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Abstract

This paper considers several issues with the analysis and interpretation of interactions in unbalanced
factorial designs. The effect of design weights on the interaction parameters in factorial designs and an
approach for the analysis of interactions using finite intersection tests is discussed.

To motivate and illustrate the issues discussed in this article, we begin with a simple example.

Consider the problem of a researcher designing a study to analyze the interaction of two treatment

combinations (factors A and B) where factor A has three levels and factor B has four levels. Following

Kirk (1995, Chapter 9), a completely randomized factorial design, represented as CRF-ab where

a = 3 and b = 4. Kirk (1995, p. 422) and most other authors of texts in classical experimental design in the

social and behavioral sciences, biostatistics and statistics recommend'that the researcher (1) assume a

balanced design with an equal number of observations per cell, (2) establish the magnitude of the

interactions (yu ) one wishes to detect with the desired power for the overall test of the interaction, with an

estimate of common within subject variance, and (3) determine the sampling plan for the study.

Alternatively, following Cohen (1988), an estimate of the effect size for the test of interaction is specified to

again determine the equal number of observations per cell.

Following the procedure discussed by Kirk (1995, p. 401), the power analysis of a researcher showed

that exactly 2.75 subjects per cell or N = 33 subjects were required for a study to maintain a 0.80 level of

power to reject the overall test of interaction (AB). While three observations per cell yielded a slightly

higher power, the researcher knew that a design with an equal number of observations per cell was "easier"

to analyze; hence, the researcher decided on a sample size of N = 36 subjects.

A second researcher knew that factors A and B contained mutually exclusive and exhaustive treatment

levels associated with the two factors. Furthermore, this researcher knew that the number of observations

associated with the levels of factor A in the population were equal and that the number associated with a

levels of factor B were proportional in the population with fixed ratios 2:3:2:4. Using this information, the

researcher decided on the sampling plan shown in Table 1, an orthogonal design with proportional cell

frequencies.
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Table 1 Design Weights Wu

Factor B

B2 B3 B4

Al 2 3 2 4 11

Factor A A2 2 3 2 4 11

A3 3 2 4 11

6 9 6 12 33

Thus, we have two design strategies: an "equal" weight design and a "proportional weight" or "balanced"

design.

Collecting the data for the study and performing the experiment with N = 36 subjects, several data

values were lost and the data realized for the experiment were those shown in Table 2, from Overall and

Spiegel (1969); an unbalanced or nonorthogonal design. The second researcher began his study with

N = 33 subjects according to the sampling plan given in Table 1; however, one subject left the experiment

and some of the subjects were incorrectly assigned to the treatment combinations. Again, the data shown in

Table 2 were realized. Finding yourself in this situation, how would you analyze the data in Table 2?

Should you employ equal weights, balanced weights, unequal weights or the cell frequencies as weights -

"sample" weights? Does the selection of weights make a difference for testing the interaction hypothesis or

estimating the interaction effects?

Factor A

Table 2 Overall and Spiegel Data

Factor B

B2

Al

A2

A3

B3 B4

61 79 43 56

73 65 35 25

52 81 19

35

42 37 87 72

53 32 81 84

50 65

96 45 75 98

81 37 59 77

92 91

Before answering this question, let us see what others say about the analysis of a two-way CRF-34

analysis of variance (ANOVA) with fixed effects and unbalanced data as shown in Table 2. While there has
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been considerable discussion of this situation in the social and behavioral sciences by many authors, for

example, Appelbaum and Cramer (1974), Carlson and Timm (1974), Cramer and Appelbaum (1980), Keren

and Lewis (1977), Lewis and Keren (1977), O'Brien (1976), Overall and Spiegel (1969, 1973), Overall,

Spiegel, and Cohen (1975), Rawlings (1972, 1973), Searle (1995), and Timm and Carlson (1975), among

others, there is not total agreement among the authors on the analysis. Most authors agree that selecting

sample weights, weighting by cell frequencies, is incorrect unless the unbalanced number of observations

observed in all cells would result in proportional patterns over several replications of the experiment.

Following Scheffe (1959, p. 93), others might say that the test of interaction does not depend on the system

of weights. Only the tests of main effects depend on the weights. This is correct; however, the interaction

parameters y, and their estimators, depend on the weights used in the design. This led Arnold (1981,

pp. 92-100), Davidson and Toporek (1991) and Fujikoshi (1993) to assert that the researcher first establish

the system of design weights or restrictions on the model. Following the establishment of design weights or

model restrictions, one next determines the sampling plan for the design based on power considerations.

Unfortunately, there is no "optimal" strategy in the selection of the system of design weights, Fujikoshi

(1993).

Returning to our example, we would not weight by the sample cell frequencies or use weighted

averages of cell means since the nu are not random. The first researcher would select an equal cell weight

analysis which associates weights (1/ a) to each row of factor A and (1/ b) to each row of factor B,

provided the treatment levels are mutually exclusive and exhaustive for both factors as suggested by

Carlson and Timm (1974), among others. For the second researcher, proportional or balanced weights

should be used in the analysis since they reflect the proportion of the population in the id) column. Does the

analysis make a difference? Yes, before we look at four approaches and the difference in the analysis, we

introduce some notation.

The Two-Way ANOVA Model

For our study we have a CRF-ab design; the full rank cell means linear model is:

Yijk = ij eijkv i = 1,2, ... , a; j = 1,2, ... , b; k= 1,2,...,nt,,

where the eijk are independent, normal, random errors with mean zero and common variance, a2.

Furthermore, we assume that the cell means have the following form:

= +yu,

where it is a general constant, ai is the effect due to the ith level of factor A, p; is the effect due to the

J th level of factor B and yu represents the effect of the interaction of row i and column j. To associate

(1)

(2)

meaning to the parameters in (2), to make them uniquely estimable, one imposes a set of restrictions on the

parameters:

Eoci =E/3j =Eyu =Eyu = 0, or (3)if I

3
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I Uicti = IV/ Pj = EUiyu = Viyu =0 (4)

where the weights U; and Vi are nonnegative such that the EU > 0 and E V. > 0, or
j

Wi+ai W+ji3j = Wigu = Wirij = 0 (5)

where the Wu are nonnegative cell weights, Wi+ = E Wu and the Ki = W. These systems of weighting

schemes or restrictions are called I -restrictions, UV-restrictions and W-restrictions by Fujikoshi (1993).

In (3) we see that selecting U; = V = 1 or Wu =1 so that equal weight E -restrictions is a special case

of the UV- or W-restrictions, and Wu = If Wu is proportional to the product of Ui and we say the

design is "balanced" with respect to the weighting scheme. In particular, if we let

I = Wi, and U. = Wi+ / W++

E Wu = W+ and = W+ / W, + (6)

= W++ and I = =1,
i,j

then Wu cc UiVi and the scheme is balanced. We may also select Wu = nu so that = n++ and other

more abstract schemes. In general, UV-restrictions are not special cases of W-restrictions, unless all

U; and Vi are positive, Fujikoshi (1993). Furthermore, it is not possible to develop simple expressions for

all the model parameters ,u, cei, /3j and yu for the general W-restrictions unless the weights are balanced

since solutions for the ai's and /31's involve solving the absorbing equations, Searle (1971, p. 297).

For the weighting scheme Wu = U.U;V3 = (1/ a)(1/ b), which ensures positive, balanced U; and the

estimator of the interaction parameter is

= yu.Eyu. /aEyu. /b+EIyu. /ab
j

(7)
= Yu. Yi.. Y.i. + Y...

where yu. is the cell mean. The "dot" notation is used to represent a simple or unweighted average. For

U. = ni, and V] = n+i or Wu = ni+n,j so that Wu > 0 and balanced, the estimator of the interaction term is

ffu = E n +; y;;. / n++ E ni+yu. / n++ E I nuyu. / n
i j (8)

where the "bar" notation represents a weighted average of cell means. In (7), we have unweighted averages

of cell means so that this is often termed the equal weight case. Situation (8) is called the unequal weighted

case, since the depend on weighted averages of cell means. More generally, suppose we have arbitrary

weights where the weighting is specified by (5) with weights {Wu) where not all VVu > 0 and the Wu are not

balanced. Then,
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= E E Yu. l W++

= Yij. ;31

where E Wi+ai = 0, the E Kjfii = 0 and &; and are solutions to the general absorbing equations,

(9)

Fujikoshi (1993). If Wu = nu = ni+n,i / n, we have the case of proportional sampling. This is not the

case for our example since Wu = / W. and Wu nu. We call this situation the "balanced" weight

case, since Wu cc VVi+W+i . For Wu = nu, 5c; and /3; do not have simple representations and (8) does not

apply.

Using the population cell means pu, the corresponding row and column population marginal means are

defined:

Row Column

pi. =Eliu /b ii.j = Epu /a
/

iti. = E nueuu / ni, p.; =Entipu 1 n+;
i i

it i. = E Wuktu / Wi+ it.i = E Wuliu / W+i
i

(10)

For the model given in (1) and all nu > 0, Graybill (1976, p. 560) has shown that the test for no interaction

or additivity may be represented in any of the following four equivalent forms:

(a) Ho: yu = 0
(b) Ho: = +

(c) Ho: itu /iv+ = 0

(d) Ho: yu y y + y iv, =0

for all subscripts i, j and j'.

To test (11), one uses the F-statistic:

E (yu. i;;)2 / (a 1)(b 1)
=m n

II E (y ijk yo.)2 /(Nab) MS,
j k=1

When 110 as in (11) is true, the F-statistic in (12) has a central F-distribution with vh = (a 1)(b 1) and

ve = Nab degrees of freedom. For a deviation of the statistic in (12), see for example, Scheffe (1959, p.

115), Arnold (1981, p. 96) or Fujikoshi (1993). The test is a uniformly most powerful invariant, unbiased

test, Arnold (1981, p. 109).

While the F-test of (11) using (12) is independent of the system of weights (Scheffe, 1959, p. 93;

Arnold, 1981, p. 95 and Fujikoshi, 1993, Theorem 3.2, p. 320), if the interaction hypothesis is rejected so

that not all the yu's are identically zero, the estimands yu depend on the design weights and hence so may

the interpretation of their estimates, 'Yu.

(12)
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Analyzing the Two-Way ANOVA

Returning to our example, we analyze the data in Table 2 using the BMDP4V computer package,

BMDP(1992). This statistical package allows the researcher to input design weights using the /WEIGHTS

paragraph. The parameter EQUAL assigns cell weights Wu = (1/ a)(1 / b). The option SIZES assigns cell

weights Wu = nu, a special case of the W-restrictions discussed by Fujikoshi (1993). With the LIST option

one may assign weights to each level of the design. Using the weighting A = 11, 11, 11 and B = 6, 9, 6, 12,

we obtain the unequal weighted case. Selecting the weights proportional to cell frequencies,

A = 12, 10, 10 and B = 8, 8, 7, 9, we obtain the "weighted" average case. The unequal weight case yield

interactions that have the form given in (8). The parameter matrices for the cell means and interaction

parameters are the a x b matrices:

U = (lid and r = (yki) (13)

where ,uu is a cell mean and yu is an interaction, and i = 1, 2, 3 and j = 1, 2, 3, 4, for our example.

For the data in Table 2, the estimator of U is the matrix of sample cell means yu.; hence,

[62.00

75.00 39.00 33.75

U = (y .) = 47.50 39.67 77.67 78.00

89.67 41.00 67.00 88.67 .

(14)

From the output of BMDP4V, one may construct the matrix of estimated interactions, t. Using

estimates of the population marginal means given in (10) and an estimate of the overall mean the

interactions Yu are obtained using (7) for the "equal" or unweighted weight case. Using (8), we obtain the

unequal weight case. BMDP4V solves the general absorbing equations to estimate Yu when selecting

weights = nu, the "sample" weight case. For the "balance" weight case,

7'u = Yu. E W.
rI

(15)

where Wu = The twelve interaction estimates Yu are the cells in Table 3 for the four weightings:

equal, sample, balanced and unequal.

Table 3 3x4 Design, Interactions (yu ), Marginal Means, Overall Mean

Equal Weight Case (W,, = 1)

4.7500 32.2500 -13.0833 -23.9167 52.4375

-18.0208 -11.3542 17.3125 12.0625 60.7083

13.2708 -20.8958 -4.2292 11.8542 71.5833

66.3889 51.8889 61.2222 66.8056

6
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3.8591

-19.5090

9.1469

Sample Weight Case (W, = nu)

30.6703 -14.3769

-13.5312 15.4217

-25.7086 -8.7557

-18.7086

16.6733

13.8293

61.8125

Balanced Weight Case (Wu = Wi,W,i)

6.1667 33.6667 -11.6667 -22.5000 51.0909

-19.1818 -12.5152 16.1516 10.9015 61.9394

13.0152 -21.1515 -4.4848 11.5985 71.9091

66.3889 51.8889 61.2222 66.8056 61.6465

Unequal Weight Case (W, = ni,n+i) /IL

4.7705 30.5518 -11.9482 -22.1045 52.2734

-18.1748 -13.2269 18.2731 13.7002 60.7189

12.4502 -23.4352 -3.9352 12.8252 72.2604

66.1146 53.3333 59.8333 64.7396 61.1585

As expected, we see from Table 3 that the interaction estimates, the row and column population

marginal mean estimates, and the estimate of the overall mean all depend on the design weights. However,

the F-test for testing the overall significance of the AB interactions as given in (11)

9560.00 / 6 1593.33
= 14.04,F = MSH I MS, =

2269.92 / 20 113.50
(16)

is independent of the system of design weights. Setting a = 0.05, the critical value for the F-test is 2.60,

with vh = 6 and ve = 20 degrees of freedom. Since the null hypothesis is rejected, we see that the

individual estimates of interaction and hence their interpretation are affected by the weights.

Investigating the interaction estimates in Table 3, except for the situation Wu = > 0, each is

estimating a population parameter that has the following general structure:

= µ y - marginal row mean - marginal column mean + /./ (17)

where yu is a population cell mean, p. is an overall mean, and the marginal means are defined in (10). This

follows from (7) and (8) with Z -restrictions (3) and UV-restrictions (4), respectively. With W-restrictions

(5) and Wu cc Wi+Kj, (9) reduces to (15) which has the form of (17). These observations lead to the

following general theorem.

Theorem 1. Using I -restrictions, UV-restrictions or W-restrictions with Wu cc Wi,W, j, the

interaction parameters have the residual form given in (17) for appropriately defined row,

column, and overall means.

7



From (9), we see that Theorem 1 is not true for an arbitrary set of nonnegative weights (Wu I. Even so, W-

restrictions with weights Wi = nu yield a nice solution to the ANOVA problem, Fujikoshi (1993).

Bradu and Gabriel (1974) called contrasts in F that have the simple residual form given by (17) a

product-type contrast. Using the matrix r or the matrix of means U, a product-type contrast is defined as

= alb = a'Ub where the elements of a and b are contrasts, the elements of a and b sum to zero

(Ea; = Ebb = 0). Even though the interactions do not have the residual form given in (17) for arbitrary W-
i

restrictions, we have the following general result.

Theorem 2. For yu defined as the residual y, = itu oti = a'Ub = aTb for all

contrast vectors a and b and its value does not depend on I -, UV- or W-restrictions.

More generally, Bradu and Gabriel (1974), Milliken and Johnson (1992, p. 116) and Boik (1993)

define interaction contrasts as

a b
yi = E E coiu, or equivalently yi = trace (CABU) (18)

t=i j=1

where CAB is an a x b matrix with elements {cu }; the elements in each row and each column of CAB sum

to zero (are contrast vectors) and the function Trace is defined as the sum of the diagonal elements of a

square matrix. Thus, a product-type contrast is a special case of an interaction contrast in which the

coefficient matrix CAB = ab', an outer product matrix of rank one. Again, we have the following general

result.

Theorem 3. For yu defined as the residual yu = ,uu a, Si, yi = Trace (C'ABU) =

Trace (C'ABF) for all contrast matrices CAB and its value does not depend on E UV- or W-

restrictions.

Thus, product-type contrasts in yu or yu are a subset of all interaction contrasts.

When one rejects the overall test of interaction using an overall F-statistic, we know from Scheffe

(1953; 1959, p. 109) that either an individual interaction term yu is significantly different from zero or

some parametric function:

= E E cu yu = Trace (cir) (19)
Si

is nonzero for some matrix of coefficients Caxb = {cu }. Comparing (19) and (18), we see that the matrix

Caxb is an arbitrary matrix, there are no restrictions on the sum of the elements cu, while CAB is a contrast

matrix in which the elements in each row and each column sum to zero. There is no contradiction here

since by (18) and Theorem 3, all linear combinations e are contained in v. This result is implicit in Boik

(1993). To see this, there exists weight matrices Wa and W b such that WaUWb = F. Hence,

C'WaUWb = C'F for an arbitrary matrix C. However, the Trace (C'F) = Trace (C' WaUWb) =

Trace (WbC'WaU)= Trace (CABU)= Trace (cABr) since WbC1Wa is a contrast matrix. This

8



establishes the result. For the equal weight case, W and Wb have a simple form. In general, their

construction is more complicated, Fujikoshi (1993).

When performing a post-hoc analysis following a test of interaction, one first evaluates which, if any,

of the individual interaction parameters, a special case of product contrasts, are significantly different from

zero as recommended by Rosnow and Rosenthal (1989a, 1989b) and Boik (1979, 1993). However, one

may have to look beyond the individual yu to establish significance. From Table 3, the estimates of the

interaction terms are different, depending on the design weights chosen. Hence, their interpretation depends

on the weights used in the study.

To determine whether an individual interaction yu or linear combination ty = Trace (cABr) =

Trace (CCU) of the interactions is significantly different from zero following a significant overall F-test,

one may employ the S-method, Scheffe (1953). The simultaneous (1 a) confidence intervals are given by

S6w 5 ty 5 W+ Ser (20)

where tif is an unbiased estimator of yi, (3- is its estimated standard error and S2 is the critical constant

S2 = v F 1-h vhv
a (21)

where vh = (a 1)(b 1) and ve = N ab, for our example. To evaluate (20) for our example, one merely

estimates yi and Qw with S = 4(2)(3)(2.60) = 3.95. Boik (1993) provides a general matrix formula for

obtaining the variance of an interaction contrast estimator ty.

For our example, the only solutions that are applicable are the "equal" weight and "balanced" weight

cases. For the equal weight case, using (7), the estimated variance of is

2
1

=
ar2 (abab+1)2 1-12 b 1 1 b + 1 a b 1

+I Z (22)
Y u ab ab i'=i nu ab i'=1 nr, (ab)2 l'=1 i'=1 n...,

i'xi ex.; , i'*i r*i 'J

To obtain the estimated variance for the balanced weight case, equation (15) is used. That is,

i'' ii = y if. 5i.. TY .i. + -;... = Yu . E WuYi i. I W+ E WO ii I W+ j ÷EEKYy. I W++ (23)
i i i j

The estimated standard errors for each j)u are given in Table 4. The values of Wu are obtained from

Table 1, the sample sizes nu are shown in Table 2, and from the denominator of the F-statistic,

MS, = 62 = 113.50.

Table 4 Estimated Standard Errors, eri,u

Equal Weight Case (Wu = 1)

4.556 4.434 4.996 4.319

4.950 4.705 4.733 4.896

4.620 4.950 5.055 4.563

9 1 0



Balanced Weight Case (1 = WH.W.i.j)

4.956 4.426 5.469 3.671

5.461 4.566 5.211 4.160

5.045 4.832 5.550 3.902

Comparing the absolute value of 1' u, I, with the critical constant Sifii,u for each interaction y;; for

both the "equal" weight and the "balanced" weight cases, y12 and 714 are significantly different from zero

for both weighting schemes. However, 732 is significant for the equal weight scheme, but not the balanced

weight case. The interval is:

Equal 40.449 5132 5 1.343
Balanced 30.551 5 y32 5 5.521.

(24)

Because the definition of the interaction parameters yu depend on the weighting scheme, it is not surprising

to find that the confidence sets for the yu differ in size. Thus, the significance or nonsignificance of a yu

may be reported differently by two researchers for the same set of data. The only difference is in the design

weights selected for the analysis. This fact is often overlooked by applied researchers when discussing the

analysis of a CRF-ab design.

In our analysis of the interactions, we chose to investigate the individual yu to locate significance

following the rejection of the overall F-test. Often these individual yu are not significant and one must

locate the contrast in the yu's or equivalently the pu 's that led to the rejection of the overall test. To find

the most significant contrast in yu (t,) that led to rejection of the overall test, the contrast matrix CAB

must be selected proportional to F' for a design with equal cell frequencies n1 = n, Hochberg and

Tamhane (1987, p. 296). This is the case since MSH = SSH / vh and SSH in (12) for equal n = nu has the

form SSH = n Trace(F 'f'). Extending this result to the unbalanced design, we let Wu = nu. Then the most

significant (maximum) contrast is

yi = E. (ninu )yu = Trace[(N* f' )7] = Trace(C'ABF) = Trace(C'ABU) (25)

where the matrix N = {nu}, the matrix of cell frequencies, and N*r =in,i70, is a Hadamard product. For

Wu = oneone substitutes 5%,:i into (25) to obtain the coefficient matrix CAB for ty. . The value of

ti/ = 9560.00 = SSH, as expected. Using (20), the confidence interval for ty in (25) is

tif Se5; tv 5 (if +

9560 (3.95)(1041.64) 5 ty 5 9560 + (3.95)(1041.64)

5445.85 5 Iv 5 13674.18

which is significant, does not depend on the design weights, but is impossible to interpret.

10 11
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Another class of contrasts that are often studied following the F-test are called tetrad contrasts. Tetrad

contrasts involve four cells in the design, may be generated from the matrix IP = C'AUCB, where

CA and CB are simple contrast matrices, and do not depend on the design weights. To illustrate, we let

4 1 0 0`
1 0 1 0 1 0

=CA
(0

and CB = (27)
1 1 0 0 1

1 11

for our example. Then CAB = C AffieB(i) where cA(i) is the column of CA and cB(i) is the jth column of

CB so that tyu = c'A(oUcB(i) = Trace(CABU) = Trace(CA' Bf) is a tetrad contrast. Thus, tetrad contrasts are

a subset of all product contrasts.

For the matrices CA and CB defined in (27), the six tetrad contrasts are shown in Table 5. In Table 5,

observe that only one of the tetrad contrasts is significantly different from zero using the S-method, for our

example.

Table 5 Select Tetrad Contrasts Using the S-Method

isw (Sig) Low Limit Upper Limit

Yll 731 -Y14 +Y34 27.250 11.911 -19.794 74.294

Y12 -Y32 -714 + 734 88.917 12.680 38.834 138.999

713 -Y33 -714 + Y34 26.917 13.405 -26.030 79.863

721 Y31 Y24 +734 -31.500 13.754 -85.822 22.822

Y22 -732 724 + 734 9.333 13.754 -44.989 63.655

723 Y33 Y24 +734 21.333 13.754 -32.989 75.655

Having selected the design weights for a two-way CRF-ab design, the S-method is the most appropriate

simultaneous test procedure for evaluating the significance of an arbitrary number of linear combinations of

the yu. If one a-priori restricts their investigation to only product-type contrasts, the maximal F-test should

be calculated to perform the overall test of significance since the procedure is more powerful than the F-

test, Boik (1993). The maximal F-test uses the Studentized Maximum Root (SMR) distribution, the critical

value for a two-way design is Rp1-4",, where p = min (a-1, b 1), q = max (a 1, b 1) and ye = N ab.

When p =1 R1-ave = qF1-a reduces to the F-distribution.p,q, q,ve

For our example, p = 2 and q = 3. For a = 0.05, the critical value of the SMR distribution is

/41520 =13.221 so that R = 3.64 < S = 3.95. Hence, using (20) and substituting R for S, we see that the

confidence set for product contrasts will always be shorter, and hence more resolute. Boik (1993)

recommends the procedure be used when one is only interested in product-type contrasts, which include for

example the individual yu and tetrad contrasts. Again, the itu depend on the weighting scheme.

11 1 2



Using a full rank cell means model, Boik (1993) developed SAS (SAS Institute, 1990) and SPSS

(1990) programs to calculate the maximal F-statistic. Using the program for our example, the maximal F-

statistic is:

Maximal F =
(a'fb)2 (a'Ub)2 (51.805)2

68.55= (28)^ 2 ^
CY iv- a v- 6.257

where the maximal contrast vectors are:

0.1273\
0.8156

0.7333
a = -0.4406 and b =

0 .2358
(29)

0.3750
\ 0.6248

Comparing the maximal F-ratio to the SMR critical value 41520 =13.221, the interaction hypothesis is

rejected. The maximal product contrast, similar to the maximum generalized contrast given in (26), is also

difficult to interpret. However, using it as a guide, a product contrast that may be more meaningful is

yi = a'Ub where a' = (1,-1/ 2,-1/ 2) and b' = (0,1, 0, 1) which compares Al with the average of

A2 and A3 for the levels of factor B at B2 and B4. For this contrast, W = 84.25, erv., = 10.653 and

Iji / 6. 1
= 7.909 > R = 3.64 so that the comparison is significant. While one may continue to "data-snoop"

among the product contrasts, including the individual yu, to locate significant interactions that may be

meaningful, the simplest and most easily interpreted contrasts are again the tetrad contrasts. Using the

maximal F-test, the intervals shown in Table 5 would be more resolute. However, can we do better? The

answer is yes. If a researcher is only interested in the ()(2) tetrad contrasts, the finite intersection test

(FIT) procedure developed by Krishnaiah (1964, 1965) yields the shortest confidence sets. Furthermore, all

tetrad contrasts are easily interpreted and they are weight invariant. The FIT procedure uses the

multivariate F-distribution and requires the use of a computer program to approximate its critical values

Cox et al. (1994) and Timm (1995).

To evaluate the significance or nonsignificance of the (2)(1) = 18 tetrad contrasts for our example, the

statistics 72 =
1

/ o'2,
v' are calculated and each is compared to the critical value of the multivariate F-

distribution with 1 and 20 degrees of freedom. For a= 0.05, idak's upper product bound (see e.g.

Krishnaiah, 1979 or Cox et al., 1980 for a discussion of calculating idak's bound) for the multivariate F-

distribution is 11.266. Thus, to establish 1a simultaneous confidence intervals the critical constant

FIT= = 3.36 < R = 3.63 < S = 3.95 (30)

is always less than the corresponding critical constants for the SMR distribution or the F-distribution. The

FIT is uniformly shorter if one is only interested in tetrad contrasts.

To use the FIT program, the cell means for our example are arranged into a vector:

= (111191112,P13,/114,P21,Y22,Y23,Y24,Y31,Y32,1133,1134) (31)
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and a contrast matrix for the 18 tetrad contrasts is input to the FIT program:

l -1 0 0 -1 1 0 0 0 0 0 0`
1 0 1 0 1 0 1 0 0 0 0 0

1 0 0 1 1 0 0 1 0 0 0 0

0 1 1 0 0 1 1 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0

0 0 1 1 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0

0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 1 0 0 1 1 0 0 1

(18xC12) = 0 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1 0 0 1 1

1 1 0 0 0 0 0 0 1 1 0 0

1 0 1 0 0 0 0 0 1 0 1 0

1 0 0 1 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 1 1 0

0 1 0 1 0 0 0 0 0 1 0 1

00 0 1 1 0 0 0 0 0 0 1 1,

Letting IP = Cy, the estimate of iy, is = c;it where 14, is the vector of cell means, iv i and c; are the ith

row of and C', respectively. The output for the FIT program is provided in Table 6.

Table 6 FIT Output for (3x4) Design

TWO SIDED FINITE INTERSECTION TEST
(* INDICATES TO REJECT THE SUBHYPOTHESIS OF NO DIFFERENCE)

VARIABLE 1:

DEGREES OF FREEDOM

S- SQUAREINDF:

CRITCAL VALUE:
LEVEL OF SIGNIFICANCE FOR VARIABLE 1:

1, 20

113.4960

13 1.4

SCORE

SIDAK'S UPPER BOUND ON
MULTIVARIATE F

11.266
0.050



LINEAR
COMBINATION STATISTIC ACC/REJ

LINEAR COMBINATIONS OF THE ORIGINAL MEANS
ESTIMATE CONFIDENCE INTERVAL

1 2.549 20.8333 [ -64.6277, 22.9610 ]
2 14.943 53.1667 [ 7.0033, 99.3300 ]
3 19.207 * 58.7500 [ 13.7556, 103.7444 ]
4 32.166 * 74.0000 [ 30.2056, 117.7944 ]
5 39.391 79.5833 [ 37.0229, 112.1438 ]
6 0.173 5.5833 [ -39.4111, 50.5778 ]
7 8.815 -40.8333 [ -86.9967, 5.3300 ]
8 14.757 * -52.8333 [ -98.9966, -6.6700 ]
9 5.246 -31.5000 [ -77.6633, -14.6633 ]

10 0.761 -12.0000 [ -58.1633, -34.1633 ]
11 0.461 9.3333 [ -36.8300, 55.4966 ]
12 2.406 21.3333 [ -24.8300, 67.4966 ]
13 22.337 * -61.6667 [-105.4610, -17.8723 ]
14 0.001 0.3333 [ -45.8300, 46.4967 ]
15 5.234 27.2500 [ -12.7286, 67.2286 ]
16 18.474 * 62.0000 [ 13.5835, 110.4165 ]
17 49.172 * 88.9167 [ 46.3562, 131.4771 ]
18 4.032 26.9167 [ -18.0778, 71.9111 ]

clearly shows the significant tetrad contrasts for the Overall and Spiegel data. Comparing entries 15, 17,

18, 9, 11, and 12 in this table with those in Table 5, observe that the tetrad confidence intervals for the FIT

procedure are shorter in all cases. Given the relationship among the critical constants in (30), the FIT

procedure also produces confidences intervals that would be shorter than those realized using the maximal

F-criterion. Hence, if one is only interested in tetrad contrasts, the FIT procedure should be utilized in the

analysis of interactions for an a x b design. Of course the FIT procedure is not limited to tetrad contrasts.

It may be used with any finite number of contrasts.

To perform a step-down FIT procedure for this example, one would remove tetrad 17,

= /112 /114 /132 + /134 and recalculate the overall multivariate F-critical value, continuing to remove

the tetrad corresponding to the largest statistic at each step and stopping the process when nonsignificance

is realized. For the example, the step-down procedure found one more tetrad to be significant, tetrad

number 15. The sequence of multivariate F-critical values was:

{11.266, 10.946, 10.771, 10.586, 10.388, 10.176, 9.946, 9.697, 9.424}

for the step-down FIT procedure. The step-down process will always yield at least the number of

significant contrasts found using the single-step procedure, and maybe more. However, it is difficult to

establish 1- a simultaneous confidence bounds for the population parameters at each step, Timm (1995).

Conclusion

This paper began with a researcher interested in analyzing whether there is a significant interaction

between two factors in a completely randomized factorial design. In implementing the study, an unbalanced

nonorthogonal design resulted. To analyze the data, one researcher used equal cell weights and the other

used proportional cell or balanced weights. In performing the analysis, we found that the interaction

parameters yu and their corresponding estimates is,u depend on the weighting scheme selected. Hence,
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when constructing confidence intervals for yu or parametric functions of the yu one must discuss the

weights used in the analysis.

While this F-test and corresponding S-method is used to investigate all yu and contrasts in the yu, a

more powerful test exists if one restricts their investigation of interactions to yu and only product contrasts

in the yu. The most powerful overall test is the maximal F-test. When constructing confidence sets for the

yu, we saw that they still depend on the weighting scheme for the analysis. If a researcher in the study of

interactions is only interested in all tetrad contrasts of the yu, no overall test is performed. Instead, one

uses the finite intersection test (FIT) procedure for the analysis. The overall test of significant interaction is

rejected if any tetrad is significantly different from zero. This approach is particularly attractive in the

analysis of interactions for unbalanced designs since the procedure does not depend on the weighting

scheme selected.

In performing an analysis of interactions in unbalanced factorial designs, researchers have a

responsibility for reporting the design weights when analyzing interactions yu. If one is only interested in

tetrad contrasts, the FIT procedure yields confidence sets that have the smallest probability of covering zero

and hence are more likely to yield significant results.
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