DOCUMENT RESUME

ED 422 922 IR 057 o080
AUTHOR Lorents, Alden C.

TITLE GUI and Object Oriented Programming in COBOL.

PUB DATE 1997-00-00 .

NOTE 9p.; In: Proceedings of the International Academy for

Information Management Annual Conference (12th, Atlanta, GA,
December 12-14, 1997); see IR 057 067.

PUB TYPE Reports - Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Interfaces; *Computer Science Education; Computer

Software Development; *Computer System Design; Curriculum
Development; Design Preferences; Higher Education;
*Programming; *Programming Languages

IDENTIFIERS COBOL Programming Language; *Graphical User Interfaces;
*Object Oriented Programming

ABSTRACT

Various schools are struggling with the introduction of
Object Oriented (00) programming concepts and GUI (graphical user interfaces)
within the traditional COBOL sequence. OO0 programming has been introduced in
some of the curricula with languages such as C++, Smalltalk, and Java.
Introducing 00 programming into a typical COBOL sequence presents some
interesting challenges. There are a number of new concepts to introduce along
with various design issues that are relatively new to OO program design, such
as file maintenance and data objects. Most C++ programming courses tend to
work with objects that are more user interface related, such as traditional
GUI objects. This paper describes an example of using OO COBOL and Dialog
Systems (GUI builder) in an advanced programming applications course.
(Author/AEF)

e e e de g de e de e e de e de e e e e e e ke e ke e e e e ke e e ke e e ke e e ke e e ke ke e ke ke ke ke ke ke e ke ke e e ke ke e ke ke e e e e e ke e e ke e e e ke ke ke e e ke e ke ke ok

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
e de e de de ke ke de e e de g de g de de g de de de e de e K K K K e e e ke e e e ke e e e ke ke e de de e e de e K e e de e e e de de e de de e e e e e e e e e ke e e e e e ek he e ke i

ERIC

Aruitoxt provided by Eic:

N
o)
o
)
v
Q
(64

GUI AND OBJECT ORIENTED PROGRAMMING IN COBOL

“PERMISSION TO REPRODUCE THIS -
MATERIAL HAS BEEN GRANTED BY

U.S. DEPARTMENT OF EDUCATION

Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INF(SRMATION

) CENTER (ERIC)

O This document has been reproduced as
received from the person or organization
originating it.

a MII’IO! changes have been made to
Improve reproduction quality.

Alden C. Lorents

. . . T.
Northern Arizona University Case

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

° R
Points of view or opinions stated in thi
in this
dopl._:menl do not necessarily represent
official OERI position or policy.

Various schools are struggling with the introduction of Object Oriented (OO) programming concepts and
GUI within the traditional COBOL sequence. OO programming has been introduced in some of the
curriculums with languages such as C++, Smalltalk, and Java. Introducing OO programming into a
typical COBOL sequence presents some interesting challenges. There are a number of new concepts to
introduce along with various design issues that are relatively new to OO program design such as file
maintenance and data objects. Most C++ programming courses tend to work with objects that are more
user interface related such as traditional GUI objects. This paper describes an example of using OO

COBOL and Dialog Systems (GUI builder) in an Advanced Programming Applications course.

INTRODUCTION

"COBOL is in a unique position to bridge the past
with the future. COBOL practitioners bring a
wealth of experience spanning all phases of the

software life cycle including analysis, design, .

implementation, database integration, and
maintenance" [Arranga, 1997). The inventory of
legacy systems continues to be estimated at

around 180 billion lines of COBOL code. Some

organizations (typically technology and
engineering based companies) have migrated
away from using COBOL. They have done this by
going to client-server systems using databases
such as Oracle, Sybase and DB2 along with client
tools such as Visual Basic, Powerbuilder, and
Oracle tools. Many organizations are still
committed to their COBOL based systems
because of the high investment in these systems,
the high cost to rebuild the systems, and the
inability of the newer client-server technologies to
handle the loads in large systems (salability). OO
COBOL, GUI builders (such as Micro Focus
Dialog Systems and IBM Visual Age for COBOL)
and the integration of these products with
common object standards (Common Object
Request Broker Architecture - CORBA), may
provide an alternative for many of these
organizations to migrate their legacy systems into
newer systems based on the new technologies.

GUI AND COBOL
USING DIALOG SYSTEMS

Adding GUI (windows) to COBOL program
development is very easy today with the use of

- either Micro-Focus Dialog Systems or IBM Visual

Age for COBOL. The examples shown in this
paper were done. using Dialog Systems. The
window shown in figure 1 is a passenger
reservation window that is used to maintain data
using a traditional VSAM file structure with a
primary key (itinerary number) and two
alternate keys (passenger name and -flight .
number).

FIGURE 1

S

Eii

Passenger

itinerary No: |000005 | Name: !Anderson Ote
Phone:{520.526.8396

Flight
[Date: [01/2501997 | FlightNo: [0099 | Fare: [0101.00

NEXT QUERY COMPLETED

Proceedings of the 12 Annual Conference of the International Academy for Information Management 107

2

FIGURE 2

File

Edit creenset

9{4).9(2)

The window is built using the Dialog Systems
object palette or object pull down menu shown in
figure 2. Objects available include primary
window, secondary window (clipped and

unclipped), dialog box, message box, entry field,

multiple line entry field, push button, radio
button, check box, list box, selection box, text box,
group box, bitmap and notebook.

Normally you start the build process by defining
a set of data to be used with the window. The data
is referred to as a data block and is defined
similar to COBOL. The data block can be entered
in Dialog Systems or imported from a COBOL
data definition. The data block used for this
window is shown in figure 3.

Normally a data element is defined for each field
supported on the window along with any other
fields necessary to support communication
between the window and the application
program. X300-Action is used to communicate a
code to the application program, so the

FIGURE 3
FLDONO FIELDNAME FORMAT LENGTH
1 X300-TINERARY-NO 9 6.00

2 X300-NAME X 20.00

3 X300-PHONE X 12.00

4 X300-DATE X 10.00

5 X300-FLIGHT-NO 9 4.00

6 X300-FARE 9 4.02
X300-ACTION X 1.00

8 X300-MESSAGE X 40.00

application program knows which button the user
pushed when control is turned over to the
application program. Each of the other fields is
associated with a entry field or display field on
the window. A copy block (file) of COBOL

108 Proceedings of the 12 Annual Conference of the International Academy for Information Management

3

definitions corresponding to each field on the
window is generated by a command on the file
menu. This file is called using a copy statement
in the Working Storage Section of the COBOL
program. This assures that the data definitions
in the application program are exactly the same
as the data definitions on the window.

The operation of a window is controlled by events.
Events can be trapped at various levels such
global (events associated with all windows in the
set), for each specific window, and for each
specific object on a window. Examples of events
include window created, closed window, item
selected, mouse over, button selected, gained
focus, lost focus and various other events. Each
event can be trapped at different levels and
programmed to carry out various functions. This
programming is called script and is executed as
part of the windows operating system. Figure 4
shows some examples of script that are used on
this window. Escape and Closed-Window have
been defined in this application to exit the
application. The application program has. been

programmed to exit when it sees an 'X' in the.

action code. The command RETC is a script
command: to leave the window and return to. the
calling (application) program: The loeal dialog
" for the. window traps the exit menu selection
under File and also closes the application. If the
escape and closed-window events under GLOBAL
were moved to0 LOCAL for the window win-pass,
then those events would be trapped only when
that window is in focus.

Script is written for each button to tell the
application program which routine to execute
when control is returned to the application
program. When the application program returns
to the window, the window program continues to
execute the script that is was on when it turned
control over to the application program. The
ADD push button script illustrates this with the
execution of the REFRESH-OBJECT $WINDOW
command after it returns from the calling
program. The application program sends
additional data back to the window, and the
window must be refreshed in order to display that
data. The window is displayed at the end of any
script that is executed after control has been
returned to the window program.

FIGURE 4
GLOBAL DIALOG:
ESC
MOVE "X" X300-ACTION
RETC
CLOSED-WINDOW
MOVE "X" X300-ACTION
RETC
LOCAL DIALOG:
@MNU-EXIT
MOVE "X" X300-ACTION
RETC
DIALOG FOR PUSH BUTTON : PB-ADD
BUTTON-SELECTED
MOVE "A" X300-ACTION
RETC
REFRESH-OBJECT $WINDOW

Two blocks of data (data block and control block)
pass between the application program ‘and the
Dialog Systems Program (DSRUN) each time
control is passed from one to the other. The
application program calls the Dialog Systems
program with a subprogram Call Statement. The
code in the application program that is used to
communicate with Dialog Systems is shown in
Figure 5. The program-initialize routine is

. executed once at the beginning of the application

‘to set up some of the parameters in the control
block. The Call-Dialog routine is used each time.
the application program returns control to the
window. Note that the Call statement calls
Dialog-System as a subprogram using the control
block and the data block.

Setting up windows like this allows faculty to
illustrate all of the components of client-server
programming using COBOL as the application
language. The client (window program) is
running various scripts that control operations at
the client. The application program could be
running on any platform such as an application
server. If the application program has embedded
SQL to an Oracle server, you are able to illustrate
full 3-tier architecture in a COBOL environment.
Dialog Systems supports a robust windows
environment including data validation, list boxes

Proceedings of the 12* Annual Conference of the International Academy for Information Management 109

4

populated by repeating group fields (tables), and
multiple windows.

FIGURE 5

COBOL CODE TO SUPPORT DIALOG
SYSTEMS

u500-Program-Initialize.
Initialize DS-CONTROL-BLOCK, DATA-BLOCK
Move DS-NEW-SET to DS-CONTROL
Move VERSION-NO to DS-VERSION-NO
Move DATA-BLOCK-VERSION-NO to DS-DATA-
BLOCK-VERSION-NO
Move "awvsam1p" to DS-SET-NAME
Perform u510-Call-Dialog.

u510-Call-Dialog. _

Call Dialog-System using DS-CONTROL-BLOCK,

DATA-BLOCK if DS-ERROR-CODE not =0
Display "Dialog Error"
Stop Run

else
move X300-action to 400-action

end-if.

APPLICATION PROGRAMMING
IN OO COBOL

The application program used in this paper to
illustrate object oriented programming in COBOL
is based on a model developed by Will Price in his
text on Elements of Object-Oriented
Programming in COBOL [Price, 1997]. I used his
model to rebuild the VSAM update program that
uses the window described in the preceding
section. The model has a driver program, a
passenger class and a database interface (DBI)
class. Each class is a separate object program.
The driver is a procedural COBOL program and
not a object COBOL program. In this illustration,
the driver contains the user interface (interface to
Dialog Systems), and most of the application logic.
All of the I-O has been transferred from the driver
to the DBI. All of the interaction with passenger
data has been placed in the passenger class. Each
class is similar to a sub program in COBOL. A
class can have multiple methods (sub programs)
within the class. A method is called using an
INVOKE command.

In object programming there are various cycles to
the life of an object. The first cycle is to create the

object. This is done in COBOL with the following
command:

Invoke PassClass "New"
Returning thePassHandle

The variable 'thePassHandle' is a new COBOL
object reference variable that is used to maintain
a pointer to the object space that is created in
memory. Once the object has been created, the
object can be populated with data (second stage of
the life cycle) by referencing it using the handle.
The sub program (method) "populate-the-pass-
object" is executed using the data in 200-pass-
record of the program executing the invoke.

Invoke thePassHandle
- "populate-the-pass-object"
using 200-pass-record

The next stage in the life of an object is to
manipulate or use the data. Object data can only
be accessed through the methods associated with
that object. The following statement would
return data currently held by this passenger
object to a program that wanted to pass the data
to a window for displaying it.

Invoke thePassHandle "return-pass-data"
returning 200-pass-record

The entire class program for passenger is shown
in figure 6. The differences to note compared to a
procedural COBOL program are as follows: 1)
Class-id instead of Program-id, 2) Object Section,
3) Class control associates the class names
(logical names) with physical file names on the
disk, 4) OBJECT starts the definition of the
object, 5) the data definitions for the object data,
6) each method definition under the procedure
division is like a separate little sub program.
Note that each method can have its own linkage
section and local working storage section. The
object data is global to all methods within this
class.

A passenger object is created during the
application of this program each time passenger
data in read from the file, or each time a new
passenger is added to the file. In this example,
the same passenger handle is used for each
passenger object, so once a new passenger object
is created, there is no access to previous

110 Proceedings of the 12* Annual Conference of the International Academy for Information Management

S

passenger objects. OO COBOL has its own
garbage collection management system so the
programmer does not have to mange it. More
than one object of the same class can be
maintained at the same time through the use of
multiple handles that would be managed as part
of a stack or table.

FIGURE 6

PASSENGER CLASS

$set ooctri(+n)

$set sourceformat "free”
t>tt.t.tttt.t
*> Airwest Reservation System

*> 1/8/97 AWPAO1CL.CBL

t>

*> This is the basic passenger class

*> Object data is:

*> itinerary number

name:

phone

date and flight number

fare

*> Methods are:

*> retum:pass-data

*> populate-the-pass-object (invoked by DBI)

5"""""""'"'"""""'"""""'""""""

>
>
Q>
Q>

Identification Division.
Class+id. PassClass
inherits from Base.

Environment Division.
Object Section.
Class-Control.
PassClass is class "awpa01cl®
Base s class "Base"

*,

OBJECT.
Data Division.
Object-Storage Section. *> OBJECT DATA
01 Pass-data.

03 200-itinerary-no Pic 9(4) comp.

03 200-name pic X(20).

03 200-phone pic X(12).

03 200-date pic 9(8) comp-3.

03 200-flight-no pic 9(4) comp.

03 200-fare pic 9(6)V9(2) comp-3.

Procedure Division.
e

*

—

Proceedings of the 12* Annual Conference of the International Academy for Information Management

6

> Object Methods <
e — <

']

*,

Method-id. "populate-the-pass-object”.

Data Division.
Linkage Section.
01 Is-pass-data.
03 Is-tinerary-no Pic 9(4) comp.
03 Is-name pic X(20).
03 Is-phone pic X(12).
03 Is-date pic 9(8) comp-3.
03 Is-flight-no pic 9(4) comp.
03 Is-fare pic 9(6)V9(2) comp-3.

Procedure Division Using Is-pass-data.
Move Is-pass-data to pass-data

End Method "populate-the-pass-object".

L

Py

Method-id. "retum-pass-data”.

'\
>

Data Division.
Linkage Section.
01 Is-pass-data. _
03 ls-itinerary-no ' Pic 9(4) comp.
03 Is-name pic X(20).
03 Is-phone pic X(12).
03 Is-date pic 9(8) comp-3.
03 Is-flight-no pic 9(4) comp.
03 Is-fare pic 9(6)V9(2) comp-3.

Procedure Division Returning ls-pass-data.
Move pass-data to Is-pass-data

End Method "return-pass-data”.

END OBJECT.
END CLASS PassClass.

A partial listing of the database interface (DBI)
class is shown in Figure 7. The database
interface object is created once for the duration of
the application program. The database interface
has all of the file definitions and the methods to
open, close, write, rewrite, read (using every
index) and start (using every index or staring

111

parameter). If this application were switched to
a relational table, DBI would be changed to SQL
calls to an Oracle or DB2 database. In most
cases, if this change were made, the programs
using the DBI would not have to be modified.

The database interface class has not defined any
object data. This class defines methods only.
The driver program creates the database
interface object once and then invokes the object
method 'open-pass-file' to open the VSAM file.
From that point, the driver program can initiate
read, writes, and rewrites by using the methods
in this DBI.

The overall object structure of the DBI is the
same as the passenger class with the exception
that there is no object data. The partial listing
shows one read method. Most of the read
methods are all the same except that they use
different indexes or start statements. Note that
once the read is complete, a new passenger object
is created and a method is called to populate that
passenger object with the data that was just read.
If the read fails the handle is set to null. The
handle is used two ways. If the handle returns to
the program with data in it, then the read was
OK and the reference to the object is contained in
the handle. If the handle is returned as a null,
then the read was not OK, and the invoking
program can process the exception by notifying
the user.

FIGURE 7

DATABASE INTERFACE (DBI) CLASS

$set ooctri(+n)

$set sourceformat "free”
Q>tﬂﬁﬁﬁtﬁﬁttﬁtttaattﬁﬁttﬁtttﬁﬂttﬁtfﬁtﬁﬁtttﬁﬁﬁtﬂﬁﬁﬁﬁﬁﬁﬁﬁtttﬁﬂ
*> Airwest Reservation System

*> 1/08/97 AIRWO01DA.CBL

>

*> Airw01da maintains the VSAM file for the Airwest
*> reservation System.

Q>Q..QQQQQQQQQQQ"'QQQ'QQQQ"Q."'QQQQ"QQQQ"""""""QQ

Identification Division.
Class-id. AirwDatabaselnterface
inherits from Base.

Environment Division.

FILE-CONTROL.
SELECT 200-AwPass-file ASSIGN TO
"C:\pcobwin\airwest\airw.mst"

ORGANIZATION INDEXED
ACCESS DYNAMIC

RECORD KEY 200-itinerary-no
alternate record key is 200-name
with duplicates

alternate record key is 200-flight-no
WITH DUPLICATES.

Object Section.
Class-Control.

AirwDatabaselnterface is class "airw01da"

Passclass is class "awpaoicl"
Base is class "Base"
Data Division.
File Section.

FD 200-AwPass-file.
01 200-Pass-record.

03 200-itinerary-no Pic 9(4) comp.
03 200-name pic X(20).
03 200-phone pic X(12).
03 200-date pic 9(8) comp-3.
03 200-flight-no pic 9(4) comp.
03 200-fare pic 9(6)V9(2) comp-3.
OBJECT.
Data Division.

Object-Storage Section. *> OBJECT DATA
01 thePassHandle object reference.

Procedure Division.
> Object Methods <

> Method Open Passenger File < -
Method-id. "open-pass-file".
Procedure Division.

Open I-O 200-AwPass-file

End Method "open-pass-file”.

> Method Read Passenger File <
Method-id. "read-pass-file".

Data Division.
INPUT-QUTPUT SECTION. Linkage Section.
112 Proceedings of the 12" Annual Conference of the International Academy for Information Management

01 Is-itinerary-no pic 9(04) comp.
01 Is-thePassHandle object reference.

Procedure Division Using Is-itinerary-no
Returning Is-thePassHandle.

Move ls-itinerary-no to 200-itinerary-no

Read 200-AwPass-file
invalid key
Set Is-thePassHandle to null
Not invalid key
Invoke PassClass "New"
Retuming thePassHandle
Set Is-thePassHandle to thePassHandle
Invoke thePassHandle
“populate-the-pass-object”
using 200-pass-record
End-Read

End Method "read-pass-file".

> Method New Passenger Record <
Method-id. "new-pass-record".

Data Division. -

Linkage Section.

01 I1s-Pass-record. - o
03 Is-itinerary-no Pic 9{4) comp.
03 Is-name pic X(20)..
03 Isphone -pic X(12).
03 Is-date pic 9(8) comp-3.
03 Is-flight-no pic 9(4) comp.
03 Is-fare pic 9(6)VS(2) comp-3.

01 Is-thePassHandle object reference.

Procedure Division Using Is-pass-record
Returning Is-thePassHandle.

Move Is-pass-record to 200-pass-record
Invoke PassClass "New"
Returning thePassHandle
Set Is-thePassHandle to thePassHandle
Invoke thePassHandle
"populate-the-pass-object"
using 200-pass-record

End Method "new-pass-record”.

Method-id. "write-pass-file".

Procedure Division.
Invoke thePassHandle "return-pass-data”
Returning 200-pass-record
Write 200-pass-record

End Method "write-pass-file".
END OBJECT.
END CLASS AirWdatabaseinterface.

SUMMARY

COBOL 97 and other tools such as Dialog
Systems and Visual Age for COBOL are paving
the way to enhance the traditional COBOL
sequence in CIS curriculums into the new
technologies. Much of the large corporate
enterprise-wide systems world, with its 180
billion lines of COBOL code, is still looking for
direction as a way to migrate. Object oriented
development in COBOL may be part of the
answer to this migration dilemma. IBM, Micro
Focus and Hitachi have all invested large sums in
the development of OO Cobol. Change in these
large legacy systéms over the years has always
been slow. Most organizations today are too
bogged down- with the year 2000 problem and
normal maintenance to do much experimental '
work with object technologies today. However, as-
we move past the year-2000, we will see a lot
more activity with object technologies. Exposing
our students to object oriented programming
applications using business system applications
will give them an introduction to the technologies
they will encounter in working on information
system development projects when they
graduate.

REFERENCES

Arranga, Edmund and Frank Coyle, 'Object-
Oriented COBOL: An Introduction', Journal of
Object Oriented Programming, January, 1997.

Arranga, Edmund, and Frank P. Coyle, Object-
Oriented COBOL SIGS Books, New York, 1996.

Price, Will, Elements of Object-Oriented COBOL,
The COBOL Group - Object-Z Publishing, 1997.

Topper, Andrew, Object-Oriented Development in
COBOL, McGraw-Hill, New York, 1995.

Proceedings of the 12" Annual Conference of the International Academy for Information Management 113

Tayler, David A., Object-Oriented Information
Systems - Planning and Implementation, Wiley,
1992,

Obin, Raymond, Object Orientation - An
Introduction for COBOL Programmers, Micro
Focus, 1993.

114 Proceedings of the 12 Annual Conference of the International Academy for Information Management

Price, Will, 'Elements of OOCOBOL - Accessing
Data From a Database, The COBOL Report, v 1
no. 5, 1997.

Lorents, Alden C., Client-Server Components and
Embedded SQL using Micro Focus Workbench,
Dialog Systems, and Oracle, The COBOL Report,
v 1 no. 5, 1997.

9

N

U.S. DEPARTMENT OF EDUCATION

Office of Educational Ressarch and Improvemant (OERI)
Educatlonal Rasourcas Information Cantar (ERIC) l' :

NOTICE

REPRODUCTION BASIS

This docurment is covered by a signed “Reproduction Release
(Blanket)” form (on file within the ERIC system), encompassing all
or classes of documments from its source organization and, therefore,
does not require a “Specific Document” Release form.

This document is Federally-funded, or carries its own permission tu
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release
form (either “Specific Document” or “Blanket”)..

