, often through the study of patterns.
Texas

TABLE 1.2A — GRADE 4

Distribution of Mathematics Scale Scores for Public School Students by Content Area

<table>
<thead>
<tr>
<th>Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Sense, Properties, and Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>215 (1.3)</td>
<td>172 (3.1)</td>
<td>193 (1.7)</td>
<td>216 (1.6)</td>
<td>238 (1.7)</td>
</tr>
<tr>
<td>West</td>
<td>215 (1.7)</td>
<td>170 (1.9)</td>
<td>192 (1.7)</td>
<td>217 (2.4)</td>
<td>238 (2.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>216 (0.9)</td>
<td>170 (1.2)</td>
<td>193 (1.2)</td>
<td>217 (1.1)</td>
<td>240 (0.9)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>228 (1.5)></td>
<td>187 (1.8)></td>
<td>207 (1.8)></td>
<td>229 (1.4)></td>
<td>250 (1.2)></td>
</tr>
<tr>
<td>West</td>
<td>215 (1.9)</td>
<td>170 (2.9)</td>
<td>193 (2.6)</td>
<td>216 (1.9)</td>
<td>238 (2.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>219 (1.1)</td>
<td>174 (1.1)</td>
<td>197 (0.8)</td>
<td>221 (1.1)</td>
<td>243 (1.3)</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>221 (1.6)</td>
<td>180 (2.4)</td>
<td>200 (1.9)</td>
<td>222 (1.3)</td>
<td>244 (2.4)</td>
</tr>
<tr>
<td>West</td>
<td>222 (1.6)</td>
<td>176 (3.2)</td>
<td>199 (2.1)</td>
<td>224 (2.0)</td>
<td>248 (2.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>223 (0.9)</td>
<td>178 (1.2)</td>
<td>201 (1.3)</td>
<td>225 (0.9)</td>
<td>247 (1.8)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>229 (1.7)></td>
<td>185 (2.6)</td>
<td>206 (1.8)</td>
<td>229 (2.5)</td>
<td>253 (2.2)</td>
</tr>
<tr>
<td>West</td>
<td>220 (2.6)</td>
<td>174 (4.3)</td>
<td>197 (2.3)</td>
<td>221 (3.3)</td>
<td>244 (3.2)</td>
</tr>
<tr>
<td>Nation</td>
<td>224 (1.2)</td>
<td>178 (2.3)</td>
<td>201 (1.8)</td>
<td>226 (1.5)</td>
<td>248 (1.3)</td>
</tr>
<tr>
<td>Geometry and Spatial Sense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>221 (1.4)</td>
<td>183 (2.0)</td>
<td>202 (1.7)</td>
<td>221 (1.4)</td>
<td>240 (1.5)</td>
</tr>
<tr>
<td>West</td>
<td>222 (1.3)</td>
<td>182 (0.9)</td>
<td>202 (1.6)</td>
<td>224 (1.8)</td>
<td>244 (1.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>221 (0.7)</td>
<td>181 (1.6)</td>
<td>201 (0.8)</td>
<td>222 (1.1)</td>
<td>243 (1.2)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>225 (1.5)</td>
<td>186 (2.4)</td>
<td>205 (1.9)</td>
<td>226 (2.3)</td>
<td>247 (1.3)</td>
</tr>
<tr>
<td>West</td>
<td>222 (2.1)</td>
<td>183 (2.5)</td>
<td>202 (2.9)</td>
<td>223 (2.0)</td>
<td>243 (2.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>224 (0.9)</td>
<td>184 (1.1)</td>
<td>205 (0.9)</td>
<td>228 (1.4)</td>
<td>245 (0.8)</td>
</tr>
<tr>
<td>Data Analysis, Statistics, and Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>219 (1.4)</td>
<td>182 (2.2)</td>
<td>200 (2.0)</td>
<td>220 (1.6)</td>
<td>240 (1.7)</td>
</tr>
<tr>
<td>West</td>
<td>218 (1.9)</td>
<td>174 (2.9)</td>
<td>196 (2.6)</td>
<td>221 (2.6)</td>
<td>242 (2.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>219 (1.0)</td>
<td>175 (1.7)</td>
<td>196 (1.2)</td>
<td>221 (1.4)</td>
<td>243 (1.6)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>229 (1.4)></td>
<td>194 (2.9)></td>
<td>211 (2.7)></td>
<td>230 (1.4)></td>
<td>247 (1.5)></td>
</tr>
<tr>
<td>West</td>
<td>219 (2.7)</td>
<td>177 (3.8)</td>
<td>197 (3.0)</td>
<td>221 (2.9)</td>
<td>242 (3.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>223 (1.4)</td>
<td>180 (1.8)</td>
<td>202 (1.6)</td>
<td>225 (1.4)</td>
<td>246 (1.5)</td>
</tr>
<tr>
<td>Algebra and Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>218 (1.4)</td>
<td>178 (1.3)</td>
<td>196 (1.6)</td>
<td>219 (1.8)</td>
<td>239 (2.1)</td>
</tr>
<tr>
<td>West</td>
<td>217 (1.9)</td>
<td>173 (2.4)</td>
<td>196 (1.2)</td>
<td>219 (3.0)</td>
<td>240 (3.2)</td>
</tr>
<tr>
<td>Nation</td>
<td>216 (0.9)</td>
<td>173 (1.3)</td>
<td>195 (0.9)</td>
<td>219 (1.4)</td>
<td>241 (1.5)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>233 (1.2)></td>
<td>197 (1.6)></td>
<td>215 (1.5)></td>
<td>235 (2.1)></td>
<td>252 (1.3)></td>
</tr>
<tr>
<td>West</td>
<td>223 (2.5)</td>
<td>180 (3.4)</td>
<td>202 (2.7)</td>
<td>224 (2.9)</td>
<td>244 (3.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>226 (1.2)></td>
<td>185 (1.8)></td>
<td>206 (1.3)></td>
<td>227 (1.7)></td>
<td>247 (1.5)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

The performance of students in Texas did not differ significantly from that of students across the nation in any of the five content strands.

There was an improvement in the performance of students in Texas from 1992 to 1996 in measurement and geometry and spatial sense. There was no significant change in the performance of students in Texas from 1992 to 1996 in number sense, properties, and operations; data analysis, statistics, and probability; and algebra and functions.

There was an improvement in the performance of students in Texas from 1990 to 1996 in all five of the content strands.

TABLE 1.2B — GRADE 8

<table>
<thead>
<tr>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Sense, Properties, and Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>262 (1.3)</td>
<td>219 (2.9)</td>
<td>239 (1.1)</td>
<td>262 (1.6)</td>
<td>286 (1.2)</td>
</tr>
<tr>
<td>West</td>
<td>263 (2.5)</td>
<td>217 (4.8)</td>
<td>239 (1.9)</td>
<td>264 (2.3)</td>
<td>288 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>266 (1.3)</td>
<td>220 (2.4)</td>
<td>242 (2.3)</td>
<td>267 (1.2)</td>
<td>291 (1.4)</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>267 (1.4)</td>
<td>221 (2.1)</td>
<td>242 (1.2)</td>
<td>268 (1.9)</td>
<td>292 (1.7)</td>
</tr>
<tr>
<td>West</td>
<td>271 (1.8)</td>
<td>224 (2.5)</td>
<td>247 (2.3)</td>
<td>272 (2.2)</td>
<td>296 (1.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>271 (0.9)</td>
<td>225 (0.8)</td>
<td>247 (1.0)</td>
<td>272 (1.4)</td>
<td>296 (1.0)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>273 (1.5)</td>
<td>228 (1.3)</td>
<td>250 (1.7)</td>
<td>274 (1.8)</td>
<td>297 (2.2)</td>
</tr>
<tr>
<td>West</td>
<td>270 (2.3)</td>
<td>223 (4.6)</td>
<td>247 (2.8)</td>
<td>271 (3.0)</td>
<td>296 (1.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>272 (1.2)</td>
<td>225 (1.5)</td>
<td>249 (1.6)</td>
<td>274 (1.6)</td>
<td>298 (1.2)</td>
</tr>
</tbody>
</table>

(continued on next page)
TABLE 1.2B — GRADE 8 (continued)

Distribution of Mathematics Scale Scores for Public School Students by Content Area

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>254 (1.5)</td>
<td>202 (2.0)</td>
<td>227 (2.1)</td>
<td>253 (1.7)</td>
<td>281 (1.7)</td>
<td>305 (2.2)</td>
</tr>
<tr>
<td>1992</td>
<td>261 (1.7)*</td>
<td>203 (2.0)</td>
<td>229 (1.9)</td>
<td>260 (2.4)</td>
<td>292 (1.3)*</td>
<td>320 (3.7)*</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>257 (3.2)</td>
<td>200 (4.2)</td>
<td>228 (2.3)</td>
<td>256 (4.7)</td>
<td>287 (3.5)</td>
<td>313 (3.8)</td>
</tr>
<tr>
<td>1992</td>
<td>267 (2.6)</td>
<td>210 (4.3)</td>
<td>236 (2.0)</td>
<td>266 (2.2)</td>
<td>298 (4.1)</td>
<td>325 (3.4)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>258 (1.6)</td>
<td>202 (1.9)</td>
<td>230 (2.7)</td>
<td>259 (2.2)</td>
<td>288 (2.2)</td>
<td>312 (2.3)</td>
</tr>
<tr>
<td>1992</td>
<td>265 (1.3)*</td>
<td>207 (1.5)</td>
<td>234 (1.6)</td>
<td>266 (1.7)</td>
<td>296 (1.7)</td>
<td>323 (2.8)</td>
</tr>
<tr>
<td>Texas</td>
<td>268 (2.0)*></td>
<td>209 (6.9)</td>
<td>237 (3.5)</td>
<td>269 (2.6)*></td>
<td>300 (2.8)*></td>
<td>326 (2.5)*></td>
</tr>
<tr>
<td>1996</td>
<td>265 (3.2)</td>
<td>203 (5.2)</td>
<td>235 (4.6)</td>
<td>267 (5.1)</td>
<td>298 (3.0)</td>
<td>324 (3.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>268 (1.6)*</td>
<td>206 (2.2)</td>
<td>238 (1.9)</td>
<td>270 (1.8)*></td>
<td>301 (2.7)*></td>
<td>328 (2.3)*></td>
</tr>
<tr>
<td>Geometry and Spatial Sense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>258 (1.4)</td>
<td>215 (3.5)</td>
<td>235 (1.4)</td>
<td>256 (1.6)</td>
<td>281 (1.3)</td>
<td>301 (1.7)</td>
</tr>
<tr>
<td>1992</td>
<td>262 (1.5)</td>
<td>216 (1.6)</td>
<td>239 (1.6)</td>
<td>263 (1.2)</td>
<td>286 (2.3)</td>
<td>307 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>263 (2.1)</td>
<td>218 (3.6)</td>
<td>240 (3.1)</td>
<td>264 (2.3)</td>
<td>287 (2.3)</td>
<td>307 (2.0)</td>
</tr>
<tr>
<td>1996</td>
<td>262 (1.0)</td>
<td>217 (1.0)</td>
<td>239 (1.4)</td>
<td>263 (1.0)</td>
<td>287 (1.1)</td>
<td>306 (1.3)</td>
</tr>
<tr>
<td>Texas</td>
<td>268 (1.2)*></td>
<td>229 (1.3)*></td>
<td>248 (1.9)*></td>
<td>268 (1.1)*></td>
<td>298 (1.6)</td>
<td>306 (1.2)</td>
</tr>
<tr>
<td>Data Analysis, Statistics, and Probability</td>
<td>267 (2.5)</td>
<td>224 (4.0)</td>
<td>245 (3.8)</td>
<td>268 (2.4)</td>
<td>290 (1.6)</td>
<td>309 (2.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>268 (1.3)*></td>
<td>225 (1.9)*></td>
<td>247 (1.6)*></td>
<td>270 (1.4)*></td>
<td>291 (1.2)*></td>
<td>310 (1.9)</td>
</tr>
<tr>
<td>Algebra and Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>257 (1.8)</td>
<td>203 (3.3)</td>
<td>229 (2.8)</td>
<td>257 (1.8)</td>
<td>286 (1.9)</td>
<td>311 (2.8)</td>
</tr>
<tr>
<td>1992</td>
<td>264 (1.6)*</td>
<td>209 (1.7)</td>
<td>234 (2.0)</td>
<td>264 (2.2)</td>
<td>293 (2.3)</td>
<td>318 (2.0)</td>
</tr>
<tr>
<td>West</td>
<td>268 (2.4)</td>
<td>212 (3.6)</td>
<td>239 (4.2)</td>
<td>268 (3.9)</td>
<td>296 (2.0)</td>
<td>321 (3.6)</td>
</tr>
<tr>
<td>1996</td>
<td>267 (1.1)</td>
<td>213 (1.3)</td>
<td>238 (1.4)</td>
<td>268 (1.6)</td>
<td>297 (1.5)</td>
<td>320 (1.7)</td>
</tr>
<tr>
<td>Texas</td>
<td>270 (1.9)*</td>
<td>216 (2.5)</td>
<td>242 (2.9)*+</td>
<td>272 (2.7)*+</td>
<td>299 (2.3)*+</td>
<td>320 (2.8)</td>
</tr>
<tr>
<td>West</td>
<td>266 (3.3)</td>
<td>208 (5.5)</td>
<td>238 (4.1)</td>
<td>270 (3.1)</td>
<td>298 (3.9)</td>
<td>320 (2.6)</td>
</tr>
<tr>
<td>1992</td>
<td>270 (1.7)*</td>
<td>212 (1.8)</td>
<td>243 (2.1)</td>
<td>274 (1.8)*+</td>
<td>301 (2.4)*+</td>
<td>324 (1.8)*+</td>
</tr>
<tr>
<td>Nation</td>
<td>258 (1.6)</td>
<td>208 (3.1)</td>
<td>231 (1.3)</td>
<td>256 (2.4)</td>
<td>282 (2.4)</td>
<td>305 (1.5)</td>
</tr>
<tr>
<td>1992</td>
<td>266 (1.4)*</td>
<td>218 (2.5)</td>
<td>240 (1.6)*+</td>
<td>267 (1.9)*+</td>
<td>292 (2.1)</td>
<td>315 (2.0)*+</td>
</tr>
<tr>
<td>West</td>
<td>266 (2.5)</td>
<td>218 (2.4)</td>
<td>241 (2.6)</td>
<td>267 (3.0)</td>
<td>291 (2.3)</td>
<td>314 (4.5)</td>
</tr>
<tr>
<td>1996</td>
<td>267 (1.1)</td>
<td>219 (1.4)</td>
<td>241 (1.2)</td>
<td>267 (1.1)</td>
<td>292 (1.3)</td>
<td>314 (2.1)</td>
</tr>
<tr>
<td>Texas</td>
<td>271 (1.4)*</td>
<td>226 (2.6)*+</td>
<td>248 (1.4)*+</td>
<td>272 (1.3)*+</td>
<td>295 (1.8)*+</td>
<td>317 (2.4)*+</td>
</tr>
<tr>
<td>1996</td>
<td>270 (2.2)*</td>
<td>224 (2.6)*+</td>
<td>247 (4.1)</td>
<td>270 (1.8)*+</td>
<td>294 (2.2)</td>
<td>315 (2.4)</td>
</tr>
<tr>
<td>West</td>
<td>272 (1.2)*></td>
<td>226 (1.9)*+</td>
<td>248 (1.8)*+</td>
<td>272 (1.3)*+</td>
<td>297 (1.4)*+</td>
<td>318 (2.1)*+</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation (+) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation <(>) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Mathematics Scale Score Results by Subpopulations

The previous chapter provided a global view of the mathematics performance of fourth- and eighth-grade students in Texas and the nation. It is also important to examine the average performance of subgroups since past NAEP assessments in mathematics, as well as in other academic subjects, have shown substantial differences among groups defined by gender, racial/ethnic background, parental education, and other demographic characteristics. A key contribution of NAEP to the ongoing conversations on education reform is its ability to monitor the performance of subgroups of students in academic achievement.

The NAEP 1996 state assessment in mathematics provides performance information for subgroups of fourth and eighth graders in Texas, the West region, and the nation. In addition to the more typical demographic subgroups defined by gender, race/ethnicity, parental education, and location of the school, the 1996 assessment also collected information on student participation in Title I programs and services and eligibility for the free/reduced-price lunch component of the National School Lunch Program.

The 1996 state assessment in mathematics also continues a component first introduced with the NAEP 1994 state assessment in reading — assessment of a representative sample of nonpublic school students. The 1996 state assessment marks the first time that NAEP mathematics results for public and nonpublic school students can be presented and compared at the state level. The comparison of public and nonpublic school students' performance does not account for confounding factors such as student composition, family socioeconomic status, and parental involvement in their child’s education. The size of the NAEP nonpublic school sample in most jurisdictions does not allow for such in-depth analyses, and a more complete picture of public and nonpublic school comparisons may be achieved by supplementing NAEP results with data from other sources, such as the School and Staffing Survey (SASS) or National Education Longitudinal Study (NELS).
A description of the subgroups and how they are defined is presented in Appendix A. The reader is cautioned against making simple or causal inferences related to the performance of various subgroups of students or about the effectiveness of public and nonpublic schools or Title I programs. Average performance differences between two groups of students may, in part, be due to socioeconomic or other factors. For example, differences observed among racial/ethnic subgroups are almost certainly associated with a broad range of socioeconomic and educational factors not discussed in this report and possibly not addressed by the NAEP assessment program. Similarly, differences in performance between students participating in Title I programs and those who are not does not account for the initial performance level of the students prior to placement in Title I programs or differences in course content and emphasis between the two groups.

Gender

Consistent with research findings, NAEP mathematics results have shown little difference in the performance of male and female fourth and eighth graders. As shown in Table 2.1A, the NAEP 1996 state mathematics assessment results for fourth graders in Texas are consistent with those general findings.

1996, Public School Students, Grade 4
The average mathematics scale score of males did not differ significantly from that of females in both Texas and the nation.

1992 vs. 1996, Public School Students, Grade 4
From 1992 to 1996 in Texas, the average scale score of both males and females increased.

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Table 2.1B presents results for male and female eighth graders for Texas, the West region, and the nation.

1996, Public School Students, Grade 8

The average mathematics scale score of males was higher than that of females in Texas; nationwide, however, the performance of males did not differ significantly from that of females.

1992 vs. 1996, Public School Students, Grade 8

From 1992 to 1996 in Texas, the average scale score of both males and females increased. The observed gender gap favoring males for Texas in 1996 was not significantly different from the similar gap in 1992.

1990 vs. 1996, Public School Students, Grade 8

From 1990 to 1996 in Texas, the average scale score of both males and females increased.

Table 2.1B — Grade 8

<table>
<thead>
<tr>
<th></th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>260 (.8)</td>
<td>214 (2.9)</td>
<td>236 (1.5)</td>
<td>260 (2.3)</td>
<td>265 (1.9)</td>
<td>306 (3.9)</td>
</tr>
<tr>
<td>West</td>
<td>262 (.3)</td>
<td>212 (3.5)</td>
<td>237 (4.7)</td>
<td>263 (3.1)</td>
<td>287 (3.1)</td>
<td>310 (5.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>262 (.7)</td>
<td>213 (2.6)</td>
<td>237 (2.2)</td>
<td>263 (1.3)</td>
<td>286 (2.1)</td>
<td>310 (2.0)</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>267 (.3)</td>
<td>219 (1.9)</td>
<td>241 (3.1)</td>
<td>267 (1.7)</td>
<td>292 (1.9)</td>
<td>316 (2.9)</td>
</tr>
<tr>
<td>West</td>
<td>266 (.2)</td>
<td>216 (3.6)</td>
<td>241 (4.5)</td>
<td>267 (3.8)</td>
<td>293 (1.9)</td>
<td>314 (2.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>266 (.1)</td>
<td>218 (1.4)</td>
<td>241 (2.0)</td>
<td>267 (1.5)</td>
<td>293 (1.0)</td>
<td>313 (1.9)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>273 (.1)</td>
<td>227 (2.2)</td>
<td>250 (1.4)</td>
<td>274 (3.2)</td>
<td>297 (3.0)</td>
<td>317 (2.8)</td>
</tr>
<tr>
<td>West</td>
<td>267 (.2)</td>
<td>214 (4.3)</td>
<td>241 (4.8)</td>
<td>268 (3.1)</td>
<td>285 (2.8)</td>
<td>314 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>270 (.5)</td>
<td>219 (3.0)</td>
<td>245 (2.0)</td>
<td>272 (1.8)</td>
<td>296 (1.7)</td>
<td>318 (1.5)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>256 (.4)</td>
<td>212 (2.9)</td>
<td>232 (1.5)</td>
<td>256 (1.3)</td>
<td>281 (2.2)</td>
<td>300 (2.3)</td>
</tr>
<tr>
<td>West</td>
<td>259 (.2)</td>
<td>211 (5.0)</td>
<td>233 (3.8)</td>
<td>261 (2.4)</td>
<td>284 (4.7)</td>
<td>307 (9.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>261 (.4)</td>
<td>215 (3.5)</td>
<td>237 (2.2)</td>
<td>263 (1.4)</td>
<td>286 (1.4)</td>
<td>304 (1.6)</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>262 (.6)</td>
<td>215 (2.3)</td>
<td>236 (1.8)</td>
<td>263 (2.4)</td>
<td>287 (1.8)</td>
<td>309 (1.8)</td>
</tr>
<tr>
<td>West</td>
<td>269 (.2)</td>
<td>222 (3.4)</td>
<td>244 (3.6)</td>
<td>270 (2.7)</td>
<td>293 (2.1)</td>
<td>315 (2.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>267 (.1)</td>
<td>220 (2.0)</td>
<td>242 (1.4)</td>
<td>268 (1.3)</td>
<td>292 (1.1)</td>
<td>314 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>268 (.1)</td>
<td>224 (1.5)</td>
<td>244 (2.4)</td>
<td>268 (2.2)</td>
<td>292 (2.3)</td>
<td>311 (1.3)</td>
</tr>
<tr>
<td>West</td>
<td>270 (.5)</td>
<td>226 (3.6)</td>
<td>248 (5.3)</td>
<td>269 (2.0)</td>
<td>292 (3.9)</td>
<td>314 (3.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>271 (.2)</td>
<td>225 (1.7)</td>
<td>248 (2.2)</td>
<td>272 (1.7)</td>
<td>295 (1.5)</td>
<td>314 (1.3)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Race/Ethnicity

As part of the background questions administered with the NAEP 1996 mathematics assessment, students were asked to identify the racial/ethnic subgroup that best describes them. The five mutually exclusive categories were White, Black, Hispanic, Asian or Pacific Islander, and American Indian or Alaskan Native.

The national and regional results for eighth-grade Asian/Pacific Islander students are not included in the main body of this report. A thorough investigation into the quality and credibility of these results, which included an independent review by the National Institute of Statistical Sciences, was initiated by NCES. Collateral results from the grade 8 state assessment program in mathematics suggested that the 1996 national results may substantially underestimate actual achievement of the Asian/Pacific Islander group. Because of its potential to misinform, NCES decided to omit the national grade 8 Asian/Pacific Islander results from the body of the report and to include them in an appendix. Appendix F includes 1996 results for this group along with a description of the findings that led to this decision.

Research over past decades has shown that racial/ethnic differences exist in mathematics performance, and findings from previous NAEP assessments are consistent with this body of research. However, when interpreting differences in subgroup performance, confounding factors related to socioeconomic status, home environment, and educational opportunities available to students need to be considered. The distribution of fourth-grade mathematics scale scores for Texas, the West region, and the nation are shown in Table 2.2A for White, Black, and Hispanic students.

1996, Public School Students, Grade 4

White students in Texas demonstrated an average mathematics scale score that was higher than that of Black and Hispanic students.

1992 vs. 1996, Public School Students, Grade 4

From 1992 to 1996, there was an increase in the average scale score of White, Black, and Hispanic students in Texas.

26 Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A).
TABLE 2.2A — GRADE 4

<table>
<thead>
<tr>
<th></th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>229 (1.6)</td>
<td>194 (2.6)</td>
<td>211 (2.0)</td>
<td>230 (1.7)</td>
<td>247 (1.2)</td>
<td>264 (2.2)</td>
</tr>
<tr>
<td>West</td>
<td>226 (1.8)</td>
<td>188 (2.2)</td>
<td>207 (3.1)</td>
<td>228 (1.7)</td>
<td>246 (2.7)</td>
<td>261 (2.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>227 (1.0)</td>
<td>189 (1.6)</td>
<td>208 (1.2)</td>
<td>229 (0.9)</td>
<td>247 (1.2)</td>
<td>263 (1.2)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>242 (1.4) ></td>
<td>207 (2.9) ></td>
<td>224 (2.8) ></td>
<td>243 (2.1) ></td>
<td>259 (1.5) ></td>
<td>273 (1.2) ></td>
</tr>
<tr>
<td>West</td>
<td>227 (2.2)</td>
<td>189 (4.1)</td>
<td>208 (3.8)</td>
<td>228 (1.7)</td>
<td>246 (2.1)</td>
<td>264 (1.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>231 (1.1) ></td>
<td>195 (1.2)</td>
<td>213 (2.0)</td>
<td>232 (1.0)</td>
<td>250 (0.9)</td>
<td>266 (1.0)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>199 (1.9)</td>
<td>161 (8.4)</td>
<td>182 (1.5)</td>
<td>199 (1.6)</td>
<td>218 (4.7)</td>
<td>235 (3.4)</td>
</tr>
<tr>
<td>West</td>
<td>189 (2.7)</td>
<td>152 (4.0)</td>
<td>171 (3.4)</td>
<td>189 (3.4)</td>
<td>209 (4.8)</td>
<td>226 (9.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>192 (1.4)</td>
<td>155 (2.6)</td>
<td>173 (2.5)</td>
<td>193 (1.7)</td>
<td>211 (1.7)</td>
<td>228 (2.7)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>212 (1.8) ></td>
<td>179 (6.1)</td>
<td>195 (2.9) ></td>
<td>212 (2.2) ></td>
<td>231 (1.4)</td>
<td>244 (2.7)</td>
</tr>
<tr>
<td>West</td>
<td>200 (5.3)</td>
<td>165 (3.7)</td>
<td>181 (2.4)</td>
<td>198 (3.0)</td>
<td>219 (9.1)</td>
<td>238 (12.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>200 (2.4)</td>
<td>163 (2.3)</td>
<td>181 (1.9)</td>
<td>200 (2.8)</td>
<td>220 (3.2)</td>
<td>238 (3.8)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>209 (1.9)</td>
<td>173 (2.2)</td>
<td>191 (2.6)</td>
<td>209 (1.9)</td>
<td>227 (1.7)</td>
<td>244 (3.5)</td>
</tr>
<tr>
<td>West</td>
<td>201 (2.0)</td>
<td>163 (4.8)</td>
<td>181 (2.5)</td>
<td>201 (1.6)</td>
<td>222 (2.8)</td>
<td>240 (2.2)</td>
</tr>
<tr>
<td>Nation</td>
<td>201 (1.5)</td>
<td>163 (3.1)</td>
<td>181 (1.8)</td>
<td>201 (1.4)</td>
<td>221 (1.7)</td>
<td>239 (2.6)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>216 (1.8) ></td>
<td>182 (2.3)</td>
<td>198 (2.7)</td>
<td>217 (1.7)</td>
<td>235 (1.4) ></td>
<td>250 (1.2)</td>
</tr>
<tr>
<td>West</td>
<td>203 (3.4)</td>
<td>161 (7.7)</td>
<td>182 (5.7)</td>
<td>204 (2.9)</td>
<td>226 (2.2)</td>
<td>242 (2.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>205 (2.2)</td>
<td>163 (3.7)</td>
<td>184 (2.9)</td>
<td>206 (2.1)</td>
<td>227 (2.1)</td>
<td>244 (0.8)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Table 2.2B shows the distribution of mathematics scale scores for White, Black, Hispanic, and Asian/Pacific Islander eighth-grade public school students in Texas, the West region, and the nation. 27

1996, Public School Students, Grade 8
White students in Texas demonstrated an average mathematics scale score that was higher than that of Black and Hispanic students but was not significantly different from that of Asian/Pacific Islander students.

1992 vs. 1996, Public School Students, Grade 8
From 1992 to 1996, there was an increase in the average scale score of White and Hispanic students in Texas. From 1992 to 1996, there was no significant change in the average scale score of Black or Asian/Pacific Islander students in Texas.

1990 vs. 1996, Public School Students, Grade 8
From 1990 to 1996, there was an increase in the average scale score of White, Black, and Hispanic students in Texas.

27 Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>273</td>
<td>279</td>
<td>285</td>
</tr>
<tr>
<td>West</td>
<td>269</td>
<td>277</td>
<td>280</td>
</tr>
<tr>
<td>Nation</td>
<td>270</td>
<td>277</td>
<td>280</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>236</td>
<td>244</td>
<td>246</td>
</tr>
<tr>
<td>West</td>
<td>245</td>
<td>235</td>
<td>246</td>
</tr>
<tr>
<td>Nation</td>
<td>237</td>
<td>237</td>
<td>246</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>245</td>
<td>249</td>
<td>249</td>
</tr>
<tr>
<td>West</td>
<td>242</td>
<td>243</td>
<td>249</td>
</tr>
<tr>
<td>Nation</td>
<td>242</td>
<td>245</td>
<td>249</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>301</td>
<td>256</td>
<td>299</td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation < (>) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (>) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. ** Sample size is insufficient to permit a reliable estimate.

Students’ Reports of Parents’ Highest Education Level

Students were asked to indicate the level of education completed by each parent. Four levels of education were identified: did not finish high school, graduated high school, some education after high school, and graduated college. A choice of "I don’t know" was also available. For this analysis the highest education level reported for either parent was used.

In general, results show that with each increment in reported parental education, student performance increases significantly. In reviewing these results, it is important to note that nationally, approximately one third of fourth graders and one tenth of eighth graders did not know the level of education that either of their parents had completed. For public school students in Texas, the percentages were 39 percent for fourth graders and 12 percent for eighth graders. Despite the fact that some research has questioned the accuracy of student-reported data from similar groups of students, past NAEP assessments in mathematics, as well as other subject areas, have found that student-reported level of parental education exhibits a consistent positive relationship with student performance on the assessments. Other research has also replicated NAEP findings.

Table 2.3A shows the results for fourth-grade public school students who reported that neither parent graduated from high school, at least one parent graduated from high school, at least one parent had some education after high school, at least one parent graduated from college, or that they did not know their parents’ highest education level. The following discussion pertains to those students who reported knowing the educational level of one or both parents.

1996, Public School Students, Grade 4
The average mathematics scale score of students in Texas who reported that neither parent graduated from high school did not differ significantly from that of students who reported that at least one parent graduated from high school but was lower than that of students who reported that at least one parent had some education after high school or at least one parent graduated from college.

1992 vs. 1996, Public School Students, Grade 4
Students in Texas who reported that at least one parent had some education after high school or at least one parent graduated from college had a higher average scale score in 1996 than in 1992. The average scale score of students in Texas who reported that neither parent graduated from high school or at least one parent graduated from high school did not change significantly between 1992 and 1996.

TABLE 2.3A — GRADE 4

<table>
<thead>
<tr>
<th>Did not finish high school</th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>213 (2.4)</td>
<td>177 (3.1)</td>
<td>195 (3.9)</td>
<td>213 (6.6)</td>
<td>231 (2.7)</td>
<td>247 (2.7)</td>
</tr>
<tr>
<td>West</td>
<td>203 (5.0)</td>
<td>167 (16.3)</td>
<td>185 (10.8)</td>
<td>203 (4.2)</td>
<td>223 (7.0)</td>
<td>237 (6.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>204 (2.6)</td>
<td>166 (5.1)</td>
<td>186 (3.0)</td>
<td>205 (3.9)</td>
<td>224 (4.8)</td>
<td>241 (5.6)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>215 (2.9)</td>
<td>183 (5.3)</td>
<td>198 (5.9)</td>
<td>214 (6.0)</td>
<td>230 (4.9)</td>
<td>245 (2.7)</td>
</tr>
<tr>
<td>West</td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>*** (**)</td>
</tr>
<tr>
<td>Nation</td>
<td>205 (2.5)</td>
<td>170 (8.6)</td>
<td>185 (5.6)</td>
<td>205 (1.8)</td>
<td>224 (4.8)</td>
<td>240 (4.6)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>215 (2.6)</td>
<td>177 (3.2)</td>
<td>195 (3.8)</td>
<td>216 (2.9)</td>
<td>236 (1.7)</td>
<td>251 (3.4)</td>
</tr>
<tr>
<td>West</td>
<td>218 (2.4)</td>
<td>181 (6.4)</td>
<td>200 (5.4)</td>
<td>220 (2.3)</td>
<td>238 (2.9)</td>
<td>252 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>214 (1.6)</td>
<td>174 (3.0)</td>
<td>193 (2.8)</td>
<td>216 (1.5)</td>
<td>234 (1.5)</td>
<td>252 (2.7)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>222 (2.4)</td>
<td>182 (3.4)</td>
<td>201 (4.3)</td>
<td>224 (4.5)</td>
<td>245 (3.6)</td>
<td>257 (1.5)</td>
</tr>
<tr>
<td>West</td>
<td>218 (3.4)</td>
<td>180 (1.9)</td>
<td>197 (3.1)</td>
<td>219 (17.1)</td>
<td>239 (2.6)</td>
<td>256 (4.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>218 (1.7)</td>
<td>178 (3.7)</td>
<td>198 (1.6)</td>
<td>220 (2.1)</td>
<td>243 (1.6)</td>
<td>255 (2.9)</td>
</tr>
<tr>
<td>Some education after HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>226 (2.4)</td>
<td>192 (4.2)</td>
<td>210 (2.4)</td>
<td>228 (4.0)</td>
<td>247 (2.0)</td>
<td>262 (3.9)</td>
</tr>
<tr>
<td>West</td>
<td>220 (2.2)</td>
<td>173 (3.9)</td>
<td>197 (4.1)</td>
<td>220 (2.3)</td>
<td>238 (2.9)</td>
<td>252 (2.2)</td>
</tr>
<tr>
<td>Nation</td>
<td>224 (1.7)</td>
<td>181 (1.5)</td>
<td>204 (3.8)</td>
<td>228 (2.0)</td>
<td>246 (2.3)</td>
<td>260 (2.6)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>235 (1.8)></td>
<td>200 (3.4)</td>
<td>217 (9.1)</td>
<td>237 (2.1)</td>
<td>253 (2.4)</td>
<td>266 (3.9)</td>
</tr>
<tr>
<td>West</td>
<td>228 (3.5)</td>
<td>196 (13.7)</td>
<td>214 (5.6)</td>
<td>230 (3.3)</td>
<td>244 (2.4)</td>
<td>257 (5.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>232 (1.7)></td>
<td>197 (2.6)></td>
<td>216 (6.1)</td>
<td>233 (1.1)</td>
<td>250 (2.7)</td>
<td>265 (3.6)</td>
</tr>
<tr>
<td>Graduated from college</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>225 (1.9)</td>
<td>186 (2.1)</td>
<td>205 (2.5)</td>
<td>225 (1.6)</td>
<td>245 (1.5)</td>
<td>263 (3.8)</td>
</tr>
<tr>
<td>West</td>
<td>225 (2.3)</td>
<td>190 (4.5)</td>
<td>204 (2.3)</td>
<td>229 (3.0)</td>
<td>247 (2.7)</td>
<td>264 (4.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>226 (1.1)</td>
<td>181 (3.2)</td>
<td>205 (1.5)</td>
<td>228 (2.1)</td>
<td>248 (1.5)</td>
<td>266 (2.0)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>238 (1.9)</td>
<td>199 (2.6)></td>
<td>219 (3.3)></td>
<td>240 (2.1)></td>
<td>260 (2.4)></td>
<td>275 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>227 (2.9)</td>
<td>188 (2.2)</td>
<td>207 (3.7)</td>
<td>228 (3.7)</td>
<td>247 (3.4)</td>
<td>266 (3.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>230 (1.6)</td>
<td>188 (2.9)</td>
<td>210 (1.2)</td>
<td>232 (2.1)</td>
<td>251 (1.4)</td>
<td>268 (1.6)</td>
</tr>
<tr>
<td>I don't know</td>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>213 (1.5)</td>
<td>178 (3.0)</td>
<td>194 (2.5)</td>
<td>213 (1.3)</td>
<td>233 (3.9)</td>
<td>251 (1.7)</td>
</tr>
<tr>
<td>West</td>
<td>213 (1.8)</td>
<td>172 (2.1)</td>
<td>192 (2.0)</td>
<td>214 (2.4)</td>
<td>234 (2.8)</td>
<td>253 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>213 (0.9)</td>
<td>173 (1.4)</td>
<td>193 (1.0)</td>
<td>214 (1.3)</td>
<td>235 (1.5)</td>
<td>252 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>222 (1.4)></td>
<td>186 (2.0)</td>
<td>204 (1.6)</td>
<td>223 (2.3)></td>
<td>241 (2.7)</td>
<td>258 (1.7)</td>
</tr>
<tr>
<td>West</td>
<td>211 (3.2)</td>
<td>166 (7.9)</td>
<td>188 (3.6)</td>
<td>212 (4.0)</td>
<td>234 (3.1)</td>
<td>251 (4.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>216 (1.5)</td>
<td>175 (4.6)</td>
<td>198 (2.3)</td>
<td>218 (1.3)</td>
<td>238 (1.2)</td>
<td>255 (2.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for parental education subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. *** Sample size is insufficient to permit a reliable estimate.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Table 2.3B presents results for eighth-grade students by students’ reports of highest level of parental education. As with fourth-grade results, discussion focuses on those students who reported an educational level for one or both parents.

1996, Public School Students, Grade 8
The average mathematics scale score of students in Texas who reported that neither parent graduated from high school was lower than that of students who reported that at least one parent graduated from high school, at least one parent had some education after high school, or at least one parent graduated from college.

1992 vs. 1996, Public School Students, Grade 8
Students in Texas who reported that at least one parent graduated from high school had a higher average scale score in 1996 than in 1992. The average scale score of students in Texas who reported that neither parent graduated from high school, at least one parent had some education after high school, or at least one parent graduated from college did not change significantly between 1992 and 1996.

1990 vs. 1996, Public School Students, Grade 8
Students in Texas who reported that neither parent graduated from high school, at least one parent graduated from high school, at least one parent had some education after high school, or at least one parent graduated from college had a higher average scale score in 1996 than in 1990.
TABLE 2.3B — GRADE 8

Distribution of Mathematics Scale Scores by Public School Students’ Reports of Parents’ Highest Education Level

<table>
<thead>
<tr>
<th>Did not finish high school</th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>243 (1.8)</td>
<td>206 (1.6)</td>
<td>223 (0.9)</td>
<td>244 (2.2)</td>
<td>263 (2.9)</td>
<td>281 (2.2)</td>
</tr>
<tr>
<td>1992</td>
<td>248 (1.7)</td>
<td>208 (3.2)</td>
<td>227 (1.9)</td>
<td>249 (2.8)</td>
<td>271 (4.5)</td>
<td>287 (1.8)</td>
</tr>
<tr>
<td>Texas</td>
<td>249 (2.4)</td>
<td>206 (5.9)</td>
<td>227 (4.0)</td>
<td>248 (5.9)</td>
<td>274 (4.6)</td>
<td>291 (5.3)</td>
</tr>
<tr>
<td>West</td>
<td>249 (1.8)*</td>
<td>209 (2.6)</td>
<td>227 (1.4)</td>
<td>246 (3.5)</td>
<td>271 (2.0)</td>
<td>291 (2.7)*</td>
</tr>
<tr>
<td>Nation</td>
<td>254 (2.1)*</td>
<td>214 (4.8)</td>
<td>234 (5.7)</td>
<td>254 (2.3)</td>
<td>273 (4.1)</td>
<td>294 (8.4)</td>
</tr>
<tr>
<td>1996</td>
<td>257 (3.0)</td>
<td>212 (7.1)</td>
<td>233 (7.0)</td>
<td>260 (3.3)</td>
<td>280 (6.4)</td>
<td>300 (5.3)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>254 (1.9)*</td>
<td>210 (4.2)</td>
<td>231 (3.1)</td>
<td>257 (1.7)*</td>
<td>278 (5.7)</td>
<td>296 (5.5)</td>
</tr>
<tr>
<td>1990</td>
<td>248 (1.7)</td>
<td>205 (5.9)</td>
<td>226 (2.5)</td>
<td>248 (2.6)</td>
<td>272 (2.0)</td>
<td>291 (3.9)</td>
</tr>
<tr>
<td>1992</td>
<td>254 (1.6)</td>
<td>214 (2.6)</td>
<td>232 (3.7)</td>
<td>254 (1.9)</td>
<td>276 (1.7)</td>
<td>293 (6.8)</td>
</tr>
<tr>
<td>Texas</td>
<td>253 (2.9)</td>
<td>207 (5.9)</td>
<td>230 (3.1)</td>
<td>254 (5.6)</td>
<td>276 (3.0)</td>
<td>298 (5.3)</td>
</tr>
<tr>
<td>West</td>
<td>257 (1.3)</td>
<td>213 (2.2)</td>
<td>234 (1.4)</td>
<td>257 (1.6)</td>
<td>281 (1.9)</td>
<td>299 (1.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>262 (1.9)>></td>
<td>222 (5.1)</td>
<td>240 (2.6)+</td>
<td>261 (4.0)</td>
<td>285 (3.1)+</td>
<td>306 (3.3)</td>
</tr>
<tr>
<td>1998</td>
<td>258 (2.9)</td>
<td>212 (3.8)</td>
<td>234 (3.8)</td>
<td>258 (4.6)</td>
<td>277 (4.4)</td>
<td>297 (1.8)</td>
</tr>
<tr>
<td>West</td>
<td>260 (1.3)>></td>
<td>215 (1.9)</td>
<td>238 (1.5)</td>
<td>262 (1.9)</td>
<td>284 (1.0)</td>
<td>303 (2.5)</td>
</tr>
<tr>
<td>Some education after HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>268 (2.0)</td>
<td>225 (4.3)</td>
<td>246 (2.3)</td>
<td>268 (4.0)</td>
<td>288 (2.1)</td>
<td>305 (6.0)</td>
</tr>
<tr>
<td>1992</td>
<td>273 (1.8)</td>
<td>228 (3.2)</td>
<td>251 (2.1)</td>
<td>276 (1.8)</td>
<td>296 (2.1)</td>
<td>312 (4.2)</td>
</tr>
<tr>
<td>Texas</td>
<td>274 (2.8)</td>
<td>232 (3.8)</td>
<td>253 (4.8)</td>
<td>274 (2.5)</td>
<td>297 (2.1)</td>
<td>317 (4.6)</td>
</tr>
<tr>
<td>West</td>
<td>270 (1.2)</td>
<td>227 (1.7)</td>
<td>249 (1.7)</td>
<td>270 (1.1)</td>
<td>293 (1.1)</td>
<td>316 (1.7)*</td>
</tr>
<tr>
<td>Nation</td>
<td>276 (1.8)>></td>
<td>236 (3.1)</td>
<td>256 (2.0)+</td>
<td>277 (1.6)</td>
<td>297 (3.4)</td>
<td>313 (1.6)</td>
</tr>
<tr>
<td>1998</td>
<td>278 (2.4)</td>
<td>238 (1.7)</td>
<td>257 (4.0)</td>
<td>280 (4.7)</td>
<td>306 (6.0)</td>
<td>317 (4.7)</td>
</tr>
<tr>
<td>West</td>
<td>279 (1.5)>></td>
<td>239 (1.8)+</td>
<td>258 (2.8)+</td>
<td>280 (2.2)+</td>
<td>300 (2.2)</td>
<td>318 (3.3)+</td>
</tr>
<tr>
<td>Graduated from college</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>274 (1.5)</td>
<td>226 (4.8)</td>
<td>251 (1.4)</td>
<td>275 (2.5)</td>
<td>298 (2.4)</td>
<td>317 (2.1)</td>
</tr>
<tr>
<td>1992</td>
<td>280 (2.6)</td>
<td>233 (4.4)</td>
<td>257 (1.8)</td>
<td>281 (4.3)</td>
<td>304 (2.5)</td>
<td>324 (1.8)</td>
</tr>
<tr>
<td>Texas</td>
<td>279 (1.4)</td>
<td>231 (2.1)</td>
<td>255 (2.9)</td>
<td>282 (2.4)</td>
<td>306 (2.4)</td>
<td>324 (1.8)</td>
</tr>
<tr>
<td>West</td>
<td>283 (1.8)+</td>
<td>239 (2.1)</td>
<td>262 (3.1)</td>
<td>286 (2.2)+</td>
<td>306 (1.1)</td>
<td>324 (2.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>280 (2.5)</td>
<td>233 (4.8)</td>
<td>258 (3.5)</td>
<td>282 (2.6)</td>
<td>306 (2.7)</td>
<td>324 (4.3)</td>
</tr>
<tr>
<td>1996</td>
<td>281 (1.8)+</td>
<td>232 (3.2)</td>
<td>258 (1.5)</td>
<td>283 (1.7)</td>
<td>307 (1.9)</td>
<td>326 (3.0)</td>
</tr>
<tr>
<td>I don't know</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>243 (2.5)</td>
<td>204 (6.8)</td>
<td>222 (2.4)</td>
<td>241 (2.1)</td>
<td>263 (3.7)</td>
<td>283 (6.8)</td>
</tr>
<tr>
<td>1992</td>
<td>245 (2.4)</td>
<td>202 (5.3)</td>
<td>222 (4.2)</td>
<td>244 (3.0)</td>
<td>266 (2.5)</td>
<td>290 (1.4)</td>
</tr>
<tr>
<td>Texas</td>
<td>249 (2.8)</td>
<td>206 (3.3)</td>
<td>225 (7.1)</td>
<td>247 (4.2)</td>
<td>274 (5.7)</td>
<td>297 (3.6)</td>
</tr>
<tr>
<td>West</td>
<td>251 (1.7)+</td>
<td>208 (2.6)</td>
<td>228 (3.6)</td>
<td>250 (2.5)</td>
<td>275 (3.9)</td>
<td>296 (3.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>252 (2.7)</td>
<td>212 (7.9)</td>
<td>228 (6.4)</td>
<td>251 (3.0)</td>
<td>276 (5.8)</td>
<td>294 (3.1)</td>
</tr>
<tr>
<td>1996</td>
<td>252 (2.7)</td>
<td>204 (5.5)</td>
<td>228 (4.8)</td>
<td>251 (5.7)</td>
<td>277 (5.9)</td>
<td>298 (3.6)</td>
</tr>
<tr>
<td>West</td>
<td>253 (1.7)+</td>
<td>206 (4.3)</td>
<td>229 (1.7)</td>
<td>253 (3.7)</td>
<td>279 (2.4)</td>
<td>298 (1.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for parental education subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation » (+) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Title I Participation

The Improving America's Schools Act of 1994 (P.L. 103-382) reauthorized the Elementary and Secondary Education Act of 1965 (ESEA). Title I Part A of the ESEA provides local education agencies with financial assistance to meet the educational needs of children who are failing or most at risk of failing. Title I programs are designed to help disadvantaged students meet challenging academic performance standards. Through Title I, schools are assisted in improving teaching and learning and in providing students with opportunities to acquire the knowledge and skills outlined in their state's content and performance standards. For high poverty Title I schools, all children in the school may benefit through participation in schoolwide programs. Title I funding supports state and local education reform efforts and promotes coordinating of resources to improve education for all students.

NAEP first collected student-level information on participation in Title I programs in 1994. Therefore, results comparing the performance of participating and nonparticipating students are not available for previous NAEP mathematics assessments. The NAEP program will continue to monitor the performance of Title I program participants in future assessments. The Title I information collected by NAEP refers to current participation in Title I services. Students who participated in such services in the past but do not currently receive services are not identified as Title I participants. Differences between students who receive Title I services and those who do not should not be viewed as an evaluation of Title I programs. Typically, Title I services are intended for students who score poorly on assessments. To properly evaluate Title I programs, the performance of students participating in such programs must be monitored over time and their progress must be assessed.

Table 2.4 presents results for fourth- and eighth-grade students by Title I participation.

1996, Public School Students, Grade 4
The average mathematics scale score of students in Texas who received Title I services (213) was higher than that of students nationwide (200). The average scale score of Texas students who did not receive Title I services (236) was higher than the national average (229). The average scale score of Texas students who received Title I services was lower than that of students who did not.

1996, Public School Students, Grade 8
The average mathematics scale score of students in Texas receiving Title I services (249) was not significantly different from that of students nationwide (244). The average scale score of Texas students who did not receive Title I services (276) was not significantly different from the national average (274). The average scale score of students in Texas who received Title I services was lower than that of students who did not.

TABLE 2.4 — GRADES 4 AND 8

Distribution of Mathematics Scale Scores for Public School Students by Title I Participation

<table>
<thead>
<tr>
<th>Grade 4</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>180 (2.4)</td>
<td>196 (2.6)</td>
<td>214 (2.8)</td>
<td>231 (2.6)</td>
<td>247 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>200 (3.6)</td>
<td>163 (3.5)</td>
<td>182 (2.7)</td>
<td>201 (4.7)</td>
<td>221 (3.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>200 (1.9)</td>
<td>164 (2.1)</td>
<td>181 (1.9)</td>
<td>200 (2.5)</td>
<td>219 (1.6)</td>
</tr>
<tr>
<td>Did not participate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>236 (1.4)</td>
<td>199 (1.7)</td>
<td>218 (1.6)</td>
<td>238 (2.0)</td>
<td>255 (1.5)</td>
</tr>
<tr>
<td>West</td>
<td>226 (1.9)</td>
<td>187 (4.5)</td>
<td>207 (2.4)</td>
<td>227 (2.2)</td>
<td>245 (2.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>229 (1.1)</td>
<td>191 (1.2)</td>
<td>211 (1.3)</td>
<td>231 (1.1)</td>
<td>249 (1.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 8</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>249 (2.3)</td>
<td>213 (5.9)</td>
<td>229 (3.5)</td>
<td>249 (1.9)</td>
<td>287 (1.4)</td>
</tr>
<tr>
<td>West</td>
<td>246 (6.1)</td>
<td>200 (5.6)</td>
<td>224 (4.5)</td>
<td>248 (8.7)</td>
<td>271 (8.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>244 (3.4)</td>
<td>201 (3.3)</td>
<td>222 (4.6)</td>
<td>244 (3.6)</td>
<td>265 (3.5)</td>
</tr>
<tr>
<td>Did not participate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>278 (1.8)</td>
<td>232 (2.0)</td>
<td>254 (2.1)</td>
<td>278 (2.0)</td>
<td>300 (1.8)</td>
</tr>
<tr>
<td>West</td>
<td>272 (1.9)</td>
<td>228 (3.6)</td>
<td>250 (2.0)</td>
<td>273 (2.0)</td>
<td>287 (2.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>274 (1.3)</td>
<td>228 (3.2)</td>
<td>252 (2.4)</td>
<td>278 (1.3)</td>
<td>289 (1.6)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for students participating in Title I programs only if established sample size requirements are met (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Free/Reduced-Price Lunch Program Eligibility

The free/reduced-price lunch component of the National School Lunch Program (NSLP), offered through the U.S. Department of Agriculture (USDA), is designed to ensure that children near or below the poverty line receive nourishing meals. Eligibility for the free/reduced-price lunch program is included as an indicator of poverty. The program is available to public schools, nonprofit private schools, and residential child care institutions. Eligibility for free or reduced-price meals is determined through the USDA's Income Eligibility Guidelines.

NAEP first collected information on student-level eligibility for the federally funded NSLP in 1996. Although results cannot be presented for previous NAEP mathematics assessments, the NAEP program will continue to monitor the performance of these students in future assessments. Table 2.5 shows the results for fourth and eighth graders based on their eligibility for this program.

1996, Public School Students, Grade 4

The average mathematics scale score of students in Texas who were eligible for free or reduced-price lunch (215) was higher than that of students nationwide (207). The average scale score of Texas students who were not eligible for free or reduced-price lunch (240) was higher than the national average (231). The average scale score of Texas students who were eligible for free or reduced-price lunch was lower than that of students who were not.

1996, Public School Students, Grade 8

The average mathematics scale score of students in Texas who were eligible for free or reduced-price lunch (252) was not significantly different from that of students nationwide (252). The average scale score of Texas students who were not eligible for this service (282) was not significantly different from the national average (279). In Texas, the average scale score of students eligible for free or reduced-price lunch was lower than that of students who were not eligible for this service.

TABLE 2.5 — GRADES 4 AND 8
Distribution of Mathematics Scale Scores for Public School Students by Free/Reduced-Price Lunch Eligibility

<table>
<thead>
<tr>
<th>Grade 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Scale Score</td>
<td>10th Percentile</td>
<td>25th Percentile</td>
<td>50th Percentile</td>
<td>75th Percentile</td>
</tr>
<tr>
<td>Eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>215 (1.4)</td>
<td>181 (1.8)</td>
<td>197 (1.7)</td>
<td>215 (1.3)</td>
<td>234 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>205 (3.6)</td>
<td>165 (8.6)</td>
<td>184 (5.2)</td>
<td>205 (3.6)</td>
<td>228 (5.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>207 (2.0)</td>
<td>167 (3.6)</td>
<td>185 (2.4)</td>
<td>207 (2.3)</td>
<td>230 (2.0)</td>
</tr>
<tr>
<td>Not eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>240 (1.4)</td>
<td>205 (2.3)</td>
<td>223 (1.3)</td>
<td>241 (1.7)</td>
<td>259 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>226 (1.7)</td>
<td>189 (1.9)</td>
<td>208 (3.0)</td>
<td>228 (1.7)</td>
<td>245 (2.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>231 (1.1)</td>
<td>195 (1.6)</td>
<td>213 (1.6)</td>
<td>231 (1.3)</td>
<td>249 (1.5)</td>
</tr>
<tr>
<td>Information not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>229 (5.9)</td>
<td>193 (5.1)</td>
<td>210 (12.6)</td>
<td>229 (5.8)</td>
<td>246 (6.6)</td>
</tr>
<tr>
<td>West</td>
<td>225 (10.3)</td>
<td>182 (17.2)</td>
<td>203 (10.3)</td>
<td>223 (6.6)</td>
<td>247 (15.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>230 (4.2)</td>
<td>190 (7.5)</td>
<td>211 (6.3)</td>
<td>232 (4.0)</td>
<td>252 (4.0)</td>
</tr>
<tr>
<td>Grade 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>252 (1.6)</td>
<td>214 (4.7)</td>
<td>231 (2.5)</td>
<td>251 (1.4)</td>
<td>272 (1.7)</td>
</tr>
<tr>
<td>West</td>
<td>252 (2.6)</td>
<td>208 (3.1)</td>
<td>229 (3.2)</td>
<td>253 (4.2)</td>
<td>274 (1.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>252 (1.5)</td>
<td>207 (2.1)</td>
<td>228 (1.7)</td>
<td>252 (1.8)</td>
<td>275 (2.6)</td>
</tr>
<tr>
<td>Not eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>282 (1.5)</td>
<td>240 (2.5)</td>
<td>261 (2.5)</td>
<td>284 (1.8)</td>
<td>304 (1.2)</td>
</tr>
<tr>
<td>West</td>
<td>276 (2.3)</td>
<td>232 (6.8)</td>
<td>254 (3.9)</td>
<td>277 (3.8)</td>
<td>300 (1.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>279 (1.5)</td>
<td>235 (3.1)</td>
<td>257 (1.3)</td>
<td>280 (1.6)</td>
<td>303 (1.4)</td>
</tr>
<tr>
<td>Information not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>271 (3.6)</td>
<td>228 (7.9)</td>
<td>251 (5.5)</td>
<td>274 (3.5)</td>
<td>293 (3.3)</td>
</tr>
<tr>
<td>West</td>
<td>274 (6.0)</td>
<td>221 (11.0)</td>
<td>250 (8.2)</td>
<td>276 (5.6)</td>
<td>301 (6.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>278 (3.9)</td>
<td>229 (6.3)</td>
<td>255 (5.7)</td>
<td>279 (4.5)</td>
<td>304 (6.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Type of Location

For the purpose of reporting, schools that participated in the assessment were classified into three mutually exclusive types of location — Central City, Urban Fringe/Large Town, and Rural/Small Town. These classifications are based on geographic characteristics of the schools' locations and are determined by Census Bureau definitions of metropolitan statistical areas (MSAs), population size, and density. These categories indicate the geographic locations of schools and are not intended to indicate or imply social or economic meanings for location types. (The type of location classification is described in Appendix A.)

Table 2.6A presents fourth-grade results according to the location type of the schools that students attended for Texas and the nation.

1996, Public School Students, Grade 4
The average mathematics scale score of students attending schools in central cities in Texas was not significantly different from that of students in urban fringes/large towns but was lower than that of students in rural areas/small towns.

1992 vs. 1996, Public School Students, Grade 4
From 1992 to 1996, there was an increase in the average scale score of students attending schools in all three types of location in Texas.

34 In past NAEP reports, a type of community variable that combined community size with a school-level socioeconomic indicator was reported. Due to the problematic nature of this variable, NAEP currently reports results by Census-based descriptors.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>216 (1.9)</td>
<td>225 (2.1)</td>
<td>212 (1.6)</td>
<td>214 (2.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>175 (2.1)</td>
<td>186 (2.2)</td>
<td>168 (2.2)</td>
<td>170 (3.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>196 (1.6)</td>
<td>189 (3.1)</td>
<td>196 (1.6)</td>
<td>190 (3.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>217 (2.4)</td>
<td>204 (1.4)</td>
<td>212 (2.1)</td>
<td>215 (3.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>237 (4.3)</td>
<td>225 (2.3)</td>
<td>235 (2.2)</td>
<td>238 (2.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>256 (3.8)</td>
<td>245 (2.7)</td>
<td>253 (2.0)</td>
<td>256 (2.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for type of location subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (>) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Characteristics of the school sample do not permit reliable regional results for type of location.

Table 2.6B presents eighth-grade results according to the location type of the schools for Texas and the nation. (Type of location results are not available for the NAEP 1990 mathematics assessment.)

1996, Public School Students, Grade 8
The average mathematics scale score of students attending schools in central cities in Texas was not significantly different from that of students in urban fringes/large towns or rural areas/small towns.

1992 vs. 1996, Public School Students, Grade 8
From 1992 to 1996, there was no significant change in the average scale score of students attending schools in any of the three types of location in Texas.

<table>
<thead>
<tr>
<th>TABLE 2.6B — GRADE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution of Mathematics Scale Scores for Public School Students by Type of Location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Location</th>
<th>1992 Texas</th>
<th>1996 Texas</th>
<th>1992 Nation</th>
<th>1996 Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central city</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>261 (1.9)</td>
<td>268 (2.3)</td>
<td>258 (2.8)</td>
<td>286 (2.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>214 (4.1)</td>
<td>221 (2.5)</td>
<td>209 (3.5)</td>
<td>210 (2.3)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>266 (2.3)</td>
<td>267 (2.7)</td>
<td>261 (1.8)</td>
<td>260 (2.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>224 (3.1)</td>
<td>233 (2.7)</td>
<td>232 (2.9)</td>
<td>230 (2.1)</td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>271 (2.7)</td>
<td>276 (3.3)</td>
<td>274 (2.0)</td>
<td>274 (2.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>223 (4.2)</td>
<td>253 (3.2)</td>
<td>229 (2.0)</td>
<td>226 (4.1)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>276 (2.8)</td>
<td>279 (2.4)</td>
<td>277 (2.7)</td>
<td>275 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>250 (3.3)</td>
<td>250 (3.3)</td>
<td>249 (2.9)</td>
<td>249 (2.9)</td>
</tr>
<tr>
<td>Rural/Small town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>264 (2.2)</td>
<td>266 (1.5)</td>
<td>223 (1.7)</td>
<td>233 (2.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>217 (4.8)</td>
<td>229 (2.6)</td>
<td>243 (2.7)</td>
<td>256 (2.7)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>271 (2.8)</td>
<td>276 (2.0)></td>
<td>229 (2.6)</td>
<td>233 (4.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>224 (3.4)</td>
<td>256 (2.7)></td>
<td>249 (2.4)</td>
<td>256 (2.7)></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. Results are reported for type of location subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Characteristics of the school sample do not permit reliable regional results for type of location. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

Type of School

The NAEP 1996 state assessment marks the first time that nonpublic school students were assessed in mathematics at the state level. Therefore, separate nonpublic school results can be reported for Texas at grade 8. (Texas did not meet minimum participation guidelines for reporting nonpublic school results for grade 4.) Also, results based on a combined sample of public and nonpublic school students can be presented. (Trend results are not presented for nonpublic school students because they were not included in previous state-level NAEP assessments of mathematics.)

In 1996, approximately 93 percent of eighth graders in Texas attended public schools, with the remaining students attending nonpublic schools (including Catholic and other private schools). For the nation, 89 percent of students at grade 8 attended public schools in 1996.

Previous NAEP mathematics assessments and other survey research on educational achievement have found significant differences in the performance of students attending public and nonpublic schools. However, the reader is cautioned against using NAEP results to make simplistic inferences about the relative effectiveness of public and nonpublic schools. Average performance differences between the two types of schools may, in part, be related to socioeconomic and sociological factors, such as levels of parental involvement in their child’s education. To get a clearer picture of the differences between public and nonpublic schools, more in-depth investigations must be conducted that are beyond the scope of the NAEP state assessment program.

Texas

Table 2.7 shows the distribution of mathematics scale scores for the public, nonpublic, and combined eighth-grade populations in Texas, the West region, and the nation.

1996, Nonpublic School Students, Grade 8
In Texas, the average mathematics scale score of students attending nonpublic schools (301) was higher than that of nonpublic school students across the nation (284).

1996, Public vs. Nonpublic School Students, Grade 8
The average scale score of public school students in Texas (270) was lower than that of nonpublic school students (301).

1996, Public and Nonpublic School Students Combined, Grade 8
The average scale score of public and nonpublic school students combined in Texas (272) was not significantly different from that of students nationwide (272).

<table>
<thead>
<tr>
<th>THE NATION'S REPORT CARD</th>
<th>1996 State Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2.7 — GRADE 8</td>
<td>Distribution of Mathematics Scale Scores for Students by Type of School</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Average Scale Score</th>
<th>10th Percentile</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>90th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>270 (1.4)</td>
<td>225 (2.2)</td>
<td>247 (2.0)</td>
<td>271 (1.7)</td>
<td>295 (1.6)</td>
<td>314 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>268 (2.4)</td>
<td>219 (4.8)</td>
<td>244 (3.0)</td>
<td>269 (1.7)</td>
<td>294 (3.4)</td>
<td>314 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>271 (1.2)</td>
<td>222 (2.0)</td>
<td>247 (1.2)</td>
<td>272 (1.1)</td>
<td>296 (1.4)</td>
<td>316 (2.0)</td>
</tr>
<tr>
<td>Nonpublic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>301 (5.3)</td>
<td>267 (4.3)</td>
<td>281 (7.0)</td>
<td>302 (4.9)</td>
<td>318 (7.6)</td>
<td>335 (8.7)</td>
</tr>
<tr>
<td>West</td>
<td>284 (5.4)</td>
<td>238 (5.6)</td>
<td>259 (4.4)</td>
<td>287 (8.4)</td>
<td>309 (7.6)</td>
<td>328 (5.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>264 (2.4)</td>
<td>242 (4.4)</td>
<td>262 (4.8)</td>
<td>286 (1.8)</td>
<td>307 (2.4)</td>
<td>326 (3.1)</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>272 (1.3)</td>
<td>227 (1.4)</td>
<td>249 (1.3)</td>
<td>273 (1.7)</td>
<td>297 (1.3)</td>
<td>318 (1.8)</td>
</tr>
<tr>
<td>West</td>
<td>269 (2.2)</td>
<td>221 (6.1)</td>
<td>245 (2.8)</td>
<td>270 (2.4)</td>
<td>295 (1.8)</td>
<td>315 (2.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>272 (1.1)</td>
<td>224 (1.8)</td>
<td>248 (1.3)</td>
<td>273 (1.0)</td>
<td>298 (1.4)</td>
<td>317 (1.2)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

The Mathematics Achievement Level Results for Fourth- and Eighth-Grade Students

While providing information about what students can do in mathematics is essential for understanding the current state of mathematics performance, knowing what students can do is made even more relevant by also looking at what students should be able to do. For that reason, the National Assessment Governing Board (NAGB) has provided NAEP with achievement levels in mathematics that set standards for performance in mathematics at grades 4, 8, and 12.

This part of the report presents results using the student achievement levels as authorized by the NAEP legislation and adopted by NAGB. The achievement levels are based on collective judgments, gathered from a broadly representative panel of teachers, education specialists, and members of the general public, about what students should know and be able to do relative to a body of content reflected in the NAEP mathematics frameworks. For reporting purposes, the achievement level cutscores are placed on the traditional NAEP scale. For each grade, the results divide the scale into four ranges — Basic, Proficient, Advanced, and the region below Basic.

Initiated in 1990, the levels have been used to report the national and state results in mathematics in 1990 and 1992, as well as in other subjects such as reading, U.S. history, and geography. The mathematics achievement levels were developed by American College Testing (ACT) under contract with NAGB. While setting student achievement levels on NAEP is relatively new and developing, the achievement levels are consistent with recent education reform efforts. Some state and local jurisdictions are also developing standards and reporting their test results using them.

37 States such as Kentucky, Maryland, Colorado, Connecticut, and North Carolina all have standard-setting initiatives resulting in student achievement levels.
Despite the commitment to standards-based reporting of NAEP results, the transition is incomplete. There have been some critical reviews and congressionally mandated evaluations that cast doubt on the interpretability of achievement levels and also on the applicability of the underlying technical methodology used to develop them. These studies were conducted by the General Accounting Office (GAO)38 and the National Academy of Education (NAE).39 Their findings question, for example, the application of the Angoff method for large-scale assessments like NAEP, given the significant modifications required to accommodate the complexity of the NAEP item structure and the multiple cutpoints. They conclude that discretion should be used in making particular inferences about what students at each level actually know and can do. In addition, there were concerns that the proportion of students at certain levels, but particularly at the Advanced levels, may be underestimated.

On the other hand, the Angoff procedure is the most widely documented, researched, and frequently used method in the standard-setting field. Many well-known experts support the use of a modified-Angoff method on NAEP. Several critics of the NAE studies,40 for example, have reaffirmed the integrity of the process employed by NAGB and have concluded that the weight of the empirical evidence presented does not support the NAE’s conclusions about achievement levels or the use of the modified-Angoff process. In addition, the Council of Chief State School Officers’ advisory panel of state assessment directors, fully aware of the NAE’s conclusions, supported the use of the achievement levels to report NAEP results.41

Taken together, the results of the various studies suggest the need for further research and development. A standard-setting conference was held in the fall of 1994, jointly sponsored by NCES and NAGB. The proceedings, which were recently released, show the variety of approaches which can be used to achieve similar goals and the general lack of agreement on which approach may constitute the best way.42

41 Education Information Advisory Committee of the Council of Chief State School Officers. A Resolution of the Education Information Advisory Committee. (Alexandria, VA, 1994).

In summary, the student achievement levels in this report have been developed carefully and responsibly, and have been subject to refinements and revisions in procedures as new technologies have become available. However, standards-based reporting for NAEP data is still in transition. The NAEP legislation states that the student achievement levels shall be "...developed through a national consensus approach, ... used on a developmental basis, ... and updated as appropriate." It requires that the developmental status of achievement levels be clearly stated in NAEP reports. Upon review of the available information, the Commissioner of Education Statistics has judged that the achievement levels are in a developmental status. However, the Commissioner and NAGB also believe that the achievement levels are useful and valuable in reporting on the educational achievement of American students.

Part Two of this report focuses on results of the NAEP 1996 state assessment program in mathematics in terms of the NAGB achievement levels. Chapter 3 provides an overview of the achievement level descriptors. In addition, the percentages of public school students in Texas, the West region, and the nation who performed at or above each of the achievement levels are presented. Chapter 4 expands on these results by presenting achievement level data for subgroups defined by gender, race/ethnicity, parental education, location of the school, participation in Title I services and programs, and eligibility for the free/reduced-price lunch component of the National School Lunch Program. Chapter 4 also presents results for students in nonpublic schools and combined results for both public and nonpublic school students.
CHAPTER 3

Students' Mathematics Achievement Level Results

Achievement levels are based on collective judgments, gathered from a broadly representative panel of teachers, education specialists, and members of the general public, about what students should know and be able to do relative to the body of content reflected in the NAEP mathematics framework (see Appendix B for a description of the framework). These judgments translate into specific points on the NAEP scale that identify boundaries between levels of achievement — Basic, Proficient, and Advanced — for each grade. Performance at the Basic level denotes partial mastery of the knowledge and skills that are fundamental for proficient work. Performance at the Proficient level, represents solid academic performance. Students reaching this level demonstrate competency over challenging subject matter. Performance at the Advanced level signifies superior performance beyond proficient grade-level mastery. In this report, the percentage of students at or above the three achievement levels, as well as the percentage of students below Basic, is presented for fourth- and eighth-grade students in Texas, the West region, and the nation.

Description of NAEP Mathematics Achievement Levels

The achievement levels for the NAEP mathematics assessments were first set in 1990 and slightly revised following the 1992 mathematics assessment. Appendix D briefly describes the process of gathering expert judgments about Basic, Proficient, and Advanced performance — as defined by NAGB policy — on each mathematics question. The appendix also discusses procedures for combining the various judgments on the various questions and mapping them onto the NAEP mathematics scale. The result of the achievement level setting process is a set of scale score cutpoints used to classify students as Basic, Proficient, or Advanced. (Separate cutpoints are defined for each grade.) The three mathematics achievement levels for grades 4 and 8 are elaborated on in Figure 3.1, and examples of questions appropriate at each achievement level are also provided. It should be noted that constructed-response questions in the assessment occur at all levels of mathematics achievement.
GRADE 4

NAEP mathematics content strands: (1) Number Sense, Properties, and Operations; (2) Measurement; (3) Geometry and Spatial Sense; (4) Data Analysis, Statistics, and Probability; (5) Algebra and Functions.

(Note: At the fourth-grade level, algebra and functions are treated in informal and exploratory ways, often through the study of patterns.)

Skills are cumulative across levels — from Basic to Proficient to Advanced.

BASIC LEVEL	Fourth-grade students performing at the Basic level should show some evidence of understanding the mathematical concepts and procedures in the five NAEP content strands. In relation to the NAEP mathematics scale, Basic-level achievement for fourth grade is defined by scale scores at or above 214.
PROFICIENT LEVEL	Fourth-grade students performing at the Proficient level should consistently apply integrated procedural knowledge and conceptual understanding to problem solving in the five NAEP content strands. In relation to the NAEP mathematics scale, Proficient-level achievement for fourth grade is defined by scale scores at or above 249.
ADVANCED LEVEL	Fourth-grade students performing at the Advanced level should apply integrated procedural knowledge and conceptual understanding to complex and nonroutine real-world problem solving in the five NAEP content strands. In relation to the NAEP scale, Advanced-level achievement for fourth grade is defined by scale scores at or above 282.

Specifically, fourth graders performing at the Basic level should be able to estimate and use basic facts to perform simple computations with whole numbers; show some understanding of fractions and decimals; and solve simple real-world problems in all NAEP content strands. Students at this level should be able to use — though not always accurately — four-function calculators, rulers, and geometric shapes. Their written responses are often minimal and presented without supporting information.

Specifically, fourth graders performing at the Proficient level should be able to use whole numbers to estimate, compute, and determine whether results are reasonable. They should have a conceptual understanding of fractions and decimals; be able to solve real-world problems in all NAEP content strands; and use four-function calculators, rulers, and geometric shapes appropriately. Students at the Proficient level should employ problem-solving strategies such as identifying and using appropriate information. Their written solutions should be organized and presented both with supporting information and explanations of how they were achieved.

Specifically, fourth graders performing at the Advanced level should be able to solve complex and nonroutine real-world problems in all NAEP content strands. They should display mastery in the use of four-function calculators, rulers, and geometric shapes. These students are expected to draw logical conclusions and justify answers and solution processes by explaining why, as well as how, they were achieved. They should go beyond the obvious in their interpretations and be able to communicate their thoughts clearly and concisely.
FIGURE 3.1 (continued)

Mathematics Achievement Levels

Grade 4 Basic-Level Example Item

Refer to the rectangle below. (NOTE: Size reduced from original.)

Use your centimeter ruler to make the following measurement to the nearest centimeter.
What is the length in centimeters of one of the longer sides of the rectangle?
Answer: (8 centimeters)

Grade 4 Proficient-Level Example Item

Carol wanted to estimate the distance from A to D along the path shown on the map below. She correctly rounded each of the given distances to the nearest mile and then added them. Which of the following sums could be hers?

A. 4 + 6 + 5 = 15
B. 5 + 6 + 5 = 16
*C. 5 + 6 + 6 = 17
D. 5 + 7 + 6 = 18

Grade 4 Advanced-Level Example Item

If represents the number of newspapers that Lee delivers each day, which of the following represents the total number of newspapers that Lee delivers in 5 days?

A. 5 +
*B. 5 x
C. /5
D. (+) x 5
GRADE 8

NAEP mathematics content strands: (1) Number Sense, Properties, and Operations; (2) Measurement; (3) Geometry and Spatial Sense; (4) Data Analysis, Statistics, and Probability; (5) Algebra and Functions.

Skills are cumulative across all levels — from Basic to Proficient to Advanced.

BASIC LEVEL

Eighth-grade students performing at the Basic level should exhibit evidence of conceptual and procedural understanding in the five NAEP content strands. This level of performance signifies an understanding of arithmetic operations — including estimation — on whole numbers, decimals, fractions, and percents. In relation to the NAEP mathematics scale, Basic-level achievement for eighth grade is defined by scale scores at or above 262.

Specifically, eighth graders performing at the Basic level should complete problems correctly with the help of structural prompts such as diagrams, charts, and graphs. They should be able to solve problems in all NAEP content strands through the appropriate selection and use of strategies and technological tools — including calculators, computers, and geometric shapes. Students at this level should also be able to use fundamental algebraic and informal geometric concepts in problem solving.

As they approach the Proficient level, students at the Basic level should be able to determine which of available data are necessary and sufficient for correct solutions and use them in problem solving. However, these eighth graders may show limited skill in communicating mathematically.

PROFICIENT LEVEL

Eighth-grade students performing at the Proficient level should apply mathematical concepts and procedures consistently to complex problems in the five NAEP content strands. In relation to the NAEP mathematics scale, Proficient-level achievement for eighth grade is defined by scale scores at or above 299.

Specifically, eighth graders performing at the Proficient level should be able to conjecture, defend their ideas, and give supporting examples. They should understand the connections between fractions, percents, decimals, and other mathematical topics such as algebra and functions. Students at the Proficient level are expected to have a thorough understanding of basic level arithmetic operations — an understanding sufficient for problem solving in practical situations.

Quantity and spatial relationships in problem solving and reasoning should be familiar to them, and they should be able to convey underlying reasoning skills beyond the level of arithmetic. They should be able to compare and contrast mathematical ideas and generate their own examples. These students should make inferences from data and graphs; apply properties of informal geometry; and accurately use the tools of technology. Students at this level should understand the process of gathering and organizing data and be able to calculate, evaluate, and communicate results within the domain of statistics and probability.

ADVANCED LEVEL

Eighth-grade students at the Advanced level should be able to reach beyond the recognition, identification, and application of mathematical rules in order to generalize and synthesize concepts and principles in the five NAEP content strands. In relation to the NAEP mathematics scale, Advanced-level achievement for eighth grade is defined by scale scores at or above 333.

Specifically, eighth graders performing at the Advanced level should be able to probe examples and counterexamples in order to shape generalizations from which they can develop models. Eighth graders performing at this level should use number sense and geometric awareness to consider the reasonableness of an answer. They are expected to use abstract thinking to create unique problem-solving techniques and explain the reasoning processes underlying their conclusions.
FIGURE 3.1 (continued)

Mathematics Achievement Levels

Grade 8 Basic-Level Example Item

Which of the following is both a multiple of 3 and a multiple of 7?

A. 7,007
B. 8,192
*C. 21,567
D. 22,287
E. 40,040

Did you use the calculator on this question?
Yes No

Grade 8 Proficient-Level Example Item

In the graph above, each dot shows the number of sit-ups and the corresponding age for one of 13 people. According to this graph, what is the median number of sit-ups for these 13 people?

A. 15
B. 20
C. 45
*D. 50
E. 55

Did you use the calculator on this question?
Yes No
Grade 8 Advanced-Level Example Item

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
</tr>
</tbody>
</table>

If the pattern shown in the table were continued, what number would appear in the box at the bottom of column B next to 14?

- A. 19
- B. 21
- C. 23
- D. 25
- E. 29

<table>
<thead>
<tr>
<th>1992 Percent Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation</td>
</tr>
<tr>
<td>25 (1.4)</td>
</tr>
</tbody>
</table>
Table 3.1A indicates the percentage of fourth-grade public school students at or above each achievement level, as well as the percentage of students below the Basic level.

1996, Public School Students, Grade 4

In Texas, 25 percent of students performed at or above the Proficient level. This percentage was larger than that of students nationwide (20 percent).

1992 vs. 1996, Public School Students, Grade 4

From 1992 to 1996, there was an increase in the percentage of Texas students who attained the Proficient level (15 percent in 1992 and 25 percent in 1996).

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>1 (0.3)</td>
<td>15 (1.2)</td>
<td>56 (1.6)</td>
<td>44 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>2 (0.6)</td>
<td>17 (2.2)</td>
<td>57 (2.3)</td>
<td>43 (2.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.3)</td>
<td>17 (1.1)</td>
<td>57 (1.2)</td>
<td>43 (1.2)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>3 (0.5)</td>
<td>25 (1.5)</td>
<td>69 (1.9)</td>
<td>31 (1.9)</td>
</tr>
<tr>
<td>West</td>
<td>2 (0.5)</td>
<td>16 (1.8)</td>
<td>57 (3.0)</td>
<td>43 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.3)</td>
<td>20 (1.0)</td>
<td>62 (1.4)</td>
<td>36 (1.4)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Table 3.1B provides the percentage of eighth-grade public school students at or above each achievement level and the percentage of students below the Basic level.

1996, Public School Students, Grade 8
In Texas, 21 percent of students performed at or above the Proficient level. This percentage did not differ significantly from that of students nationwide (23 percent).

1992 vs. 1996, Public School Students, Grade 8
From 1992 to 1996, there was no significant change in the percentage of Texas students who attained the Proficient level (18 percent in 1992 and 21 percent in 1996).

1990 vs. 1996, Public School Students, Grade 8
From 1990 to 1996, the percentage of students who performed at or above the Proficient level in Texas increased (13 percent in 1990 and 21 percent in 1996).

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>2 (0.3)</td>
<td>13 (1.1)</td>
<td>45 (1.6)</td>
<td>55 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>2 (0.6)</td>
<td>15 (2.2)</td>
<td>50 (2.6)</td>
<td>50 (2.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.4)</td>
<td>15 (1.1)</td>
<td>51 (1.5)</td>
<td>49 (1.5)</td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>3 (0.6)</td>
<td>18 (1.2)*</td>
<td>53 (1.5)*</td>
<td>47 (1.5)*</td>
</tr>
<tr>
<td>West</td>
<td>3 (1.0)</td>
<td>20 (2.0)</td>
<td>57 (2.6)</td>
<td>43 (2.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.4)</td>
<td>20 (1.0)*</td>
<td>56 (1.2)*</td>
<td>44 (1.2)*</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>3 (0.4)</td>
<td>21 (1.5)*</td>
<td>59 (1.8)>></td>
<td>41 (1.8)<<</td>
</tr>
<tr>
<td>West</td>
<td>3 (0.6)</td>
<td>21 (2.0)</td>
<td>58 (2.4)</td>
<td>42 (2.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>4 (0.6)</td>
<td>23 (1.2)*</td>
<td>61 (1.3)>></td>
<td>39 (1.3)<<</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation » (•) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Mathematics Achievement Level Results by Subpopulations

As discussed in Chapter 2 of this report, NAEP assessments have repeatedly shown differences in performance for subpopulations of students. This chapter presents achievement level results for Texas, the West region, and the nation for subgroups of public school students defined by gender, race/ethnicity, parental education, type of location of the students' schools, participation in Title I programs, and eligibility for the free/reduced-price lunch component of the National School Lunch Program. Results for students attending nonpublic schools are also reported. (A description of the subgroups and how they are defined is presented in Appendix A.)

As stated in Part One, the reader is cautioned against using NAEP results to make simple or causal inferences related to subgroup membership or the effectiveness of public and nonpublic schools or Title I programs.
Gender

Table 4.1A provides the achievement level results by gender for fourth-grade public school students.

1996, Public School Students, Grade 4

The percentage of males in Texas who performed at or above the Proficient level (27 percent) was not significantly different from that of females (24 percent).

1992 vs. 1996, Public School Students, Grade 4

In Texas from 1992 to 1996, the percentage of both males and females who attained the Proficient level increased.

<table>
<thead>
<tr>
<th>THE NATION'S REPORT CARD</th>
<th>1996 State Assessment</th>
</tr>
</thead>
</table>

TABLE 4.1A — GRADE 4

Percentage of Public School Students Attaining Mathematics Achievement Levels by Gender

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>1 (0.4)</td>
<td>17 (1.7)</td>
<td>57 (1.9)</td>
<td>43 (1.9)</td>
</tr>
<tr>
<td>West</td>
<td>2 (0.7)</td>
<td>17 (2.5)</td>
<td>57 (2.5)</td>
<td>43 (2.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.4)</td>
<td>19 (1.2)</td>
<td>59 (1.3)</td>
<td>41 (1.3)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>3 (0.6)</td>
<td>27 (2.0)></td>
<td>69 (1.9)></td>
<td>31 (1.9)<</td>
</tr>
<tr>
<td>West</td>
<td>3 (0.9)</td>
<td>19 (2.0)</td>
<td>58 (3.6)</td>
<td>42 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.5)</td>
<td>22 (1.2)</td>
<td>63 (1.8)</td>
<td>37 (1.8)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>1 (0.4)</td>
<td>13 (1.5)</td>
<td>55 (2.0)</td>
<td>45 (2.0)</td>
</tr>
<tr>
<td>West</td>
<td>1 (0.7)</td>
<td>16 (2.6)</td>
<td>58 (2.6)</td>
<td>42 (2.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.3)</td>
<td>16 (1.4)</td>
<td>56 (1.8)</td>
<td>44 (1.8)</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>2 (0.7)</td>
<td>24 (1.9)></td>
<td>70 (2.5)></td>
<td>30 (2.5)<</td>
</tr>
<tr>
<td>West</td>
<td>1 (0.4)</td>
<td>13 (1.7)</td>
<td>56 (3.4)</td>
<td>44 (3.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.4)</td>
<td>17 (1.2)</td>
<td>61 (1.7)</td>
<td>39 (1.7)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Table 4.1B presents achievement level results for male and female eighth graders.

1996, Public School Students, Grade 8

The percentage of males who performed at or above the Proficient level in Texas (23 percent) was not significantly different from that of females (19 percent).

1992 vs. 1996, Public School Students, Grade 8

In Texas from 1992 to 1996, the percentage of both males and females who attained the Proficient level did not change significantly.

1990 vs. 1996, Public School Students, Grade 8

From 1990 to 1996, the percentage of both males and females who attained the Proficient level increased.

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

<table>
<thead>
<tr>
<th>TABLE 4.1B — GRADE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Public School Students Attaining Mathematics Achievement Levels by Gender</td>
</tr>
<tr>
<td>Advanced</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>1990 Texas</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Nation</td>
</tr>
<tr>
<td>1992 Texas</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Nation</td>
</tr>
<tr>
<td>1996 Texas</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Nation</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>1990 Texas</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Nation</td>
</tr>
<tr>
<td>1992 Texas</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Nation</td>
</tr>
<tr>
<td>1996 Texas</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Nation</td>
</tr>
</tbody>
</table>
Race/Ethnicity

Table 4.2A provides the percentages of fourth-grade public school students at or above each of the three mathematics achievement levels and also the percentage below the Basic level for White, Black, and Hispanic students.43

1996, Public School Students, Grade 4
The percentage of White students in Texas who attained the Proficient level was larger than that of Black and Hispanic students.

1992 vs. 1996, Public School Students, Grade 4
From 1992 to 1996, there was an increase in the percentage of White students who attained the Proficient level in Texas. From 1992 to 1996, there was no significant change in the percentage of Black or Hispanic students who attained the Proficient level in Texas.

Table 4.2B provides the percentages of eighth-grade public school students at or above each of the three mathematics achievement levels and the percentage below the Basic level for White, Black, Hispanic, and Asian/Pacific Islander students in Texas, the West region, and the nation.44

1996, Public School Students, Grade 8
The percentage of White students in Texas who attained the Proficient level was larger than that of Black and Hispanic students but was not significantly different from that of Asian/Pacific Islander students.

1992 vs. 1996, Public School Students, Grade 8
From 1992 to 1996, there was no significant change in the percentage of White, Black, Hispanic, or Asian/Pacific Islander students who attained the Proficient level in Texas.

1990 vs. 1996, Public School Students, Grade 8
From 1990 to 1996, there was an increase in the percentage of White students who attained the Proficient level in Texas. From 1990 to 1996, there was no significant change in the percentage of Black or Hispanic students who attained the Proficient level in Texas.

43 Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A).

44 The 1996 national and regional results for eighth-grade Asian/Pacific Islander students are not included in this report. Following a thorough investigation into the quality and credibility of these results, NCES decided to omit these results from the body of the report and to include the national results in an appendix. (See Appendix F for further discussion.)
TABLE 4.2A — GRADE 4

Percentage of Public School Students Attaining Mathematics Achievement Levels by Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>2 (0.7)</td>
<td>23 (2.0)</td>
<td>72 (2.1)</td>
<td>28 (2.1)</td>
</tr>
<tr>
<td>West</td>
<td>2 (0.8)</td>
<td>21 (3.1)</td>
<td>69 (2.8)</td>
<td>31 (2.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.4)</td>
<td>22 (1.5)</td>
<td>69 (1.4)</td>
<td>31 (1.4)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>5 (0.7)</td>
<td>40 (2.2)<</td>
<td>85 (1.8)></td>
<td>15 (1.8)<</td>
</tr>
<tr>
<td>West</td>
<td>3 (0.7)</td>
<td>22 (2.3)</td>
<td>68 (3.5)</td>
<td>32 (3.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.5)</td>
<td>26 (1.3)</td>
<td>74 (1.6)</td>
<td>26 (1.6)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>3 (1.1)</td>
<td>29 (4.0)</td>
<td>71 (4.0)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>2 (1.4)</td>
<td>21 (5.6)</td>
<td>79 (5.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>2 (0.7)</td>
<td>22 (1.9)</td>
<td>78 (1.9)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (****)</td>
<td>7 (2.0)</td>
<td>47 (3.0)></td>
<td>53 (3.0)<</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>4 (2.1)</td>
<td>30 (9.3)</td>
<td>70 (9.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (0.1)</td>
<td>5 (1.5)</td>
<td>32 (3.4)</td>
<td>68 (3.4)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>7 (1.3)</td>
<td>43 (2.7)</td>
<td>57 (2.7)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>5 (1.5)</td>
<td>33 (3.1)</td>
<td>67 (3.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>5 (1.0)</td>
<td>33 (2.3)</td>
<td>67 (2.3)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>1 (****)</td>
<td>11 (1.4)</td>
<td>55 (3.1)></td>
<td>45 (3.1)<</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>6 (1.5)</td>
<td>38 (4.2)</td>
<td>62 (4.2)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>7 (1.0)</td>
<td>40 (2.6)</td>
<td>60 (2.6)</td>
</tr>
</tbody>
</table>

Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. **** Standard error estimates cannot be accurately determined.

TABLE 4.2B — GRADE 8

Percentage of Public School Students Attaining Mathematics Achievement Levels by Race/Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990 Texas</td>
<td>3 (0.6)</td>
<td>21 (1.8)</td>
<td>64 (2.0)</td>
<td>36 (2.0)</td>
</tr>
<tr>
<td>1990 West</td>
<td>3 (0.9)</td>
<td>19 (3.2)</td>
<td>59 (3.4)</td>
<td>41 (3.4)</td>
</tr>
<tr>
<td>1990 Nation</td>
<td>3 (0.5)</td>
<td>19 (1.4)</td>
<td>60 (1.8)</td>
<td>40 (1.8)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>5 (0.9)</td>
<td>27 (1.8)</td>
<td>71 (2.0)</td>
<td>29 (2.0)</td>
</tr>
<tr>
<td>1992 West</td>
<td>4 (1.2)</td>
<td>27 (2.4)</td>
<td>68 (3.4)</td>
<td>32 (3.4)</td>
</tr>
<tr>
<td>1992 Nation</td>
<td>4 (0.5)</td>
<td>26 (1.3)*</td>
<td>68 (1.4)*</td>
<td>32 (1.4)*</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>4 (0.7)</td>
<td>33 (1.8)*</td>
<td>78 (1.7)*</td>
<td>22 (1.7)*</td>
</tr>
<tr>
<td>1996 West</td>
<td>4 (0.9)</td>
<td>29 (2.6)</td>
<td>73 (2.2)*</td>
<td>27 (2.2)*</td>
</tr>
<tr>
<td>1996 Nation</td>
<td>5 (0.8)</td>
<td>30 (1.5)*</td>
<td>73 (1.5)*</td>
<td>27 (1.5)*</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990 Texas</td>
<td>0 (****)</td>
<td>2 (1.1)</td>
<td>18 (2.3)</td>
<td>82 (2.3)</td>
</tr>
<tr>
<td>1990 West</td>
<td>0 (****)</td>
<td>8 (2.7)</td>
<td>33 (9.9)</td>
<td>67 (9.9)</td>
</tr>
<tr>
<td>1990 Nation</td>
<td>0 (****)</td>
<td>5 (1.1)</td>
<td>22 (2.5)</td>
<td>78 (2.5)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>5 (1.4)</td>
<td>28 (3.0)</td>
<td>72 (3.0)</td>
</tr>
<tr>
<td>1992 West</td>
<td>0 (****)</td>
<td>1 (0.8)</td>
<td>22 (5.5)</td>
<td>78 (5.5)</td>
</tr>
<tr>
<td>1992 Nation</td>
<td>0 (****)</td>
<td>2 (0.7)</td>
<td>20 (2.0)</td>
<td>80 (2.0)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>1 (0.2)</td>
<td>5 (1.7)</td>
<td>31 (4.3)</td>
<td>68 (4.3)</td>
</tr>
<tr>
<td>1996 West</td>
<td>0 (****)</td>
<td>3 (1.0)</td>
<td>31 (4.4)</td>
<td>68 (4.4)</td>
</tr>
<tr>
<td>1996 Nation</td>
<td>0 (****)</td>
<td>4 (0.9)</td>
<td>27 (2.9)</td>
<td>72 (2.9)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990 Texas</td>
<td>0 (****)</td>
<td>4 (1.0)</td>
<td>29 (1.9)</td>
<td>71 (1.9)</td>
</tr>
<tr>
<td>1990 West</td>
<td>1 (0.3)</td>
<td>5 (2.0)</td>
<td>31 (3.8)</td>
<td>69 (3.8)</td>
</tr>
<tr>
<td>1990 Nation</td>
<td>0 (0.2)</td>
<td>5 (1.5)</td>
<td>31 (3.2)</td>
<td>69 (3.2)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>7 (1.0)</td>
<td>33 (1.7)</td>
<td>67 (1.7)</td>
</tr>
<tr>
<td>1992 West</td>
<td>0 (****)</td>
<td>6 (0.9)</td>
<td>34 (2.5)</td>
<td>66 (2.5)</td>
</tr>
<tr>
<td>1992 Nation</td>
<td>0 (0.3)</td>
<td>6 (0.8)</td>
<td>32 (2.1)</td>
<td>68 (2.1)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>1 (0.4)</td>
<td>8 (1.4)</td>
<td>42 (2.6)*</td>
<td>58 (2.6)*</td>
</tr>
<tr>
<td>1996 West</td>
<td>1 (0.5)</td>
<td>7 (1.9)</td>
<td>36 (2.7)</td>
<td>64 (2.7)</td>
</tr>
<tr>
<td>1996 Nation</td>
<td>1 (****)</td>
<td>8 (1.6)</td>
<td>37 (2.5)</td>
<td>63 (2.5)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990 Texas</td>
<td>*** (*)</td>
<td>*** (*)</td>
<td>*** (*)</td>
<td>*** (*)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>22 (7.2)</td>
<td>57 (6.9)</td>
<td>85 (4.6)</td>
<td>15 (4.6)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>14 (5.7)</td>
<td>57 (10.0)</td>
<td>86 (5.5)</td>
<td>14 (5.5)</td>
</tr>
</tbody>
</table>

Results are reported for racial/ethnic subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation » (> or <) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. *** Sample size is insufficient to permit a reliable estimate. **** Standard error estimates cannot be accurately determined.

Students’ Reports of Parents’ Highest Education Level

Table 4.3A shows the mathematics achievement level results for fourth-grade public school students who reported that neither parent graduated from high school, at least one parent graduated from high school, at least one parent had some education after high school, at least one parent graduated from college, or that they did not know their parents’ highest education level. It should be noted that 39 percent of fourth graders in Texas reported that they did not know the education level of either of their parents.

1996, Public School Students, Grade 4
The percentage of Texas students who reported that neither parent graduated from high school who attained the Proficient level was smaller than that of students who reported that at least one parent graduated from high school, at least one parent had some education after high school, or at least one parent graduated from college.

1992 vs. 1996, Public School Students, Grade 4
A greater percentage of students in Texas who reported that at least one parent graduated from college attained the Proficient level in 1996 than in 1992. The percentage of students in Texas who reported that neither parent graduated from high school, at least one parent graduated from high school, or at least one parent had some education after high school who attained the Proficient level did not change significantly between 1992 and 1996.
TABLE 4.3A — GRADE 4

Percentage of Public School Students Attaining Mathematics Achievement Levels by Students’ Reports of Parents’ Highest Education Level

<table>
<thead>
<tr>
<th>Did not finish high school</th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>9 (2.2)</td>
<td>49 (4.8)</td>
<td>51 (4.8)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>5 (2.6)</td>
<td>37 (10.5)</td>
<td>63 (10.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>5 (1.9)</td>
<td>38 (5.4)</td>
<td>62 (5.4)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (****)</td>
<td>7 (2.7)</td>
<td>51 (6.5)</td>
<td>49 (6.5)</td>
</tr>
<tr>
<td>West</td>
<td>**()</td>
<td>**()</td>
<td>**()</td>
<td>**()</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>5 (1.8)</td>
<td>36 (4.4)</td>
<td>64 (4.4)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>11 (2.6)</td>
<td>52 (3.5)</td>
<td>48 (3.5)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>13 (4.5)</td>
<td>58 (5.8)</td>
<td>42 (5.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>12 (1.9)</td>
<td>52 (2.9)</td>
<td>48 (2.9)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>1 (****)</td>
<td>20 (3.1)</td>
<td>61 (4.9)</td>
<td>39 (4.9)</td>
</tr>
<tr>
<td>West</td>
<td>1 (****)</td>
<td>16 (3.9)</td>
<td>58 (6.6)</td>
<td>44 (6.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (****)</td>
<td>15 (2.0)</td>
<td>58 (3.0)</td>
<td>42 (3.0)</td>
</tr>
<tr>
<td>Some education after HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>2 (****)</td>
<td>22 (3.4)</td>
<td>69 (4.5)</td>
<td>31 (4.5)</td>
</tr>
<tr>
<td>West</td>
<td>1 (****)</td>
<td>19 (3.5)</td>
<td>61 (4.7)</td>
<td>39 (4.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.8)</td>
<td>21 (2.5)</td>
<td>67 (3.0)</td>
<td>33 (3.0)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>2 (1.2)</td>
<td>30 (3.3)</td>
<td>78 (3.1)</td>
<td>22 (3.1)</td>
</tr>
<tr>
<td>West</td>
<td>1 (****)</td>
<td>18 (4.7)</td>
<td>74 (6.8)</td>
<td>26 (6.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (1.1)</td>
<td>27 (3.1)</td>
<td>76 (3.0)</td>
<td>24 (3.0)</td>
</tr>
<tr>
<td>Graduated from college</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>2 (0.7)</td>
<td>21 (2.6)</td>
<td>64 (2.7)</td>
<td>36 (2.7)</td>
</tr>
<tr>
<td>West</td>
<td>3 (1.4)</td>
<td>23 (4.0)</td>
<td>65 (2.7)</td>
<td>35 (2.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.6)</td>
<td>25 (2.0)</td>
<td>66 (1.5)</td>
<td>34 (1.5)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>6 (1.1)</td>
<td>39 (2.7)></td>
<td>80 (2.3)></td>
<td>20 (2.3)<</td>
</tr>
<tr>
<td>West</td>
<td>4 (1.2)</td>
<td>23 (4.5)</td>
<td>66 (3.6)</td>
<td>34 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>4 (0.7)</td>
<td>27 (1.9)</td>
<td>70 (1.9)</td>
<td>30 (1.9)</td>
</tr>
<tr>
<td>I don’t know</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>1 (0.4)</td>
<td>11 (1.6)</td>
<td>49 (2.1)</td>
<td>51 (2.1)</td>
</tr>
<tr>
<td>West</td>
<td>1 (0.5)</td>
<td>12 (2.7)</td>
<td>51 (3.0)</td>
<td>49 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.3)</td>
<td>12 (1.1)</td>
<td>50 (1.5)</td>
<td>50 (1.5)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>1 (0.4)</td>
<td>16 (1.4)</td>
<td>63 (2.7)></td>
<td>37 (2.7)<</td>
</tr>
<tr>
<td>West</td>
<td>1 (****)</td>
<td>11 (1.8)</td>
<td>47 (4.5)</td>
<td>53 (4.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.4)</td>
<td>14 (1.2)</td>
<td>55 (2.1)</td>
<td>45 (2.1)</td>
</tr>
</tbody>
</table>

Results are reported for parental education subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. *** Sample size is insufficient to permit a reliable estimate. **** Standard error estimates cannot be accurately determined.

Table 4.3B presents achievement level results for eighth-grade students by students' reports of highest level of parental education. It should be noted that 12 percent of eighth graders in Texas reported that they did not know the education level of either of their parents.

1996, Public School Students, Grade 8
In Texas, the percentage of students who reported that neither parent graduated from high school who attained the Proficient level did not differ significantly from that of students who reported that at least one parent graduated from high school but was smaller than that of students who reported that at least one parent had some education after high school or at least one parent graduated from college.

1992 vs. 1996, Public School Students, Grade 8
The percentage of students in Texas who reported that neither parent graduated from high school, at least one parent graduated from high school, at least one parent had some education after high school, or at least one parent graduated from college who attained the Proficient level did not change significantly between 1992 and 1996.

1990 vs. 1996, Public School Students, Grade 8
A greater percentage of students in Texas who reported that at least one parent graduated from college attained the Proficient level in 1996 than in 1990. The percentage of students in Texas who reported that neither parent graduated from high school, at least one parent graduated from high school, or at least one parent had some education after high school who attained the Proficient level did not change significantly between 1990 and 1996.
TABLE 4.3B — GRADE 8

Percentage of Public School Students Attaining Mathematics Achievement Levels by Students' Reports of Parents' Highest Education Level

<table>
<thead>
<tr>
<th>Did not finish high school</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990 Texas</td>
<td>0 (****)</td>
<td>3 (1.2)</td>
<td>26 (2.6)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>5 (2.9)</td>
<td>30 (5.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>3 (1.1)</td>
<td>24 (3.5)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>5 (1.2)</td>
<td>34 (2.6)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>5 (2.8)</td>
<td>36 (3.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (****)</td>
<td>6 (1.7)</td>
<td>34 (3.2)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (****)</td>
<td>7 (1.9)</td>
<td>38 (3.9)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>11 (3.2)</td>
<td>47 (4.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (****)</td>
<td>8 (2.1)</td>
<td>44 (2.7)</td>
</tr>
<tr>
<td>Graduated from high school</td>
<td>1990 Texas</td>
<td>0 (****)</td>
<td>6 (1.3)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>6 (2.6)</td>
<td>36 (4.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>8 (1.3)</td>
<td>41 (2.0)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>0 (****)</td>
<td>7 (1.6)</td>
<td>40 (2.6)</td>
</tr>
<tr>
<td>West</td>
<td>1 (0.6)</td>
<td>9 (2.4)</td>
<td>41 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.4)</td>
<td>10 (1.1)</td>
<td>45 (2.1)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>1 (0.5)</td>
<td>13 (2.0)</td>
<td>49 (3.0)</td>
</tr>
<tr>
<td>West</td>
<td>1 (****)</td>
<td>9 (1.8)</td>
<td>45 (3.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.5)</td>
<td>12 (1.3)</td>
<td>50 (2.1)</td>
</tr>
<tr>
<td>Some education after HS</td>
<td>1990 Texas</td>
<td>1 (0.6)</td>
<td>15 (2.1)</td>
</tr>
<tr>
<td>West</td>
<td>4 (1.8)</td>
<td>15 (2.9)</td>
<td>61 (4.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.9)</td>
<td>15 (2.0)</td>
<td>57 (2.7)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>2 (0.8)</td>
<td>21 (2.3)</td>
<td>64 (2.1)</td>
</tr>
<tr>
<td>West</td>
<td>4 (1.3)</td>
<td>23 (3.1)</td>
<td>64 (3.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.7)</td>
<td>20 (1.4)</td>
<td>60 (1.8)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>2 (0.9)</td>
<td>22 (2.3)</td>
<td>69 (3.8)</td>
</tr>
<tr>
<td>West</td>
<td>3 (1.5)</td>
<td>24 (2.9)</td>
<td>70 (3.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>4 (0.8)</td>
<td>26 (2.0)</td>
<td>71 (2.1)</td>
</tr>
<tr>
<td>Graduated from college</td>
<td>1990 Texas</td>
<td>4 (0.8)</td>
<td>24 (2.0)</td>
</tr>
<tr>
<td>West</td>
<td>4 (1.0)</td>
<td>24 (3.6)</td>
<td>62 (3.0)</td>
</tr>
<tr>
<td>Nation</td>
<td>4 (0.8)</td>
<td>25 (2.2)</td>
<td>66 (2.1)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>8 (1.8)</td>
<td>33 (2.3)</td>
<td>71 (2.3)</td>
</tr>
<tr>
<td>West</td>
<td>6 (1.9)</td>
<td>31 (3.3)</td>
<td>71 (2.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>5 (0.8)</td>
<td>31 (1.9)</td>
<td>70 (1.5)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>6 (0.9)</td>
<td>34 (2.2)</td>
<td>75 (2.3)</td>
</tr>
<tr>
<td>West</td>
<td>5 (1.1)</td>
<td>33 (3.2)</td>
<td>71 (2.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>7 (1.2)</td>
<td>34 (2.2)</td>
<td>72 (1.6)</td>
</tr>
<tr>
<td>I don’t know</td>
<td>1990 Texas</td>
<td>1 (0.6)</td>
<td>4 (1.9)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>5 (2.8)</td>
<td>34 (5.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>5 (1.7)</td>
<td>29 (3.5)</td>
</tr>
<tr>
<td>1992 Texas</td>
<td>1 (****)</td>
<td>6 (2.0)</td>
<td>29 (3.6)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>9 (2.4)</td>
<td>36 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (****)</td>
<td>9 (1.4)</td>
<td>38 (2.5)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (****)</td>
<td>7 (1.8)</td>
<td>38 (4.0)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>10 (3.2)</td>
<td>38 (3.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.3)</td>
<td>10 (1.5)</td>
<td>41 (2.2)</td>
</tr>
</tbody>
</table>

Results are reported for parental education subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (+) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. **** Standard error estimates cannot be accurately determined.

Title I Participation

Table 4.4 presents the percentage of fourth and eighth graders at or above each of the mathematics achievement levels as well as the percentage of students below Basic by Title I participation. (Results based on participation in Title I programs are not available for previous state-level mathematics assessments.)

1996, Public School Students, Grade 4

In Texas 9 percent of the students receiving Title I services performed at or above the Proficient level. About one third of the students who did not receive Title I services attained the Proficient level (33 percent).

1996, Public School Students, Grade 8

In Texas 4 percent of the students receiving Title I services performed at or above the Proficient level. About one quarter of the students who did not receive Title I services attained the Proficient level (26 percent).

<table>
<thead>
<tr>
<th>THE NATION'S REPORT CARD 1996 State Assessment</th>
<th>TABLE 4.4 — GRADES 4 AND 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Public School Students Attaining Mathematics Achievement Levels by Title I Participation</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>At or Above Proficient</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>GRADE 4</td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (0.3)</td>
</tr>
<tr>
<td>West</td>
<td>0 (***)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (***)</td>
</tr>
<tr>
<td>Did not participate</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>4 (0.7)</td>
</tr>
<tr>
<td>West</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.4)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
</tr>
<tr>
<td>Participated</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (***)</td>
</tr>
<tr>
<td>West</td>
<td>0 (***)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (***)</td>
</tr>
<tr>
<td>Did not participate</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>3 (0.5)</td>
</tr>
<tr>
<td>West</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>4 (0.7)</td>
</tr>
</tbody>
</table>

Results are reported for students participating in Title I programs only if established sample size requirements are met (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). **** Standard error estimates cannot be accurately determined.

Free/Reduced-Price Lunch Program Eligibility

Table 4.5 shows 1996 mathematics achievement level results for fourth and eighth graders based on their eligibility for the federally funded free/reduced-price lunch component of the National School Lunch Program. (Similar results are not available for previous NAEP mathematics assessments.)

1996, Public School Students, Grade 4

The percentage of students in Texas eligible for free or reduced-price lunch who performed at or above the Proficient level (9 percent) was not significantly different from that of students nationwide (8 percent). The percentage of students in Texas who were not eligible for this service who attained this level (39 percent) was greater than the figure for the nation (25 percent). In Texas, the percentage of students eligible for free or reduced-price lunch who attained the Proficient level was smaller than that of students who were not.

1996, Public School Students, Grade 8

The percentage of Texas students who were eligible for free or reduced-price lunch who attained the Proficient level (6 percent) was not significantly different from the percentage of students nationwide (8 percent). The percentage of students in Texas who were not eligible for this service who attained this level (31 percent) was not significantly different from the corresponding national figure (29 percent). In Texas, the percentage of students eligible for free or reduced-price lunch who performed at or above the Proficient level was smaller than that of students who were not eligible for this service.
TABLE 4.5 — GRADES 4 AND 8

Percentage of Public School Students Attaining Mathematics Achievement Levels by Free/Reduced-Price Lunch Eligibility

<table>
<thead>
<tr>
<th></th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADE 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (0.2)</td>
<td>9 (1.1)</td>
<td>52 (2.8)</td>
<td>48 (2.8)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>7 (2.3)</td>
<td>39 (4.4)</td>
<td>61 (4.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>0 (0.3)</td>
<td>8 (1.2)</td>
<td>41 (2.8)</td>
<td>59 (2.6)</td>
</tr>
<tr>
<td>Not eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>5 (0.8)</td>
<td>39 (2.1)</td>
<td>84 (1.6)</td>
<td>16 (1.6)</td>
</tr>
<tr>
<td>West</td>
<td>3 (0.9)</td>
<td>21 (2.2)</td>
<td>68 (3.6)</td>
<td>32 (3.6)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.6)</td>
<td>25 (1.4)</td>
<td>73 (1.8)</td>
<td>27 (1.8)</td>
</tr>
<tr>
<td>Information not available</td>
<td>1 (***)</td>
<td>22 (6.9)</td>
<td>71 (8.7)</td>
<td>29 (8.7)</td>
</tr>
<tr>
<td></td>
<td>4 (****)</td>
<td>24 (13.4)</td>
<td>63 (9.4)</td>
<td>37 (9.4)</td>
</tr>
<tr>
<td></td>
<td>3 (1.8)</td>
<td>28 (5.4)</td>
<td>72 (5.6)</td>
<td>28 (5.6)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>0 (****)</td>
<td>6 (1.2)</td>
<td>36 (2.3)</td>
<td>64 (2.3)</td>
</tr>
<tr>
<td>West</td>
<td>0 (****)</td>
<td>7 (1.5)</td>
<td>40 (3.8)</td>
<td>60 (3.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.3)</td>
<td>8 (1.1)</td>
<td>39 (1.8)</td>
<td>61 (1.8)</td>
</tr>
<tr>
<td>Not eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>4 (0.6)</td>
<td>31 (1.9)</td>
<td>74 (1.9)</td>
<td>26 (1.9)</td>
</tr>
<tr>
<td>West</td>
<td>4 (0.9)</td>
<td>26 (2.3)</td>
<td>67 (2.5)</td>
<td>33 (2.5)</td>
</tr>
<tr>
<td>Nation</td>
<td>5 (0.9)</td>
<td>29 (1.7)</td>
<td>71 (1.7)</td>
<td>29 (1.7)</td>
</tr>
<tr>
<td>Information not available</td>
<td>0 (***)</td>
<td>18 (4.4)</td>
<td>66 (5.6)</td>
<td>34 (5.8)</td>
</tr>
<tr>
<td></td>
<td>4 (2.9)</td>
<td>27 (6.8)</td>
<td>68 (6.2)</td>
<td>34 (6.2)</td>
</tr>
<tr>
<td></td>
<td>5 (1.5)</td>
<td>29 (4.6)</td>
<td>69 (4.2)</td>
<td>31 (4.2)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). **** Standard error estimates cannot be accurately determined.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
Type of Location

Table 4.6A presents achievement level results for fourth-grade students attending public schools in central cities, urban fringes/large towns, and rural areas/small towns.

1996, Public School Students, Grade 4

The percentage of Texas students attending schools in central cities who attained the Proficient level was not significantly different from that of students in urban fringes/large towns or rural areas/small towns.

1992 vs. 1996, Public School Students, Grade 4

From 1992 to 1996, there was an increase in the percentage of students attending schools in urban fringes/large towns and rural areas/small towns in Texas who attained the Proficient level. From 1992 to 1996, there was no significant change in the percentage of students attending schools in central cities in Texas who attained the Proficient level.

<table>
<thead>
<tr>
<th>Type of Location</th>
<th>1992 Texas</th>
<th>Nation</th>
<th>1996 Texas</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central city</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>1 (0.4)</td>
<td>14 (1.7)</td>
<td>53 (2.9)</td>
<td>47 (2.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.3)</td>
<td>13 (1.4)</td>
<td>48 (2.3)</td>
<td>52 (2.3)</td>
</tr>
<tr>
<td>1996</td>
<td>2 (0.5)</td>
<td>21 (2.7)</td>
<td>64 (2.9)</td>
<td>36 (2.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.6)</td>
<td>15 (1.4)</td>
<td>51 (3.7)</td>
<td>49 (3.7)</td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td>1 (0.7)</td>
<td>17 (2.7)</td>
<td>61 (3.2)</td>
<td>39 (3.2)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.6)</td>
<td>23 (2.1)</td>
<td>66 (2.1)</td>
<td>34 (2.1)</td>
</tr>
<tr>
<td>1996</td>
<td>4 (1.1)</td>
<td>30 (2.7)></td>
<td>73 (3.8)</td>
<td>27 (3.8)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.6)</td>
<td>24 (1.8)</td>
<td>69 (2.3)</td>
<td>31 (2.3)</td>
</tr>
<tr>
<td>Rural/Small town</td>
<td>1 (***)</td>
<td>13 (2.3)</td>
<td>53 (4.3)</td>
<td>47 (4.3)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.3)</td>
<td>15 (2.1)</td>
<td>56 (2.8)</td>
<td>44 (2.8)</td>
</tr>
<tr>
<td>1996</td>
<td>2 (0.8)</td>
<td>26 (3.2)></td>
<td>76 (3.6)></td>
<td>24 (3.6)<</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.5)</td>
<td>19 (2.2)</td>
<td>62 (2.6)<</td>
<td>38 (2.6)<</td>
</tr>
</tbody>
</table>

Results are reported for type of location subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Characteristics of the school sample do not permit reliable regional results for type of location. **** Standard error estimates cannot be accurately determined.

Table 4.6B presents achievement level results for eighth-grade students attending public schools in central cities, urban fringes/large towns, and rural areas/small towns.

1996, Public School Students, Grade 8

In Texas, the percentage of students attending schools in central cities who attained the Proficient level was not significantly different from that of students in urban fringes/large towns or rural areas/small towns.

1992 vs. 1996, Public School Students, Grade 8

From 1992 to 1996, there was no significant change in the percentage of students attending schools in any of the three types of location in Texas who attained the Proficient level.

<table>
<thead>
<tr>
<th>TABLE 4.6B — GRADE 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Public School Students Attaining Mathematics Achievement Levels by Type of Location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Location</th>
<th>Advanced</th>
<th>At or Above Proficient</th>
<th>At or Above Basic</th>
<th>Below Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central city</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>3 (0.8)</td>
<td>15 (1.7)</td>
<td>48 (2.1)</td>
<td>52 (2.1)</td>
</tr>
<tr>
<td>Nation</td>
<td>2 (0.5)</td>
<td>15 (1.8)</td>
<td>48 (3.5)</td>
<td>54 (3.5)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>2 (0.7)</td>
<td>19 (2.5)</td>
<td>55 (2.7)</td>
<td>45 (2.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.7)</td>
<td>16 (1.7)</td>
<td>47 (2.8)</td>
<td>53 (2.8)</td>
</tr>
<tr>
<td>Urban fringe/Large town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>5 (1.4)</td>
<td>24 (2.6)</td>
<td>60 (2.7)</td>
<td>40 (2.7)</td>
</tr>
<tr>
<td>Nation</td>
<td>5 (0.8)</td>
<td>25 (2.0)</td>
<td>64 (2.3)</td>
<td>36 (2.3)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>4 (1.1)</td>
<td>25 (3.2)</td>
<td>66 (4.4)</td>
<td>34 (4.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>5 (1.4)</td>
<td>28 (3.0)</td>
<td>64 (2.6)</td>
<td>38 (2.6)</td>
</tr>
<tr>
<td>Rural/Small town</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992 Texas</td>
<td>2 (0.9)</td>
<td>17 (2.5)</td>
<td>53 (3.4)</td>
<td>47 (3.4)</td>
</tr>
<tr>
<td>Nation</td>
<td>1 (0.5)</td>
<td>17 (1.5)</td>
<td>55 (2.2)</td>
<td>45 (2.2)</td>
</tr>
<tr>
<td>1996 Texas</td>
<td>2 (0.8)</td>
<td>20 (2.7)</td>
<td>61 (3.9)</td>
<td>39 (3.9)</td>
</tr>
<tr>
<td>Nation</td>
<td>3 (0.8)</td>
<td>25 (1.7)></td>
<td>69 (2.8)></td>
<td>31 (2.8)<</td>
</tr>
</tbody>
</table>

Results are reported for type of location subgroups meeting established sample size requirements (see Appendix A). The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Characteristics of the school sample do not permit reliable regional results for type of location. *** Sample size is insufficient to permit a reliable estimate.

Type of School

Table 4.7 provides the percentage of eighth-grade students at or above each achievement level for the public, nonpublic, and combined populations. Trend results are not presented for the nonpublic and combined populations because the nonpublic schools were not included in previous NAEP state mathematics assessments.

1996, Nonpublic School Students, Grade 8

The percentage of nonpublic school students in Texas who performed at or above the Proficient level (53 percent) was greater than that of nonpublic school students across the nation (33 percent).

1996, Public vs. Nonpublic School Students, Grade 8

The percentage of public school students in Texas who attained the Proficient level (21 percent) was smaller than the percentage of nonpublic school students who attained this level (53 percent).

1996, Public and Nonpublic School Students Combined, Grade 8

In Texas, 23 percent of public and nonpublic school students combined performed at or above the Proficient level. This percentage did not differ significantly from that of students across the nation (24 percent).

<table>
<thead>
<tr>
<th>TABLE 4.7 — GRADE 8</th>
<th>Percentage of Students Attaining Mathematics Achievement Levels by Type of School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advanced</td>
</tr>
<tr>
<td>Public</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>3 (0.4)</td>
</tr>
<tr>
<td>1996 West</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>1996 Nation</td>
<td>4 (0.6)</td>
</tr>
<tr>
<td>Nonpublic</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>12 (5.1)</td>
</tr>
<tr>
<td>1996 West</td>
<td>8 (2.6)</td>
</tr>
<tr>
<td>1996 Nation</td>
<td>6 (1.2)</td>
</tr>
<tr>
<td>Combined</td>
<td></td>
</tr>
<tr>
<td>1996 Texas</td>
<td>3 (0.5)</td>
</tr>
<tr>
<td>1996 West</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>1996 Nation</td>
<td>4 (0.5)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

Finding a Context for Understanding Students' Mathematics Performance in Public Schools

The mathematics performance of public school students in Texas often can be better understood when viewed in the context of the environment in which the students are learning. This educational environment is largely determined by school characteristics, by characteristics of mathematics instruction in the school, by home support for academics and other home influences, and by the students' own views about mathematics. Information about this environment is gathered by means of the questionnaires administered to principals, teachers, and students.

Because NAEP is administered to a sample of students that is representative of the fourth- and eighth-grade student populations in the schools of Texas, NAEP results provide a broad view of the educational practices in Texas, which is useful for improving instruction and setting policy. However, despite the richness of the NAEP results, it is very important to note that NAEP data cannot establish a cause-and-effect relationship between educational environment and student scores on the NAEP mathematics assessment.

The variables contained in Part Three are from the school characteristics and policies questionnaire, teacher questionnaires, and student background questions. These questionnaires are sometimes refined by revising or reformatting questions between assessments. Additional questions are sometimes added to questionnaires to track emerging trends in education. These revisions and additions may make comparisons with results from previous years unwise or impossible. When appropriate, trends across assessments are presented; otherwise, only 1996 results are discussed.

Part Three consists of three chapters: Chapter 5 discusses school characteristics related to mathematics instruction; Chapter 6 describes classroom practices related to mathematics instruction, including calculator and computer use; and Chapter 7 covers some potential influences from the home and from the students' own views about mathematics.

45 Information on teacher preparation is included in Appendix E of this report.
CHAPTER 5

School Characteristics Related to Mathematics Instruction

School programs and conditions, instructional practices, and resource availability vary from state to state and even among schools within a locality. The information in this chapter is intended to give insight into those characteristics that are associated with students' success in mathematics.

The variables reported here reflect information from the questionnaires completed by principals and teachers of the public school students in the NAEP 1996 mathematics assessment. In all cases, analyses are done at the student level. School and teacher-reported results are given in terms of the percentage of students who attend schools or who have teachers reporting particular practices.46

Emphasis on Mathematics in the School

In the school characteristics and policies questionnaire, principals were asked whether their school has identified mathematics as a priority in the last two years (i.e., whether mathematics receives special emphasis in school-wide goals and objectives, instruction, and workshops, etc.). Tables 5.1A and 5.1B present the public school principals’ reports.

- The percentage of fourth-grade students in Texas who attended schools that reported that mathematics was a priority (95 percent) was greater than the national percentage (76 percent).

- The percentage of Texas eighth graders in schools that reported that mathematics was a priority (95 percent) was greater than that of students nationwide (74 percent).

46 Appendix A provides more details on the units of analysis used to derive the results presented in this report.
TABLE 5.1A — GRADE 4

Public Schools' Reports on Mathematics as a Priority

<table>
<thead>
<tr>
<th>Has your school identified mathematics as a priority in the last two years?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>96 (2.5)</td>
<td>73 (8.2)</td>
<td>76 (3.9)</td>
</tr>
<tr>
<td></td>
<td>228 (1.7)</td>
<td>211 (2.0)</td>
<td>222 (1.2)</td>
</tr>
<tr>
<td>No</td>
<td>5 (2.5)</td>
<td>27 (8.2)</td>
<td>24 (3.9)</td>
</tr>
<tr>
<td></td>
<td>240 (6.5)</td>
<td>209 (5.2)</td>
<td>220 (3.1)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

TABLE 5.1B — GRADE 8

Public Schools' Reports on Mathematics as a Priority

<table>
<thead>
<tr>
<th>Has your school identified mathematics as a priority in the last two years?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>95 (3.2)</td>
<td>81 (5.7)</td>
<td>74 (3.3)</td>
</tr>
<tr>
<td></td>
<td>271 (1.5)</td>
<td>268 (2.5)</td>
<td>270 (1.7)</td>
</tr>
<tr>
<td>No</td>
<td>5 (3.2)</td>
<td>19 (5.7)</td>
<td>26 (3.3)</td>
</tr>
<tr>
<td></td>
<td>286 (15.2)</td>
<td>271 (5.2)</td>
<td>275 (3.3)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Resource Availability to Teachers

Resources available to teachers and schools vary. Past surveys have shown that teachers' perceptions of the availability of resources (e.g., instructional materials, staff, and preparation or planning time) are variable across the country. Previous NAEP assessments in several subject areas have also shown a positive relationship between teachers' reports of resource availability and their students' performance in most states.

Availability of Instructional Materials

Teachers often see the lack of resources as a key problem for mathematics instruction. In 1993 a national survey reported that the average school spent $100 per year on mathematics software, $1.00 per elementary school student on mathematics materials and manipulatives, and $0.40 per middle school student on mathematics materials. Teachers were asked to categorize how well their school systems provided them with the classroom instructional materials they needed. Table 5.2A shows the percentages of fourth-grade students whose teachers reported receiving varying levels of support from their public schools.

- The average mathematics scale score of students in Texas whose teachers reported receiving all the resources they needed (233) was greater than that of students whose teachers received some or none of the resources they needed (221). The percentage of students whose teachers reported receiving all of the resources they needed in Texas (25 percent) was greater than that of students across the nation (12 percent).

TABLE 5.2A — GRADE 4

Public School Teachers’ Reports on Resource Availability

<table>
<thead>
<tr>
<th>Which of the following statements is true about how well your school system provides you with the instructional materials and other resources you need to teach your class?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I get some or none of the resources I need.</td>
<td>32 (3.0)</td>
<td>32 (4.7)</td>
<td>37 (3.5)</td>
</tr>
<tr>
<td>1992</td>
<td>215 (2.1)</td>
<td>212 (3.2)</td>
<td>214 (2.0)</td>
</tr>
<tr>
<td>1996</td>
<td>22 (3.1)</td>
<td>36 (3.6)</td>
<td>34 (2.5)</td>
</tr>
<tr>
<td></td>
<td>221 (3.0)</td>
<td>222 (2.5)</td>
<td>221 (1.5)+</td>
</tr>
<tr>
<td>I get most of the resources I need.</td>
<td>54 (3.3)</td>
<td>58 (4.8)</td>
<td>52 (3.0)</td>
</tr>
<tr>
<td>1992</td>
<td>219 (2.0)</td>
<td>221 (2.1)</td>
<td>221 (1.2)</td>
</tr>
<tr>
<td>1996</td>
<td>53 (3.3)</td>
<td>56 (3.5)</td>
<td>55 (2.2)</td>
</tr>
<tr>
<td></td>
<td>229 (1.3)+</td>
<td>218 (3.1)</td>
<td>224 (1.5)</td>
</tr>
<tr>
<td>I get all the resources I need.</td>
<td>14 (2.1)</td>
<td>10 (2.3)</td>
<td>11 (1.7)</td>
</tr>
<tr>
<td>1992</td>
<td>222 (2.9)</td>
<td>220 (4.4)</td>
<td>222 (2.7)</td>
</tr>
<tr>
<td>1996</td>
<td>25 (2.3)</td>
<td>8 (3.3)</td>
<td>12 (1.8)</td>
</tr>
<tr>
<td></td>
<td>233 (2.9)+</td>
<td>217 (2.4)</td>
<td>224 (2.3)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Source: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Eighth-grade mathematics teachers were also asked about the availability of resources. Based on the responses of public school teachers in Texas, the results are shown in Table 5.2B.

- The average scale score of Texas students whose teachers reported receiving all the resources they needed (279) was greater than that of students whose teachers received some or none of the resources they needed (266). The percentage of students whose teachers received all of the resources they needed in Texas (20 percent) was not significantly different from that of students nationwide (20 percent).

TABLE 5.2B — GRADE 8

<table>
<thead>
<tr>
<th>Which of the following statements is true about how well your school system provides you with the instructional materials and other resources you need to teach your class?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I get some or none of the resources I need. 1990</td>
<td>29 (3.1)</td>
<td>23 (6.1)</td>
<td>31 (4.2)</td>
</tr>
<tr>
<td></td>
<td>250 (2.8)</td>
<td>254 (4.6)</td>
<td>260 (3.1)</td>
</tr>
<tr>
<td></td>
<td>29 (2.8)</td>
<td>35 (3.4)</td>
<td>33 (1.9)</td>
</tr>
<tr>
<td></td>
<td>259 (2.7)</td>
<td>264 (2.7)</td>
<td>262 (1.5)</td>
</tr>
<tr>
<td></td>
<td>21 (3.0)</td>
<td>21 (4.0)<</td>
<td>22 (2.7)<</td>
</tr>
<tr>
<td></td>
<td>266 (2.7)<</td>
<td>267 (3.3)</td>
<td>265 (2.7)</td>
</tr>
<tr>
<td>I get most of the resources I need. 1990</td>
<td>51 (3.3)</td>
<td>62 (3.8)</td>
<td>56 (4.0)</td>
</tr>
<tr>
<td></td>
<td>259 (1.8)</td>
<td>267 (4.2)</td>
<td>265 (2.0)</td>
</tr>
<tr>
<td></td>
<td>49 (3.2)</td>
<td>52 (4.1)</td>
<td>53 (2.5)</td>
</tr>
<tr>
<td></td>
<td>266 (2.4)<</td>
<td>269 (2.4)</td>
<td>270 (1.1)</td>
</tr>
<tr>
<td>I get all the resources I need. 1990</td>
<td>59 (3.4)</td>
<td>57 (4.6)</td>
<td>58 (3.3)</td>
</tr>
<tr>
<td></td>
<td>269 (1.8)<</td>
<td>269 (3.5)</td>
<td>272 (1.7)<</td>
</tr>
<tr>
<td></td>
<td>20 (2.9)</td>
<td>15 (5.2)</td>
<td>13 (2.4)</td>
</tr>
<tr>
<td></td>
<td>258 (3.0)</td>
<td>261 (5.1)</td>
<td>264 (3.7)</td>
</tr>
<tr>
<td></td>
<td>22 (2.7)</td>
<td>12 (2.7)</td>
<td>13 (2.3)</td>
</tr>
<tr>
<td></td>
<td>269 (2.5)<</td>
<td>271 (5.0)</td>
<td>273 (3.3)</td>
</tr>
<tr>
<td></td>
<td>20 (2.8)</td>
<td>22 (6.0)</td>
<td>20 (3.1)</td>
</tr>
<tr>
<td></td>
<td>279 (3.3)<</td>
<td>279 (6.3)<</td>
<td>279 (2.9)<</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation » (> or <) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Availability of Curriculum Specialist in the School

Teachers were asked if there was a curriculum specialist available to help or advise them in mathematics. Table 5.3A shows the public school fourth-grade teachers’ responses.

- In Texas, about two thirds of the students were taught by teachers who reported that there was a curriculum specialist available to help or advise in mathematics (69 percent). This figure was greater than that of students across the nation (46 percent).

- The percentage of Texas students whose teachers reported having a curriculum specialist available in mathematics did not change significantly from 1992 (68 percent) to 1996 (69 percent).

<table>
<thead>
<tr>
<th>TABLE 5.3A — GRADE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School Teachers’ Reports on Curriculum Specialists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is there a curriculum specialist available to help or advise you in mathematics?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>68 (3.7)</td>
<td>52 (6.3)</td>
<td>50 (3.3)</td>
</tr>
<tr>
<td></td>
<td>219 (1.7)</td>
<td>222 (2.9)</td>
<td>218 (1.3)</td>
</tr>
<tr>
<td></td>
<td>69 (2.9)</td>
<td>48 (5.7)</td>
<td>48 (3.6)</td>
</tr>
<tr>
<td></td>
<td>228 (1.4)</td>
<td>217 (2.7)</td>
<td>221 (2.1)</td>
</tr>
<tr>
<td>No</td>
<td>32 (3.7)</td>
<td>48 (5.3)</td>
<td>50 (3.3)</td>
</tr>
<tr>
<td></td>
<td>217 (1.9)</td>
<td>214 (3.5)</td>
<td>218 (1.6)</td>
</tr>
<tr>
<td></td>
<td>31 (2.9)</td>
<td>52 (5.7)</td>
<td>54 (3.6)</td>
</tr>
<tr>
<td></td>
<td>228 (2.8)</td>
<td>221 (2.8)</td>
<td>224 (1.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Texas

Table 5.3B shows the percentages of eighth-grade students in public schools whose teachers indicated that they had a curriculum specialist available. At grade 8, only results from 1996 are available.

- In Texas, about two thirds of the students were taught by teachers who reported that there was a curriculum specialist available to help or advise in mathematics (69 percent). This figure was greater than that of students across the nation (52 percent).

<table>
<thead>
<tr>
<th>Is there a curriculum specialist available to help or advise you in mathematics?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>69 (4.2)</td>
<td>53 (5.5)</td>
<td>52 (3.8)</td>
</tr>
<tr>
<td>271 (2.0)</td>
<td>266 (4.3)</td>
<td>270 (2.1)</td>
<td></td>
</tr>
<tr>
<td>31 (4.2)</td>
<td>47 (5.5)</td>
<td>48 (3.8)</td>
<td></td>
</tr>
<tr>
<td>270 (2.9)</td>
<td>276 (2.7)</td>
<td>275 (1.7)</td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

In-School Teacher Preparation Time

Teachers were asked to indicate how many school hours they had designated as preparation time per week. The question did not restrict preparation time to the mathematics classes of those students who took part in the NAEP assessment or mathematics classes in general. The question referred to the preparation time allotted for all classes taught by the teacher. The responses of public school fourth-grade teachers are shown in Table 5.4A.

- The percentage of students in Texas whose teachers reported having five or more school hours designated as preparation time per week (39 percent) was greater than that of students across the nation (27 percent).

- The percentage of Texas students whose teachers had one to two hours to prepare each week (10 percent) was smaller than that of students nationwide (21 percent).

<table>
<thead>
<tr>
<th>How many school hours do you have designated as preparation time per week?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1</td>
<td>4 (1.1)</td>
<td>12 (3.4)</td>
<td>7 (1.4)</td>
</tr>
<tr>
<td>1-2</td>
<td>223 (5.3)</td>
<td>217 (4.7)</td>
<td>219 (4.2)</td>
</tr>
<tr>
<td>3-4</td>
<td>10 (2.4)</td>
<td>27 (4.5)</td>
<td>21 (2.1)</td>
</tr>
<tr>
<td>5 hours or more</td>
<td>227 (3.5)</td>
<td>220 (4.2)</td>
<td>222 (2.4)</td>
</tr>
<tr>
<td>Less than 1</td>
<td>4 (1.1)</td>
<td>12 (3.4)</td>
<td>7 (1.4)</td>
</tr>
<tr>
<td>1-2</td>
<td>223 (5.3)</td>
<td>217 (4.7)</td>
<td>219 (4.2)</td>
</tr>
<tr>
<td>3-4</td>
<td>10 (2.4)</td>
<td>27 (4.5)</td>
<td>21 (2.1)</td>
</tr>
<tr>
<td>5 hours or more</td>
<td>227 (3.5)</td>
<td>220 (4.2)</td>
<td>222 (2.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution—the nature of the sample does not allow accurate determination of the variability of this statistic.

Table 5.4B shows the percentages of eighth-grade students in public schools whose teachers reported on school hours designated for preparation. (Note that the question referred to the total amount of preparation time for all classes taught by the teacher.)

- The percentage of Texas students whose teachers reported having five or more school hours designated as preparation time each week (51 percent) was not significantly different from* that of students across the nation (60 percent).

- The percentage of students whose teachers had one to two hours to prepare each week in Texas (4 percent) was not significantly different from that of students nationwide (6 percent).

<table>
<thead>
<tr>
<th>TABLE 5.4B — GRADE 8</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many school hours do you have designated as preparation time per week?</td>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 1</td>
<td>8 (1.9)</td>
<td>6 (3.6)</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td></td>
<td>265 (5.8)</td>
<td>277 (11.1)</td>
<td>269 (10.6)</td>
</tr>
<tr>
<td>1-2</td>
<td>4 (1.1)</td>
<td>5 (2.1)</td>
<td>6 (1.7)</td>
</tr>
<tr>
<td></td>
<td>275 (6.4)</td>
<td>268 (6.7)</td>
<td>261 (6.3)</td>
</tr>
<tr>
<td>3-4</td>
<td>37 (3.2)</td>
<td>28 (4.6)</td>
<td>30 (3.4)</td>
</tr>
<tr>
<td></td>
<td>271 (2.2)</td>
<td>272 (5.7)</td>
<td>275 (2.4)</td>
</tr>
<tr>
<td>5 hours or more</td>
<td>51 (3.3)</td>
<td>61 (4.8)</td>
<td>60 (3.7)</td>
</tr>
<tr>
<td></td>
<td>271 (2.0)</td>
<td>270 (2.1)</td>
<td>272 (1.7)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within \pm 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

* Although the difference may appear large, recall that “significance” here refers to “statistical significance.”
Parents as Classroom Aides

When school personnel and parents develop a positive line of communication, they strengthen the learning environment for the students both at school and at home. One of the most frequent reasons cited by school personnel for contacting parents is to request parent volunteer time at school. The principals of the participating public schools were asked if parents were used as classroom aides. As shown in Table 5.5A, principals for fourth graders reported the following.

- Less than half of the students in Texas (38 percent) were in schools that reported routinely using parents as aides in classrooms. In contrast, 7 percent of students in Texas attended schools where parents were not used as classroom aides.

- From 1992 to 1996, the percentage of Texas students in schools that reported routinely using parents as aides in classrooms did not change significantly* (32 percent in 1992 and 38 percent in 1996).

<table>
<thead>
<tr>
<th>Does your school use parents as aides in classrooms?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>11 (3.6)</td>
<td>11 (3.2)</td>
<td>11 (2.5)</td>
</tr>
<tr>
<td></td>
<td>216 (3.4)</td>
<td>209 (4.1)</td>
<td>212 (4.5)</td>
</tr>
<tr>
<td>1996</td>
<td>7 (2.7)</td>
<td>8 (2.4)</td>
<td>8 (1.7)</td>
</tr>
<tr>
<td></td>
<td>231 (6.2)</td>
<td>226 (6.0)</td>
<td>219 (3.7)</td>
</tr>
<tr>
<td>Yes, occasionally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>57 (5.4)</td>
<td>37 (5.4)</td>
<td>42 (3.3)</td>
</tr>
<tr>
<td></td>
<td>216 (2.0)</td>
<td>208 (1.5)</td>
<td>216 (1.4)</td>
</tr>
<tr>
<td>1996</td>
<td>55 (5.1)</td>
<td>42 (7.2)</td>
<td>44 (4.8)</td>
</tr>
<tr>
<td></td>
<td>230 (2.6)></td>
<td>213 (4.7)</td>
<td>219 (2.1)</td>
</tr>
<tr>
<td>Yes, routinely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>32 (4.5)</td>
<td>53 (6.5)</td>
<td>47 (3.4)</td>
</tr>
<tr>
<td></td>
<td>222 (1.8)</td>
<td>228 (2.3)</td>
<td>223 (1.5)</td>
</tr>
<tr>
<td>1996</td>
<td>38 (5.4)</td>
<td>51 (7.4)</td>
<td>48 (4.9)</td>
</tr>
<tr>
<td></td>
<td>227 (2.7)</td>
<td>220 (2.4)</td>
<td>225 (1.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation >(<) appears, it signifies that the value for public school students was significantly higher(lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

* Although the difference may appear large, recall that “significance” here refers to “statistical significance.”

Table 5.5B shows the percentages of eighth-grade public school students in schools whose principals reported on the use of parents as classroom aides.

- A small percentage of Texas students (7 percent) were in schools that reported routinely using parents as aides in classrooms. In contrast, 36 percent of students in Texas attended schools where parents were not used as classroom aides.
- From 1992 to 1996, there was no significant change* in the percentage of Texas students in schools that reported routinely using parents as aides in classrooms (18 percent in 1992 and 7 percent in 1996).

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

* Although the difference may appear large, recall that "significance" here refers to "statistical significance."
Texas

Student Absenteeism

School principals were asked if student absenteeism was a serious, moderate, or minor problem, or not a problem. Table 5.6A shows, for fourth graders, results based on principals’ reports.

- In Texas, 18 percent of the students attended public schools that reported that absenteeism was a moderate to serious problem. This percentage was not significantly different from that of students across the nation (13 percent).

- The percentage of students in schools reporting that absenteeism was a moderate to serious problem in Texas did not change significantly from 1992 (18 percent) to 1996 (18 percent).

<table>
<thead>
<tr>
<th>TABLE 5.6A — GRADE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Schools’ Reports on Student Absenteeism</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To what degree is student absenteeism a problem in your school?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>25 (4.8)</td>
<td>16 (3.7)</td>
<td>31 (2.7)</td>
</tr>
<tr>
<td></td>
<td>223 (3.2)</td>
<td>222 (2.9)</td>
<td>226 (1.7)</td>
</tr>
<tr>
<td>1996</td>
<td>42 (5.0)</td>
<td>40 (5.2)</td>
<td>43 (4.1)</td>
</tr>
<tr>
<td></td>
<td>231 (3.0)</td>
<td>226 (3.2)</td>
<td>230 (1.8)</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>57 (5.1)</td>
<td>60 (5.0)</td>
<td>54 (3.1)</td>
</tr>
<tr>
<td></td>
<td>217 (1.7)</td>
<td>222 (2.2)</td>
<td>219 (1.4)</td>
</tr>
<tr>
<td>1996</td>
<td>40 (5.9)</td>
<td>44 (7.4)</td>
<td>44 (4.3)</td>
</tr>
<tr>
<td></td>
<td>231 (2.8)</td>
<td>213 (4.6)</td>
<td>216 (2.3)</td>
</tr>
<tr>
<td>Moderate to serious</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>18 (3.6)</td>
<td>24 (4.8)</td>
<td>15 (2.2)</td>
</tr>
<tr>
<td></td>
<td>213 (3.0)</td>
<td>204 (3.0)</td>
<td>202 (2.1)</td>
</tr>
<tr>
<td>1996</td>
<td>18 (3.6)</td>
<td>15 (4.0)</td>
<td>13 (2.3)</td>
</tr>
<tr>
<td></td>
<td>219 (3.1)</td>
<td>213 (3.2)</td>
<td>210 (3.1)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Table 5.6B shows the percentages of eighth-grade students in public schools where principals reported the degree to which absenteeism is a problem.

- In Texas, 29 percent of the students attended public schools that reported that absenteeism was a moderate to serious problem. This figure was not significantly different from that of students nationwide (25 percent).

- There was no significant change in the percentage of Texas students attending schools that reported that absenteeism was a moderate to serious problem from 1992 (27 percent) to 1996 (29 percent).

TABLE 5.6B — GRADE 8

Public Schools’ Reports on Student Absenteeism

<table>
<thead>
<tr>
<th>To what degree is student absenteeism a problem in your school?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not a problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>6 (2.2)</td>
<td>12 (****)</td>
<td>10 (4.1)</td>
</tr>
<tr>
<td></td>
<td>254 (7.4)</td>
<td>*** (***)</td>
<td>277 (4.8)</td>
</tr>
<tr>
<td>1992</td>
<td>14 (3.6)</td>
<td>17 (4.8)</td>
<td>19 (3.1)</td>
</tr>
<tr>
<td></td>
<td>277 (3.7)*</td>
<td>278 (5.8)</td>
<td>274 (3.2)</td>
</tr>
<tr>
<td>1996</td>
<td>24 (4.4)*</td>
<td>12 (6.4)</td>
<td>22 (3.7)</td>
</tr>
<tr>
<td></td>
<td>285 (3.5)**</td>
<td>287 (8.3)</td>
<td>282 (3.8)</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>57 (4.7)</td>
<td>43 (9.9)</td>
<td>52 (6.2)</td>
</tr>
<tr>
<td></td>
<td>261 (1.9)</td>
<td>261 (2.5)</td>
<td>262 (2.1)</td>
</tr>
<tr>
<td>1992</td>
<td>59 (5.3)</td>
<td>51 (7.7)</td>
<td>52 (3.9)</td>
</tr>
<tr>
<td></td>
<td>265 (2.1)</td>
<td>273 (2.3)*</td>
<td>270 (1.5)*</td>
</tr>
<tr>
<td>1996</td>
<td>47 (6.1)</td>
<td>59 (7.2)</td>
<td>54 (4.4)</td>
</tr>
<tr>
<td></td>
<td>272 (2.5)*</td>
<td>268 (2.5)</td>
<td>272 (1.6)*</td>
</tr>
<tr>
<td>Moderate to serious</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>37 (4.6)</td>
<td>45 (8.9)</td>
<td>38 (5.5)</td>
</tr>
<tr>
<td></td>
<td>254 (2.5)</td>
<td>256 (4.7)</td>
<td>258 (2.6)</td>
</tr>
<tr>
<td>1992</td>
<td>27 (4.5)</td>
<td>32 (8.4)</td>
<td>29 (3.9)</td>
</tr>
<tr>
<td></td>
<td>257 (2.6)</td>
<td>257 (3.9)*</td>
<td>258 (2.1)</td>
</tr>
<tr>
<td>1996</td>
<td>29 (5.4)</td>
<td>28 (7.4)</td>
<td>25 (3.1)</td>
</tr>
<tr>
<td></td>
<td>263 (3.2)</td>
<td>264 (4.8)</td>
<td>262 (2.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (=) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (=) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. **Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.*** Sample size is insufficient to permit a reliable estimate. **** Standard error estimates cannot be accurately determined.

CHAPTER 6

Classroom Practices Related to Mathematics Instruction

The mathematics achievement of our nation's students has been the topic of considerable discussion in recent years. The mathematics achievement of our students does not compare well with that of students in other countries or with achievement goals set by the United States for itself. Improvements in mathematics performance during the 1980s and 1990s are encouraging; however, policy makers and educators must continue to evaluate the state of mathematics education and to commit to improvements to school mathematics programs.

For some of the issues discussed in this chapter, student- and teacher-reported results for similar questions are presented. In these situations, some discrepancies may exist between student- and teacher-reported percentages. It is not possible to offer conclusive reasons for these discrepancies or to determine which reports most accurately reflect fourth- and eighth-grade classroom activities. The reports presented represent students' and teachers' impressions of the frequency of various activities in the classrooms.

An important step in the improvement of mathematics education in the nation's elementary and secondary schools was the development and adoption of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics. Already adopted by the majority of the states, the NCTM Standards represent a basis upon which mathematics instruction can be reformed and improved. This chapter focuses on curricular and instructional content issues in Texas public schools and their relationship to students' mathematics performance.

NCTM Standards

Since their publication in 1989, the NCTM Standards have received considerable attention by policy makers and educators. The NCTM Standards outline curriculum and evaluation recommendations for kindergarten through grade 12 mathematics instruction. To gauge how knowledgeable teachers are about the standards, teachers were asked about their familiarity with the NCTM Standards and their involvement in professional development related to them. Table 6.1A shows the results based on the responses of fourth-grade public school mathematics teachers.

- A small percentage of the fourth-grade students in Texas (4 percent) had mathematics teachers who reported being very knowledgeable about the NCTM Standards. This percentage was smaller than the percentage whose teachers reported having little or no knowledge of the Standards (58 percent).

- The percentage of Texas fourth graders whose teachers reported being very knowledgeable about the NCTM Standards did not differ significantly from the percentage for the nation (6 percent).

<table>
<thead>
<tr>
<th>How knowledgeable are you about the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I have little or no knowledge.</td>
<td>58 (3.4)</td>
<td>53 (3.0)</td>
<td>45 (2.4)</td>
</tr>
<tr>
<td></td>
<td>226 (1.9)</td>
<td>219 (3.1)</td>
<td>222 (1.7)</td>
</tr>
<tr>
<td>Somewhat knowledgeable</td>
<td>26 (3.1)</td>
<td>26 (3.1)</td>
<td>32 (2.4)</td>
</tr>
<tr>
<td></td>
<td>228 (2.7)</td>
<td>218 (1.6)</td>
<td>222 (1.6)</td>
</tr>
<tr>
<td>Knowledgeable</td>
<td>12 (2.5)</td>
<td>14 (3.4)</td>
<td>18 (2.0)</td>
</tr>
<tr>
<td></td>
<td>237 (4.7)</td>
<td>220 (3.0)</td>
<td>222 (2.0)</td>
</tr>
<tr>
<td>Very knowledgeable</td>
<td>4 (1.6)</td>
<td>6 (2.5)</td>
<td>6 (1.2)</td>
</tr>
<tr>
<td></td>
<td>237 (5.1)</td>
<td>226 (5.2)</td>
<td>235 (4.8)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Eighth-grade public school mathematics teachers were also asked about their knowledge of the NCTM Standards. As presented in Table 6.1B, their responses indicate the following.

- A small percentage of the eighth-grade students in Texas (8 percent) had mathematics teachers who reported being very knowledgeable about the NCTM Standards. This percentage was smaller than the percentage whose teachers reported having little or no knowledge of the Standards (18 percent).

- The percentage of eighth graders in Texas whose teachers reported being very knowledgeable about the NCTM Standards was smaller than the percentage for the nation (17 percent).

TABLE 6.1B — GRADE 8

Public School Teachers’ Reports on Knowledge of the NCTM Standards

<table>
<thead>
<tr>
<th>How knowledgeable are you about the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I have little or no knowledge.</td>
<td>18 (2.7)</td>
<td>17 (5.0)</td>
<td>16 (2.6)</td>
</tr>
<tr>
<td>269 (3.7)</td>
<td>268 (5.2)</td>
<td>264 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Somewhat knowledgeable</td>
<td>41 (4.0)</td>
<td>38 (5.3)</td>
<td>34 (3.1)</td>
</tr>
<tr>
<td>270 (2.1)</td>
<td>265 (4.5)</td>
<td>268 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Knowledgeable</td>
<td>32 (3.4)</td>
<td>25 (5.5)</td>
<td>33 (3.9)</td>
</tr>
<tr>
<td>271 (2.8)</td>
<td>273 (5.3)</td>
<td>275 (2.3)</td>
<td></td>
</tr>
<tr>
<td>Very knowledgeable</td>
<td>8 (1.8)</td>
<td>20 (4.9)</td>
<td>17 (2.7)</td>
</tr>
<tr>
<td>276 (4.9)</td>
<td>280 (3.7)</td>
<td>282 (2.3)</td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
Texas

Teachers were also asked whether they had participated in any professional development activities that provided them with strategies for implementing the NCTM Standards. The activities could include local workshops, and regional and national NCTM meetings. (Teachers were asked to select all activities that applied.) Table 6.2A presents the results for fourth-grade public school mathematics teachers.

- About two thirds of the students in Texas (71 percent) had mathematics teachers who reported attending no professional development activities related to implementing the NCTM Standards. This percentage was greater than the percentage for the nation (60 percent).

| TABLE 6.2A — GRADE 4 |
| Public School Teachers’ Reports on Professional Development for Implementing the NCTM Standards |
| Have you participated in any professional development activities that have provided you with strategies for implementing the 1989 NCTM Curriculum and Evaluation Standards for School Mathematics? | Texas | West | Nation |
| Percentage and Average Scale Score |
Local workshop	23 (3.4)	24 (3.2)	29 (2.5)
	232 (3.5)	219 (2.0)	223 (1.9)
Regional or national NCTM meeting	6 (1.4)	10 (3.3)	9 (1.4)
	233 (5.0)	225 (3.0)	229 (3.1)
Other	4 (1.7)	8 (2.9)	12 (1.7)
	234 (8.2)	225 (3.7)	230 (3.3)
No	71 (3.3)	65 (5.2)	60 (2.8)
	227 (1.7)	217 (2.5)	222 (1.3)

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

When eighth-grade public school mathematics teachers were asked this question (see Table 6.2B), their responses showed the following.

- Less than half of the eighth graders in Texas (39 percent) had mathematics teachers who reported attending no professional development activities related to implementing the NCTM Standards. This percentage did not differ significantly from the percentage for the nation (35 percent).

TABLE 6.2B — GRADE 8

Public School Teachers' Reports on Professional Development for Implementing the NCTM Standards

<table>
<thead>
<tr>
<th>Have you participated in any professional development activities that have provided you with strategies for implementing the 1989 NCTM Curriculum and Evaluation Standards for School Mathematics?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local workshop</td>
<td>47 (3.4)</td>
<td>48 (4.4)</td>
<td>51 (2.9)</td>
</tr>
<tr>
<td>270 (2.1)</td>
<td>276 (2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional or national NCTM meeting</td>
<td>26 (3.1)</td>
<td>31 (4.9)</td>
<td>25 (3.1)</td>
</tr>
<tr>
<td>269 (3.4)</td>
<td>273 (3.1)</td>
<td>276 (2.2)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>11 (2.4)</td>
<td>13 (3.4)</td>
<td>16 (2.4)</td>
</tr>
<tr>
<td>280 (5.0)</td>
<td>273 (5.8)</td>
<td>274 (2.6)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>39 (3.3)</td>
<td>38 (4.8)</td>
<td>35 (3.1)</td>
</tr>
<tr>
<td>272 (2.3)</td>
<td>266 (3.0)</td>
<td>267 (2.3)</td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Course-Taking Patterns

To investigate the relationship between the mathematics performance of students and their study of mathematics in school, information on the types of mathematics classes in which students were enrolled and the amount of time each week spent on mathematics instruction in class was collected.

Typically, all fourth-grade students take mathematics. Most eighth graders, with a few exceptions, also take mathematics. However, by the time a student reaches the eighth grade, different types of mathematics courses are available. Eighth graders in Texas were asked about the mathematics class they were currently taking and about the class they expected to take in the ninth grade. Based on their responses, shown in Table 6.3:

- In eighth grade, less than half of the students reported taking eighth-grade mathematics (39 percent), compared to 33 percent taking prealgebra and 25 percent taking algebra. The percentage of students taking algebra did not differ significantly from that for the nation (24 percent).

- Less than half of the eighth-grade students expected to take prealgebra (7 percent) or algebra (34 percent) in the ninth grade. Another 23 percent anticipated taking a geometry class.
TABLE 6.3 — GRADE 8

Public School Students’ Reports on their Mathematics Classes

<table>
<thead>
<tr>
<th>What kind of mathematics class . . .</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you taking this year?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eighth-grade mathematics</td>
<td>39 (2.7)</td>
<td>46 (2.5)</td>
<td>44 (2.3)</td>
</tr>
<tr>
<td></td>
<td>257 (2.1)</td>
<td>261 (2.3)</td>
<td>261 (1.5)</td>
</tr>
<tr>
<td>Prealgebra</td>
<td>33 (2.8)</td>
<td>25 (2.5)</td>
<td>27 (1.9)</td>
</tr>
<tr>
<td></td>
<td>266 (1.9)</td>
<td>272 (3.0)</td>
<td>269 (1.6)</td>
</tr>
<tr>
<td>Algebra</td>
<td>25 (1.7)</td>
<td>23 (1.2)</td>
<td>24 (1.6)</td>
</tr>
<tr>
<td></td>
<td>297 (1.9)</td>
<td>289 (3.7)</td>
<td>294 (1.8)</td>
</tr>
<tr>
<td>Integrated or sequential mathematics</td>
<td>0 (0.1)</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>280 (8.8)</td>
</tr>
<tr>
<td>Applied mathematics (technical preparation)</td>
<td>0 (0.1)</td>
<td>0 (0.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>*** (**)</td>
</tr>
<tr>
<td>Other mathematics class</td>
<td>2 (0.4)</td>
<td>4 (0.9)</td>
<td>3 (0.5)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>253 (7.9)</td>
<td>264 (5.8)</td>
</tr>
<tr>
<td>Do you expect to take in ninth grade?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I do not expect to take mathematics in ninth grade.</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>*** (**)</td>
</tr>
<tr>
<td>Basic, general, business, or consumer mathematics</td>
<td>5 (0.6)</td>
<td>9 (1.2)</td>
<td>8 (0.7)</td>
</tr>
<tr>
<td></td>
<td>250 (3.4)</td>
<td>249 (3.2)</td>
<td>250 (2.3)</td>
</tr>
<tr>
<td>Applied mathematics (technical preparation)</td>
<td>1 (0.2)</td>
<td>2 (0.4)</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>256 (3.9)</td>
</tr>
<tr>
<td>Prealgebra</td>
<td>7 (0.7)</td>
<td>10 (1.2)</td>
<td>11 (1.0)</td>
</tr>
<tr>
<td></td>
<td>256 (4.0)</td>
<td>258 (3.0)</td>
<td>257 (2.1)</td>
</tr>
<tr>
<td>Algebra I or elementary algebra</td>
<td>34 (1.9)</td>
<td>29 (2.4)</td>
<td>32 (1.4)</td>
</tr>
<tr>
<td></td>
<td>272 (1.8)</td>
<td>276 (3.3)</td>
<td>275 (1.3)</td>
</tr>
<tr>
<td>Geometry</td>
<td>23 (1.5)</td>
<td>22 (1.1)</td>
<td>20 (1.4)</td>
</tr>
<tr>
<td></td>
<td>293 (2.2)</td>
<td>287 (3.9)</td>
<td>293 (2.3)</td>
</tr>
<tr>
<td>Integrated or sequential mathematics</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>275 (7.2)</td>
</tr>
<tr>
<td>Other mathematics class</td>
<td>2 (0.4)</td>
<td>2 (0.5)</td>
<td>3 (0.5)</td>
</tr>
<tr>
<td></td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>292 (3.9)</td>
</tr>
<tr>
<td>I don't know.</td>
<td>25 (1.5)</td>
<td>24 (2.0)</td>
<td>22 (1.4)</td>
</tr>
<tr>
<td></td>
<td>258 (1.6)</td>
<td>259 (1.9)</td>
<td>261 (1.8)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). * Percentages may not total 100 percent because a small number of students reported that they are not taking a mathematics class. ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
The amount of time spent on mathematics instruction within the classroom also varies from school to school and from state to state. The teachers of the fourth graders participating in the NAEP assessment were asked about the amount of time spent each week on mathematics instruction. Table 6.4A presents the public school teachers’ responses.

- In 1996, a large majority of the students in Texas had teachers who reported spending four or more hours on mathematics instruction (80 percent), compared to 7 percent who reported spending two and a half hours or less. The average scale score for students receiving four or more hours of mathematics instruction (229) was not significantly different from that for students receiving two and a half hours or less (228).

- The percentage of fourth graders in Texas whose teachers reported spending four hours or more on mathematics instruction was greater than the percentage for the nation (69 percent).

- The percentage of Texas fourth graders in 1996 whose teachers reported spending four hours or more on mathematics instruction did not differ significantly from the percentage in 1992 (83 percent).

<table>
<thead>
<tr>
<th>TABLE 6.4A — GRADE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School Teachers’ Reports on Time Spent on Mathematics Instruction</td>
</tr>
<tr>
<td>How much time do you spend each week on mathematics instruction with this class?</td>
</tr>
<tr>
<td>Percentage and Average Scale Score</td>
</tr>
<tr>
<td>2½ hours or less</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>More than 2½ hours but less than 4 hours</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4 hours or more</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

Eighth-grade mathematics teachers were also asked about the amount of time dedicated to mathematics instruction. Based on the responses of public school teachers in Texas, the results are shown in Table 6.4B.

- About one third of the eighth graders in 1996 had teachers who reported spending four or more hours on mathematics instruction (34 percent), compared to 15 percent who reported spending two and a half hours or less. The average scale score for students receiving four or more hours of mathematics instruction (272) was not significantly different from that for students receiving two and a half hours or less (273).

- The percentage of eighth graders whose teachers reported spending four hours or more on mathematics instruction in Texas was not significantly different from the percentage for the nation (34 percent).

- The percentage of students in 1996 whose teachers reported spending four hours or more on mathematics instruction did not differ significantly from the percentage in 1992 (38 percent).

<table>
<thead>
<tr>
<th>How much time do you spend each week on mathematics instruction with this class?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½ hours or less</td>
<td>1992</td>
<td>13 (2.2)</td>
<td>266 (3.4)</td>
</tr>
<tr>
<td>1996</td>
<td>15 (2.3)</td>
<td>24 (5.0)</td>
<td>20 (3.2)</td>
</tr>
<tr>
<td>More than 2½ hours but less than 4 hours</td>
<td>1992</td>
<td>52 (3.8)</td>
<td>264 (1.9)</td>
</tr>
<tr>
<td>1996</td>
<td>51 (3.8)</td>
<td>270 (2.2)</td>
<td>269 (3.6)</td>
</tr>
<tr>
<td>4 hours or more</td>
<td>1992</td>
<td>38 (3.4)</td>
<td>267 (2.5)</td>
</tr>
<tr>
<td>1996</td>
<td>34 (3.4)</td>
<td>272 (2.8)</td>
<td>274 (3.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Instructional Emphasis

The framework or blueprint that guided the development of the NAEP 1996 mathematics assessment identified three mathematical abilities — conceptual understanding, procedural knowledge, and problem solving. The NCTM Standards emphasize the need to give students the opportunity to develop all three abilities. Focusing on only one of these abilities is limiting to students' mathematical development. For example, emphasizing how to do a problem (procedural knowledge) without understanding why it works (conceptual understanding) or when to use it (problem solving) offers students, at best, an incomplete picture of mathematics. These three abilities were reflected in the specifications for the 1990, 1992, and 1996 NAEP mathematics assessments. Questions assessing all of these abilities were included. Also identified by the NCTM Standards is the ability to reason which depends upon all three of the previous abilities, and the need for students to be able to communicate mathematical ideas. To assess the students' opportunities to experience a variety of learning, teachers were asked how often they addressed skills related to these abilities. Table 6.5A shows the results based on responses given by grade 4 teachers.

- Almost all of the fourth graders had teachers who reported they addressed the learning of mathematics facts and concepts a lot (92 percent), while a small percentage (1 percent) had teachers who reported spending little or no time on the topic.

- Almost all of the students had teachers who reported they addressed the learning of skills and procedures a lot (92 percent). At the other extreme, 0 percent of the students had teachers who reported spending little or no time on the topic.

- Teachers of 70 percent of the students reported they addressed the developing of reasoning and analytical ability a lot. In contrast, 3 percent had teachers who reported spending little or no time addressing the topic.

- In terms of addressing the learning of how to communicate ideas in mathematics clearly, 55 percent of fourth graders had teachers who reported doing so a lot, while 12 percent of the students had teachers who reported spending little or no time addressing the topic.
TABLE 6.5A — GRADE 4

Public School Teachers’ Reports on Skills Addressed

<table>
<thead>
<tr>
<th>In this mathematics class, how often do you address each of the following?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td>Percentage and Average Scale Score</td>
<td>Percentage and Average Scale Score</td>
<td></td>
</tr>
</tbody>
</table>

Learning mathematics facts and concepts
- **A little or none**
 - 1 (****)
 - 0 (***)
 - 0 (***)
- **Some**
 - 7 (2.0)
 - 7 (1.7)
 - 7 (1.1)
 - 220 (6.6)
 - 222 (6.3)
 - 221 (3.5)
- **A lot**
 - 92 (2.2)
 - 92 (1.7)
 - 93 (1.1)
 - 229 (1.5)
 - 220 (2.0)
 - 223 (1.1)

Learning skills and procedures needed to solve routine problems
- **A little or none**
 - 0 (****)
 - 0 (***)
 - 0 (***)
 - 3 (0.8)
 - 4 (1.1)
 - 7 (1.2)
 - 216 (6.6)
 - 222 (6.5)
 - 220 (3.9)
- **Some**
 - 8 (1.9)
 - 10 (2.5)
 - 9 (1.3)
 - 22 (3.4)
 - 214 (2.7)
 - 219 (1.7)
 - 223 (2.6)
 - 214 (2.7)
 - 219 (1.7)
- **A lot**
 - 92 (1.9)
 - 90 (2.5)
 - 91 (1.3)
 - 229 (1.5)
 - 220 (2.1)
 - 223 (1.1)

Developing reasoning and analytical ability to solve unique problems
- **A little or none**
 - 3 (0.8)
 - 4 (1.1)
 - 7 (1.2)
 - 210 (8.5)
 - 222 (3.4)
 - 223 (2.6)
 - 214 (2.7)
 - 219 (1.7)
- **Some**
 - 27 (3.4)
 - 36 (4.3)
 - 39 (2.6)
 - 225 (3.1)
 - 222 (4.3)
 - 227 (2.1)
 - 223 (2.5)
 - 224 (4.3)
 - 227 (2.1)
- **A lot**
 - 70 (3.4)
 - 60 (4.6)
 - 54 (2.5)
 - 231 (1.7)
 - 225 (2.6)
 - 226 (1.6)

Learning how to communicate ideas in mathematics effectively
- **A little or none**
 - 12 (2.4)
 - 13 (3.5)
 - 17 (1.9)
 - 223 (4.5)
 - 222 (4.3)
 - 227 (2.1)
 - 231 (1.8)
 - 226 (2.5)
 - 225 (1.8)

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. Sample size is insufficient to permit a reliable estimate.

Texas

Eighth-grade mathematics teachers were also asked about the degree to which they addressed the mathematical abilities (Table 6.5B).

- About three quarters of the eighth graders had teachers who reported they addressed the learning of mathematics facts and concepts a lot (76 percent), while a small percentage (4 percent) had teachers who reported spending little or no time on the topic.

- A large majority of the students had teachers who reported they addressed the learning of skills and procedures a lot (86 percent). At the other extreme, 3 percent of the students had teachers who reported spending little or no time on the topic.

- Teachers of 59 percent of the students reported they addressed the developing of reasoning and analytical ability a lot. A small percentage of the students (6 percent) had teachers who reported spending little or no time addressing the topic.

- In terms of addressing the learning of how to communicate ideas in mathematics clearly, 42 percent of eighth graders had teachers who reported doing so a lot while 20 percent of students had teachers who reported spending little or no time on the topic.
TABLE 6.5B — GRADE 8

Public School Teachers' Reports on Skills Addressed

<table>
<thead>
<tr>
<th>Learning mathematics facts and concepts</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A little or none</td>
<td>4 (1.1)</td>
<td>8 (2.1)</td>
<td>5 (1.7)</td>
</tr>
<tr>
<td></td>
<td>274 (6.1)</td>
<td>271 (11.2)</td>
<td>276 (5.4)</td>
</tr>
<tr>
<td>Some</td>
<td>20 (3.0)</td>
<td>23 (5.9)</td>
<td>16 (2.4)</td>
</tr>
<tr>
<td></td>
<td>269 (3.2)</td>
<td>263 (3.7)</td>
<td>269 (2.7)</td>
</tr>
<tr>
<td>A lot</td>
<td>76 (3.0)</td>
<td>69 (6.9)</td>
<td>79 (3.0)</td>
</tr>
<tr>
<td></td>
<td>272 (1.7)</td>
<td>274 (2.2)</td>
<td>273 (1.6)</td>
</tr>
</tbody>
</table>

Learning skills and procedures needed to solve routine problems

<table>
<thead>
<tr>
<th>Learning how to communicate ideas in mathematics effectively</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A little or none</td>
<td>20 (2.8)</td>
<td>12 (1.9)</td>
<td>16 (2.0)</td>
</tr>
<tr>
<td></td>
<td>267 (3.7)</td>
<td>257 (10.3)</td>
<td>263 (3.8)</td>
</tr>
<tr>
<td>Some</td>
<td>38 (3.4)</td>
<td>51 (4.4)</td>
<td>42 (3.2)</td>
</tr>
<tr>
<td></td>
<td>268 (2.3)</td>
<td>272 (3.4)</td>
<td>271 (2.3)</td>
</tr>
<tr>
<td>A lot</td>
<td>42 (3.6)</td>
<td>37 (4.4)</td>
<td>42 (3.2)</td>
</tr>
<tr>
<td></td>
<td>276 (2.8)</td>
<td>275 (3.3)</td>
<td>278 (2.0)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

Communicating Mathematical Ideas

Much focus in the mathematics education reform effort has been placed on students' ability to communicate their understanding of mathematics to others. Results presented previously in Tables 6.5A and 6.5B examines the level of emphasis teachers placed on communication in their classroom. As a follow-up, the students participating in the NAEP assessment, and their teachers, were asked about how often they were asked to write a few sentences about solving a mathematical problem and how often they were asked to discuss solutions to mathematics problems with other students.

Based on the responses of the fourth-grade public school teachers in Texas, the results are shown in Table 6.6A.

- A small percentage of the students were asked to write about solving a mathematics problem (7 percent) and less than half were asked to discuss solutions with other students (43 percent) almost every day. By comparison, 34 percent were never or hardly ever asked to write about their solutions and 5 percent were never or hardly ever asked to discuss their solutions.

- The average scale score for students who were asked to discuss solving a mathematics problem almost every day (232) was higher than that for students who never or hardly ever discussed their solutions (209).

When Texas fourth-grade public school students were asked about how often they wrote about or discussed solutions to mathematics problems, they reported the following:

- About one fifth of the students said they were asked to write about mathematics solutions (21 percent) and about one fifth said they were asked to discuss their solutions with other students (19 percent) almost every day. At the other end of the continuum, 38 percent of students said they were never or hardly ever asked to write about solutions and 36 percent said they were never or hardly ever asked to discuss their solutions.
TABLE 6.6A — GRADE 4

Public School Teachers’ and Students’ Reports on Writing About and Discussing Mathematics Problems

<table>
<thead>
<tr>
<th>How often do the students in this class (do you) do each of the following?</th>
<th>Texas Teacher</th>
<th>Texas Student</th>
<th>West Teacher</th>
<th>West Student</th>
<th>Nation Teacher</th>
<th>Nation Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write a few sentences about how to solve a mathematics problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>34 (3.2)</td>
<td>38 (1.6)</td>
<td>24 (3.5)</td>
<td>30 (2.0)</td>
<td>27 (2.4)</td>
<td>33 (1.4)</td>
</tr>
<tr>
<td></td>
<td>226 (2.5)</td>
<td>231 (1.4)</td>
<td>216 (3.1)</td>
<td>222 (2.2)</td>
<td>220 (1.7)</td>
<td>226 (1.3)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>37 (2.6)</td>
<td>17 (0.8)</td>
<td>29 (4.6)</td>
<td>18 (1.0)</td>
<td>35 (2.8)</td>
<td>17 (0.7)</td>
</tr>
<tr>
<td></td>
<td>227 (1.8)</td>
<td>236 (2.1)</td>
<td>220 (5.2)</td>
<td>229 (2.4)</td>
<td>223 (2.5)</td>
<td>231 (1.3)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>22 (2.5)</td>
<td>24 (1.0)</td>
<td>34 (2.4)</td>
<td>27 (1.2)</td>
<td>27 (2.2)</td>
<td>27 (0.9)</td>
</tr>
<tr>
<td></td>
<td>233 (3.4)</td>
<td>230 (1.8)</td>
<td>221 (3.0)</td>
<td>219 (3.2)</td>
<td>223 (1.8)</td>
<td>223 (1.6)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>7 (2.1)</td>
<td>21 (1.6)</td>
<td>13 (3.2)</td>
<td>25 (1.9)</td>
<td>10 (1.6)</td>
<td>22 (1.2)</td>
</tr>
<tr>
<td></td>
<td>224 (4.8)</td>
<td>219 (2.5)</td>
<td>231 (4.9)</td>
<td>210 (3.1)</td>
<td>233 (3.2)</td>
<td>211 (1.9)</td>
</tr>
<tr>
<td>Discuss solutions to mathematics problems with other students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>5 (1.6)</td>
<td>36 (1.2)</td>
<td>2 (1.1)</td>
<td>32 (1.3)</td>
<td>6 (1.4)</td>
<td>33 (1.0)</td>
</tr>
<tr>
<td></td>
<td>209 (6.5)</td>
<td>227 (1.3)</td>
<td>219 (2.0)</td>
<td>219 (3.0)</td>
<td>229 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>18 (2.6)</td>
<td>16 (0.8)</td>
<td>22 (2.6)</td>
<td>18 (0.9)</td>
<td>22 (1.7)</td>
<td>18 (0.6)</td>
</tr>
<tr>
<td></td>
<td>223 (2.7)</td>
<td>237 (2.1)</td>
<td>218 (2.8)</td>
<td>223 (3.1)</td>
<td>221 (1.9)</td>
<td>227 (1.7)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>35 (3.2)</td>
<td>29 (1.1)</td>
<td>40 (3.9)</td>
<td>30 (0.8)</td>
<td>37 (2.3)</td>
<td>29 (0.7)</td>
</tr>
<tr>
<td></td>
<td>228 (1.9)</td>
<td>231 (1.8)</td>
<td>217 (3.3)</td>
<td>220 (2.9)</td>
<td>221 (1.9)</td>
<td>224 (1.4)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>43 (3.1)</td>
<td>19 (1.1)</td>
<td>36 (3.2)</td>
<td>20 (1.5)</td>
<td>35 (2.1)</td>
<td>19 (0.8)</td>
</tr>
<tr>
<td></td>
<td>232 (2.5)</td>
<td>222 (2.2)</td>
<td>226 (1.9)</td>
<td>215 (3.0)</td>
<td>227 (1.8)</td>
<td>217 (1.5)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

Similarly, mathematics teachers of eighth-grade students in Texas’s public schools were asked about the extent to which they had their students writing or discussing mathematics solutions. The eighth graders were also asked about the frequency of these activities. Table 6.6B shows the following on the basis of the reports of teachers in Texas:

- A small percentage of the students were asked to write about solving a mathematics problem (4 percent) and about half were asked to discuss solutions with other students (48 percent) almost every day. By comparison, 42 percent were never or hardly ever asked to write about their solutions and 8 percent were never or hardly ever asked to discuss their solutions.

- The average scale score for students who were asked to discuss solving a mathematics problem almost every day (278) was higher than that for students who never or hardly ever discussed their solutions (258).

An examination of the responses of eighth-grade public school students in Texas showed the following (also shown in Table 6.6B):

- Relatively few of the students said they were asked to write about mathematics solutions (10 percent) and less than half said they were asked to discuss their solutions with other students (37 percent) almost every day. At the other end of the continuum, 52 percent of students said they were never or hardly ever asked to write about solutions and 21 percent said they were never or hardly ever asked to discuss their solutions.
TABLE 6.6B — GRADE 8

Public School Teachers’ and Students’ Reports on Writing About and Discussing Mathematics Problems

| How often do the students in this class (do you) do each of the following? | Texas Teacher | Texas Student | West Teacher | West Student | Nation Teacher | Nation Student |
|---|----------------|--------------|--------------|--------------|--------------|----------------|---------------|
| **Write a few sentences about how to solve a mathematics problem** | | | | | | |
| Never or hardly ever | 42 (3.3) | 52 (1.6) | 27 (4.0) | 39 (3.6) | 31 (3.3) | 47 (1.8) |
| | 270 (2.1) | 276 (1.5) | 274 (5.0) | 271 (2.7) | 271 (2.8) | 275 (1.6) |
| Once or twice a month | 35 (3.3) | 19 (1.1) | 38 (4.4) | 19 (1.5) | 36 (3.0) | 19 (1.0) |
| | 271 (2.6) | 273 (2.2) | 285 (3.8) | 271 (3.2) | 273 (2.3) | 274 (1.7) |
| Once or twice a week | 18 (2.4) | 18 (1.1) | 30 (4.8) | 24 (1.9) | 27 (3.1) | 21 (0.9) |
| | 274 (3.8) | 253 (2.2) | 275 (2.6) | 269 (2.3) | 274 (2.9) | 267 (1.7) |
| Almost every day | 4 (1.2) | 10 (0.8) | 5 (2.2) | 18 (1.9) | 5 (1.1) | 14 (0.9) |
| | 268 (7.5) | 253 (2.5) | 270 (6.4) | 263 (3.5) | 270 (4.4) | 261 (2.3) |
| **Discuss solutions to mathematics problems with other students** | | | | | | |
| Never or hardly ever | 8 (2.0) | 21 (1.3) | 5 (2.7) | 18 (1.4) | 2 (0.8) | 20 (0.8) |
| | 258 (4.9) | 282 (2.4) | *** (**) | 262 (2.8) | 281 (5.7) | 266 (1.5) |
| Once or twice a month | 16 (2.8) | 15 (0.9) | 11 (3.7) | 13 (0.8) | 12 (2.0) | 14 (0.5) |
| | 252 (3.7) | 273 (2.5) | 269 (5.8) | 273 (4.4) | 264 (4.7) | 273 (2.0) |
| Once or twice a week | 29 (2.6) | 28 (1.0) | 35 (6.0) | 30 (1.2) | 36 (3.3) | 28 (0.8) |
| | 269 (2.3) | 272 (2.1) | 270 (5.0) | 266 (2.9) | 270 (2.4) | 270 (1.5) |
| Almost every day | 48 (3.0) | 37 (1.4) | 49 (7.1) | 39 (1.8) | 48 (3.6) | 38 (1.2) |
| | 278 (2.4) | 273 (1.7) | 273 (1.8) | 273 (2.1) | 276 (1.4) | 274 (1.4) |

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

Collaboration in Small Groups

In many subject areas, researchers have found benefits from having students work collaboratively in small groups. To examine the extent to which small groups are being used in instruction, students and their mathematics teachers were asked about the prevalence of these practices.

Table 6.7A shows the following based on the reports of fourth-grade public school mathematics teachers:

- About three quarters of the fourth-grade students in Texas worked mathematics problems in small groups every day (22 percent) or once or twice a week (55 percent); a small percentage of the fourth graders never or hardly ever worked in groups (5 percent).

According to fourth graders’ responses:

- In Texas, 8 percent worked mathematics problems in small groups every day and another 26 percent worked in small groups once or twice a week. Less than half of the fourth graders reported never or hardly ever working in groups (44 percent).

<table>
<thead>
<tr>
<th>TABLE 6.7A — GRADE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School Teachers’ and Students’ Reports on Solving Mathematics Problems in Small Groups or With a Partner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How often do the students in this class (do you) solve mathematics problems in small groups or with a partner?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Student</td>
<td>Teacher</td>
<td>Student</td>
</tr>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>5 (2.1)</td>
<td>44 (1.9)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td>219 (4.1)</td>
<td>228 (1.4)</td>
<td>216 (7.7)</td>
<td>220 (1.7)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>17 (2.4)</td>
<td>22 (1.0)</td>
<td>19 (2.0)</td>
</tr>
<tr>
<td>225 (2.6)</td>
<td>238 (1.7)</td>
<td>214 (2.5)</td>
<td>229 (2.6)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>55 (3.3)</td>
<td>26 (1.6)</td>
<td>44 (3.7)</td>
</tr>
<tr>
<td>231 (1.8)</td>
<td>228 (2.4)</td>
<td>221 (3.1)</td>
<td>218 (2.6)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>22 (3.2)</td>
<td>8 (0.9)</td>
<td>33 (3.6)</td>
</tr>
<tr>
<td>225 (4.1)</td>
<td>213 (3.2)</td>
<td>224 (3.2)</td>
<td>204 (4.3)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Eighth graders and their mathematics teachers were also asked about working in small groups. According to public school mathematics teachers in Texas, the following was true (see Table 6.7B):

- More than half of the students in Texas worked mathematics problems in small groups every day (24 percent) or once or twice a week (38 percent); relatively few of the eighth graders never or hardly ever worked in groups (13 percent).

When eighth-grade students were asked, they reported the following:

- In Texas, 15 percent worked mathematics problems in small groups every day and another 28 percent worked in small groups once or twice a week. About one third of the eighth graders reported never or hardly ever working in groups (32 percent).

TABLE 6.7B — GRADE 8

<table>
<thead>
<tr>
<th>How often do the students in this class (do you) solve mathematics problems in small groups or with a partner?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Student</td>
<td>Teacher</td>
<td>Student</td>
</tr>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>13 (2.7)</td>
<td>32 (2.1)</td>
<td>3 (1.0)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>271 (5.7)</td>
<td>269 (2.1)</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>25 (3.0)</td>
<td>25 (1.4)</td>
<td>25 (5.9)</td>
</tr>
<tr>
<td></td>
<td>273 (2.3)</td>
<td>274 (2.4)</td>
<td>274 (5.5)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>38 (3.4)</td>
<td>28 (1.5)</td>
<td>41 (6.1)</td>
</tr>
<tr>
<td></td>
<td>269 (3.0)</td>
<td>268 (1.7)</td>
<td>268 (3.0)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. Sample size is insufficient to permit a reliable estimate.

Texas

Mathematics Homework

To examine the relationship between homework and mathematics performance, teachers of assessed students were asked to report the amount of mathematics homework they assigned each day, and students were asked to report the amount of time they spent on mathematics homework each day.

Tables 6.8A and 6.8B show the teachers’ and students’ responses for fourth- and eighth-grade public school students in Texas. (Students had an additional response choice “I am not taking mathematics this year,” but no analogous option was available to teachers.) According to fourth-grade teachers’ responses:

- In Texas, almost all of the fourth graders in 1996 were assigned 15 minutes (59 percent) or 30 minutes (33 percent) of mathematics homework each day.

- A small percentage (3 percent) were not assigned any mathematics homework each day.

According to students in the fourth grade:

- A small percentage of the fourth graders did not spend any time on mathematics homework on a typical day (4 percent). By comparison, 38 percent spent 15 minutes and 29 percent spent 30 minutes on their mathematics homework.

Results based on the responses of the eighth-grade teachers indicated the following:

- In Texas, more than half of the eighth graders in 1996 were assigned 30 minutes (39 percent) or 45 minutes (20 percent) of mathematics homework each day.

- A small percentage (5 percent) were not assigned any mathematics homework each day.

The eighth graders’ reports indicated that:

- Relatively few of the eighth graders did not spend any time on mathematics homework on a typical day (10 percent). By comparison, 30 percent spent 30 minutes and 17 percent spent 45 minutes on their mathematics homework.
The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within \pm 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. --- Does not apply to teachers. * Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate. **** Standard error estimates cannot be accurately determined.

TABLE 6.8B — GRADE 8

Public School Teachers’ and Students’ Reports on Homework

<table>
<thead>
<tr>
<th>Approximately how much mathematics homework do you assign (time do you spend on math homework) each day?</th>
<th>Texas Teacher</th>
<th>Texas Student</th>
<th>West Teacher</th>
<th>West Student</th>
<th>Nation Teacher</th>
<th>Nation Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I am not taking mathematics this year.</td>
<td>1992</td>
<td>--- (-) 0 (0.1)</td>
<td>--- (-) 0 (****)</td>
<td>--- (-) 0 (0.1)</td>
<td>--- (-) 0 (****)</td>
<td>--- (-) 0 (0.1)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>--- (-) 0 (0.2)</td>
<td>--- (-) 0 (0.1)</td>
<td>--- (-) 0 (0.1)</td>
<td>--- (-) 0 (0.1)</td>
<td>--- (-) 0 (0.1)</td>
</tr>
</tbody>
</table>

| None | 1992 | 3 (0.5) 9 (0.6) | 4 (1.5) 9 (0.8) | 3 (0.7) 8 (0.4) | 232 (4.2) 253 (2.9) | *** (**.* 256 (4.2) 233 (4.1) 254 (2.4) |
| | 1996 | 5 (1.8) 10 (0.8) | 2 (1.3) 10 (1.9) | 1 (0.5) 8 (0.8) | 247 (4.3) 260 (3.3) | *** (**.* 261 (6.5) 260 (2.9) |

| 15 minutes | 1992 | 32 (3.3) 23 (1.1) | 25 (2.7) 22 (1.7) | 29 (2.1) 27 (0.8) | 256 (1.8) 256 (1.6) | 261 (3.7) 267 (2.1) | 262 (1.8) 269 (1.4) |
| | 1996 | 31 (2.7) 26 (1.2) | 30 (5.3) 30 (1.2) | 32 (2.7) 33 (1.1) | 259 (2.0) 272 (1.8) | 266 (5.6) 269 (3.0) | 266 (2.3) 273 (1.2) |

| 30 minutes | 1992 | 48 (3.0) 30 (0.9) | 43 (3.6) 33 (1.0) | 48 (2.6) 35 (0.7) | 266 (2.3) 266 (1.7) | 267 (3.0) 270 (2.3) | 268 (1.5) 269 (1.3) |
| | 1996 | 39 (3.2) 30 (1.1) | 49 (5.1) 31 (1.2) | 52 (2.7) 33 (0.8) | 275 (2.5) 273 (1.9) | 266 (3.0) 271 (2.5) | 274 (1.9) 274 (1.8) |

| 45 minutes | 1992 | 13 (2.0) 19 (1.0) | 22 (3.2) 17 (1.0) | 15 (2.0) 16 (0.6) | 278 (3.9) 269 (2.3) | 278 (4.8) 270 (4.3) | 282 (3.8) 269 (1.7) |
| | 1996 | 20 (2.6) 17 (1.0) | 13 (2.4) 16 (1.2) | 10 (1.2) 16 (0.7) | 267 (2.9) 273 (2.3) | 282 (7.5) 270 (4.3) | 284 (3.9) 270 (2.1) |

| One hour or more | 1992 | 5 (1.1) 18 (1.1) | 6 (2.2) 18 (1.6) | 4 (0.9) 13 (0.7) | 299 (6.3) 266 (2.6) | 290 (7.9) 271 (3.4) | 287 (5.3) 266 (2.0) |
| | 1996 | 5 (1.2) 16 (0.8) | 5 (1.0) 12 (0.8) | 5 (0.8) 10 (0.6) | 274 (9.1) 268 (2.6) | 294 (6.4) 270 (3.6) | 281 (3.6) 267 (3.1) |

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. --- Does not apply to teachers. † Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate. **** Standard error estimates cannot be accurately determined.

In addition to being asked about mathematics homework, students were asked how often they use a computer at home for schoolwork. The question was not restricted to mathematics homework, so students' reports most likely included homework for other academic areas such as English and science. Given that home computers are steadily assuming more importance in completing homework assignments, 58 it is important that NAEP monitor the prevalence of this practice and its relationship to performance.

Based on the reports of fourth graders in Texas, as shown in Table 6.9A:

- Less than half of the students reported that there was no computer at home (46 percent) and another 27 percent reported never or hardly ever using their home computer to do homework.

- Less than one fifth of the fourth graders reported using their home computer to do homework almost every day (6 percent) or once or twice a week (10 percent).

- The average scale score for students who used a computer almost every day for homework (220) was lower than that of students who never or hardly ever did so (236).

- The average scale score for students who used a computer almost every day for homework did not differ significantly from that of students who did not have a computer at home (219).

<table>
<thead>
<tr>
<th>How often do you use a computer at home for schoolwork?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is no computer at home.</td>
<td>46 (1.6)</td>
<td>44 (2.6)</td>
<td>44 (1.4)</td>
</tr>
<tr>
<td></td>
<td>219 (1.4)</td>
<td>210 (2.9)</td>
<td>214 (1.3)</td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>27 (1.4)</td>
<td>27 (1.4)</td>
<td>26 (0.9)</td>
</tr>
<tr>
<td></td>
<td>236 (1.6)</td>
<td>223 (2.8)</td>
<td>229 (1.3)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>11 (0.9)</td>
<td>9 (1.1)</td>
<td>11 (0.6)</td>
</tr>
<tr>
<td></td>
<td>250 (2.4)</td>
<td>236 (3.2)</td>
<td>239 (1.6)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>10 (0.6)</td>
<td>11 (1.1)</td>
<td>10 (0.6)</td>
</tr>
<tr>
<td></td>
<td>236 (2.7)</td>
<td>228 (4.2)</td>
<td>228 (2.4)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>6 (0.6)</td>
<td>8 (0.6)</td>
<td>8 (0.5)</td>
</tr>
<tr>
<td></td>
<td>220 (3.1)</td>
<td>214 (4.2)</td>
<td>214 (2.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

When eighth-grade public school students in Texas (see Table 6.9B) were asked about the use of home computers to complete homework assignments, they reported the following:

- Less than half of the students reported that there was no computer at home (41 percent) and another 17 percent reported never or hardly ever using their home computer to do homework.

- About one quarter of the eighth graders reported using their home computer to do homework almost every day (10 percent) or once or twice a week (16 percent).

- The average scale score for students who used a computer almost every day for homework (277) was not significantly different from that of students who never or hardly ever did so (272).

- The average scale score for students who used a computer almost every day for homework was higher than that of students who did not have a computer at home (259).

<table>
<thead>
<tr>
<th>How often do you use a computer at home for schoolwork?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is no computer at home</td>
<td>41 (2.1)</td>
<td>36 (1.9)</td>
<td>37 (1.2)</td>
</tr>
<tr>
<td></td>
<td>259 (1.4)</td>
<td>261 (1.9)</td>
<td>262 (1.3)</td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>17 (0.9)</td>
<td>16 (1.1)</td>
<td>15 (0.8)</td>
</tr>
<tr>
<td></td>
<td>272 (2.3)</td>
<td>266 (2.9)</td>
<td>269 (1.9)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>16 (1.2)</td>
<td>17 (1.0)</td>
<td>19 (0.8)</td>
</tr>
<tr>
<td></td>
<td>288 (2.6)</td>
<td>280 (3.4)</td>
<td>282 (1.5)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>16 (1.4)</td>
<td>19 (1.3)</td>
<td>17 (0.8)</td>
</tr>
<tr>
<td></td>
<td>282 (2.5)</td>
<td>278 (3.6)</td>
<td>282 (2.1)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>10 (0.8)</td>
<td>13 (1.1)</td>
<td>11 (0.8)</td>
</tr>
<tr>
<td></td>
<td>277 (2.5)</td>
<td>280 (3.7)</td>
<td>276 (2.7)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

Calculator and Computer Use in the Mathematics Classroom

Recommendations for facilitating mathematics instruction in the nation’s schools often include more use of calculators and computers. The NCTM Standards recognize the technological world in which students are living and the opportunities that technology provides for students to learn and use mathematics. The increasingly technical workplace demands that students have a deep understanding of mathematics that permits solving complex problems.

Given the importance of using technology in mathematics instruction, NAEP asked teachers in Texas whether students and their teachers about their use of calculators and computers. Teachers in Texas were also asked about the availability of computers for mathematics instruction.

Calculators

Recent analysis of data from the NAEP 1992 assessment suggests a positive relationship between calculator use and the effectiveness of the school. The same research also found that the use of calculators in mathematics classes varied widely from school to school. As part of the NAEP assessment, students and their mathematics teachers were asked to report on the frequency of use of calculators in mathematics classes and teachers were asked about the use of calculators on tests. This latter question is relevant to NAEP since the students are allowed to use a calculator on a portion of the assessment. (The question concerning calculator use on tests was not asked of students.) Reports from public school teachers of the fourth graders in Texas (shown in Tables 6.10A and 6.11A) indicate the following:

- About one fifth of the students used a calculator in their mathematics class almost every day (4 percent) or once or twice a week (16 percent). Less than half of the students never or hardly ever used a calculator (41 percent). The percentage of students using a calculator almost every day did not differ significantly from that for the nation (5 percent).

- Teachers of 3 percent of fourth graders reported permitting students to use calculators for tests.

- The percentage of students in 1996 who were permitted to use calculators on tests was not significantly different from that in 1992 (6 percent).

When fourth graders were asked about the use of calculators in their mathematics class, their responses (as shown in Table 6.10A) indicated the following:

- Less than one third of the students reported using a calculator almost every day (10 percent) or once or twice a week (18 percent). In comparison, 49 percent of students reported never or hardly ever using calculators in their mathematics class.

TABLE 6.10A — GRADE 4
Public School Teachers’ and Students’ Reports on the Frequency of Calculator Use

<table>
<thead>
<tr>
<th>How often do the students in this class (do you) use a calculator?</th>
<th>Texas Teacher</th>
<th>Texas Student</th>
<th>West Teacher</th>
<th>West Student</th>
<th>Nation Teacher</th>
<th>Nation Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td>Percentage</td>
<td>Average Scale</td>
<td>Percentage</td>
<td>Average Scale</td>
<td>Percentage</td>
<td>Average Scale</td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>41 (4.3)</td>
<td>27 (2.5)</td>
<td>49 (2.0)</td>
<td>221 (2.9)</td>
<td>24 (1.1)</td>
<td>40 (1.4)</td>
</tr>
<tr>
<td></td>
<td>221 (2.0)</td>
<td>219 (2.3)</td>
<td>277 (1.4)</td>
<td>217 (2.6)</td>
<td>216 (2.3)</td>
<td>220 (1.3)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>39 (3.7)</td>
<td>41 (2.6)</td>
<td>24 (1.5)</td>
<td>221 (2.7)</td>
<td>25 (1.1)</td>
<td>26 (0.8)</td>
</tr>
<tr>
<td></td>
<td>229 (2.3)</td>
<td>222 (2.7)</td>
<td>239 (1.9)</td>
<td>230 (1.8)</td>
<td>223 (1.6)</td>
<td>233 (1.0)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>16 (2.8)</td>
<td>28 (2.4)</td>
<td>18 (1.3)</td>
<td>220 (3.6)</td>
<td>20 (1.3)</td>
<td>23 (1.0)</td>
</tr>
<tr>
<td></td>
<td>238 (3.4)</td>
<td>222 (2.6)</td>
<td>230 (2.2)</td>
<td>221 (2.6)</td>
<td>229 (1.9)</td>
<td>223 (1.4)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>4 (1.7)</td>
<td>5 (0.9)</td>
<td>10 (0.9)</td>
<td>4 (1.6)</td>
<td>9 (1.0)</td>
<td>11 (0.6)</td>
</tr>
<tr>
<td></td>
<td>246 (7.3)</td>
<td>*** (***)</td>
<td>219 (3.1)</td>
<td>198 (3.6)</td>
<td>227 (5.9)</td>
<td>206 (1.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.

TABLE 6.11A — GRADE 4
Public School Teachers’ Reports on the Use of Calculators for Tests

<table>
<thead>
<tr>
<th>Do you permit students in this class to use calculators for tests?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td>Percentage</td>
<td>Average Scale</td>
<td>Percentage</td>
</tr>
<tr>
<td>Yes</td>
<td>6 (1.4)</td>
<td>6 (1.9)</td>
<td>5 (1.2)</td>
</tr>
<tr>
<td></td>
<td>225 (2.7)</td>
<td>*** (***)</td>
<td>228 (4.3)</td>
</tr>
<tr>
<td></td>
<td>3 (1.2)</td>
<td>9 (3.0)</td>
<td>10 (1.8)</td>
</tr>
<tr>
<td></td>
<td>*** (***)</td>
<td>219 (6.7)</td>
<td>222 (2.4)</td>
</tr>
<tr>
<td>No</td>
<td>94 (1.4)</td>
<td>94 (1.9)</td>
<td>95 (1.2)</td>
</tr>
<tr>
<td></td>
<td>218 (1.5)</td>
<td>218 (2.0)</td>
<td>218 (1.0)</td>
</tr>
<tr>
<td></td>
<td>97 (1.2)</td>
<td>91 (3.0)</td>
<td>90 (1.8)</td>
</tr>
<tr>
<td></td>
<td>228 (1.5)</td>
<td>220 (2.2)</td>
<td>223 (1.2)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Eighth-grade students and their mathematics teachers were asked the same questions about calculator use, and the results are shown in Tables 6.10B and 6.11B. Based on the responses of eighth-grade public school teachers in Texas, results showed that:

- More than half of the students used a calculator in their mathematics class almost every day (31 percent) or once or twice a week (23 percent). About one quarter of the students never or hardly ever used a calculator (27 percent). The percentage of students using a calculator almost every day was smaller than that for the nation (57 percent).

- In 1996, when asked if they allowed students to use a calculator for tests, teachers of 43 percent of eighth graders reported permitting students to use them. The average scale score for students allowed to use calculators (282) was higher than that of students who were not (263).

- The percentage of students in 1996 who were permitted to use a calculator on tests was not significantly different from* the percentage in 1992 (54 percent) and larger than the percentage in 1990 (22 percent).

Responses from eighth-grade students (Table 6.10B) showed the following:

- More than half of the students reported using a calculator almost every day (35 percent) or once or twice a week (29 percent). In comparison, 18 percent of students reported never or hardly ever using a calculator in their mathematics class.

* Although the difference may appear large, recall that “significance” here refers to “statistical significance.”
TABLE 6.10B — GRADE 8

Public School Teachers’ and Students’ Reports on the Frequency of Calculator Use

<table>
<thead>
<tr>
<th>How often do the students in this class (do you) use a calculator?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teacher</td>
<td>Student</td>
<td>Teacher</td>
</tr>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>27 (3.7)</td>
<td>18 (1.4)</td>
<td>8 (1.9)</td>
</tr>
<tr>
<td></td>
<td>262 (4.7)</td>
<td>262 (3.0)</td>
<td>260 (7.9)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>19 (2.9)</td>
<td>18 (1.3)</td>
<td>15 (3.3)</td>
</tr>
<tr>
<td></td>
<td>261 (3.7)</td>
<td>267 (2.6)</td>
<td>256 (7.7)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>23 (2.9)</td>
<td>29 (1.2)</td>
<td>22 (3.9)</td>
</tr>
<tr>
<td></td>
<td>268 (2.8)</td>
<td>269 (2.0)</td>
<td>263 (3.0)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>31 (3.2)</td>
<td>35 (1.9)</td>
<td>55 (4.4)</td>
</tr>
<tr>
<td></td>
<td>287 (1.9)</td>
<td>279 (1.6)</td>
<td>280 (2.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.

TABLE 6.11B — GRADE 8

Public School Teachers’ Reports on the Use of Calculators for Tests

<table>
<thead>
<tr>
<th>Do you permit students in this class to use calculators for tests?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>22 (3.8)</td>
<td>48 (8.8)</td>
<td>33 (4.5)</td>
</tr>
<tr>
<td></td>
<td>268 (3.0)</td>
<td>273 (4.7)</td>
<td>271 (2.9)</td>
</tr>
<tr>
<td>1992</td>
<td>54 (3.3)<</td>
<td>53 (5.4)</td>
<td>49 (3.1)<</td>
</tr>
<tr>
<td></td>
<td>271 (2.2)</td>
<td>272 (2.8)</td>
<td>276 (1.9)</td>
</tr>
<tr>
<td>1996</td>
<td>43 (3.8)<</td>
<td>81 (6.1)</td>
<td>70 (3.0)></td>
</tr>
<tr>
<td></td>
<td>282 (1.8)<</td>
<td>278 (2.7)</td>
<td>279 (1.8)</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>78 (3.8)</td>
<td>52 (6.8)</td>
<td>67 (4.5)</td>
</tr>
<tr>
<td></td>
<td>263 (1.6)</td>
<td>255 (3.4)</td>
<td>258 (1.8)</td>
</tr>
<tr>
<td>1992</td>
<td>46 (3.3)<</td>
<td>47 (5.4)</td>
<td>51 (3.1)<</td>
</tr>
<tr>
<td></td>
<td>258 (1.6)<</td>
<td>263 (3.0)</td>
<td>282 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td>57 (3.6)<</td>
<td>39 (8.1)</td>
<td>30 (3.0)<</td>
</tr>
<tr>
<td></td>
<td>283 (2.5)<</td>
<td>280 (4.6)</td>
<td>259 (2.3)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). ! Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

Computers

Computers are potentially valuable instructional tools for the mathematics classroom and can be used to demonstrate mathematics concepts, diagnose learning problems, deliver instruction, and analyze data. Computers are increasingly important in students' homes, where they are used for homework as well as for other pursuits. Since 1984, the percentage of students in grades 7 through 12 who use a computer at school or at home has increased.61

Teachers of the students assessed were asked about the availability and accessibility of computers for use in their mathematics classroom. Based on the responses of fourth-grade teachers, the results are shown in Table 6.12A.

- In Texas, 7 percent of students had teachers who reported that no computers were available for use in their mathematics class and 18 percent had teachers who reported that computers were available in a computer laboratory but difficult to access or schedule. In comparison, 7 percent of students were in mathematics classes where four or more computers were available within the classroom and 30 percent where computers were available in a laboratory and easy to access or schedule.

- The percentage of students in mathematics classes where computers were not available was not significantly different from the percentage for the nation (6 percent).

| TABLE 6.12A — GRADE 4
Public School Teachers’ Reports on the Availability of Computers |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Which best describes the availability of computers for use by students in your mathematics classes?</td>
</tr>
<tr>
<td>Percentage and Average Scale Score</td>
</tr>
<tr>
<td>None available</td>
</tr>
<tr>
<td>One within the classroom</td>
</tr>
<tr>
<td>Two or three within the classroom</td>
</tr>
<tr>
<td>Four or more within the classroom</td>
</tr>
<tr>
<td>Available in a computer laboratory but difficult to access or schedule</td>
</tr>
<tr>
<td>Available in a computer laboratory and easy to access or schedule</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate.

As presented in Table 6.12B, when eighth-grade mathematics teachers were asked about availability of computers, their responses indicated the following:

- In Texas, 21 percent of the students had teachers who reported that no computers were available for use in their mathematics classes and 22 percent had teachers who reported computers were available in a computer laboratory but difficult to access or schedule. In comparison, 7 percent of the students were in mathematics classes where four or more computers were available within the classroom and 23 percent where computers were available in a laboratory and easy to access or schedule.

- The percentage of students in mathematics classes where computers were not available was not significantly different from the percentage for the nation (26 percent).

TABLE 6.12B — GRADE 8

<table>
<thead>
<tr>
<th>Which best describes the availability of computers for use by students in your mathematics classes?</th>
<th>Texas % and Average Scale Score</th>
<th>West % and Average Scale Score</th>
<th>Nation % and Average Scale Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>None available</td>
<td>21 (2.8)</td>
<td>27 (4.4)</td>
<td>26 (3.7)</td>
</tr>
<tr>
<td></td>
<td>269 (3.8)</td>
<td>266 (5.3)</td>
<td>269 (3.1)</td>
</tr>
<tr>
<td>One within the classroom</td>
<td>21 (3.7)</td>
<td>13 (3.2)</td>
<td>19 (3.0)</td>
</tr>
<tr>
<td></td>
<td>274 (3.6)</td>
<td>275 (5.3)</td>
<td>271 (3.9)</td>
</tr>
<tr>
<td>Two or three within the classroom</td>
<td>6 (1.8)</td>
<td>3 (1.3)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td></td>
<td>252 (5.0)</td>
<td>*** (**)</td>
<td>274 (10.2)</td>
</tr>
<tr>
<td>Four or more within the classroom</td>
<td>7 (1.9)</td>
<td>12 (5.1)</td>
<td>7 (2.1)</td>
</tr>
<tr>
<td></td>
<td>261 (4.7)</td>
<td>275 (3.2)</td>
<td>274 (4.4)</td>
</tr>
<tr>
<td>Available in a computer laboratory but difficult to access or schedule</td>
<td>22 (3.1)</td>
<td>24 (3.4)</td>
<td>26 (3.6)</td>
</tr>
<tr>
<td></td>
<td>277 (2.5)</td>
<td>265 (6.2)</td>
<td>270 (2.8)</td>
</tr>
<tr>
<td>Available in a computer laboratory and easy to access or schedule</td>
<td>23 (3.5)</td>
<td>21 (5.3)</td>
<td>18 (2.8)</td>
</tr>
<tr>
<td></td>
<td>271 (2.8)</td>
<td>276 (8.0)</td>
<td>278 (4.1)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). I Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. ** Sample size is insufficient to permit a reliable estimate.**

In addition to a range of availability from school to school, the uses of computers can vary widely from class to class. There are a variety of ways that computers can be used to help students learn and use mathematics, such as exploring new mathematical ideas, analyzing information to solve problems, practicing skills, and playing mathematical games. Also, the frequency of use can vary regardless of the primary use of the computers in the classroom. Teachers in Texas were asked how they used computers and how often they were used in their mathematics classroom. The responses of fourth-grade public school teachers, shown in Table 6.13A, indicate the following:

- Less than one fifth of the fourth graders had teachers who reported not using a computer for mathematics instruction (15 percent). This percentage was smaller than the percentage for the nation (23 percent).

- In Texas, 13 percent of students had teachers who reported never or hardly ever using a computer with their classes, compared to about two thirds who reported doing so almost every day (13 percent) or once or twice a week (58 percent).
TABLE 6.13A — GRADE 4

Public School Teachers’ Reports on the Primary Use and Frequency of Use of Computers

<table>
<thead>
<tr>
<th></th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If you do use computers, what is the primary use of these computers for mathematics instruction?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill and practice</td>
<td>37 (3.9)</td>
<td>28 (3.6)</td>
<td>27 (2.4)</td>
</tr>
<tr>
<td></td>
<td>232 (2.4)</td>
<td>219 (3.0)</td>
<td>222 (2.1)</td>
</tr>
<tr>
<td>Demonstration of new topics in mathematics</td>
<td>5 (2.0)</td>
<td>0 (***)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td></td>
<td>232 (7.1)</td>
<td>*** (***)</td>
<td>222 (7.5)</td>
</tr>
<tr>
<td>Playing mathematical/learning games</td>
<td>33 (4.1)</td>
<td>42 (4.3)</td>
<td>41 (2.6)</td>
</tr>
<tr>
<td></td>
<td>229 (2.8)</td>
<td>220 (2.5)</td>
<td>225 (1.5)</td>
</tr>
<tr>
<td>Simulations and applications</td>
<td>10 (3.0)</td>
<td>6 (1.2)</td>
<td>6 (1.2)</td>
</tr>
<tr>
<td></td>
<td>219 (5.9)</td>
<td>217 (6.2)</td>
<td>225 (3.6)</td>
</tr>
<tr>
<td>I do not use computers for instruction.</td>
<td>15 (2.7)</td>
<td>24 (5.5)</td>
<td>23 (2.9)</td>
</tr>
<tr>
<td>How often do the students in this class use a computer?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>13 (2.6)</td>
<td>20 (3.5)</td>
<td>21 (2.4)</td>
</tr>
<tr>
<td></td>
<td>225 (4.1)</td>
<td>218 (6.0)</td>
<td>221 (2.6)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>16 (2.6)</td>
<td>17 (2.3)</td>
<td>19 (1.9)</td>
</tr>
<tr>
<td></td>
<td>230 (3.0)</td>
<td>220 (2.5)</td>
<td>227 (2.1)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>58 (4.1)</td>
<td>56 (3.8)</td>
<td>46 (2.5)</td>
</tr>
<tr>
<td></td>
<td>229 (1.9)</td>
<td>221 (2.2)</td>
<td>222 (1.4)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>13 (2.3)</td>
<td>7 (1.8)</td>
<td>14 (1.8)</td>
</tr>
<tr>
<td></td>
<td>223 (2.3)</td>
<td>221 (5.1)</td>
<td>225 (2.8)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. Sample size is insufficient to permit a reliable estimate. Standard error estimates cannot be accurately determined.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
Table 6.13B presents the eighth-grade teachers' reports on uses for computers in their mathematics classrooms.

- Less than half of the eighth graders had teachers who reported not using a computer for mathematics instruction (45 percent). This percentage did not differ significantly from the percentage for the nation (52 percent).

- In Texas, 59 percent of students had teachers who reported never or hardly ever using a computer with their classes, compared to less than one fifth who reported doing so almost every day (2 percent) or once or twice a week (14 percent).

TABLE 6.13B — GRADE 8

Public School Teachers' Reports on the Primary Use and Frequency of Use of Computers

<table>
<thead>
<tr>
<th>If you do use computers, what is the primary use of these computers for mathematics instruction?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill and practice</td>
<td>26 (4.2)</td>
<td>22 (6.7)</td>
<td>16 (2.5)</td>
</tr>
<tr>
<td></td>
<td>264 (3.5)</td>
<td>275 (7.9)</td>
<td>270 (4.3)</td>
</tr>
<tr>
<td>Demonstration of new topics in mathematics</td>
<td>4 (1.4)</td>
<td>5 (***)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td></td>
<td>278 (5.4)</td>
<td>*** (**)</td>
<td>280 (3.8)</td>
</tr>
<tr>
<td>Playing mathematical/learning games</td>
<td>11 (2.7)</td>
<td>13 (3.7)</td>
<td>13 (2.4)</td>
</tr>
<tr>
<td></td>
<td>270 (4.3)</td>
<td>275 (6.7)</td>
<td>286 (4.3)</td>
</tr>
<tr>
<td>Simulations and applications</td>
<td>14 (2.6)</td>
<td>10 (3.5)</td>
<td>13 (2.9)</td>
</tr>
<tr>
<td></td>
<td>277 (5.5)</td>
<td>266 (5.4)</td>
<td>281 (4.5)</td>
</tr>
<tr>
<td>I do not use computers for instruction</td>
<td>45 (4.2)</td>
<td>50 (5.5)</td>
<td>52 (3.9)</td>
</tr>
<tr>
<td></td>
<td>272 (3.0)</td>
<td>287 (2.7)</td>
<td>270 (1.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How often do the students in this class use a computer?</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Never or hardly ever</td>
<td>59 (4.2)</td>
<td>89 (5.8)</td>
<td>70 (3.9)</td>
</tr>
<tr>
<td></td>
<td>274 (2.4)</td>
<td>271 (2.7)</td>
<td>273 (1.4)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>25 (3.6)</td>
<td>21 (5.3)</td>
<td>22 (3.9)</td>
</tr>
<tr>
<td></td>
<td>271 (3.3)</td>
<td>278 (7.8)</td>
<td>277 (3.9)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>14 (3.0)</td>
<td>9 (3.6)</td>
<td>8 (1.5)</td>
</tr>
<tr>
<td></td>
<td>265 (4.8)</td>
<td>255 (8.5)</td>
<td>282 (5.5)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>2 (0.9)</td>
<td>1 (0.8)</td>
<td>1 (0.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. Sample size is insufficient to permit a reliable estimate. Standard error estimates cannot be accurately determined.

** SOURCE:** National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.

* Although the difference may appear large, recall that "significance" here refers to "statistical significance."
Finally, students were asked how often they used computers when doing mathematics in school. The question was not limited to using the computer in their mathematics class. Therefore, students' responses could include use of computers to do mathematics assignments at other times throughout the school day or in before/after school programs. On the basis of the responses of fourth-grade public school students, as shown in Table 6.14A, results indicated that:

- In Texas, 58 percent of students never or hardly ever used computers to do mathematics in school. About one third of the fourth graders used computers for this purpose almost every day (12 percent) or once or twice a week (21 percent).

<table>
<thead>
<tr>
<th>When you do mathematics in school, how often do you use a computer?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly over</td>
<td>58 (1.6)</td>
<td>56 (1.7)</td>
<td>56 (1.0)</td>
</tr>
<tr>
<td>228 (1.6)</td>
<td>217 (2.4)</td>
<td>223 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>9 (0.8)</td>
<td>10 (1.1)</td>
<td>10 (0.7)</td>
</tr>
<tr>
<td>237 (2.5)</td>
<td>220 (4.7)</td>
<td>226 (2.4)</td>
<td></td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>21 (1.2)</td>
<td>22 (1.6)</td>
<td>20 (1.0)</td>
</tr>
<tr>
<td>230 (2.1)</td>
<td>226 (2.6)</td>
<td>225 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Almost every day</td>
<td>12 (0.9)</td>
<td>11 (0.9)</td>
<td>14 (0.8)</td>
</tr>
<tr>
<td>227 (2.5)</td>
<td>216 (2.7)</td>
<td>218 (1.8)</td>
<td></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

Table 6.14B presents results for eighth-grade public school students who were asked the same question.

- In Texas, 53 percent of students never or hardly ever used computers to do mathematics in school. About one third of the eighth graders used computers for this purpose almost every day (16 percent) or once or twice a week (15 percent).

TABLE 6.14B — GRADE 8

<table>
<thead>
<tr>
<th>When you do mathematics in school, how often do you use a computer?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>53 (2.0)</td>
<td>56 (2.8)</td>
<td>57 (1.4)</td>
</tr>
<tr>
<td></td>
<td>269 (1.8)</td>
<td>268 (2.0)</td>
<td>270 (1.3)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>17 (1.2)</td>
<td>17 (1.3)</td>
<td>16 (0.9)</td>
</tr>
<tr>
<td></td>
<td>271 (1.6)</td>
<td>275 (4.6)</td>
<td>275 (2.2)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>15 (1.0)</td>
<td>15 (1.5)</td>
<td>15 (0.9)</td>
</tr>
<tr>
<td></td>
<td>271 (2.3)</td>
<td>266 (4.9)</td>
<td>270 (2.0)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>16 (1.1)</td>
<td>13 (1.1)</td>
<td>12 (0.6)</td>
</tr>
<tr>
<td></td>
<td>273 (2.6)</td>
<td>269 (3.9)</td>
<td>270 (2.2)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

Influences Beyond School That Facilitate Learning Mathematics

The home environment can be an important support for the school environment. To examine the relationship between mathematics scale scores and home factors, the NAEP assessment considered students' responses to questions about home factors and principals' responses to questions about parental involvement in the school. To examine the impact of student mobility on academic achievement, students were also asked how often they had changed schools because of household moves.

The students' attitudes toward mathematics can also be expected to relate to their performance in the assessment. As the NCTM Curriculum and Evaluation Standards for School Mathematics warns, the beliefs that students develop influence not only their thinking and performance but also their attitude and decisions about studying mathematics in future years. The NCTM Standards describes specific attitudes that should be given increased attention in the curriculum.

Discussing Studies at Home

When students discuss academic work at home, they create an important link between home and school. How often schoolwork is discussed at home can be a measure of the importance of school for students and their families. Recent NAEP assessments in a variety of subject areas have found a positive relationship between discussing studies at home and student performance.\(^2\)

Students were asked to report on the frequency of home discussion about schoolwork. As shown in Table 7.1A, the 1996 results for fourth graders attending public schools in Texas indicate that

- More than half of the fourth graders (56 percent) said they discussed their schoolwork at home almost every day. This percentage was larger than the percentage who said they never or hardly ever had such discussions (17 percent).

- The average scale score for students who discussed their schoolwork almost every day (230) was higher than that for students who never or hardly ever did so (220).

<table>
<thead>
<tr>
<th>How often do you discuss things you have studied in school with someone at home?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never or hardly ever</td>
<td>1992</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 (1.1)</td>
<td>17 (1.0)<</td>
<td>17 (0.6)<</td>
</tr>
<tr>
<td></td>
<td>211 (1.5)</td>
<td>220 (1.8)></td>
<td>210 (2.7)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>1992</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 (0.5)</td>
<td>5 (0.8)</td>
<td>5 (0.3)</td>
</tr>
<tr>
<td></td>
<td>218 (3.1)</td>
<td>231 (4.5)</td>
<td>226 (5.4)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>1992</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 (1.0)</td>
<td>22 (0.9)</td>
<td>22 (0.7)</td>
</tr>
<tr>
<td></td>
<td>221 (1.8)</td>
<td>232 (1.9)></td>
<td>222 (3.1)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>1992</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51 (1.2)</td>
<td>56 (1.2)></td>
<td>56 (0.9)</td>
</tr>
<tr>
<td></td>
<td>220 (1.5)</td>
<td>230 (1.5)></td>
<td>219 (2.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Based on the reports of eighth graders, Table 7.1B indicates the following relationship between discussing studies at home and mathematics performance on the NAEP 1996 assessment.

- In Texas, less than half of the eighth-grade students (40 percent) said they discussed their schoolwork at home almost every day. This percentage was larger than the percentage who said they never or hardly ever had such discussions (22 percent).

- The average scale score for students who discussed their schoolwork almost every day (276) was higher than that for students who never or hardly ever did so (261).

<table>
<thead>
<tr>
<th>TABLE 7.1B — GRADE 8</th>
<th>Percentage and Average Scale Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>How often do you discuss things you have studied in school with someone at home?</td>
<td>Texas</td>
</tr>
<tr>
<td>Never or hardly ever</td>
<td>22 (1.0)</td>
</tr>
<tr>
<td>1992</td>
<td>255 (1.8)</td>
</tr>
<tr>
<td>1996</td>
<td>22 (1.3)</td>
</tr>
<tr>
<td></td>
<td>261 (1.9)</td>
</tr>
<tr>
<td>Once or twice a month</td>
<td>9 (0.6)</td>
</tr>
<tr>
<td>1992</td>
<td>269 (2.7)</td>
</tr>
<tr>
<td>1996</td>
<td>10 (0.5)</td>
</tr>
<tr>
<td></td>
<td>272 (2.5)</td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>28 (0.9)</td>
</tr>
<tr>
<td>1992</td>
<td>266 (1.9)</td>
</tr>
<tr>
<td>1996</td>
<td>27 (1.0)</td>
</tr>
<tr>
<td></td>
<td>273 (2.0)</td>
</tr>
<tr>
<td>Almost every day</td>
<td>41 (1.2)</td>
</tr>
<tr>
<td>1992</td>
<td>269 (1.7)</td>
</tr>
<tr>
<td>1996</td>
<td>40 (1.2)</td>
</tr>
<tr>
<td></td>
<td>276 (1.7)></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Literacy Materials in the Home

Students can learn much about mathematics and its role in real-world situations by reading materials outside the classroom. Research findings and results from opinion polls are often found in magazine and newspaper articles. Also, the availability of reading and reference materials at home may be an indicator of the value placed by parents on learning. In past NAEP assessments, a positive relationship has consistently been reported between print materials in the home and average scale scores.

As part of the NAEP assessment, students were asked whether their families have more than 25 books, an encyclopedia, receive a newspaper regularly, and receive any magazines regularly. Table 7.2A shows the percentages of fourth-grade public school students reporting that their families have all four types, only three types, or two or fewer types of these literacy materials and students’ average scale scores. Based on their responses:

- About one third of the students in Texas (32 percent) reported having all four types of literacy materials in their homes. This percentage was not significantly different from the percentage for the nation (34 percent).
- In comparison, the percentage reporting having two or fewer types of these materials (35 percent) was not significantly different from the percentage having all four types. The percentage having two or fewer types did not differ significantly from the percentage for the nation (32 percent).
- In 1996 the average mathematics scale score for students with all four types of literacy materials (241) was higher than that for students with two or fewer types (218).

TABLE 7.2A — GRADE 4

Public School Students' Reports on Literacy Materials in the Home

<table>
<thead>
<tr>
<th>How many of the following types of reading materials are in your home (more than 25 books, an encyclopedia, a newspaper, magazines)?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero to two</td>
<td>1992</td>
<td>40 (1.6)</td>
<td>33 (2.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>209 (1.3)</td>
<td>210 (1.7)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>35 (1.7)</td>
<td>38 (1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>218 (1.5)></td>
<td>208 (3.5)</td>
</tr>
<tr>
<td>Three</td>
<td>1992</td>
<td>32 (1.1)</td>
<td>34 (1.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>222 (1.6)</td>
<td>220 (1.8)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>33 (1.1)</td>
<td>32 (1.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>229 (1.3)></td>
<td>221 (2.2)</td>
</tr>
<tr>
<td>Four</td>
<td>1992</td>
<td>28 (1.1)</td>
<td>32 (2.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228 (1.7)</td>
<td>227 (2.5)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>32 (1.6)</td>
<td>30 (1.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>241 (1.7)></td>
<td>228 (2.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Table 7.2B shows the results based on eighth-grade public school students' reports on literacy materials in the home and their average scale scores.

- Less than half of the eighth graders in Texas (41 percent) reported having all four types of literacy materials in their homes. This percentage was smaller than the percentage for the nation (47 percent).

- In comparison, the percentage reporting having two or fewer types of these materials (29 percent) was smaller than the percentage having all four types. The percentage having two or fewer types was greater than the percentage for the nation (21 percent).

- Based on the 1996 results for Texas, the average mathematics scale score for students with all four types of literacy materials (281) was higher than that for students with two or fewer types (253).

TABLE 7.2B — GRADE 8

Public School Students' Reports on Literacy Materials in the Home

<table>
<thead>
<tr>
<th>How many of the following types of reading materials are in your home (more than 25 books, an encyclopedia, a newspaper, magazines)?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td>Percentage and Average Scale Score</td>
<td>Percentage and Average Scale Score</td>
<td></td>
</tr>
<tr>
<td>Zero to two</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>30 (1.3)</td>
<td>24 (1.6)</td>
<td>21 (1.0)</td>
</tr>
<tr>
<td></td>
<td>244 (2.0)</td>
<td>244 (4.3)</td>
<td>244 (2.1)</td>
</tr>
<tr>
<td>1992</td>
<td>30 (1.4)</td>
<td>25 (1.6)</td>
<td>21 (0.7)</td>
</tr>
<tr>
<td></td>
<td>250 (1.6)</td>
<td>250 (2.3)</td>
<td>248 (1.2)</td>
</tr>
<tr>
<td>1996</td>
<td>29 (1.8)</td>
<td>27 (1.7)</td>
<td>21 (0.7)</td>
</tr>
<tr>
<td></td>
<td>253 (1.9)</td>
<td>254 (2.8)</td>
<td>254 (1.8)</td>
</tr>
<tr>
<td>Three</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>29 (1.0)</td>
<td>31 (1.4)</td>
<td>30 (1.0)</td>
</tr>
<tr>
<td></td>
<td>257 (1.7)</td>
<td>257 (2.3)</td>
<td>259 (1.6)</td>
</tr>
<tr>
<td>1992</td>
<td>33 (0.9)</td>
<td>31 (1.6)</td>
<td>31 (0.7)</td>
</tr>
<tr>
<td></td>
<td>266 (1.6)</td>
<td>270 (2.4)</td>
<td>266 (1.9)</td>
</tr>
<tr>
<td>1996</td>
<td>30 (1.1)</td>
<td>32 (1.7)</td>
<td>31 (0.9)</td>
</tr>
<tr>
<td></td>
<td>272 (1.7)</td>
<td>268 (2.1)</td>
<td>268 (1.2)</td>
</tr>
<tr>
<td>Four</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>42 (1.1)</td>
<td>45 (1.9)</td>
<td>48 (1.3)</td>
</tr>
<tr>
<td></td>
<td>270 (1.5)</td>
<td>273 (3.1)</td>
<td>272 (1.5)</td>
</tr>
<tr>
<td>1992</td>
<td>38 (1.1)</td>
<td>44 (1.8)</td>
<td>48 (1.0)</td>
</tr>
<tr>
<td></td>
<td>277 (1.8)</td>
<td>277 (2.0)</td>
<td>276 (1.1)</td>
</tr>
<tr>
<td>1996</td>
<td>41 (2.0)</td>
<td>41 (2.5)</td>
<td>47 (1.1)</td>
</tr>
<tr>
<td></td>
<td>281 (1.8)</td>
<td>279 (2.4)</td>
<td>281 (1.4)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (-) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Television Viewing Habits

Past NAEP assessments have shown that over 40 percent of fourth- and eighth-grade students reported watching four or more hours of television each day. A major concern is that time spent watching television results in less time available for homework and related academic activities. The effects of such extensive television exposure are difficult to document, but there is a generally negative relationship between NAEP score results and hours watched.65

Students were asked how much television they usually watched each day. The results for fourth- and eighth-grade public school students in Texas are shown in Tables 7.3A and 7.3B, respectively.

- Among fourth graders, 17 percent reported watching six or more hours of television on a typical day. This percentage was smaller than the percentage who reported watching one hour or less (24 percent).

- The percentage of fourth graders in Texas who reported watching six or more hours of television a day was somewhat smaller than the percentage for the nation (20 percent).

- Based on the 1996 state results, the average mathematics scale score for fourth-grade students who reported watching two to three hours of television a day (232) was not significantly different from that for students who reported watching one hour or less (229).

- The average scale score for fourth graders who reported watching two to three hours of television a day was higher than that for students who reported watching six hours or more (218).

- Among eighth graders, 16 percent reported watching six or more hours of television on a typical day. This percentage did not differ significantly from the percentage who reported watching one hour or less (16 percent).

- The percentage of eighth graders in Texas who reported watching six or more hours of television a day was not significantly different from the percentage for the nation (14 percent).

- Based on the 1996 state results, the average mathematics scale score for eighth-grade students who reported watching two to three hours of television a day (273) was not significantly different from that for students who reported watching one hour or less (279).

- The average scale score for eighth graders who reported watching two to three hours of television a day was higher than that for students who reported watching six hours or more (254).

<table>
<thead>
<tr>
<th>How much television do you usually watch each day?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 hour or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>20 (0.8)</td>
<td>26 (1.5)</td>
<td>21 (0.8)</td>
</tr>
<tr>
<td></td>
<td>214 (1.9)</td>
<td>221 (2.4)</td>
<td>221 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td>24 (1.3)</td>
<td>28 (2.4)</td>
<td>24 (1.1)</td>
</tr>
<tr>
<td></td>
<td>229 (2.7)</td>
<td>218 (3.9)</td>
<td>223 (1.8)</td>
</tr>
<tr>
<td>2 to 3 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>35 (1.3)</td>
<td>33 (1.6)</td>
<td>35 (0.8)</td>
</tr>
<tr>
<td></td>
<td>224 (1.7)</td>
<td>223 (1.7)</td>
<td>225 (1.1)</td>
</tr>
<tr>
<td>1996</td>
<td>38 (1.0)</td>
<td>36 (1.5)</td>
<td>36 (0.7)</td>
</tr>
<tr>
<td></td>
<td>232 (1.6)</td>
<td>224 (2.8)</td>
<td>228 (1.2)</td>
</tr>
<tr>
<td>4 to 5 hours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>24 (1.0)</td>
<td>22 (1.5)</td>
<td>22 (0.8)</td>
</tr>
<tr>
<td></td>
<td>223 (1.4)</td>
<td>219 (2.7)</td>
<td>221 (1.3)</td>
</tr>
<tr>
<td>1996</td>
<td>22 (0.8)</td>
<td>19 (1.2)</td>
<td>20 (0.7)</td>
</tr>
<tr>
<td></td>
<td>230 (1.5)</td>
<td>216 (3.1)</td>
<td>224 (1.5)</td>
</tr>
<tr>
<td>6 hours or more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>21 (1.2)</td>
<td>20 (1.5)</td>
<td>22 (0.8)</td>
</tr>
<tr>
<td></td>
<td>207 (1.5)</td>
<td>206 (2.0)</td>
<td>204 (1.1)</td>
</tr>
<tr>
<td>1996</td>
<td>17 (1.1)</td>
<td>17 (1.4)</td>
<td>20 (0.8)</td>
</tr>
<tr>
<td></td>
<td>218 (1.9)</td>
<td>208 (3.1)</td>
<td>208 (1.5)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within \(\pm 2 \) standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation \(> (<) \) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

TABLE 7.3B — GRADE 8

Public School Students’ Reports on Television Viewing Habits

<table>
<thead>
<tr>
<th>How much television do you usually watch each day?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 hour or less</td>
<td>1990</td>
<td>1992</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>13 (0.7)</td>
<td>15 (0.9)</td>
<td>16 (0.9)</td>
</tr>
<tr>
<td></td>
<td>261 (3.0)</td>
<td>275 (2.6)*</td>
<td>279 (2.8)*</td>
</tr>
<tr>
<td>2 to 3 hours</td>
<td>1990</td>
<td>1992</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>43 (1.3)</td>
<td>46 (1.1)*</td>
<td>43 (1.2)</td>
</tr>
<tr>
<td></td>
<td>263 (1.6)</td>
<td>270 (1.5)*</td>
<td>273 (1.8)*</td>
</tr>
<tr>
<td>4 to 5 hours</td>
<td>1990</td>
<td>1992</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>30 (0.8)</td>
<td>27 (0.9)*</td>
<td>25 (0.8)*</td>
</tr>
<tr>
<td></td>
<td>258 (1.5)</td>
<td>259 (1.4)</td>
<td>269 (1.9)*</td>
</tr>
<tr>
<td>6 hours or more</td>
<td>1990</td>
<td>1992</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>15 (0.9)</td>
<td>12 (0.8)</td>
<td>16 (1.0)</td>
</tr>
<tr>
<td></td>
<td>243 (2.2)</td>
<td>246 (2.2)</td>
<td>254 (2.1)*</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation »(«) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation >(<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Parental Support

When parents are involved in their children's education, both children and parents are likely to benefit. Research on students at risk has shown that parents' participation in their children's education has more effect on the child's performance than parent income or parent education. Parental involvement is naturally part of the home environment, but it is also increasingly sought in the school.

As part of the NAEP assessment, the principals of participating students were asked about parental involvement in their schools. Tables 7.4A and 7.4B present the results for fourth and eighth graders, respectively, in public schools in Texas. According to these results:

- Overall, almost all of the fourth-grade students attended schools where principals characterized parental support as very positive (53 percent) or somewhat positive (45 percent).

- Overall, almost all of the eighth-grade students attended schools where principals characterized parental support as very positive (32 percent) or somewhat positive (61 percent).

TABLE 7.4A — GRADE 4

Public Schools' Reports on Parental Support

<table>
<thead>
<tr>
<th>How would you characterize parental support for student achievement within your school?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat to very negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>11 (3.6)</td>
<td>4 (1.6)</td>
<td>5 (1.2)</td>
</tr>
<tr>
<td>1996</td>
<td>211 (4.6)</td>
<td>200 (3.8)</td>
<td>202 (4.9)</td>
</tr>
<tr>
<td>Somewhat positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>3 (****)</td>
<td>6 (2.8)</td>
<td>5 (1.5)</td>
</tr>
<tr>
<td>1996</td>
<td>215 (1.6)</td>
<td>214 (2.8)</td>
<td>215 (1.3)</td>
</tr>
<tr>
<td>Very positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>28 (4.6)</td>
<td>219 (2.4)</td>
<td>220 (1.3)</td>
</tr>
<tr>
<td>1996</td>
<td>226 (3.2)</td>
<td>224 (2.3)</td>
<td>225 (1.7)</td>
</tr>
<tr>
<td>235 (2.8)</td>
<td>221 (2.8)</td>
<td>227 (1.7)</td>
<td>154</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic. *** Sample size is insufficient to permit a reliable estimate. **** Standard error estimates cannot be accurately determined.

TABLE 7.4B — GRADE 8

Public Schools’ Reports on Parental Support

<table>
<thead>
<tr>
<th>How would you characterize parental support for student achievement within your school?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Somewhat to very negative</td>
<td>1992</td>
<td>16 (2.7)</td>
<td>9 (3.6)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>252 (3.2)</td>
<td>257 (5.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 (2.8)</td>
<td>6 (2.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254 (7.0)</td>
<td>269 (6.3)</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>59 (5.1)</td>
<td>60 (4.8)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>263 (1.7)</td>
<td>266 (2.5)</td>
</tr>
<tr>
<td>Somewhat positive</td>
<td></td>
<td>61 (5.5)</td>
<td>57 (8.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>267 (2.0)</td>
<td>269 (3.0)</td>
</tr>
<tr>
<td>Very positive</td>
<td>1992</td>
<td>25 (4.5)</td>
<td>31 (5.1)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>275 (4.3)</td>
<td>277 (4.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 (5.4)</td>
<td>37 (8.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>285 (2.9)</td>
<td>270 (4.7)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Student Mobility

Research indicates that moving more than once or twice during the school year lowers student achievement. Students who attend the same school throughout their career are most likely to graduate, whereas the most mobile of the school populations have the highest rates of failure and dropping out.67

In order to look at the relationship between mobility and mathematics achievement, students were asked how many times within the past two years they had changed schools because they had changed where they lived. Table 7.5A shows results for fourth-grade public school students.

- In terms of student mobility, 59 percent of fourth graders reported not moving over the last two years while 12 percent of students reported doing so three or more times. The students with the highest reported mobility had an average scale score (217) that was lower than that of those who reported not moving (233).

- The percentage of students in Texas who reported moving three or more times (12 percent) was not significantly different from the percentage for the nation (11 percent).

<table>
<thead>
<tr>
<th>Within the past two years, how many times have you changed schools because you changed where you lived?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1992</td>
<td>55 (1.7)</td>
<td>56 (1.3)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>59 (1.6)</td>
<td>55 (2.0)</td>
</tr>
<tr>
<td>One</td>
<td>1992</td>
<td>20 (0.9)</td>
<td>20 (1.0)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>20 (0.9)</td>
<td>22 (0.9)</td>
</tr>
<tr>
<td>Two</td>
<td>1992</td>
<td>10 (0.8)</td>
<td>10 (0.6)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>8 (0.6)</td>
<td>9 (0.8)</td>
</tr>
<tr>
<td>Three or more</td>
<td>1992</td>
<td>15 (0.9)</td>
<td>14 (0.8)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>12 (0.9)</td>
<td>14 (1.3)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Eighth-grade public school students were also asked about their mobility. As shown in Table 7.5B, the results based on 1996 eighth graders' reports of mobility indicate the following:

- In terms of student mobility, 66 percent of eighth graders reported not having moved over the last two years, while 8 percent of students reported doing so three or more times. The students with the highest reported mobility had an average scale score (258) that was lower than that of those who reported not moving (275).

- In Texas, the percentage of students who reported moving three or more times (8 percent) was not significantly different from the percentage for the nation (6 percent).

<table>
<thead>
<tr>
<th>TABLE 7.5B — GRADE 8</th>
<th>Public School Students' Reports on Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Texas</td>
</tr>
<tr>
<td>1992</td>
<td>74 (0.9)</td>
</tr>
<tr>
<td>1996</td>
<td>66 (1.4)<</td>
</tr>
<tr>
<td>One</td>
<td>16 (0.5)</td>
</tr>
<tr>
<td>1992</td>
<td>261 (2.2)</td>
</tr>
<tr>
<td>1996</td>
<td>18 (1.1)</td>
</tr>
<tr>
<td>268 (3.0)</td>
<td>261 (3.7)</td>
</tr>
<tr>
<td>Two</td>
<td>6 (0.5)</td>
</tr>
<tr>
<td>1992</td>
<td>252 (3.5)</td>
</tr>
<tr>
<td>1996</td>
<td>9 (0.6)></td>
</tr>
<tr>
<td>256 (4.0)</td>
<td>253 (3.2)</td>
</tr>
<tr>
<td>Three or more</td>
<td>4 (0.5)</td>
</tr>
<tr>
<td>1992</td>
<td>249 (3.3)</td>
</tr>
<tr>
<td>1996</td>
<td>8 (0.8)></td>
</tr>
<tr>
<td>258 (3.0)</td>
<td>257 (3.7)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

Students' Views About Mathematics

The attitudes children form about mathematics can affect the depth to which they learn the concepts. These same attitudes can also affect decisions that middle school students make about what mathematics courses they will study. Failure to study mathematics can close the doors to education beyond high school, and to many interesting and exciting careers. Thus, students' attitudes and beliefs about mathematics can be a contributing factor affecting the skills they will acquire.

Do Students Believe That Math Is Useful for Everyday Problems?

If children view mathematics as a practical, useful subject, they may better understand that it can be applied to a wide variety of real-world problems and phenomena. The NCTM Standards explain that, even though most mathematical ideas in the kindergarten through fourth grade curriculum arise from the everyday world, they must be regularly applied to real-world situations. Further, children need to understand that mathematics is an integral part of real-world situations and activities in other curricular areas. One major purpose of mathematics is to help children understand and interpret their world and solve problems that occur in it. This important view of mathematics must continue through the curriculum for grades 5 through 8. Teachers should emphasize the application of mathematics to real-world problems as well as to other settings relevant to middle school students.

In order to examine whether mathematics has been made relevant to the students, they were asked the degree to which they agreed or disagreed with the statement that mathematics is useful for solving everyday problems. Responses by fourth-grade public school students are reported in Table 7.6A. According to their responses:

- About two thirds of the fourth graders in Texas agreed with the statement that mathematics is useful for solving everyday problems (66 percent). This percentage was greater than that of students disagreeing with the statement (14 percent).

- The percentage of students in the state agreeing that mathematics is useful for everyday problems (66 percent) was not significantly different from the percentage seen nationally (68 percent).
TABLE 7.6A — GRADE 4

Public School Students’ Views on the Usefulness of Mathematics

<table>
<thead>
<tr>
<th>To what degree do you agree with the statement “Mathematics is useful for solving everyday problems?”</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td>1992</td>
<td>1996</td>
<td>1992</td>
</tr>
<tr>
<td>Disagree</td>
<td>13 (0.8)</td>
<td>13 (1.1)</td>
<td>13 (0.6)</td>
</tr>
<tr>
<td></td>
<td>205 (2.4)</td>
<td>206 (2.7)</td>
<td>207 (2.0)</td>
</tr>
<tr>
<td></td>
<td>14 (1.0)</td>
<td>16 (1.2)</td>
<td>14 (0.7)</td>
</tr>
<tr>
<td></td>
<td>218 (2.0)></td>
<td>207 (4.0)</td>
<td>211 (2.0)</td>
</tr>
<tr>
<td>Undecided</td>
<td>19 (0.9)</td>
<td>19 (1.4)</td>
<td>21 (0.9)</td>
</tr>
<tr>
<td></td>
<td>219 (1.7)</td>
<td>214 (2.3)</td>
<td>218 (1.3)</td>
</tr>
<tr>
<td></td>
<td>19 (1.2)</td>
<td>18 (1.4)</td>
<td>18 (0.7)></td>
</tr>
<tr>
<td></td>
<td>223 (2.3)</td>
<td>216 (2.1)</td>
<td>221 (1.5)</td>
</tr>
<tr>
<td>Agree</td>
<td>68 (1.1)</td>
<td>69 (1.9)</td>
<td>68 (1.1)</td>
</tr>
<tr>
<td></td>
<td>223 (1.3)</td>
<td>223 (1.9)</td>
<td>223 (0.9)</td>
</tr>
<tr>
<td></td>
<td>66 (1.6)</td>
<td>66 (1.7)</td>
<td>68 (0.9)</td>
</tr>
<tr>
<td></td>
<td>234 (1.4)</td>
<td>225 (1.9)</td>
<td>228 (1.0)></td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
Eighth graders were also asked about the usefulness of mathematics to solve everyday problems. According to the responses of eighth-grade public school students in Texas, as shown in Table 7.6B, the following was true:

- Overall, a large majority of the eighth graders strongly agreed (41 percent) or agreed (42 percent) that mathematics was useful for solving everyday problems. A small percentage strongly disagreed (2 percent) or disagreed (5 percent).

- The percentage of students in Texas strongly agreeing that mathematics is useful for everyday problems (41 percent) was not significantly different from the percentage seen nationally (41 percent).

Table 7.6B — Grade 8

Public School Students' Views on the Usefulness of Mathematics

<table>
<thead>
<tr>
<th>To what degree do you agree with the statement "Mathematics is useful for solving everyday problems?"</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly disagree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>2 (0.2)</td>
<td>1 (0.2)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>1996</td>
<td>2 (0.4)</td>
<td>2 (0.5)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>Disagree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>3 (0.4)</td>
<td>5 (0.5)</td>
<td>5 (0.4)</td>
</tr>
<tr>
<td>1996</td>
<td>5 (0.5)</td>
<td>6 (0.5)</td>
<td>5 (0.4)</td>
</tr>
<tr>
<td>Undecided</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>11 (0.7)</td>
<td>11 (0.8)</td>
<td>12 (0.5)</td>
</tr>
<tr>
<td>1996</td>
<td>10 (0.6)</td>
<td>13 (0.8)</td>
<td>12 (0.6)</td>
</tr>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>42 (1.0)</td>
<td>44 (1.3)</td>
<td>43 (0.7)</td>
</tr>
<tr>
<td>1996</td>
<td>42 (1.0)</td>
<td>39 (1.4)</td>
<td>40 (0.8)<</td>
</tr>
<tr>
<td>Strongly agree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>42 (1.3)</td>
<td>39 (1.2)</td>
<td>38 (0.7)</td>
</tr>
<tr>
<td>1996</td>
<td>41 (1.1)</td>
<td>39 (2.0)</td>
<td>41 (1.2)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. **Sample size is insufficient to permit a reliable estimate.**

Do Students Believe Mathematics Is a Static Discipline?

Do students believe that mathematics is a static, unchanging, rule-bound discipline or a dynamic, flexible way of approaching problem-solving situations? This question is key to the mathematics curricula described in the NCTM Standards. Curricula should emphasize the development of students' mathematical thinking and reasoning abilities. Although learning the basic facts and rules remains important, memorization of facts and rules without understanding and not being able to use them appropriately is not helpful. Curricula should also emphasize the importance of flexibility in choosing strategies and techniques for solving mathematical problems. Successful problem solving, employing flexibility in approach and technique, should lead to confidence and perseverance in solving higher level problems.

Students were asked whether they agreed or disagreed with the two statements that learning mathematics is mostly memorizing facts and that there is only one way to solve a mathematical problem. Responses by fourth-grade public school students are reported in Table 7.7A. According to their responses, the following is true:

- About one quarter of the fourth graders in Texas disagreed with the statement that mathematics is mostly memorizing facts (23 percent). This percentage was smaller than that of students agreeing with the statement (52 percent).

- When asked if there is only one way to solve a mathematics problem, 65 percent of fourth graders disagreed. This percentage was greater than that of students agreeing with this belief (16 percent).

- The percentage of students in the state disagreeing that mathematics is the memorization of facts (23 percent) was not significantly different from the percentage in the nation (21 percent). Similarly, the percentage disagreeing with the belief that there is only one solution to a mathematics problem (65 percent) was not significantly different from the national percentage (63 percent).
Eighth graders were also asked about their beliefs about the nature of mathematics. The responses of eighth-grade public school students in Texas, as shown in Table 7.7B, indicate that:

- Overall, about one third of the eighth graders strongly disagreed (9 percent) or disagreed (23 percent) that mathematics is mostly memorizing facts. Less than half strongly agreed (11 percent) or agreed (30 percent).

- The percentage of students in the state strongly disagreeing that mathematics is mostly memorizing facts was somewhat greater than the percentage seen nationally (7 percent).

- Overall, about three quarters of the eighth graders strongly disagreed (35 percent) or disagreed (42 percent) that there was only one way to solve a mathematical problem. A small percentage strongly agreed (2 percent) or agreed (6 percent).

- The percentage of students in the state strongly disagreeing that there is one way to solve a mathematics problem did not differ significantly from the percentage seen nationally (34 percent).
TABLE 7.7B — GRADE 8

Public School Students’ Views on the Nature of Mathematics

<table>
<thead>
<tr>
<th>To what degree do you agree with the following statements?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage and Average Scale Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning mathematics is mostly memorizing facts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly disagree</td>
<td>9 (0.8)</td>
<td>6 (0.7)</td>
<td>7 (0.4)</td>
</tr>
<tr>
<td></td>
<td>283 (3.3)</td>
<td>280 (3.7)</td>
<td>282 (2.8)</td>
</tr>
<tr>
<td>Disagree</td>
<td>23 (1.0)</td>
<td>19 (2.1)</td>
<td>22 (0.9)</td>
</tr>
<tr>
<td></td>
<td>279 (2.0)</td>
<td>281 (2.8)</td>
<td>283 (2.0)</td>
</tr>
<tr>
<td>Undecided</td>
<td>28 (1.0)</td>
<td>31 (1.0)</td>
<td>28 (0.7)</td>
</tr>
<tr>
<td></td>
<td>273 (1.7)</td>
<td>271 (1.8)</td>
<td>274 (1.4)</td>
</tr>
<tr>
<td>Agree</td>
<td>30 (1.1)</td>
<td>32 (1.5)</td>
<td>30 (0.7)</td>
</tr>
<tr>
<td></td>
<td>264 (1.7)</td>
<td>263 (2.0)</td>
<td>265 (1.1)</td>
</tr>
<tr>
<td>Strongly agree</td>
<td>11 (0.7)</td>
<td>12 (1.5)</td>
<td>12 (0.6)</td>
</tr>
<tr>
<td></td>
<td>258 (2.9)</td>
<td>256 (4.0)</td>
<td>255 (1.9)</td>
</tr>
<tr>
<td>There is only one correct way to solve a mathematics problem.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly disagree</td>
<td>35 (1.4)</td>
<td>34 (1.7)</td>
<td>34 (0.9)</td>
</tr>
<tr>
<td></td>
<td>280 (1.9)</td>
<td>278 (2.0)</td>
<td>279 (1.3)</td>
</tr>
<tr>
<td>Disagree</td>
<td>42 (1.2)</td>
<td>41 (1.3)</td>
<td>43 (0.7)</td>
</tr>
<tr>
<td></td>
<td>271 (1.6)</td>
<td>271 (2.4)</td>
<td>273 (1.2)</td>
</tr>
<tr>
<td>Undecided</td>
<td>15 (1.1)</td>
<td>16 (1.2)</td>
<td>14 (0.6)</td>
</tr>
<tr>
<td></td>
<td>261 (1.9)</td>
<td>261 (3.2)</td>
<td>263 (1.9)</td>
</tr>
<tr>
<td>Agree</td>
<td>6 (0.5)</td>
<td>6 (0.8)</td>
<td>5 (0.4)</td>
</tr>
<tr>
<td></td>
<td>250 (3.7)</td>
<td>237 (5.2)</td>
<td>243 (2.7)</td>
</tr>
<tr>
<td>Strongly agree</td>
<td>2 (0.4)</td>
<td>2 (0.4)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>*** (***)</td>
<td>*** (**)</td>
<td>*** (**)</td>
<td>245 (3.6)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). *** Sample size is insufficient to permit a reliable estimate.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
Reporting NAEP 1996 Mathematics Results for Texas

A.1 Participation Guidelines

As was discussed in the Introduction, unless the overall participation rate is sufficiently high for a jurisdiction, there is a risk that the assessment results for that jurisdiction will be subject to appreciable nonresponse bias. Moreover, even if the overall participation rate is high, there may be significant nonresponse bias if the nonparticipation that does occur is heavily concentrated among certain types of schools or students. The following guidelines concerning school and student participation rates in the state assessment program were established to address four significant ways in which nonresponse bias could be introduced into the jurisdiction sample estimates. The guidelines determining a jurisdiction's eligibility to have its results published are presented below. Also presented below are the conditions that will result in a jurisdiction's receiving a notation in the 1996 reports. Note that in order for a jurisdiction's results to be published with no notations, that jurisdiction must satisfy all guidelines. (A more complete discussion of the NAEP participation guidelines can be found in the Technical Report of the NAEP 1996 State Assessment Program in Mathematics.)

Guidelines on the Publication of NAEP Results

Guideline 1 — Publication of Public School Results
A jurisdiction will have its public school results published in the NAEP 1996 Mathematics Report Card (or in other reports that include all state-level results) if and only if its weighted participation rate for the initial sample of public schools is greater than or equal to 70 percent. Similarly, a jurisdiction will receive a separate NAEP 1996 Mathematics State Report if and only if its weighted participation rate for the initial sample of public schools is greater than or equal to 70 percent.
Guideline 2 — Publication of Nonpublic School Results
A jurisdiction will have its nonpublic school results published in the *NAEP 1996 Mathematics Report Card* (or in other reports that include all state-level results) if and only if its weighted participation rate for the initial sample of nonpublic schools is greater than or equal to 70 percent AND meets minimum sample size requirements.³ A jurisdiction eligible to receive a separate *NAEP 1996 Mathematics State Report* under guideline 1 will have its nonpublic school results included in that report if and only if that jurisdiction’s weighted participation rate for the initial sample of nonpublic schools is greater than or equal to 70 percent AND meets minimum sample size requirements. If a jurisdiction meets guideline 2 but fails to meet guideline 1, a separate *NAEP 1996 Mathematics State Report* will be produced containing only nonpublic school results.

Guideline 3 — Publication of Combined Public and Nonpublic School Results
A jurisdiction will have its combined results published in the *NAEP 1996 Mathematics Report Card* (or in other reports that include all state-level results) if and only if both guidelines 1 and 2 are satisfied. Similarly, a jurisdiction eligible to receive a separate *NAEP 1996 Mathematics State Report* under guideline 1 will have its combined results included in that report if and only if guideline 2 is also met.

Guidelines for Notations of NAEP Results

Guideline 4 — Notation for Overall Public School Participation Rate
A jurisdiction that meets guideline 1 will receive a notation if its weighted participation rate for the initial sample of public schools was below 85 percent AND the weighted public school participation rate after substitution was below 90 percent.

Guideline 5 — Notation for Overall Nonpublic School Participation Rate
A jurisdiction that meets guideline 2 will receive a notation if its weighted participation rate for the initial sample of nonpublic schools was below 85 percent AND the weighted nonpublic school participation rate after substitution was below 90 percent.

³ Minimum participation size requirements for reporting nonpublic school data consist of two components: (1) a school sample size of six or more participating schools and (2) an assessed student sample size of at least 62.
Guideline 6 — Notation for Strata-Specific Public School Participation Rate

A jurisdiction that is not already receiving a notation under guideline 4 will receive a notation if the sample of public schools included a class of schools with similar characteristics that had a weighted participation rate (after substitution) of below 80 percent, and from which the nonparticipating schools together accounted for more than five percent of the jurisdiction's total weighted sample of public schools. The classes of schools from each of which a jurisdiction needed minimum school participation levels were determined by degree of urbanization, minority enrollment, and median household income of the area in which the school is located.

Guideline 7 — Notation for Strata-Specific Nonpublic School Participation Rate

A jurisdiction that is not already receiving a notation under guideline 5 will receive a notation if the sample of nonpublic schools included a class of schools with similar characteristics that had a weighted participation rate (after substitution) of below 80 percent, and from which the nonparticipating schools together accounted for more than five percent of the jurisdiction's total weighted sample of nonpublic schools. The classes of schools from each of which a jurisdiction needed minimum school participation levels were determined by type of nonpublic school (Catholic versus non-Catholic) and location (metropolitan versus nonmetropolitan).

Guideline 8 — Notation for Overall Student Participation Rate in Public Schools

A jurisdiction that meets guideline 1 will receive a notation if the weighted student response rate within participating public schools was below 85 percent.

Guideline 9 — Notation for Overall Student Participation Rate in Nonpublic Schools

A jurisdiction that meets guideline 2 will receive a notation if the weighted student response rate within participating nonpublic schools was below 85 percent.
Guideline 10 — Notation for Strata-Specific Student Participation Rates in Public Schools

A jurisdiction that is not already receiving a notation under guideline 8 will receive a notation if the sampled students within participating public schools included a class of students with similar characteristics that had a weighted student response rate of below 80 percent, and from which the nonresponding students together accounted for more than five percent of the jurisdiction's weighted assessable public school student sample. Student groups from which a jurisdiction needed minimum levels of participation were determined by the age of the student, whether or not the student was classified as a student with a disability (SD) or of limited English proficiency (LEP), and the type of assessment session (monitored or unmonitored), as well as school level of urbanization, minority enrollment, and median household income of the area in which the school is located.

Guideline 11 — Notation for Strata-Specific Student Participation Rates in Nonpublic Schools

A jurisdiction that is not already receiving a notation under guideline 9 will receive a notation if the sampled students within participating nonpublic schools included a class of students with similar characteristics that had a weighted student response rate of below 80 percent, and from which the nonresponding students together accounted for more than five percent of the jurisdiction's weighted assessable nonpublic school student sample. Student groups from which a jurisdiction needed minimum levels of participation were determined by the age of the student, whether or not the student was classified as a student with a disability (SD) or of limited English proficiency (LEP), and the type of assessment session (monitored or unmonitored), as well as type and location of school.
A.2 NAEP Reporting Groups

The state assessment program provides results for groups of students defined by shared characteristics — region of the country, gender, race/ethnicity, parental education, location of the school, type of school, participation in Title I programs, and eligibility for the free/reduced-price lunch component of the National School Lunch Program. Based on criteria described later in this appendix, results are reported for subpopulations only when sufficient numbers of students and adequate school representation are present. For public school students, the minimum requirement is at least 62 students in a particular subgroup from at least 5 primary sampling units (PSUs). For nonpublic school students, the minimum requirement is 62 students from at least 6 different schools for the state assessment program or from at least 5 PSUs for the national assessment. However, the data for all students, regardless of whether their subgroup was reported separately, were included in computing overall results. Definitions of the subpopulations referred to in this report are presented on the following pages.

Region

Results are reported for four regions of the nation: Northeast, Southeast, Central, and West. States included in each region are shown in Figure A.1. All 50 states and the District of Columbia are listed. Territories and the two Department of Defense Educational Activities jurisdictions were not assigned to any region.

Regional results are based on national assessment samples, not on aggregated state assessment program samples. Thus, the regional results are based on a sample that is different and separate from that used to report the state results.

<table>
<thead>
<tr>
<th>FIGURE A.1</th>
<th>Regions of the Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTHEAST</td>
<td>SOUTHEAST</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Alabama</td>
</tr>
<tr>
<td>Delaware</td>
<td>Arkansas</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>Florida</td>
</tr>
<tr>
<td>Maine</td>
<td>Georgia</td>
</tr>
<tr>
<td>Maryland</td>
<td>Kentucky</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Louisiana</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Mississippi</td>
</tr>
<tr>
<td>New Jersey</td>
<td>North Carolina</td>
</tr>
<tr>
<td>New York</td>
<td>South Carolina</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Tennessee</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Virginia*</td>
</tr>
<tr>
<td>Vermont</td>
<td>West Virginia</td>
</tr>
<tr>
<td>Virginia*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The part of Virginia that is included in the Washington, DC, metropolitan area is included in the Northeast region; the remainder of the state is in the Southeast region.

2 For the State Assessment Program, a PSU is most often a single school; for the national assessment, a PSU is a selected geographic region (a county, group of counties, or a metropolitan statistical area).
Texas

Gender

Results are reported separately for males and females.

Race/Ethnicity

The race/ethnicity variable is derived from two questions asked of students and schools' records, and it is used for race/ethnicity subgroup comparisons. Two questions from the set of general student background questions were used to determine race/ethnicity:

If you are Hispanic, what is your Hispanic background?
- I am not Hispanic.
- Mexican, Mexican American, or Chicano
- Puerto Rican
- Cuban
- Other Spanish or Hispanic background

Students who responded to this question by filling in the second, third, fourth, or fifth oval were considered Hispanic. For students who filled in the first oval, did not respond to the question, or provided information that was illegible or could not be classified, responses to the question below were examined in an effort to determine race/ethnicity.

Which best describes you?
- White (not Hispanic)
- Black (not Hispanic)
- Hispanic (“Hispanic” means someone who is from a Mexican, Mexican American, Chicano, Puerto Rican, Cuban, or other Spanish or Hispanic background.)
- Asian or Pacific Islander (“Asian or Pacific Islander” means someone who is from a Chinese, Japanese, Korean, Filipino, Vietnamese, or other Asian or Pacific Island background.)
- American Indian or Alaskan Native (“American Indian or Alaskan Native” means someone who is from one of the American Indian tribes, or one of the original people of Alaska.)
- Other (specify)
Students' race/ethnicity was then assigned on the basis of their response. For students who filled in the sixth oval ("Other") or provided illegible information or information that could not be classified, or did not respond at all, race/ethnicity was assigned as determined by school records.³

Race/ethnicity could not be determined for students who did not respond to either of the demographic questions and whose schools did not provide information about race/ethnicity.

The details of how race/ethnicity classifications were derived is presented so that readers can determine how useful the results are for their particular purposes. Also, some students indicated that they were from a Hispanic background (e.g., Puerto Rican or Cuban) and that a racial/ethnic category other than Hispanic best described them. These students were classified as Hispanic based on the rules described above. Furthermore, information from the schools did not always correspond to how students described themselves. Therefore, the racial/ethnic results presented in this report attempt to provide a clear picture based on several sources of information.

As noted in Chapters 2 and 4, national and regional scale score and achievement level results for eighth-grade Asian/Pacific Islander students are not included in the main body of this report. The decision not to publish these results is discussed in Appendix F.

Parents' Highest Level of Education

The variable representing level of parental education is derived from responses to two questions from the set of general student background questions. Students were asked to indicate the extent of their mother's education:

<table>
<thead>
<tr>
<th>How far in school did your mother go?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o She did not finish high school.</td>
</tr>
<tr>
<td>o She graduated from high school.</td>
</tr>
<tr>
<td>o She had some education after high school.</td>
</tr>
<tr>
<td>o She graduated from college.</td>
</tr>
<tr>
<td>o I don't know.</td>
</tr>
</tbody>
</table>

Students were asked a similar question about their father's education level:

<table>
<thead>
<tr>
<th>How far in school did your father go?</th>
</tr>
</thead>
<tbody>
<tr>
<td>o He did not finish high school.</td>
</tr>
<tr>
<td>o He graduated from high school.</td>
</tr>
<tr>
<td>o He had some education after high school.</td>
</tr>
<tr>
<td>o He graduated from college.</td>
</tr>
<tr>
<td>o I don't know.</td>
</tr>
</tbody>
</table>

³ The procedure for assigning race/ethnicity was modified for Hawaii. See the Technical Report for the NAEP 1996 State Assessment Program in Mathematics for details.
The information was combined into one parental education reporting variable determined through the following process. If a student indicated the extent of education for only one parent, that level was included in the data. If a student indicated the extent of education for both parents, the higher of the two levels was included in the data. If a student did not know the level of education for both parents or did not know the level for one parent and did not respond for the other, the parental education level was classified as "I don't know." If the student did not respond for either parent, the student was recorded as having provided no response. (Nationally, 36 percent of fourth graders and 11 percent of eighth graders reported that they did not know the education level of either of their parents.)

Type of Location

Results are provided for students attending public schools in three mutually exclusive location types — central city, urban fringe/large town, and rural/small town — as defined below. The type of location variable is defined in such a way as to indicate the geographical location of a student's school. The intention is not to indicate, or imply, social or economic meanings for these location types. The type of location variable, on which the current NAEP sampling is based, does not support the reporting of regional results. Therefore, only state and national results will be presented.

Central City: The Central City category includes central cities of all Metropolitan Statistical Areas (MSAs).4 Central City is a geographic term and is not synonymous with "inner city."

Urban Fringe/Large Town: An Urban Fringe includes all densely settled places and areas within MSAs that are classified as urban by the Bureau of the Census. A Large Town is defined as places outside MSAs with a population greater than or equal to 25,000.

Rural/Small Town: Rural includes all places and areas with a population of less than 2,500 that are classified as rural by the Bureau of the Census. A Small Town is defined as places outside MSAs with a population of less than 25,000 but greater than or equal to 2,500.

4 Each Metropolitan Statistical Area (MSA) is defined by the Office of Management and Budget.
Type of School

Samples for the 1996 state assessment program were expanded to include students attending nonpublic schools (Catholic schools and other religious and private schools) in addition to students attending public schools. The expanded coverage was instituted for the first time in 1994. Samples for the 1990 and 1992 Trial State Assessment programs had been restricted to public school students only. For those jurisdictions meeting pre-established participation rate standards (see earlier section of this appendix), separate results are reported for public schools, for nonpublic schools, and for the combined public and nonpublic school samples. The combined sample for each jurisdiction also contains students attending Bureau of Indian Affairs (BIA) schools and Department of Defense Domestic Dependent Elementary and Secondary Schools (DDESS) in that jurisdiction. These two categories of schools are not included in either the public or nonpublic school samples.

Note that the DDESS and Department of Defense Dependents Schools (DoDDS)\(^5\) were assessed in 1996 as separate jurisdictions, reported as jurisdictions with public school samples only.

Title I Participation

Based on available school records, students were classified as either currently participating in a Title I program or receiving Title I services, or as not receiving such services. The classification applies only to the school year when the assessment was administered (i.e., the 1995-96 school year) and is not based on participation in previous years. If the school did not offer any Title I programs or services, all students in that school were classified as not participating.

Eligibility for the Free/Reduced-Price School Lunch Program

Based on available school records, students were classified as either currently eligible for the free/reduced-price lunch component of the Department of Agriculture’s National School Lunch Program or not eligible. The classification refers only to the school year when the assessment was administered (i.e., the 1995-96 school year) and is not based on eligibility in previous years. If school records were not available, the student was classified as “Information not available.” If the school did not participate in the program, all students in that school were classified as “Information not available.”

A.3 Guidelines for Analysis and Reporting

This report describes mathematics performance for fourth and eighth graders and compares the results for various groups of students within these populations — for example, those who have certain demographic characteristics or who responded to a specific background question in a particular way. The report examines the results for individual demographic groups and individual background questions. It does not include an analysis of the relationships among combinations of these subpopulations or background questions.

\(^5\) The Department of Defense Dependents Schools (DoDDS) refers to overseas schools (i.e., schools outside the United States). Department of Defense Domestic Dependent Elementary and Secondary Schools (DDESS) refers to domestic schools (i.e., schools in the United States).
Texas

Drawing Inferences from the Results

Because the percentages of students in these subpopulations and their average scale scores are based on samples — rather than on the entire population of fourth and eighth graders in a jurisdiction — the numbers reported are necessarily estimates. As such, they are subject to a measure of uncertainty, reflected in the standard error of the estimate. When the percentages or average scale scores of certain groups are compared, it is essential to take the standard error into account, rather than to rely solely on observed similarities or differences. Therefore, the comparisons discussed in this report are based on statistical tests that consider both the magnitude of the difference between the averages or percentages and the standard errors of those statistics.

One of the goals of the state assessment program is to estimate scale score distributions and percentages of students in the categories described in A.2 for the overall populations of fourth- and eighth-grade students in each participating jurisdiction based on the particular samples of students assessed. The use of confidence intervals, based on the standard errors, provides a way to make inferences about the population average scale scores and percentages in a manner that reflects the uncertainty associated with the sample estimates. An estimated sample average scale score ± 2 standard errors approximates a 95 percent confidence interval for the corresponding population average or percentage. This means that one can conclude with approximately 95 percent confidence that the average scale score of the entire population of interest (e.g., all fourth-grade students in public schools in a jurisdiction) is within ± 2 standard errors of the sample average.

As an example, suppose that the average mathematics scale score of the students in a particular jurisdiction's eighth-grade sample were 256 with a standard error of 1.2. A 95 percent confidence interval for the population average would be as follows:

\[
\text{Mean ± 2 standard errors} = 256 ± 2 \times (1.2) = 256 ± 2.4 = 256 - 2.4 \text{ and } 256 + 2.4 = (253.6, 258.4)
\]

Thus, one can conclude with 95 percent confidence that the average scale score for the entire population of eighth-grade students in public schools in that jurisdiction is between 253.6 and 258.4.

Similar confidence intervals can be constructed for percentages, if the percentages are not extremely large or extremely small. For extreme percentages, confidence intervals constructed in the above manner may not be appropriate, and accurate confidence intervals can be constructed only by using procedures that are quite complicated.

Extreme percentages, defined by both the magnitude of the percentage and the size of the sample from which it was derived, should be interpreted with caution. (The forthcoming Technical Report of the NAEP 1996 State Assessment Program in Mathematics contains a more complete discussion of extreme percentages.)
Analyzing Subgroup Differences in Averages and Percentages

The statistical tests determine whether the evidence — based on the data from the groups in the sample — is strong enough to conclude that the averages or percentages are really different for those groups in the population. If the evidence is strong (i.e., the difference is statistically significant), the report describes the group averages or percentages as being different (e.g., one group performed higher than or lower than another group) — regardless of whether the sample averages or sample percentages appear to be about the same or not. If the evidence is not sufficiently strong (i.e., the difference is not statistically significant), the averages or percentages are described as being not significantly different — again, regardless of whether the sample averages or sample percentages appear to be about the same or widely discrepant. The reader is cautioned to rely on the results of the statistical tests — rather than on the apparent magnitude of the difference between sample averages or percentages — to determine whether those sample differences are likely to represent actual differences between the groups in the population.

In addition to the overall results, this report presents outcomes separately for a variety of important subgroups. Many of these subgroups are defined by shared characteristics of students, such as their gender or race/ethnicity and the type of location in which their school is situated. Other subgroups are defined by the responses of the assessed students' mathematics teachers to questions in the mathematics teacher questionnaire.

In Chapter 1 of this report, differences between the jurisdiction and the nation were tested for overall mathematics scale score and for each of the mathematics content areas. In Chapter 2, significance tests were conducted for the overall scale score for each of the subpopulations. Chapter 3 reports differences between the jurisdiction and nation for the percentage of students at or above the Proficient level, and Chapter 4 contains significance tests for the percentage of students at or above the Proficient level for each of the subpopulations. In Chapters 5 through 7, comparisons were made across subgroups for responses to various background questions.

As an example of comparisons across subgroups, consider the question: Do students who reported discussing studies at home almost every day exhibit higher average mathematics scale scores than students who report never or hardly ever doing so?

To answer the question posed above, begin by comparing the average mathematics scale score for the two groups being analyzed. If the average for the group that reported discussing their studies at home almost every day is higher, it may be tempting to conclude that that group does have a higher mathematics scale score than the group that reported never or hardly ever discussing their studies at home. However, even though the averages differ, there may be no real difference in performance between the two groups in the population because of the uncertainty associated with the estimated average scale scores of the groups in the sample. Remember that the intent is to make a statement about the entire population, not about the particular sample that was assessed. The data from the sample are used to make inferences about the population as a whole.
As discussed in the previous section, each estimated sample average scale score (or percentage) has a degree of uncertainty associated with it. It is therefore possible that if all students in the population (rather than a sample of students) had been assessed or if the assessment had been repeated with a different sample of students or a different, but equivalent, set of questions, the performances of various groups would have been different. Thus, to determine whether there is a real difference between the average scale score (or percentage of a certain attribute) for two groups in the population, an estimate of the degree of uncertainty associated with the difference between the scale score averages or percentages of those groups must be obtained for the sample. This estimate of the degree of uncertainty — called the standard error of the difference between the groups — is obtained by taking the square of each group's standard error, summing these squared standard errors, and then taking the square root of this sum.

In a manner similar to that in which the standard error for an individual group average or percentage is used, the standard error of the difference can be used to help determine whether differences between groups in the population are real. The difference between the mean scale score or percentage of the two groups — 2 standard errors of the difference — represents an approximate 95 percent confidence interval. If the resulting interval includes zero, there is insufficient evidence to claim a real difference between groups in the population. If the interval does not contain zero, the difference between groups is statistically significant (different) at the .05 level.

As another example, to determine whether the average mathematics scale score of fourth-grade males is higher than that of fourth-grade females in a particular jurisdiction's public schools, suppose that the sample estimates of the average scale scores and standard errors for males and females were as follows:

<table>
<thead>
<tr>
<th>Group</th>
<th>Average Scale Score</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>218</td>
<td>0.9</td>
</tr>
<tr>
<td>Females</td>
<td>216</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The difference between the estimates of the average scale scores of males and females is two points (218 - 216). The standard error of this difference is

\[\sqrt{0.9^2 + 1.1^2} = 1.4 \]

Thus, an approximate 95 percent confidence interval for this difference is

Mean difference ± 2 standard errors of the difference =

\[2 \pm 2 \times (1.4) = 2 \pm 2.8 = 2 - 2.8 \text{ and } 2 + 2.8 = (-0.8, 4.8) \]
Texas

The value zero is within this confidence interval, which extends from -0.8 to 4.8 (i.e., zero is between -0.8 and 4.8). Thus, there is insufficient evidence to claim a difference in average mathematics scale score between the populations of fourth-grade males and females in public schools in the hypothetical jurisdiction.6

Throughout this report, when the average scale scores or percentages for two groups were compared, procedures like the one described above were used to draw the conclusions that are presented. If a statement appears in the report indicating that a particular group had a higher (or lower) average scale score than a second group, the 95 percent confidence interval for the difference between groups did not contain zero. An attempt was made to distinguish between group differences that were statistically significant but rather small in a practical sense and differences that were both statistically and practically significant. A procedure based on effect sizes was used. Statistically significant differences that are rather small are described in the text as somewhat higher or somewhat lower. When a statement indicates that the average scale score or percentage of some attribute was not significantly different for two groups, the confidence interval included zero, and thus no difference could be assumed between the groups. The information described in this section also pertains to comparisons across years. The reader is cautioned to avoid drawing conclusions solely on the basis of the magnitude of the difference. A difference between two groups in the sample that appears to be slight may represent a statistically significant difference in the population because of the magnitude of the standard errors. Conversely, a difference that appears to be large may not be statistically significant.

The procedures described in this section, and the certainty ascribed to intervals (e.g., a 95% confidence interval), are based on statistical theory that assumes that only one confidence interval or test of statistical significance is being performed. However, in each chapter of this report, many different groups are being compared (i.e., multiple sets of confidence intervals are being calculated). In sets of confidence intervals, statistical theory indicates that the certainty associated with the entire set of intervals is less than that attributable to each individual comparison from the set. To hold the certainty level for the set of comparisons at a particular level (e.g., 0.95), adjustments (called multiple comparison procedures) must be made to the methods described in the previous section. One such procedure — the Bonferroni method — was used in the analyses described in this report to form confidence intervals for the differences between groups whenever sets of comparisons were considered.7 Thus, the confidence intervals in the text that are based on sets of comparisons are more conservative than those described on the previous pages.

6 The procedure described above (especially the estimation of the standard error of the difference) is, in a strict sense, only appropriate when the statistics being compared come from independent samples. For certain comparisons in the report, the groups were not independent. In those cases, a different (and more appropriate) estimate of the standard error of the difference was used.

Most of the multiple comparisons in this report pertain to relatively small sets or "families" of comparisons. For example, when comparisons were discussed concerning students' reports of parental education, six comparisons were conducted — all pairs of the four parental education levels. In these situations, Bonferroni procedures were appropriate. However, the maps in Chapter 1 of this report display comparisons between Texas and all other participating jurisdictions. The "family" of comparisons in this case was as many as 46. To control the certainty level for a large family of comparisons, the False Discovery rate (FDR) criterion was used. Unlike the Bonferroni procedures which control the familywise error rate (i.e., the probability of making even one false rejection in the set of comparisons), the Benjamini and Hochberg (BH) approach using the FDR criterion controls the expected proportion of falsely rejected hypotheses as a proportion of all rejected hypotheses. Bonferroni procedures may be considered conservative for large families of comparisons. In other words, using the Bonferroni method would produce more statistically nonsignificant comparisons than using the BH approach. Therefore, the BH approach is potentially more powerful for comparing Texas to all other participating jurisdictions. A more detailed description of the Bonferroni and BH procedures appears in the Technical Report of the NAEP 1996 State Assessment Program in Mathematics.

Statistics with Poorly Estimated Standard Errors

Not only are the averages and percentages reported in NAEP subject to uncertainty, but their standard errors are as well. In certain cases, typically when the standard error is based on a small number of students or when the group of students is enrolled in a small number of schools, the amount of uncertainty associated with the standard errors may be quite large. Throughout this report, estimates of standard errors subject to a large degree of uncertainty are followed by the symbol "!". In such cases, the standard errors — and any confidence intervals or significance tests involving these standard errors — should be interpreted cautiously. Further details concerning procedures for identifying such standard errors are discussed in the Technical Report of the NAEP 1996 State Assessment Program in Mathematics.

Minimum Subgroup Sample Sizes

Results for mathematics performance and background variables were tabulated and reported for groups defined by gender, race/ethnicity, parental education, location of the school, type of school, participation in federally funded Title I programs, and eligibility for the free/reduced-price lunch component of the National School Lunch Program. NAEP collects data for five racial/ethnic subgroups (White, Black, Hispanic, Asian/Pacific Islander, and American Indian/Alaskan Native), three types of locations (Central City, Urban Fringe/Large Town, and Rural/Small Town), and five levels of parents' education (Graduated From College, Some Education After High School, Graduated From High School, Did Not Finish High School, and I Don't Know).

Williams, V.S.L., L.V. Jones, and J.W. Tukey. Controlling Error in Multiple Comparisons, with Special Attention to the National Assessment of Educational Progress. (Research Triangle Park, NC: National Institute of Statistical Sciences, December 1994).

10 Previous NAEP reports reported data for four types of communities, rather than for the three types of location. These types of communities were Advantaged Urban, Disadvantaged Urban, Extreme Rural, and Other types of communities.
In many jurisdictions, and for some regions of the country, the number of students in some of these groups was not sufficiently high to permit accurate estimation of performance and/or background variable results. As a result, data are not provided for the subgroups with students from very few schools or for the subgroups with very small sample sizes. For results to be reported for any state assessment program subgroup, public school results must represent at least 5 primary sampling units (PSUs) and nonpublic school results must represent 6 schools. For results to be reported for any national assessment subgroup, at least 5 PSUs must be represented in the subgroup. In addition, a minimum sample of 62 students per subgroup is required. For statistical tests pertaining to subgroups, the sample size for both groups has to meet the minimum sample size requirements.

The minimum sample size of 62 was determined by computing the sample size required to detect an effect size of 0.5 total-group standard deviation units with a probability of 0.8 or greater. The effect size of 0.5 pertains to the true difference between the average scale score of the subgroup in question and the average scale score for the total fourth- or eighth-grade public school population in the jurisdiction, divided by the standard deviation of the scale score in the total population. If the true difference between subgroup and total group mean is 0.5 total-group standard deviation units, then a sample size of at least 62 is required to detect such a difference with a probability of 0.8. Further details about the procedure for determining minimum sample size appear in the Technical Report of the NAEP 1996 State Assessment Program in Mathematics.

Describing the Size of Percentages

Some of the percentages reported in the text of the report are given qualitative descriptions. For example, the number of students currently taking an algebra class might be described as “relatively few” or “almost all,” depending on the size of the percentage in question. Any convention for choosing descriptive terms for the magnitude of percentages is to some degree arbitrary. The descriptive phrases used in the report and the rules used to select them are shown below.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Descriptive Term Used in Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 0</td>
<td>None</td>
</tr>
<tr>
<td>0 < p ≤ 8</td>
<td>A small percentage</td>
</tr>
<tr>
<td>8 < p ≤ 13</td>
<td>Relatively few</td>
</tr>
<tr>
<td>13 < p ≤ 18</td>
<td>Less than one fifth</td>
</tr>
<tr>
<td>18 < p ≤ 22</td>
<td>About one fifth</td>
</tr>
<tr>
<td>22 < p ≤ 27</td>
<td>About one quarter</td>
</tr>
<tr>
<td>27 < p ≤ 30</td>
<td>Less than one third</td>
</tr>
<tr>
<td>30 < p ≤ 36</td>
<td>About one third</td>
</tr>
<tr>
<td>36 < p ≤ 47</td>
<td>Less than half</td>
</tr>
<tr>
<td>47 < p ≤ 53</td>
<td>About half</td>
</tr>
<tr>
<td>53 < p ≤ 64</td>
<td>More than half</td>
</tr>
<tr>
<td>64 < p ≤ 71</td>
<td>About two thirds</td>
</tr>
<tr>
<td>71 < p ≤ 79</td>
<td>About three quarters</td>
</tr>
<tr>
<td>79 < p ≤ 89</td>
<td>A large majority</td>
</tr>
<tr>
<td>89 < p < 100</td>
<td>Almost all</td>
</tr>
<tr>
<td>p = 100</td>
<td>All</td>
</tr>
</tbody>
</table>
A.4 Revisions to the NAEP 1990 and 1992 Mathematics Findings

After the NAEP 1994 assessment has been conducted, two technical problems were discovered in the procedures used to develop the NAEP mathematics scale and achievement levels determined for the 1990 and 1992 mathematics assessments. These errors affected the mathematics scale scores reported in 1992 and the achievement level results reported in 1990 mathematics scale scores reported in 1992 and the achievement level results reported in 1990 and 1992. The National Center for Education Statistics (NCES) and the National Assessment Governing Board (NAGB) have evaluated the impact of these errors and have reanalyzed and reported the revised results from both mathematics assessments. The technical errors have been corrected and the revised national and state scale score results for 1992 and achievement level results for 1990 and 1992 are presented in the NAEP 1996 mathematics reports.

Although the two technical problems that were discovered are discussed in greater detail in the NAEP 1996 Technical Report and NAEP 1996 Technical Report of the State Assessment in Mathematics, a brief summary is presented below.

The first technical problem resulted from an error in the computer program used to compute NAEP scale score results. The error occurred in the convention used to handle omitted responses in the item response theory (IRT) scaling of the partial-credit constructed-response questions, and it was limited only to those questions. In Analyses of the NAEP 1992 response questions, and it was limited only to those questions. In analyses of the NAEP 1992 mathematics assessment, this error caused all blank responses to partial-credit constructed-response questions (both omitted and not-reached responses) to be treated as missing—an acceptable treatment, but not the conventional choice for NAEP. (Because the NAEP 1990 mathematics assessment did not include these types of questions, the error did not occur.) The national and state assessments results were recalculated using the intended convention for the treatment of omitted responses.

In general, the effect of this technical problem on the previously reported NAEP 1992 mathematics findings was minimal, and it had little impact on policy-related interpretations. The recalculated 1992 mathematics scale score results, at the national and state levels, are quite similar to those published in the 1992 mathematics reports.
The second technical problem involved the development of the NAEP mathematics achievement level cut scores, and it concerned the mapping of the NAGB-approved achievement levels onto the NAEP mathematics scale. This error affected the achievement level results reported for the 1990 and 1992 mathematics assessments. In deriving the final levels recommended to NAGB, panelists’ ratings for the multiple-choice and constructed-response questions were combined to obtain an overall rating for the questions. When combined, the ratings were weighted based on the amount of information provided by each type of question. In other words, some of the questions “counted more” toward the overall cut scores than others. However, because the weighting was carried out incorrectly, the constructed-response questions received more weight than intended. Therefore, the cut scores established by mapping the achievement levels onto the NAEP mathematics scale were incorrect, and the percentages of students at or above these levels were incorrectly estimated.

The program that mapped the achievement levels to the NAEP scale was corrected to appropriate weight the constructed-response questions, and revised mathematics achievement level cut scores were developed based on the corrected scaling procedures. As a result, the cut scores for the three achievement levels at each grade were raised, and the percentages of students at or above the achievement levels were recalculated based on the corrected cut scores. Revised 1990 and 1992 percentages, for the national and state assessments, are presented in this report.
The NAEP 1996 Mathematics Assessment

The 1996 assessment was the first update of the NAEP mathematics assessment framework since the release of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics. This update reflected refinements in the specifications governing the development of the 1996 assessment while assuring comparability of results across the 1990, 1992, and 1996 assessments. The refinements that distinguish the framework of the assessment conducted in 1996 from the framework of the assessments conducted in 1990 and 1992 include the following:

- moving away from the rigid content-strand-by-cognitive-process matrix that governed the development of earlier assessments. Classifying specific questions into cells of a matrix had required those questions to measure a unique content strand at a unique cognitive level. This stipulation often decontextualized the questions and limited the possibility of assessing students’ abilities to reason in rich problem-solving situations and to make connections among content strands within mathematics.

- allowing individual questions on the assessment to be classified in one or more content strands when appropriate. Knowledge or skills from more than one content strand is often needed to answer a question. The option to classify questions in multiple ways provides a greater opportunity to measure student ability in content settings that closely approximate real-world reasoning and problem-solving situations. (However, to develop content strand scales, the primary content classification was used for questions with multiple classifications.)

- including the mathematics ability categories (conceptual understanding, procedural knowledge, and problem solving) as well as the process goals from the NCTM Standards (i.e., communication and connections) to achieve a balance of questions that measured a range of cognitive outcomes.

Texas

- continuing the move towards including more constructed-response questions.
- creating "families" of questions that probe a student's understanding of mathematics vertically within a content strand or horizontally across content strands.
- revising the number sense, properties, and operations and geometry and spatial sense content strands to reflect the NCTM Standards emphasis on developing and assessing students' abilities to make sense of both number and operation and spatial settings.

These refinements to the NAEP mathematics framework were made so that the 1996 assessment would: (1) more adequately reflect recent curricular emphases and objectives and yet (2) maintain a connection with the 1990 and 1992 assessments to measure trends in student performance. Prior to the 1996 assessment, investigations were conducted to ensure that results from the assessment could be reported on the existing NAEP mathematics scale. The conclusion drawn from these investigations was that results from the 1990, 1992, and 1996 assessments could be reported on a common scale and trends in mathematics performance since 1990 examined.

The Assessment Design

Each student in the state assessment program in mathematics received a booklet containing a set of general background questions, a set of subject-specific background questions, and a combination of cognitive questions grouped in sets called blocks. At each grade level, the blocks of questions consisted of multiple-choice and constructed-response questions. Two types of constructed-response questions were included — short and extended constructed-response. Short constructed-response questions required students to provide answers to computation problems or to describe solutions in one or two sentences. Extended constructed-response questions required students to provide longer answers (e.g., a description of possibilities, a more involved computational analysis, or a description of a pattern and its implications). Students were expected to adequately answer the short constructed-response questions in about 2 to 3 minutes and the extended constructed-response questions in approximately 5 minutes. Short constructed-response questions which first appeared in the assessment in 1996 were graded to allow for partial credit (i.e., giving students credit for answers that are partially correct) according to a unique scoring rubric developed for each constructed-response question. Short constructed-response questions included in the 1990 and 1992 mathematics assessments were dichotomously scored (i.e., correct or incorrect). The extended constructed-response questions included in the 1992 and 1996 assessments were scored allowing for partial credit.
The blocks of questions contained several other features. Five to seven of the blocks at each grade level allowed calculator usage. At grade 4, students were provided four-function calculators, and at grade 8, students were provided scientific calculators. Prior to the assessment, all students were trained in the use of these calculators. For several blocks, students were given manipulatives (including geometric shapes, three-dimensional models, and spinners). For two of the blocks at each grade level, students were given rulers (at grade 4) or rulers and protractors (at grade 8) so the student could answer questions dealing with measurements and draw specified geometric shapes.

As part of the national assessment, other blocks of questions were developed for each of the grade levels. Each grade level had two estimation blocks that employed a paced-audiotape format to measure students’ estimation skills. Each grade level also had two 30-minute theme blocks consisting of a mixture of multiple-choice and constructed-response questions. All of the questions in these blocks related to some aspect of a rich problem setting that served as a unifying theme for the entire block. Neither the estimation nor the theme block component were included in the state assessment program. Results for the estimation and theme blocks will be featured in future reports on the NAEP 1996 mathematics assessment.

Of the 17 blocks in the national sample at the fourth grade and the 19 blocks in the national sample at the eighth grade, 3 were carried forward from the 1990 assessment and 5 were carried forward from the 1992 assessment to allow for the measurement of trends across time. The remaining blocks of questions at each grade level contained new questions developed for the 1996 assessment as specified by the updated framework.

The data in Table B.1 reflect the number of questions by type by grade level for the 1990, 1992, and 1996 assessments. As mentioned earlier, the 1996 assessment continued NAEP’s shift toward more constructed-response questions, including extended constructed-response questions that required students to provide an answer and a corresponding explanation.
Each booklet in the state assessment program included three sets of student background questions. The first, consisting of general background questions, included questions about race or ethnicity, mother's and father's level of education, reading materials in the home, homework, attendance, and academic expectations. The second set, consisting of mathematics background questions, included questions about instructional activities, courses taken, use of specialized resources such as calculators in mathematics classes, and views on the utility and value of the subject. (Students were given 5 minutes to complete each set of questions, with the exception of the fourth graders, who were given more time because the general background questions were read aloud to them.) The third set of questions followed the cognitive question blocks and contained five questions about students' motivation to do well on the assessment, their perception of the difficulty of the assessment, and their familiarity with the types of cognitive questions included.

The blocks of cognitive and background questions were carefully balanced to ensure that the blocks could be completed within the time provided to the students, using information gathered from the field test. For more information on the design of the assessment, the reader is referred to Appendix C.
Technical Appendix: The Design, Implementation, and Analysis of the 1996 State Assessment Program in Mathematics

C.1 Overview

The purpose of this appendix is to provide technical information about the 1996 state assessment program in mathematics. It provides a description of the design for the assessment and gives an overview of the steps involved in the implementation of the program from the planning stages through to the analysis of the data.

This appendix is one of several documents that provide technical information about the 1996 state assessment program. Those interested in more details are referred to the forthcoming *Technical Report of the NAEP 1996 State Assessment Program in Mathematics*. Theoretical information about the models and procedures used in NAEP can be found in the special NAEP-related issue of the *Journal of Educational Statistics* (Summer 1992/Volume 17, Number 2) as well as previous national technical reports.

Educational Testing Service (ETS) was awarded the cooperative agreement for the 1996 NAEP programs, including the state assessment program. ETS was responsible for overall management of the programs as well as for development of the overall design, the cognitive questions and questionnaires, data analysis, and reporting. National Computer Systems (NCS) was a subcontractor to ETS on both the national and state NAEP programs. NCS was responsible for printing, distribution, and receipt of all assessment materials, and for scanning and professional scoring. All aspects of sampling and field operations for both the national and state assessment programs were the responsibility of Westat, Inc. NCES awarded a separate cooperative agreement to Westat for these services for the national and state assessments.
Organization of the Technical Appendix

This appendix provides a brief description of the design for the state assessment program in mathematics and gives an overview of the steps involved in implementing the program from the planning stages to the analysis of the data. (A more detailed discussion of the technical aspects of the NAEP state assessment program can be found in the forthcoming Technical Report of the NAEP 1996 State Assessment Program in Mathematics.) The organization of this appendix is as follows:

- Section C.2 provides an overview of the design of the 1996 state assessment program in mathematics.
- Section C.3 discusses the balanced incomplete block (BIB) spiral design that was used to assign cognitive questions to assessment booklets and assessment booklets to students.
- Section C.4 outlines the sampling design used for the 1996 state assessment program.
- Section C.5 summarizes Westat's field administration procedures.
- Section C.6 describes the flow of the data from their receipt at NCS through data entry and professional scoring.
- Section C.7 summarizes the procedures used to weight the assessment data and to obtain estimates of the sampling variability of subpopulation estimates.
- Section C.8 describes the initial analyses performed to verify the quality of the data.
- Section C.9 describes the item response theory scales and the overall mathematics composite scale that were created for the final analyses of the state assessment program data.
- Section C.10 provides an overview of the linking of the scaled results from the state assessment program in mathematics to those from the national assessment.

C.2 Design of the NAEP 1996 State Assessment Program in Mathematics

The major aspects of the design for the state assessment program in mathematics included the following:

- Participation at the jurisdiction level was voluntary.
- Fourth- and eighth-grade students from public and nonpublic schools were assessed. Nonpublic schools included Catholic schools, other religious schools, private schools, Department of Defense Domestic Elementary and Secondary Schools (DDESS), and Bureau of Indian Affairs schools. Separate representative samples of public and nonpublic schools were selected in each participating jurisdiction and students were randomly sampled within schools. The size of a jurisdiction's nonpublic school samples was proportional to the percentage of students in that jurisdiction attending such schools.
The fourth- and eighth-grade mathematics assessment instruments used for the state assessment program and the national assessment consisted of 13 blocks of questions. Eight of these blocks were previously administered as part of the 1990 and 1992 national and Trial State Assessments. The type of questions — constructed-response or multiple-choice — was determined by the nature of the task. In addition, the constructed-response questions were of two types: short constructed-response questions required students to provide answers to computation problems or to describe solutions in one or two sentences, while extended constructed-response questions required students to provide longer responses when answering the question. Each student was given 3 of the 13 blocks of questions.

A complex form of matrix sampling called a balanced incomplete block (BIB) spiraling design was used. With BIB spiraling, students in an assessment session received different booklets, which provided for greater mathematics content coverage than would have been possible had every student been administered the identical set of questions, without imposing an undue testing burden on the student.

Background questionnaires given to the students, the students' mathematics teachers, and the principals or other administrators provided a variety of contextual information. The background questionnaires for the state assessment program were identical to those used in the national fourth- and eighth-grade assessments.

The total assessment time for each student was approximately one hour and 40 minutes. Each assessed student was assigned a mathematics booklet that contained two 5-minute background questionnaires, followed by 3 of the 13 blocks of mathematics questions requiring 15 minutes each, and a 3-minute motivation questionnaire. Twenty-six different booklets were assembled.

The assessments were scheduled to take place in the five-week period between January 29 and March 4, 1996. One-fourth of the schools in each jurisdiction were to be assessed each week throughout the first four weeks; however, due to the severe weather throughout much of the country, the fifth week was used for regular testing as well as for makeup sessions.

Data collection was, by law, the responsibility of each participating jurisdiction. Security and uniform assessment administration were high priorities. Extensive training of state assessment personnel was conducted to assure that the assessment would be administered under standard, uniform procedures. For jurisdictions that had participated in previous NAEP state assessments, 25 percent of both public and nonpublic school assessment sessions were monitored by the Westat staff. For the jurisdictions new to NAEP, 50 percent of both public and nonpublic school sessions were monitored.
C.3 Assessment Instruments

The assembly of cognitive questions into booklets and their subsequent assignment to assessed students was determined by a BIB design with spiraled administration. This design is a variant of a matrix sampling design. The full set of mathematics questions was divided into 13 unique blocks, each requiring 15 minutes for completion. Each assessed student received a booklet containing 3 of the 13 blocks according to a design that ensured that each block was administered to a representative sample of students within each jurisdiction.

In addition to the student assessment booklets, three other instruments provided data relating to the assessment — a mathematics teacher questionnaire, a school characteristics and policies questionnaire, and an SD/LEP student questionnaire.

The student assessment booklets contained five sections and included both cognitive and noncognitive questions. In addition to three 15-minute sections of cognitive questions, each booklet included two 5-minute sets of general and mathematics background questions designed to gather contextual information about students, their experiences in mathematics, and their attitudes toward the subject, and one 3-minute section of motivation questions designed to gather information about the student’s level of motivation while taking the assessment.

The teacher questionnaire was administered to the mathematics teachers of the fourth- and eighth-grade students participating in the assessment. The questionnaire consisted of three sections and took approximately 20 minutes to complete. The first section focused on the teacher’s general background and experience; the second, on the teacher’s background related to mathematics; and the third, on classroom information about mathematics instruction.

The school characteristics and policies questionnaire was given to the principal or other administrator in each participating school and took about 20 minutes to complete. The questions asked about the principal’s background and experience, school policies, programs, and facilities, and the demographic composition and background of the students and teachers.

The SD/LEP student questionnaire was completed by the staff member most familiar with any student selected for the assessment who was classified in either of two ways: students with disabilities (SD) had an Individualized Education Plan (IEP) of equivalent special education plan (for reasons other than being gifted and talented); students with limited English proficiency were classified as LEP students. The questionnaire took approximately three minutes to complete and asked about the student and the special programs in which the student participated. It was completed for all selected SD or LEP students regardless of whether or not they participated in the assessment. Selected SD or LEP students participated in the assessment if they were determined by the school to be able to participate, considering the terms of their IEP and accommodations provided by the school or by NAEP.
C.4 The Sampling Design

The sampling design for NAEP is complex, in order to minimize burden on schools and students while maximizing the utility of the data; for further details see the forthcoming Technical Report for the NAEP 1996 State Assessment Program in Mathematics. The target populations for the state assessment program in mathematics consisted of fourth- and eighth-grade students enrolled in either public or nonpublic schools. The representative samples of public school fourth and eighth graders assessed in the state assessment program came from about 100 schools (per grade) in most jurisdictions. However, if a jurisdiction had fewer than 100 public schools with a particular grade, all or almost all schools were asked to participate. If a jurisdiction had smaller numbers of students in each school than expected, more than 100 schools were selected for participation. The nonpublic school samples differed in size across the jurisdictions, with the number of schools selected proportional to the nonpublic school enrollment within each jurisdiction. Typically, about 20 to 25 nonpublic schools (per grade) were included for each jurisdiction. The school sample in each jurisdiction was designed to produce aggregate estimates for the jurisdiction and for selected subpopulations (depending upon the size and distribution of the various subpopulations within the jurisdiction) and also to enable comparisons to be made, at the jurisdiction level, between administration of assessment tasks with monitoring and without monitoring. The public schools were stratified by urbanization, percentage of Black and Hispanic students enrolled, and median household income within the ZIP code area of the school. The nonpublic schools were stratified by type of control (Catholic, private/other religious, other nonpublic), metropolitan status, and enrollment size per grade.

The national and regional results presented in this report are based on nationally representative samples of fourth- and eighth-grade students. The samples were selected using a complex multistage sampling design involving the sampling of students from selected schools within selected geographic areas across the country. The sample design had the following stages:

1. selection of geographic areas (a county, group of counties, or metropolitan statistical area)
2. selection of schools (public and nonpublic) within the selected areas
3. selection of students within selected schools

Each selected school that participated in the assessment, and each student assessed, represent a portion of the population of interest. To make valid inferences from student samples to the respective populations from which they were drawn, sampling weights are needed. Discussions of sampling weights and how they are used in analyses are presented in sections C.7 and C.8.
Texas

The state results provided in this report are based on state-level samples of fourth- and eighth-grade students. The samples of both public and nonpublic school students were selected based on a two-stage sample design that entailed selecting students within schools. The first-stage samples of schools were selected with a probability proportional to the fourth- or eighth-grade enrollment in the schools. Special procedures were used for jurisdictions with many small schools and for jurisdictions with a small number of schools. As with the national samples, the state samples were weighted to allow for valid inferences about the populations of interest.

The results presented for a particular jurisdiction are based on the representative sample of students who participated in the 1996 state assessment program. The results for the nation and regions of the country are based on the nationally and regionally representative samples of students who were assessed as part of the national NAEP program. Using the national and regional results from the 1996 national assessment was necessary because of the voluntary nature of the state assessment program. Because not every state participated in the program, the aggregated data across states did not necessarily provide representative national or regional results.

In most jurisdictions, up to 30 students were selected from each school, with the aim of providing an initial sample size of approximately 3,000 public school students per jurisdiction per grade. The student sample size of 30 for each school was chosen to ensure that at least 2,000 public school students (per grade) participated from each jurisdiction, allowing for school nonresponse, exclusion of students, inaccuracies in the measures of enrollment, and student absenteeism from the assessment. In jurisdictions with fewer schools, larger numbers of students per school were often required to ensure initial samples of roughly 3,000 students. In certain jurisdictions, all eligible fourth or eighth graders were targeted for assessment. Jurisdictions were given the option to reduce the expected student sample size in order to reduce testing burden and the number of multiple-testing sessions for participating schools. At grade 4, two jurisdictions (Delaware and Guam) and at grade 8, four jurisdictions (Alaska, Delaware, Hawaii, and Rhode Island) elected to exercise this option. Using this option can involve compromises such as higher standard errors and accompanying loss of precision.

In order to provide for wider inclusion of students with disabilities and limited English proficiency, the 1996 state assessments in mathematics involved dividing the sample of students at each grade level into two subsamples, referred to as S1 and S2. S1 provided continuity with the 1992 mathematics assessment and thus allowed for the reporting of performance over time by using the same exclusion criteria for students with disabilities and limited English proficiency as was used in that assessment. S2 provided for wider inclusion of students with disabilities and limited English proficiency by incorporating new exclusion rules. For further discussion, see the NAEP 1996 Mathematics Report Card. The 1996 national assessment in mathematics involved an additional subsample, S3, in which accommodations were provided for certain students with disabilities or limited English proficiency, again in order to make NAEP more inclusive.
For both the national and state mathematics assessments, scaling and analysis procedures (discussed in sections C.8 to C.10) were applied to a combination of students from S1 and S2. Specifically, all assessed students from S1 were combined with those students from S2 who were not identified as SD or LEP. This combination of segments of the S1 and S2 subsamples provided for maximizing the use of available data while allowing for comparisons to the student population in the national sample. This combination, referred to as the “reporting sample,” was the sample used in linking the state assessment to the national assessment (see Section C.10).

Additional analyses will be conducted on the national samples in order to study the effects of changing the exclusion rules and the presence of accommodations. Preliminary discussion can be found in the NAEP 1996 Mathematics Report Card and more detailed discussion will follow in future NAEP publications.

C.5 Field Administration

The administration of the 1996 program required collaboration between staff in the participating jurisdictions and schools and the NAEP contractors, especially Westat, the field administration contractor.

Each jurisdiction volunteering to participate in the 1996 state assessment program was asked to appoint a state coordinator as liaison between NAEP staff and the participating schools. In addition, Westat hired and trained a supervisor for each jurisdiction and six field managers, each of whom was assigned to work with groups of jurisdictions. The state supervisors were responsible for working with the state coordinators, overseeing assessment activities, training school district personnel to administer the assessment, and coordinating the quality-control monitoring efforts. Each field manager was responsible for working with the state coordinators of seven to eight jurisdictions and for the supervision of the state supervisors assigned to those jurisdictions. An assessment administrator was responsible for preparing for and conducting the assessment session in one or more schools. These individuals were usually school or district staff and were trained by Westat. Westat also hired and trained three to five quality control monitors in each jurisdiction. For jurisdictions that had previously participated in the state assessment program, 25 percent of the public and nonpublic school sessions were monitored. For jurisdictions new to the program, 50 percent of all sessions were monitored. The assessment sessions were conducted during a five-week period beginning in late January 1996.
C.6 Materials Processing, Professional Scoring, and Database Creation

Upon completion of each assessment session, school personnel shipped the assessment booklets and forms to NCS for professional scoring, entry into computer files, and checking. The files were then sent to ETS for creation of the database.

After NCS received all appropriate materials from a school, they were forwarded to the professional scoring area where the responses to the constructed-response question were evaluated by trained staff using guidelines prepared by ETS. Each constructed-response question had a unique scoring guide that defined the criteria to be used in evaluating students' responses. The extended constructed-response questions were evaluated with four- or five-level rubrics, and the short constructed-response questions first used in 1996 were rated according to three-level rubrics that permit partial credit to be given. Short constructed-response questions used previously were scored dichotomously (i.e., correct or incorrect).

For the national mathematics assessment and the state assessment program in mathematics, over 4.8 million constructed responses were scored. This figure includes rescoring to monitor inter-rater reliability and trend reliability. In other words, scoring reliability was calculated both within year (1996) and across years (1990, 1992, and 1996). The overall within-year percentages of agreement for the 1996 national within-year reliability samples were 96 percent at grade 4 and 96 percent at grade 8. The percentages of agreement across the assessment years for the national inter-year reliability samples were 96 percent (1990 to 1996) and 94 percent (1992 to 1996) at grade 4 and 95 percent (1990 to 1996) and 94 percent (1992 to 1996) at grade 8.

Data transcription and editing procedures were used to generate the disk and tape files containing various assessment information, including the sampling weights required to make valid statistical inferences about the population from which the state assessment program sample was drawn. Prior to analysis, the data from these files underwent a quality control check at ETS. The files were then merged into a comprehensive, integrated database.
C.7 Weighting and Variance Estimation

A complex sample design was used to select the students to be assessed in each of the participating jurisdictions. The properties of a sample from a complex design are very different from those of a simple random sample in which every student in the target population has an equal chance of selection and in which the observations from different sampled students can be considered to be statistically independent of one another. The properties of the sample from the complex state assessment program design were taken into account in the analysis of the assessment data.

One way that the properties of the sample design were addressed was by using sampling weights to account for the fact that the probabilities of selection were not identical for all students. These weights also included adjustments for school and student nonresponse. All population and subpopulation characteristics based on the state assessment program data used sampling weights in their estimation.

In addition to deriving appropriate estimates of population characteristics, it is essential to obtain appropriate measures of the degree of uncertainty of those statistics. One component of uncertainty results from sampling variability, which is a measure of the dependence of the results on the particular sample of students actually assessed. Because of the effects of cluster selection (schools are selected first, then students are selected within those schools), observations made on different students cannot be assumed to be independent of each other (and, in fact, are generally positively correlated). As a result, classical variance estimation formulas will produce incorrect results. Instead, a jackknife variance estimation procedure that takes the characteristics of the sample into account was used for all analyses.

Jackknife variance estimation provides a reasonable measure of uncertainty for any statistic based on values observed without error. Statistics such as the percentage of students correctly answering a given question meet this requirement, but other statistics based on estimates of student mathematics performance, such as the average mathematics scale score of a subpopulation, do not. Because each student typically responds to relatively few questions from a particular content strand (e.g., Algebra and Functions or Geometry and Spatial Sense) there exists a nontrivial amount of imprecision in the measurement of the scale score of a given student. This imprecision adds an additional component of variability to statistics based on estimates of individual scale scores.
C.8 Preliminary Data Analysis

After the computer files of student responses were received from NCS and merged into an integrated database, all cognitive and noncognitive questions were subjected to an extensive item analysis. For each question, this analysis yielded the number of respondents, the percentage of responses in each category, the percentage who omitted the question, the percentage who did not reach the question, and the correlation between the question score and the block score. In addition, the item analysis program provided summary statistics for each block, including a reliability (internal consistency) coefficient. These analyses were used to check the scoring of the questions, to verify the appropriateness of the difficulty level of the questions, and to check for speededness. The results were reviewed by knowledgeable project staff in search of aberrations that might signal unusual results or errors in the database.

The question and block-level analyses were done using rescaled versions of the final sampling weights provided by Westat (see Section C.7). The rescaling was carried out within each jurisdiction. The sum of the sampling weights for the public school students within each jurisdiction was constrained to be equal. The same transformation was then applied to the weights of the nonpublic school students in that jurisdiction. The sum of the weights for each of the DoDEA samples (i.e., DDESS and DoDDS) was constrained to be equal to the same value as the public school students in other jurisdictions. Use of rescaled weights does nothing to alter the value of statistics calculated separately within each jurisdiction. However, for statistics obtained from samples that combine students from different jurisdictions, use of the rescaled weights results in a roughly equal contribution of each jurisdiction's data to the final value of the estimate. Equal contribution of each jurisdiction's data to the results of the item response theory (IRT) scaling was viewed as a desirable outcome. The original final sampling weights provided by Westat were used in reporting.

Additional analyses comparing the data from the monitored sessions with those from the unmonitored sessions were conducted to determine the comparability of the assessment data from the two types of administrations. Differential item functioning (DIF) analyses were carried out using the national assessment data. DIF analyses identify questions that were differentially difficult for various subgroups, affording the opportunity to reexamine such questions with respect to their fairness and their appropriateness for inclusion in the scaling process.
C.9 Scaling the Assessment Questions

The primary analysis and reporting of the results from the state assessment program used item response theory (IRT) scale-score models. Scaling models quantify a respondent's tendency to provide correct answers to the domain of questions contributing to a scale as a function of a parameter called performance, estimated by a scale score. The scale scores can be viewed as a summary measure of performance across the domain of questions that make up the scale. Three distinct IRT models were used for scaling: 1) 3-parameter logistic models for multiple-choice questions; 2) 2-parameter logistic models for short constructed-response questions that were scored correct or incorrect; and 3) generalized partial credit models for short and extended constructed-response questions that were scored on a multipoint (i.e., greater than two levels) scale.

Five distinct scales were created for the state assessment program in mathematics to summarize fourth- and eighth-grade students' abilities according to the five defined content strands (Number Sense, Properties, and Operations; Measurement; Geometry and Spatial Sense; Data Analysis, Statistics, and Probability; and Algebra and Functions). These scales were defined identically to, but separately from, those used for the scaling of the national NAEP fourth- and eighth-grade mathematics data. Although the questions comprising each scale were identical to those used in the national assessment program, the item parameters for the state assessment program scales were estimated from combined public school data from the jurisdictions participating in the state assessment program. Item parameter estimation was carried out on an item calibration subsample. The calibration subsample consisted of an approximately 25 percent sample of all available public school data. To ensure equal representation in the scaling process, each jurisdiction contributed the same number of students to the item calibration sample. Within each jurisdiction, 50 percent of the calibration sample was taken from monitored administrations and the other 50 percent came from unmonitored administrations.

The fit of the IRT model to the observed data was examined within each scale by comparing the estimates of the empirical item characteristic functions with the theoretic curves. For correct-incorrect questions, nonmodel-based estimates of the expected proportions of correct responses to each question for students with various levels of scale proficiency were compared with the fitted item response curve; for the short and extended partial-credit constructed-response questions, the comparisons were based on the expected proportions of students with various levels of scale proficiency who achieved each score level. In general, the question-level results were well fit by the scaling models.

1 Schools from the DoDEA jurisdictions were not included in the item calibration sample.
Using the item parameter estimates, estimates of various population statistics were obtained for each jurisdiction. The NAEP methods use random draws ("plausible values") from estimated proficiency distributions for each student to compute population statistics. Plausible values are not optimal estimates of individual student proficiencies; instead, they serve as intermediate values to be used in estimating population characteristics. Under the assumptions of the scaling models, these population estimates will be consistent, in the sense that the estimates approach the model-based population values as the sample size increases, which would not be the case for population estimates obtained by aggregating optimal estimates of individual performance.

In addition to the plausible values for each scale, a composite of the five content strand scales was created as a measure of overall mathematics proficiency. This composite was a weighted average of the five mathematics scales in which the weights were proportional to the relative importance assigned to each content strand in the mathematics framework. The definition of the composite for the state assessment program was identical to that used for the national fourth- and eighth-grade mathematics assessments.

C.10 Linking the State Results to the National Results

A major purpose of the state assessment program was to allow each participating jurisdiction to compare its 1996 results with those for the nation as a whole and with those for the region of the country in which that jurisdiction is located. For meaningful comparisons to be made between each jurisdiction and the relevant national sample, results from these two assessments had to be expressed in terms of a similar system of scale units.

The results from the state assessment program were linked to those from the national assessment through linking functions determined by comparing the results for the aggregate of all students assessed in the state assessment program with the results for students of the matching grade within the National Linking Sample of the national NAEP. The National Linking Sample of the national NAEP for a given grade is a representative sample of the population of all grade-eligible public school students within the aggregate of 45 participating states and the District of Columbia. Guam and the two Department of Defense Education Activity (DoDEA) jurisdictions were not included in the aggregate. Specifically, the fourth- and eighth-grade National Linking Samples consist of all fourth- and eighth-grade students in public schools in the states and the District of Columbia who were assessed in the national cross-sectional mathematics assessment.
For each grade, a linear equating within each scale was used to link the results of the state assessment program to the national assessment. For each scale, the adequacy of the linear equating was evaluated by comparing the distribution of mathematics scale scores based on the aggregation of all assessed students at each grade from the participating states and the District of Columbia with the equivalent distribution based on the students in the National Linking Sample. In the estimation of these distributions, the students were weighted to represent the target population of public school students in the specified grade in the aggregation of the states and the District of Columbia. If a linear equating were adequate, the distribution for the aggregate of states and the District of Columbia and that for the National Linking Sample will have, to a close approximation, the same shape in terms of the skewness, kurtosis, and higher moments of the distributions. The only differences in the distributions allowed by linear equating are in the means and variances. Generally, this has been found to be the case.

Each mathematics content-strand scale was linked by matching the mean and standard deviation of the scale scores across all students in the state assessment (excluding Guam and the two DoDEA jurisdictions) to the corresponding scale mean and standard deviation across all students in the National Linking Sample.
Setting the Achievement Levels

Setting achievement levels is a test-centered method for setting standards on the NAEP assessment that identifies what students should know and should be able to do. The method depends on securing and summarizing a set of judgmental ratings of expectations for student educational performance on specific questions comprising the NAEP mathematics assessment. The NAEP mathematics scale is a numerical index of students' performance in mathematics ranging from 0 to 500. The three achievement levels — Basic, Proficient, and Advanced — are mapped onto the scale for each grade level assessed.

The NAEP mathematics achievement levels were set following the 1990 assessment and further refined following the 1992 assessment. In developing the threshold values for the levels, a broadly constituted panel of judges — including teachers (50%), non-teacher educators (20%), and the general public (nondeneducators)¹ (30%) — rated a grade-specific item pool using the policy definitions of the National Assessment Governing Board (NAGB) for Basic, Proficient, and Advanced. The policy definitions were operationalized by the judges in terms of specific mathematical skills, knowledge, and behaviors that were judged to be appropriate expectations for students in each grade and were in accordance with the current mathematics assessment framework. The policy definitions are as follows:

Basic

This level denotes partial mastery of the prerequisite knowledge and skills that are fundamental for proficient work at each grade.

Proficient

This level represents solid academic performance for each grade assessed. Students reaching this level have demonstrated competency over challenging subject matter and are well prepared for the next level of schooling.

Advanced

This higher level signifies superior performance beyond proficient grade-level mastery at each grade.

¹ Noneducators represented business, labor, government service, parents, and the general public.
The judges' operationalized definitions were incorporated into lists of descriptors that represent what borderline students should be able to do at each of the levels defined by policy. The purpose of having panelists develop their own operational definitions of the achievement levels was to ensure that all panelists would have a common understanding of borderline performances and a common set of content-based referents to use during the item-rating process.

The judges (24 at grade 4 and 22 at grade 8) each rated half of the questions in the NAEP pool in terms of the expected probability that a student at a borderline achievement level would answer the question correctly, based on the judges' operationalization of the policy definitions and the factors that influence question difficulty. To assist the judges in generating consistently scaled ratings, the rating process was repeated twice, with feedback. Information on consistency among different judges and on the difficulty of each question was fed back into the first repetition (round 2), while information on consistency within each judge's set of ratings was fed back into the second repetition (round 3). The third round of ratings permitted the judges to discuss their ratings among themselves to resolve problematic ratings. The mean final rating of the judges aggregated across questions yielded the threshold values in the percent correct metric. These cut scores were then mapped onto the NAEP scale (which is defined and scored using item response theory, rather than percent correct) to obtain the scale scores for the achievement levels. The judges' ratings, in both metrics, and their associated errors of measurement are shown below. NAGB accepted the panel's achievement levels and, for reporting purposes, set final cutoffs one standard error (a measure of consistency among the judges' ratings) below the mean levels.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Level</th>
<th>Mean Percent Correct (Round 3)</th>
<th>Scale Score*</th>
<th>Standard Error of Scale Score**</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Basic</td>
<td>39</td>
<td>214</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>Proficient</td>
<td>65</td>
<td>249</td>
<td>4.1</td>
</tr>
<tr>
<td>4</td>
<td>Advanced</td>
<td>84</td>
<td>282</td>
<td>4.0</td>
</tr>
<tr>
<td>8</td>
<td>Basic</td>
<td>48</td>
<td>262</td>
<td>2.4</td>
</tr>
<tr>
<td>8</td>
<td>Proficient</td>
<td>71</td>
<td>299</td>
<td>5.7</td>
</tr>
<tr>
<td>8</td>
<td>Advanced</td>
<td>87</td>
<td>333</td>
<td>4.8</td>
</tr>
</tbody>
</table>

* Scale score is derived from a weighted average of the mean percent correct for multiple-choice and short constructed-response questions after both were mapped onto the NAEP scale.

** The standard error of the scale score is estimated from the difference in mean scale scores for the two equivalent subgroups of judges.

2 Item difficulty estimates were based on a preliminary, partial set of responses to the national assessment.

3 See Appendix A for a discussion of the technical errors that resulted in the reanalysis and rereporting of 1990 and 1992 mathematics achievement level results.
After the ratings were completed, the judges for each grade level reviewed the operationalized descriptions developed by the judges of the other grade levels as well as their own descriptions and defined achievement level descriptions that were generally acceptable to all three grade-group judges. However, the descriptions varied in format, sharpness of language, and degree of specificity of the statements. Therefore, another panel at a subsequent validation meeting improved the wording and modified the language of the achievement level descriptions to reflect more closely the terminology of the National Council of Teachers of Mathematics Curriculum and Evaluation Standards for School Mathematics. The achievement level descriptions, though based on the 1992 NAEP pool, apply to the current assessment and will not change from assessment to assessment (that is, until the framework changes).

Figure 3.1 in Chapter 3 provides the detailed descriptions of the three achievement levels for grades 4 and 8. In addition, exemplar questions are presented to illustrate each level.
Teacher Preparation

Teachers are key to improving mathematics learning, and so it is important to examine their background and professional development. Fourth- and eighth-grade mathematics teachers completed questionnaires concerning their background and training, including their experience, certification, undergraduate and graduate coursework in mathematics, and involvement in pre-service education.

Consistent with procedures used throughout this report, the student was the unit of analysis. That is, the mathematics teachers' responses were linked to their students, and the data reported are the percentages of students taught by teachers with particular characteristics.
Table E.1A — Grade 4

Public School Teachers’ Reports on Their Highest Level of Education

<table>
<thead>
<tr>
<th>What is the highest academic degree you hold?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor’s degree</td>
<td>1992</td>
<td>74%</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>69%</td>
<td>73%</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>1992</td>
<td>23%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>28%</td>
<td>22%<</td>
</tr>
<tr>
<td>Education specialist’s or professional diploma</td>
<td>1992</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>2%</td>
<td>5%<</td>
</tr>
<tr>
<td>Doctorate or professional degree</td>
<td>1992</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>0**</td>
<td>1%</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation >(<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. **** Standard error estimates cannot be accurately determined.

Source: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.

Table E.1B — Grade 8

Public School Teachers’ Reports on Their Highest Level of Education

<table>
<thead>
<tr>
<th>What is the highest academic degree you hold?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor’s degree</td>
<td>1990</td>
<td>62%</td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>66%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>76%</td>
<td>74%</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>1990</td>
<td>36%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>32%</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>21%</td>
<td>23%</td>
</tr>
<tr>
<td>Education specialist’s or professional diploma</td>
<td>1990</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>2%</td>
<td>2%<</td>
</tr>
<tr>
<td>Doctorate or professional degree</td>
<td>1990</td>
<td>0**</td>
<td>0**</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>1**</td>
<td>1**</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>0**</td>
<td>1**</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation >(<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. **** Standard error estimates cannot be accurately determined.

Source: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1990, 1992, and 1996 Mathematics Assessments.
TABLE E.2 — GRADES 4 AND 8

Public School Teachers’ Reports on Their Undergraduate Majors

<table>
<thead>
<tr>
<th>What were your undergraduate major fields of study?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADE 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>89 (1.9)</td>
<td>77 (3.2)</td>
<td>88 (1.5)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>5 (1.4)</td>
<td>7 (2.6)</td>
<td>7 (1.4)</td>
</tr>
<tr>
<td>Mathematics Education</td>
<td>7 (2.0)</td>
<td>5 (1.9)</td>
<td>6 (1.2)</td>
</tr>
<tr>
<td>Special Education</td>
<td>5 (1.5)</td>
<td>9 (2.6)</td>
<td>8 (1.5)</td>
</tr>
<tr>
<td>ESL</td>
<td>7 (2.0)</td>
<td>5 (2.0)</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td>Other</td>
<td>39 (3.5)</td>
<td>52 (3.9)</td>
<td>37 (2.5)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>66 (3.7)</td>
<td>45 (4.2)</td>
<td>59 (3.2)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>62 (3.3)</td>
<td>40 (4.2)</td>
<td>47 (3.0)</td>
</tr>
<tr>
<td>Mathematics Education</td>
<td>24 (2.4)</td>
<td>20 (3.2)</td>
<td>23 (2.9)</td>
</tr>
<tr>
<td>Special Education</td>
<td>2 (1.0)</td>
<td>0 (0.2)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>ESL</td>
<td>1 (0.4)</td>
<td>0 (***)</td>
<td>0 (0.2)</td>
</tr>
<tr>
<td>Other</td>
<td>38 (3.9)</td>
<td>53 (4.8)</td>
<td>37 (3.3)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). **** Standard error estimates cannot be accurately determined.

TABLE E.3 — GRADES 4 AND 8

Public School Teachers' Reports on Their Graduate Majors

<table>
<thead>
<tr>
<th>What were your graduate major fields of study?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage of Students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADE 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>45 (3.7)</td>
<td>53 (4.2)</td>
<td>59 (2.7)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2 (0.6)</td>
<td>3 (1.2)</td>
<td>4 (1.0)</td>
</tr>
<tr>
<td>Mathematics Education</td>
<td>1 (0.5)</td>
<td>5 (2.2)</td>
<td>5 (1.3)</td>
</tr>
<tr>
<td>Special Education</td>
<td>4 (1.1)</td>
<td>4 (1.7)</td>
<td>5 (1.2)</td>
</tr>
<tr>
<td>Bilingual</td>
<td>4 (1.4)</td>
<td>6 (1.5)</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>Admin./Supervision/Curric.</td>
<td>13 (2.6)</td>
<td>16 (3.3)</td>
<td>15 (1.8)</td>
</tr>
<tr>
<td>Counseling</td>
<td>2 (0.6)</td>
<td>3 (1.2)</td>
<td>2 (0.7)</td>
</tr>
<tr>
<td>Other</td>
<td>19 (2.6)</td>
<td>20 (4.0)</td>
<td>16 (1.7)</td>
</tr>
<tr>
<td>No graduate study</td>
<td>37 (3.3)</td>
<td>34 (4.0)</td>
<td>31 (2.4)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>27 (3.0)</td>
<td>49 (5.7)</td>
<td>47 (2.9)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>11 (2.0)</td>
<td>15 (3.6)</td>
<td>18 (2.4)</td>
</tr>
<tr>
<td>Mathematics Education</td>
<td>8 (1.8)</td>
<td>12 (3.5)</td>
<td>19 (2.8)</td>
</tr>
<tr>
<td>Special Education</td>
<td>1 (****)</td>
<td>1 (0.6)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Bilingual</td>
<td>0 (****)</td>
<td>0 (0.1)</td>
<td>0 (****)</td>
</tr>
<tr>
<td>Admin./Supervision/Curric.</td>
<td>14 (2.2)</td>
<td>18 (5.1)</td>
<td>19 (3.2)</td>
</tr>
<tr>
<td>Counseling</td>
<td>4 (1.4)</td>
<td>8 (2.6)</td>
<td>3 (1.0)</td>
</tr>
<tr>
<td>Other</td>
<td>11 (2.3)</td>
<td>19 (3.5)</td>
<td>18 (2.6)</td>
</tr>
<tr>
<td>No graduate study</td>
<td>46 (3.2)</td>
<td>28 (4.0)</td>
<td>24 (2.5)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). **** Standard error estimates cannot be accurately determined.

Texas

TABLE E.4 — GRADES 4 AND 8

Public School Teachers' Reports on Their Teaching Certification

<table>
<thead>
<tr>
<th>What type of teaching certification do you have in this state in your main assignment field?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>None, Accreditation other than state, Temporary, or Probationary</td>
<td>6 (1.4)</td>
<td>2 (0.9)</td>
<td>5 (1.0)</td>
</tr>
<tr>
<td>Regular</td>
<td>82 (2.6)</td>
<td>89 (3.1)</td>
<td>79 (2.0)</td>
</tr>
<tr>
<td>Advanced</td>
<td>12 (2.2)</td>
<td>9 (2.8)</td>
<td>16 (1.8)</td>
</tr>
</tbody>
</table>

GRADE 5

None, Accreditation other than state, Temporary, or Probationary	8 (1.8)	11 (2.7)	8 (1.4)
Regular	88 (2.1)	84 (2.7)	79 (2.6)
Advanced	4 (1.4)	5 (1.2)	14 (2.4)

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.

TABLE E.5A — GRADE 4

Public School Teachers' Reports on Years Teaching Experience

<table>
<thead>
<tr>
<th>Counting this year, how many years in total have you taught . . .</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>At either the elementary or secondary level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 years or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>17 (2.4)</td>
<td>10 (1.7)</td>
<td>8 (1.1)</td>
</tr>
<tr>
<td>1996</td>
<td>11 (1.8)</td>
<td>10 (2.2)</td>
<td>8 (1.3)</td>
</tr>
<tr>
<td>3-5 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>21 (2.4)</td>
<td>15 (3.2)</td>
<td>13 (1.7)</td>
</tr>
<tr>
<td>1996</td>
<td>14 (1.7)</td>
<td>17 (2.9)</td>
<td>14 (1.6)</td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>19 (2.6)</td>
<td>13 (2.3)</td>
<td>14 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td>23 (3.3)</td>
<td>27 (3.2)</td>
<td>23 (2.0)</td>
</tr>
<tr>
<td>11-24 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>36 (2.9)</td>
<td>44 (3.5)</td>
<td>46 (2.4)</td>
</tr>
<tr>
<td>1996</td>
<td>43 (3.2)</td>
<td>31 (3.3)</td>
<td>35 (2.6)</td>
</tr>
<tr>
<td>25 years or more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>8 (1.6)</td>
<td>18 (3.7)</td>
<td>19 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td>10 (2.0)</td>
<td>15 (2.8)</td>
<td>20 (2.5)</td>
</tr>
<tr>
<td>Mathematics*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 years or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>14 (1.9)</td>
<td>13 (2.9)</td>
<td>11 (1.6)</td>
</tr>
<tr>
<td>3-5 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>19 (2.7)</td>
<td>15 (3.0)</td>
<td>14 (1.9)</td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>23 (2.5)</td>
<td>33 (3.2)</td>
<td>26 (2.0)</td>
</tr>
<tr>
<td>11-24 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>39 (3.1)</td>
<td>26 (3.6)</td>
<td>33 (2.8)</td>
</tr>
<tr>
<td>25 years or more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>6 (1.3)</td>
<td>13 (2.1)</td>
<td>16 (2.1)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. *This question was not asked of fourth-grade teachers in 1992.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.

TABLE E.5B — GRADE 8

Public School Teachers’ Reports on Years Teaching Experience

<table>
<thead>
<tr>
<th>Counting this year, how many years in total have you taught . . .</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At either the elementary or secondary level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 years or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>13 (2.1)</td>
<td>11 (2.4)</td>
<td>9 (1.6)</td>
</tr>
<tr>
<td>1996</td>
<td>12 (2.1)</td>
<td>10 (2.1)</td>
<td>8 (1.7)</td>
</tr>
<tr>
<td>3-5 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>12 (2.3)</td>
<td>17 (3.5)</td>
<td>11 (1.4)</td>
</tr>
<tr>
<td>1996</td>
<td>18 (3.2)</td>
<td>12 (4.4)</td>
<td>11 (2.2)</td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>21 (2.8)</td>
<td>17 (1.6)</td>
<td>15 (1.4)</td>
</tr>
<tr>
<td>1996</td>
<td>20 (2.7)</td>
<td>28 (3.6)</td>
<td>19 (2.5)</td>
</tr>
<tr>
<td>11-24 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>42 (3.5)</td>
<td>45 (2.8)</td>
<td>48 (2.1)</td>
</tr>
<tr>
<td>1996</td>
<td>38 (3.6)</td>
<td>28 (4.3)<</td>
<td>37 (3.9)</td>
</tr>
<tr>
<td>25 years or more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>12 (2.1)</td>
<td>11 (2.0)</td>
<td>17 (1.7)</td>
</tr>
<tr>
<td>1996</td>
<td>12 (2.4)</td>
<td>22 (4.4)</td>
<td>25 (3.1)</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 years or less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>16 (2.3)</td>
<td>12 (2.1)</td>
<td>11 (1.8)</td>
</tr>
<tr>
<td>1996</td>
<td>12 (2.1)</td>
<td>12 (2.6)</td>
<td>11 (1.8)</td>
</tr>
<tr>
<td>3-5 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>12 (2.1)</td>
<td>18 (2.9)</td>
<td>14 (1.7)</td>
</tr>
<tr>
<td>1996</td>
<td>18 (3.2)</td>
<td>21 (5.7)</td>
<td>14 (2.1)</td>
</tr>
<tr>
<td>6-10 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>21 (2.6)</td>
<td>22 (2.3)</td>
<td>18 (1.8)</td>
</tr>
<tr>
<td>1996</td>
<td>22 (2.5)</td>
<td>31 (4.6)</td>
<td>21 (2.7)</td>
</tr>
<tr>
<td>11-24 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>41 (3.3)</td>
<td>43 (3.6)</td>
<td>44 (2.4)</td>
</tr>
<tr>
<td>1996</td>
<td>37 (3.5)</td>
<td>31 (4.8)</td>
<td>37 (3.8)</td>
</tr>
<tr>
<td>25 years or more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>10 (1.9)</td>
<td>6 (1.4)</td>
<td>13 (1.8)</td>
</tr>
<tr>
<td>1996</td>
<td>11 (2.2)</td>
<td>6 (2.3)</td>
<td>17 (2.8)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
TABLE E.6 — GRADES 4 AND 8

Public School Teachers’ Reports on Courses in Mathematics or Mathematics Education

<table>
<thead>
<tr>
<th></th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the last two years, how many college or university courses have you taken in mathematics or mathematics education?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADE 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>90 (1.7)</td>
<td>72 (4.7)</td>
<td>78 (2.4)</td>
</tr>
<tr>
<td>One</td>
<td>6 (1.5)</td>
<td>14 (2.4)</td>
<td>14 (1.8)</td>
</tr>
<tr>
<td>Two</td>
<td>3 (1.1)</td>
<td>7 (2.9)</td>
<td>5 (1.1)</td>
</tr>
<tr>
<td>Three or more</td>
<td>1 (0.6)</td>
<td>7 (3.4)</td>
<td>4 (1.2)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>77 (3.1)</td>
<td>72 (5.4)</td>
<td>74 (3.1)</td>
</tr>
<tr>
<td>One</td>
<td>10 (2.4)</td>
<td>9 (2.0)</td>
<td>10 (2.2)</td>
</tr>
<tr>
<td>Two</td>
<td>4 (1.3)</td>
<td>7 (3.8)</td>
<td>5 (1.3)</td>
</tr>
<tr>
<td>Three or more</td>
<td>9 (1.8)</td>
<td>12 (3.3)</td>
<td>11 (2.0)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.

TABLE E.7 — GRADES 4 AND 8

Public School Teachers’ Reports on Coursework in the Use of Technology

<table>
<thead>
<tr>
<th></th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the past five years, have you taken courses or participated in professional development activities in the use of technology such as computers?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADE 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>84 (2.3)</td>
<td>85 (2.6)</td>
<td>83 (1.8)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>88 (2.3)</td>
<td>81 (4.7)</td>
<td>76 (2.9)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details).

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
TABLE E.8A — GRADE 4

Public School Teachers’ Reports on Studies of Mathematics Instruction Techniques

<table>
<thead>
<tr>
<th>Have you ever studied any of the following, either in college or university courses or in professional development workshops or seminars?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation</td>
<td>1992</td>
<td>76 (2.4)</td>
<td>84 (3.1)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>87 (2.0)</td>
<td>81 (2.4)</td>
</tr>
<tr>
<td>Problem solving in mathematics</td>
<td>1992</td>
<td>92 (1.4)</td>
<td>94 (1.5)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>96 (1.0)</td>
<td>95 (1.5)</td>
</tr>
<tr>
<td>Use of manipulatives in mathematics instruction</td>
<td>1992</td>
<td>93 (1.7)</td>
<td>95 (1.4)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>96 (1.0)</td>
<td>97 (0.9)</td>
</tr>
<tr>
<td>Use of calculators in mathematics instruction</td>
<td>1992</td>
<td>61 (3.3)</td>
<td>63 (2.7)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>71 (2.5)</td>
<td>72 (3.6)</td>
</tr>
<tr>
<td>Understanding students’ thinking about math</td>
<td>1992</td>
<td>67 (2.7)</td>
<td>74 (2.8)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>70 (3.4)</td>
<td>77 (2.1)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.

TABLE E.8B — GRADE 8

Public School Teachers’ Reports on Studies of Mathematics Instruction Techniques

<table>
<thead>
<tr>
<th>Have you ever studied any of the following, either in college or university courses or in professional development workshops or seminars?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation</td>
<td>1992</td>
<td>74 (3.1)</td>
<td>81 (3.0)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>82 (2.9)</td>
<td>76 (4.9)</td>
</tr>
<tr>
<td>Problem solving in mathematics</td>
<td>1992</td>
<td>93 (1.7)</td>
<td>93 (2.5)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>97 (1.0)</td>
<td>96 (2.2)</td>
</tr>
<tr>
<td>Use of manipulatives in mathematics instruction</td>
<td>1992</td>
<td>87 (2.3)</td>
<td>90 (2.4)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>93 (1.7)</td>
<td>92 (2.6)</td>
</tr>
<tr>
<td>Use of calculators in mathematics instruction</td>
<td>1992</td>
<td>85 (2.4)</td>
<td>82 (2.8)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>92 (1.7)</td>
<td>84 (3.1)</td>
</tr>
<tr>
<td>Understanding students’ thinking about math</td>
<td>1992</td>
<td>57 (3.5)</td>
<td>65 (2.0)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>67 (3.2)</td>
<td>69 (4.8)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ±2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1992 and 1996 Mathematics Assessments.
TABLE E.9A — GRADE 4
Public School Teachers’ Reports on Studies of Gender and Cultural Issues

<table>
<thead>
<tr>
<th>Have you ever studied any of the following, either in college or university courses or in professional development workshops or seminars?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender issues in the teaching of mathematics</td>
<td>1992</td>
<td>32 (2.3)</td>
<td>41 (4.0)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>33 (2.8)</td>
<td>51 (2.8)</td>
</tr>
<tr>
<td>Teaching students from different cultural backgrounds</td>
<td>1992</td>
<td>56 (3.5)</td>
<td>51 (4.3)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>60 (3.8)</td>
<td>62 (4.6)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

TABLE E.9B — GRADE 8
Public School Teachers’ Reports on Studies of Gender and Cultural Issues

<table>
<thead>
<tr>
<th>Have you ever studied any of the following, either in college or university courses or in professional development workshops or seminars?</th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender issues in the teaching of mathematics</td>
<td>1992</td>
<td>32 (3.1)</td>
<td>43 (4.6)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>52 (4.4) ></td>
<td>54 (8.3)</td>
</tr>
<tr>
<td>Teaching students from different cultural backgrounds</td>
<td>1992</td>
<td>57 (3.2)</td>
<td>58 (3.5)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>62 (3.8)</td>
<td>65 (8.3)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation > (<) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level.

TABLE E.10 – GRADES 4 AND 8

<table>
<thead>
<tr>
<th></th>
<th>Texas</th>
<th>West</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public School Teachers’ Reports on Professional Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the last year, how much time in total have you spent in professional development workshops or seminars in mathematics or mathematics education?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADE 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>5 (1.4)</td>
<td>12 (3.1)</td>
<td>15 (2.1)</td>
</tr>
<tr>
<td>Less than 6 hours</td>
<td>19 (3.1)</td>
<td>20 (3.7)</td>
<td>29 (2.2)</td>
</tr>
<tr>
<td>6-15 hours</td>
<td>29 (2.7)</td>
<td>31 (4.4)</td>
<td>28 (2.4)</td>
</tr>
<tr>
<td>16-35 hours</td>
<td>22 (3.1)</td>
<td>17 (3.8)</td>
<td>15 (2.0)</td>
</tr>
<tr>
<td>More than 35 hours</td>
<td>24 (3.7)</td>
<td>19 (3.3)</td>
<td>13 (1.5)</td>
</tr>
<tr>
<td>GRADE 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>3 (0.8)</td>
<td>4 (2.3)</td>
<td>5 (1.2)</td>
</tr>
<tr>
<td>Less than 6 hours</td>
<td>6 (1.6)</td>
<td>7 (2.6)</td>
<td>19 (3.1)</td>
</tr>
<tr>
<td>6-15 hours</td>
<td>27 (3.6)</td>
<td>20 (3.9)</td>
<td>28 (2.7)</td>
</tr>
<tr>
<td>16-35 hours</td>
<td>36 (4.1)</td>
<td>26 (4.6)</td>
<td>21 (2.6)</td>
</tr>
<tr>
<td>More than 35 hours</td>
<td>28 (3.4)</td>
<td>43 (5.4)</td>
<td>27 (2.9)</td>
</tr>
</tbody>
</table>

The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). SOURCE: National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 1996 Mathematics Assessment.
Discussion of the Grade 8 Asian/Pacific Islander Sample

As noted in Chapters 2 and 4, national and regional scale score and achievement level results for eighth-grade Asian/Pacific Islander students are not included in the main body of this report. The decision to present these results in a separate appendix was made following a thorough investigation by the current NAEP grantees (Westat and ETS)\(^1\) into the quality and credibility of these results, as well as an independent review by a committee of statisticians from the National Institute of Statistical Sciences (NISS).\(^2\) Collateral results from the grade 8 state assessment program in mathematics suggested that the 1996 national results may substantially underestimate actual achievement of the Asian/Pacific Islander group. Because of its potential to misinform, NCES decided to omit the national grade 8 Asian/Pacific Islander results from the body of the report. The results are, however, included in this appendix along with a description of the findings that led to this decision.

Concerns about the accuracy of the national grade 8 Asian/Pacific Islander results were initially noted during routine quality control of the NAEP 1996 mathematics results. Despite statistically significant gains from 1992 to 1996 in average scale scores for the nation as a whole at all three grade levels, a large apparent decline in average scores was observed for the grade 8 Asian/Pacific Islander subgroup. Table F.1 contains national average mathematics scale score estimates, and their standard errors, for the Asian/Pacific Islander subgroup for the 1990, 1992 and 1996 assessment years. From 1992 to 1996, the estimated decline in average scores for this subgroup was approximately 14 scale score points (about .4 within-grade standard deviation units) on the NAEP 500-point scale. Despite the large magnitude of this apparent decline, it is not statistically significant at the .05 level, after controlling for multiple comparisons.

\(^1\) Carlson, J. and P. Williams. ETS/NAEP Technical Memorandum on 1996 Mathematics Grade 8 results for Asian/Pacific Islander Subpopulation. (October 29, 1996); Rust, K. Westat Memorandum to Gary Phillips on 1996 Mathematics Grade 8 Results for Asian and Pacific Islander Students. (November 1, 1996).

\(^2\) Letter from Jerome Sacks to Gary Phillips, dated November 21, 1996.
Table F.1
Average Mathematics Scale Scores for the Grade 8 Asian/Pacific Islander Subgroup

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All students</td>
<td>100</td>
<td>263 (1.3)</td>
<td>100</td>
<td>268 (0.9)</td>
<td>100</td>
<td>272 (1.1)</td>
</tr>
<tr>
<td>Students who indicated their Race/Ethnicity as...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>2 (0.5)</td>
<td>279 (4.8)</td>
<td>3 (0.2)</td>
<td>288 (5.4)</td>
<td>3 (0.2)</td>
<td>274 (3.9)</td>
</tr>
</tbody>
</table>

The NAEP mathematics scale ranges from 0 to 500. The standard errors of the statistics appear in parentheses. It can be said with about 95 percent confidence that, for each population of interest, the value for the entire population is within ± 2 standard errors of the estimate for the sample. In comparing two estimates, one must use the standard error of the difference (see Appendix A for details). If the notation \(\geq \) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1990 at about the 95 percent confidence level. If the notation \(> \) appears, it signifies that the value for public school students was significantly higher (lower) than the value for 1992 at about the 95 percent confidence level. Interpret with caution — the nature of the sample does not allow accurate determination of the variability of this statistic.

The data from the NAEP state assessment program in mathematics provided an independent data source to aid in evaluating the accuracy of the national grade 8 NAEP results for Asian/Pacific Islander students as well as for other subgroups. Forty states and the District of Columbia participated in the state assessment. Results based on the combined data from these jurisdictions are quite stable in that they are based on a sample of approximately 4,000 schools and over 100,000 students. Because of the voluntary nature of the state assessment program, these aggregated state results are not nationally representative. They can, however, be compared to restricted national results, calculated using public-school data from only those states participating in the state assessment, to obtain valuable insight into the quality of the national estimates for the grade 8 race/ethnicity subgroups.

Table F.2 contains restricted national results. Results are presented separately for four of the race/ethnicity subgroups: White, Black, Hispanic, and Asian/Pacific Islander. Aggregated state results are also presented for these same four subgroups. For three of the four subgroups, the difference between the restricted national estimates and aggregated state estimates are quite small. However, for the Asian/Pacific subgroup, the difference between the two estimates, though again within reasonable bounds of sampling variability, is of considerably greater magnitude and the restricted national estimates are substantially lower than those obtained from the aggregated state data. These results suggest that the national grade 8 Asian/Pacific Islander results may substantially underestimate the performance of this subgroup. NCES was concerned that publishing the national results in the absence of the kind of discussion included in this appendix was potentially misinforming. Hence, they made the decision to omit the results from the body of the report and to include them in this appendix.
TABLE F.2

Average Mathematics Scale Scores by Race/Ethnicity for Restricted National and Aggregated State Samples

<table>
<thead>
<tr>
<th>Grade 8</th>
<th>Students who indicated their Race/Ethnicity as...</th>
<th>Restricted National Sample</th>
<th>Aggregated State Sample</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White</td>
<td>280.7</td>
<td>280.0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>242.8</td>
<td>242.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>250.4</td>
<td>250.3</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Asian/Pacific Islander</td>
<td>272.0</td>
<td>281.7</td>
<td>-9.7</td>
</tr>
</tbody>
</table>

It is important to note that all NAEP results are estimates and are subject to some degree of sampling variability. If different samples of schools or students had been obtained, results for some subgroups would be higher than reported here and some would be lower. In most subgroups, particularly large subgroups or subgroups for which special sampling procedures are employed, estimates of performance are likely to remain similar from one sample to another. However, the national population of Asian/Pacific Islander students is small (about 3 percent of the national population), heterogeneous with respect to academic achievement, and highly clustered in certain locations and schools — factors which are associated with large sampling variability in survey results and reflected in the large standard errors associated with performance estimates for this subgroup. Furthermore, the sampling plan for the national assessment does not include explicit stratification procedures designed to mitigate these factors. It was the judgment of all three organizations (ETS, Westat, and NISS) that investigated these results that the occurrence of this large, but statistically nonsignificant, change in the grade 8 Asian/Pacific Islander results was a consequence of these three factors: (1) the heterogeneous nature of the Asian/Pacific Islander population, (2) the current NAEP sampling design, and, (3) the sample sizes that were assessed.

NCES, working with its current NAEP contractors and other advisory groups, will continue to investigate cost-effective ways of improving the accuracy and stability of NAEP results beginning with the 1998 assessment. They will also continue to seek improvements as part of an ongoing redesign of NAEP for the year 2000 and beyond.
ACKNOWLEDGMENTS

This report is the culmination of the efforts of many individuals who contributed their considerable knowledge, experience, and creativity to the NAEP 1996 mathematics assessment. The NAEP 1996 mathematics state assessment was a collaborative effort among staff from the National Center for Education Statistics (NCES), the National Assessment Governing Board (NAGB), Educational Testing Service (ETS), Westat, Inc., and National Computer Systems (NCS). In addition, the program benefited from the contributions of hundreds of individuals at the state and local levels — governors, chief state school officers, state and district test directors, state coordinators, and district administrators — who provided their wisdom, experience, and hard work. Most importantly, NAEP is grateful to the over 239,000 students and the teachers and administrators in over 9,700 schools in 48 jurisdictions who made the assessment possible by contributing considerable amounts of time and effort.

The NAEP 1996 mathematics state assessment was funded through NCES, in the Office of Educational Research and Improvement of the U.S. Department of Education. The Commissioner of Education Statistics, Pascal D. Forgione, Jr., and the NCES staff — Sue Ahmed, Peggy Carr, Arnold Goldstein, Steven Gorman, Larry Ogle, Gary W. Phillips, Sharif Shakrani, Maureen Treacy — and Alan Vanneman of the Education Statistics Services Institute, worked closely and collegially with the authors to produce this report. The authors were also provided invaluable advice and guidance by the members of the National Assessment Governing Board and NAGB staff. In particular, the authors are indebted to Arnold Goldstein of NCES for his daily efforts to coordinate the activities of the many people who contributed to this report.

The NAEP project at ETS is housed in the Center for the Assessment of Educational Progress under the direction of Paul Williams. The NAEP 1996 assessments were directed by Stephen Lazer and John Mazzeo. Jeff Haberstroh directed the scoring operations for the 1996 mathematics assessment. Sampling and data collection activities were conducted by Westat under the direction of Rene Slobasky, Nancy Caldwell, Keith Rust, Debby Vivari, and Dianne Walsh. Printing, distribution, scoring, and processing activities were conducted by NCS under the direction of Brad Thayer, Patrick Bourgeacq, Charles Brungardt, Mathilde Kennel, Linda Reynolds, and Connie Smith.

The complex statistical and psychometric activities necessary to report results for the NAEP 1996 mathematics assessment were directed by Nancy Allen, John Barone, James Carlson, and Juliet Shaffer. John Mazzeo and Gene Johnson provided direction on several
critical psychometric issues. The analyses presented in this report were led by Frank Jenkins and Edward Kulick, with assistance from Hua Chang, Steve Wang, Xiaohui Wang, Hong Zhou, Jiahe Qian, Kate Pashley, David Freund, and Norma Norris.

Laura Jerry was responsible for the development and creation of the computer-generated reports, with assistance from Xiaohui Wang, Laura Jenkins, Phillip Leung, Inge Novatkoski, Bruce Kaplan, and Alfred Rogers. A large group of NAEP staff at ETS checked the data, text, and tables. Debbie Kline coordinated the technical appendices.

Many thanks are due to the comments and critical feedback of numerous reviewers, both internal and external to NCES and ETS. Important contributions were made by reviewers from academic institutions and education agencies: Bruce Brombacher of Upper Arlington (Ohio) Schools; Pasquale DeVito of the Rhode Island Department of Education, John Dossey of Illinois State University, Thomas Fisher of the Florida Department of Education, Douglas Rindone of the Connecticut Department of Education, and Irvin Vance of Michigan State University. Valuable input was given by NAGB staff Mary Lynn Bourque and Lawrence Feinberg, and NCES staff Susan Ahmed, Peggy Carr (who helped guide the report through several versions), Steven Gorman, Andrew Kolstad, Mary Frase, Mary Rollefson, Sharif Shakrani, and Shi-Chang Wu.

Cover design and production of the print version was directed by Carol Errickson, with the assistance of Sharon Davis-Johnson, Alice Kass, and Barbette Tardugno. Karen Damiano produced tables and text for one state for which the computerized report generating system was not appropriate. The World Wide Web version of the state reports was produced by Phillip Leung and Pat O'Reilly with assistance from Debbie Kline, Karen Damiano, Sharon M. Davis-Johnson, Craig Pizzuti, Barbette Tardugno, and Christine Zelenak. The NAEP 1996 Mathematics State Report for all participating jurisdictions is available via http://www.ed.gov/NCES/naep.
NOTICE

REPRODUCTION BASIS

☐ This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

☑ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").