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History and Aims of the PME Group

PME came into existence at the Third International Congress
on Mathematical Education (ICME 3) held in Karlsruhe, Germany,
in 1976. It is affiliated with the International Commission for
Mathematical Instruction.

The major goals of the International Group and of the North
American Chapter (PME-NA) are:

1. To promote international contacts and the exchange of
scientific information in the psychology of mathematics
education;

2. To promote and stimulate interdisciplinary research in the
aforesaid area with the cooperation of psychologists,
mathematicians and mathematics teachers;

3. To further a deeper and better understanding of the psycho-
logical aspects of teaching and learning mathematics and
the implications thereof.
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Preface

This program began with a meeting of interested volunteers
in October 1996 at Panama City, Florida during the 18th PME-NA
meeting. The results of the ideas discussed and suggestions made
were taken to a meeting of the local program committee at Illinois
State University where the theme of the psychological underpinnings
of mathematics education was selected. This theme became the fo-
cus of two of the plenary sessions. Perspectives from cognitive psy-
chology about the foundations of learning mathematics are presented
in a paper by James Greeno. Children’s intuitions about numbers are
discussed from the perspective of developmental psychology in a
paper by Robbie Case. A special memorial lecture in honor of Alba
Thompson given by Suzanne Wilson is also planned, but the paper
dealing with reform and issues surrounding it was not available at
the time these proceedings went to press. Alba was both an active
member of PME and a former faculty member at Illinois State Uni-
versity. Hence, the local program committee decided to include this
memorial to her in the program of the PME meeting held in her former
city of residence.

Included in the Proceedings are 68 research reports, 9 dis-
cussion groups, 40 oral reports, and 41 poster presentation entries.
The research reports and the one-page synopses of discussion groups,
oral reports, and poster presentations are organized by topics follow-
ing the pattern begun with the Proceedings of the 1994 PME-NA
meeting. Additionally, an alphabetical index by author is provided
in both volumes. Initially 238 proposals were received with 218 for
research reports, 11 oral reports, and 9 discussion groups. Proposals
for all categories were blind reviewed by three reviewers with exper-
tise in the topic of submission. Cases of disagreement among re-
viewers were refereed by a subcommittee of the Program Committee
at Illinois State University. The process resulted in the acceptance
without rcassignment of about 33% of the research report proposals

with an overall acceptance rate across all categories of about 58%.
Submissions for the Proceedings were made on disk and read
by the editors. The format of the papers was adjusted to make them




uniform but substantive editing was not undertaken. Papers are
grouped by topic area for the table of contents and cross referenced
alphabetically in the index to both volumes by the first author.

The editors wish to express thanks to all those who submitted
proposals, the reviewers, the 1997 Program Committee, and the PME-
NA Steering Committee for making the program an excellent contri-
bution to the growing body of research and discussions about psy-
chology and mathematics education. The Program Chairs would like
to extend our special appreciation to the mathematics education fac-
ulty at Illinois State University for their support and generous contri-
butions to the preparations for the conference.

Jane O. Swafford
John A. Dossey
October 1997
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PARTICIPATION AS FUNDAMENTAL IN LEARNING
MATHEMATICS

James G. Greeno and The Middle-School Mathematics
through Applications Group
Institute for Research on Leaming and Stanford University
greeno@csli.stanford.edu

This paper considers participation in practices of mathematical inquiry, understanding,
and reasoning as fundamental in the processes of learning mathematics, as an alterna-
tive to considering mathematical skills or conceptual understanding as the fundamental
factor. Rather than considering participation as an instrumental condition for acquiring
skills and understanding, this view considers skills and understanding as means by
which people participate in practices in which mathematical concepts and methaods are
understood and used. Emphasizing educational aims involving participation also sup-
ports a focus on students’ development of personal identities as learners, knowers, and
users of mathematics. The Middle-School Mathematics through Applications Project
is discussed as an example.

What is fundamental in a leaming process is a theoretical question, and
since we have different theories of learning, we have different answers to the
question. In the current state of psychological theory, there are three main can-
didates for the position of “fundamental.” Roughly, the candidates are skill,
understanding, and participation. I will sketch the ideas of skill and understanding
as a background—these ideas about the fundamentals of leaming are quite fa-
miliar. I will discuss the idea of participation as fundamental to mathematics
leaming in more detail. This idea is less developed in our discussions of math-
ematics education. [ propose, however, that the idea of participation has some
advantages. I believe that with this idea, we can develop a more coherent theo-
retical account of leaming, and a conceptual basis for more coherent practices
of education, than we have been able to with theories in which skill or under-
standing plays the fundamental role.

I take the question: *What is fundamental?” to be about what we think is
most important as a basis for other aspects of leaming and for further leamning.
To ask what is fundamental, in this view, is to ask what needs to be attended to
most in considering what kinds of activities should be arranged for students to
learn in next. If something is fundamental, it deserves special atteition as a
kind of prerequisite. The current state of students’ progress in respect to a fun-
damental aspect of knowing will shape the kind of further progress that they
can make as they engage in further learning activities. If these activities are
designed on the assumption that students have some fundamental capabilities,
and they do not, then the intended outcomes of those activities are not likely to
be accompli.ned.
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Background: Skill and Understanding

For many decades, the main debate about the nature of learning in math-
ematics has been a contest between behaviorist and cognitive assumptions. In
the middle decades of this century the debate was stated in terms of a theory of
stimulus-response connections, often associated with Thormndike (1922), versus
a theory of gestalt understanding, often attributed to Katona (1940) and
Wertheimer (1945/1959). In the 1960s, the behaviorist theory was developed
with much sophistication, principally by Gagné (1965). These ideas have been
used as a basis for much educational design and technology, especially in math-
ematics, in the form of behavioral objectives, that have been the organizing
principle for designing much of the curriculum and testing. The cognitive side
of the debate has been developed in the theory of information processing by a
great many people, including Newell and Simon (1972), as well as much of the
voluminous literature on chiidren’s mathematical thinking and conceptual growth
(e.g., Carpenter, Fennema, & Romberg, 1993; Gelman & Gallistel, 1978; Harel
& Confrey, 1994; Steffe, Cobb, & von Glasersfeld, 1988).

In the behaviorist view, skills are fundamental. The most important con-
cern for a student’s early learning is the laying down of a firm foundation of
skill to build upon. And at any stage of a student’s learning, we need to know
what skills the student has acquired, because that determines which new skills
the student is ready to leamn. Assessment of a student’s learning consists of ber
or his performance on a test that is constructed by sampling the skills that con-
stitute the curriculum.

In the cognitive view, the fundamental issue is how sthdents are able to
organize their information and activity in relation to general concepts. Under-
standing depends on general schemata that provide coherence when informa-
tion is encountered and strategies that support successful problem solving.
Questions about what new learning students are ready for emphasize what con-
ceptual structures they have available so that they can comprehend new mate-
rial in a coherent, sensible way. General methods of problem solving are em-
phasized. so that students will be able to use the procedures that they learn
when they are appropriate.

We are all familiar with the dilemmas that are inherent in the values of skill
and understanding. Although there i1s agreement that skill and understanding
both have importance, people differ in their judgments of the relative impor-
tance of these aspects of students’ knowledge. Part of the dilemma arises from
two principles that are both valid, but they fead to a practical conflict.
{1) When someone learns a skill, it is better if it makes sense. rather than being,
a mechanical matter of going through some arbitrary motions. (2) On the other
hand, when someons Teams the meanings of some coneepts, it is better if the
learner knows what the concepts are about. This sets up a chicken-and-egg
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problem for leamning mathematics. If we teach skills to students who don’t yet
understand the underlying concepts, we risk their being learned as arbitrary
procedures. But if we teach concepts that support understanding of mathemati-
cal operations to students who don’t yet know how to perform the operations,
we risk the concepts being learned as meaningless abstractions.

In the past 20 years or so, considerable progress has been made in under-
standing how to cope with this dilemma. Part of the improved clarity has come
from distinguishing between two aspects of understanding procedures: general
problem-solving strategies and theoretical concepts. The theory of problem
solving in cognitive science helped us to understand how activity is organized
when students solve problems successfully and to appreciate the importance of
having student learn general patterns of reasoning that support successful prob-
lem solving. Imporiant general intuitions about problem-solving strategies that
were discussed by Polya (e.g.. 1967) and were developed as explicit theories in
cognitive science (Greeno & Simon (1989) provided a review). In these theo-
retical analyses. strategic aspects of problem solving are represented explicitly
as processes for adopting plans and setting subgoals to support organized prob-
lem-solving activity effectively. An emphasis on general problem-solving abili-
ties was reflected in NCTM's Agenda for Action (1980), and the cognitive theory
of problem solving has been used in development of some instructional sys-
tems that can be very helpful for students who are learning to solve standard
problems in the mathematics curriculum (Anderson, Boyle, & Reiser, 1985).

Progress has also been made in understanding the psychology of theoreti-
cal concepts. A major advance in developmental psychology has provided a
much stronger understanding of children’s intuitive understanding of concepts
in many domains, including mathematics. We now recognize that children have
significant understanding of concepts of number, operations, and functions that
organize their reasoning and comprehension, although niuch of this understand-
ing is implicit (Greeno, 1992), and curricula that connect students’ mathemati-
cal learning to the intuitions that they bring to leaming are being developed
apace (e.g., Curcio & Bezuk, 1994).

Although these developments provide important concepts and methods for
coping with the skills-understanding dilemma, I do not believe that they pro-
vide much progress toward a resolution of the dileinma, either in theory or in
cducational practice. A different framing is possible, however, by shifting the
focus of our theoretical and practical attention to mathematical practices, ana-
lyzed as activity systems, rather than individual cognitive and behaving agents.

Participation Viewed as Fundamental in Learning

My main proposal in this paper 1s to consider participation in practices as
being fundamental in students” knowing, leamning, and understanding math-
enmatics. For our theoretical agenda, this would mean that we would use con-




cepts about participation as the principal basis for our explanations of the phe-
nomena of students’ mathematical activity. For our practical work. this would
mean that we would design materials and activities for learning in mathematics
with primary attention to the participation structures that they support.

This proposal is consistent with a recent movement in the philosophy of
mathematics and science, which is shifting the focus of epistemological atten-
tion from the contents of mathematical and scientific documents to the pro-
cesses of developing bodies of practice ard. through those practices. develop-
ing the conceptual, material, and methodological structures that are the sub-
stance of mathematical and scientific disciplines. Phiiosophers who are devel-
oping this view include Kitcher (1983: 1993). Longino (1990). and Tymoczko
(1985). partly in response to studies in the sociology of science (e.g.. Latour &
Woolgar, 1979/1986: Pickering, 1992). which have focused on the social orga-
nization of practices in scientific communities.

In this view, someone who knows mathematics is able to participate suc-
cessfully in the mathematical practices that prevail in one or more of the com-
munities where mathematical knowledge is developed. used. or simply valued.
Learning mathematics by an individual is a process of becoming more effec-
tive, respensible, and authoritative in the ways that an individual participates in
mathematical practices (Lave & Wenger, 1991: Stein. Silver, & Smith. in press).
Learning also occurs at the level of communities. such as classrooms, that de-
velop more effective practices that accomplish the functions that the commu-
nity values and affords participation by its members in ways that are functional
for the community.

Through their participation in 4 community over time, und through their
participation in the various communities to which they belong, individuals de-
velop identities as learners and knowers of mathematics (Wenger, in press).
These identities are constructed through the interactions that individuals have
with other learners and with people who represent communities of mathemati-
cians and people who use mathematics in their work and evervday lives. An
individual’s identity as a mathematics learner is reflected in her or his self-
concept as well as by the concepts of that person by other members of the
communities that he or she participates in.

Design Principles Focused on Participation and Identity

Recent discussions and development of curricula are placing greater em-
phasis on aspects of students’ participation in mathemittical practices. focusine
on their contributions to a classroom community of learners and their identitic s
as responsible and authoritative mathematical leamers and knowers. As the
authors of the NCTM Standards put it. "First. "knowing” mathematicey is ‘do-
ing’ mathematics. A person gathers, discovers, or creates hnow ledge m the course
of some activity having a purpose™ (NCTM. 1989. p. 7).
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It is important to remember that participation in practices is not limited to
school settings in which people are trying to involve students in their learning
in new ways. Every way of organizing a classroom provides social arrange-
ments in which for students participate. The question is what those opportuni-
ties are, and what the students learn how to do by participating in the classroom
activities that are available. On the other hand, the proposal to treat participa-
tion as fundamental involves recognizing that students are always participating
in an activity in some way. For example, students need not be cooperating in
the activity that a teacher has set up in order to be participating. A student’s
participation may consist of ignoring what is going on in the classroom or causing
a disruption.

Skill-Oriented Didactic Participation Structures

In a traditional didactic classroom that works well, many students learn to
participate by listening to and watching the teacher demonstrate and explain
mathematical procedures, by demonstrating their understanding and learning
by answering the teachers’ questions and working problems at the board, and
by practicing (in the narrower sense) the procedures that they have been shown
so they can perform successfully in tests. Knowing mathematics, in these class-
rooms, is mainly a matter of having acquired skills, and students participate
mainly by displaying the abilities that they have acquired, by displaying their
inabilities, or by displaying their indifference to the expectations that everyone
should learn to perform the procedures.

A great deal is known about the variety of ways in which students learn to
participate in traditional skill-oriented mathematics classes. Successful students
learn to attend carefully and make enough sense of the procedures they learn to
be able to remember them and use them to learn procedures that come later.
This involves suspension of sense-making, to a considerable extent. Like the
audience in a theater. students need to accept that the activities of mathematics
generally do not relate to their experiences in the nonschool world very di-
rectly. Students who insist on being told why they need to learn mathematics,
other than for the sake of succeeding in this school activity, are not the most
-crious participants in the activity, and there is a good chance that they will
come to understand mathematics as a collection of arbitrary rules, rather than
as an intellectually meaningful activity.

At the same time, students who insist on making sense of mathematics in
its own terms can have a challenging and rewarding intellectual experience,
even in skill-oriented classrooms. Making sense of mathematics is not trivial,
especially when it is taught almost entirely as a structure of procedural skills.
The occasional student who persists in understanding how mathematical pro-
cedures work 1s a very active learner, who builds an understanding that con-
tains a great deal of coneeptual understanding, even though that understanding
may be largely implicit.




A major feature of the traditional didactic participation structure is that it
distinguishes successful from unsuccessful students clearly and one-dimension-
ally. Students learn where they are on this one-dimensional scale, and only a
few of them are understood, by themselves and the rest of the community, as
being successful. Much of the evaluation depends on displaying one’s ability,
so students who are disinclined to display their knowledge are not likely to
become recognized as mathematically successful. The affordances for failure
in these classrooms are quite strong. Because so much of the meaning of math-

" ematics leamning is to identify which students are more successful than the oth-
ers, it is crucially important that some students are identified as being the ones
that are unsuccessful. That Americans define the window of success narrowly.
so that most students are identified as being unsuccessful. is an important addi-
tional feature.

The patterns of participation that are available in these classrooms are likely
to result in quite different identities. A few students come to understand them-
selves, and be understood by others. as mathematically gifted—they have both
motivation and talent in the subject. Other students develop identities of not
being interested in mathematics, sometimes because of its lack of connection
with their nonschool experience. And many students develop identities of be-
ing mathematically untalented.

Understanding-Oriented Didactic Participation Structures

Although an emphasis on leamning correct procedures has been common in
much mathematics teaching. there has always been a concemn that it would be
better if students could understand what they are taught to do. This concemn is
the basis of a considerable amount of curriculum design and teaching that is
focused on the meanings of mathematical concepts and principles. A common
form of this pedagogy takes the form of explaining the mathematical ideas to
students or directing them through activities that exemplify the mathematical
principles. helping them to arrive at understanding of the mathematics with the
activities as examples. Although there are important differences between these
methods and skill-oriented didactic teaching, they involve similar participation
structures. The teacher directs the students in well-ordered activity sequences
that students follow. and much of the discussion is focused on whether the
activities are carried out correctly.

An important difference between methods that focus on students’ under-
standing and methods that focus primarily on correct procedures is that the
content of the activity is focused on mathematical meanings and the goal of the
activity is students’ understanding. This can make a very large difference in
what students learn about the nature of mathematics. Mathematics is presented
as an intellectual discipline, in which the material is supposed to muke sense.
Part of the teachers’ job is to convey mathematical concepts and principles to




the students, and part of the students’ job is to grasp these concepts and prin-
ciples. On the other hand, a shift in content does not imply a fundamental shift
in the participation structures of the classroom. Students’ participation can still
be mainly receptive, in the sense that their activities are mainly following di-
rections and displaying their success by answering questions correctly.

The affordances of understanding-oriented didactic instruction for students’
development of identities are quite similar to those of skill-oriented didactic
instruction, although the stakes are higher. The alternatives of an identity of
being mathematically motivated and talented, or uninterested, or weak, are avail-
able in the practice, as they are with more procedurally-oriented classrooms.
The difference is that with more emphasis on concepts and principles, the “mo-
tivated and talented” students are identified as being good at mathematical un-
derstanding, the “uninterested” students lack interest in mathematical ideas
(perhaps because of their abstractness), and the “untalented” students aren’t
very good at understanding mathematics.

Participation Structures of Collaborative Learning

The reforms that have become the agenda of mathematics education in-
clude fundamental changes in the participation structures that are recommended
for mathematics classrooms. Efforts to adopt these changes are increasingly
widespread, and many members of PME are playing central roles in theve ef-
forts. Well-known examples of these projects include Lampert’s (198%) and

Ball's (1993) teaching, the Algebra Project (Moses et al., 1989), the QUASAR
Project (Silver & Stein, 1996), Cobb et al.’s (1991) problem-centered project,
the Cognition and Technology Group at Vanderbilt (1994), and there are many
others. One focus of all these efforts is to establish classroom practices in which
students participate actively in their mathematics leamning in ways that are not
afforded by traditional didactic instruction. There are important implications
for assessment, some of which have been discussed by Greeno, Pearson, and
Schoenfeld (1997).

The participation structures in these programs provide quite different
affordances for the development of students” identities as mathematical leam-
ers and knowers f  m those of didactic leaming environments. Activities are
designed to enable students to contribute ideas and questions in discussions,
and to contribute to the class’s judgments of the validity of their own and other
students” questions, proposed answers, arguments, and explanations. In some
cases, the main topic is mathematical meaning. and discussions are organized
so that students’ intuitive understandings of number and quantity support their
abilities to contribute. In other cases, the topic is not primarily mathematical,
but is designed so that mathematical concepts and methods can be used advan-
tageously for understanding and reasoning about the topic, and students’ un-
derstandings of the primary topic provide them with further support for making




meaningful contributions. These activities are more open to multiple kinds of
contributions, and students can contribute to the success of their classroom
community’s activities in different ways. When these various kinds of contri-
butions are acknowledged and appreciated, students arc supported in develop-
ing identities as effective contributors to their community.

As an example, I will briefly describe the version that we have developed
at IRL and Stanford in the Middle-school Mathematics through Applications
Project (MMAP) (Goldman, Moschkovich, & Knudsen, 1995; Greeno &
MMAP, in press). The project is a collaboration of curriculum developers, teach-
ers, and researchers, which is one of several curriculum projects that the Na-
tional Science Foundation funded several years ago in response to the NCTM
Standards. We have developed software and print curriculum materials that
present mathematics mainly as a resource for a variety of design activities,
which are supported by computer programs that function as computer-aided
design systems that are appropriate for middle-school students. We have devel-
oped four computer-based learning environments that support students’ work
on projects in architectural design, scientific modeling of populations, con-
struction and analysis of lexicographic codes, and cartographic planning. Each
of these computer systems is used in several curricula that can be used in part or
all of the middle-school mathematics program. For example, a curriculum for
the architecture environment has students design living and working space for
a research team that will spend two years in Antarctica. Their designs need to
include spaces that meet the needs of the research team and to comply with
constraints of available space and costs for constructing and heating the build-
ing. A curriculum for the biology modeling environment has students develop
hypothetical policy recommendations for the State of Alaska about controlling
populations of wolves that live on public lands. considering that they are preda-
tors for caribou. Their policy recommendations are to be supported by math-
ematical models.

The materials and curricula that we have developed are designed to support
active participation by students in formulating and evaluating mathematical
problems and questions, as well as solutions, answers, conjectures, conclusions,
examples, explanations, and arguments. Students work, usually in groups of
from three to five members, on a project such as designing a building or con-
structing a model of changes in the sizes of populations. While the students are
designing a building or constructing a model, mathematical problems emerge.
The questions that motivate mathematical reasoning are grounded in the stu-
dents’ project activity,. Mathematical concepts and methods are functional in
their activity, providing resources for their understanding and reasoning about
questions that they are engaged in.

We do not consider the solution of problems embedded in the students’
projects as sufficient in their mathematical learning. In addition to thosc activi-
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ties, the curriculum materials include support for explicit teaching of math-
ematical concepts, principles, and methods. These include relatively brief teach-
ing units, called mathematical activities, that take up a few lessons, and longer
units, called mathematical extensions or investigations, that can take several
lessons. These units of explicit mathematical activity are related to the stu-
dents’ project activities, which motivate and illustrate the explicit generaliza-
tions of ideas and methods that the students more implicitly in their projects.

Theoretically, the mathematics learning that occurs with these materials
and curricula fit well with activity structures that were recommended by Dewey
and, more recently, by Lave and Wenger. Dewey (1910/1978) characterized
thinking as cognitive activity that is prompted by an incoherence of under-
standing or an impediment in the flow of activity. He emphasized the impor-
tance of reflection on the meanings of concepts in relation to the activities that
can be understood in terms of the concepts (Dewey, 1938). The intention of our
cusriculum is to create occasions in which the main activities of design projects
give rise to questions and problems that can be resolved using mathematical
concepts and methods, and the mathematical activities, extensions, and investi-
gations provide reflection on the meanings of concepts that are involved in
those solutions. Lave (1988) also emphasized that mathematical problems
emerge as snags in ongoing practical activity, and argued for activities in school
that involve mathematical reasoning more meaningfully (Lave, Smith, & But-
ler, 1988). Lave and Wenger (1991) discussed trajectories of participation in
communities that correspond to learning in which individuals become more
effective in contributing to the functions of communities, and Wenger (in press)
has discussed ways in which trajectories of participation across time and in
different communities cosrespond to the development of individuals’ identities.
Our goals for this functional approach include greater agency in the students’
participation, and through this participation, the development of their identities
as successful learners, knowers, and users of mathematics.

We have a significant commitment to conducting research about the pro-
cesses of learning and teaching that occur with the materials and teaching prac-
tices that are developed in MMAP. 1 will brietly mention three analyses that
have been conducted to illustrate our rescarch approach,

Cole (1995) reported case studies in which she analyzed participation struc-
tures in students’ design group activities and presentations that they made to
their class using the Antarctica curriculum. The group that she analyzed made
notable progress in two ways. First, the meaning of their project changed, from
being focused mainly on constructing correct answers for tasks that the teacher
assigned to more integrated concerns with the features of their building design,
including a greater sense of authority as they formulated issues and argued for
features of the building. The members of the group adopted different functional
participatory roles as their work progressed, such as taking responsibility for
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evaluating the appropriateness of room sizes and for constructing unique fea-
tures of their design.

Bushéy (1997) studied discourse in students’ problem solving, focusing on
ways that problems with mathematical content emerged in their activity. For
example, in designing a building, students encountered problems involving the
sizes of rooms represented by sizes of spaces in their representations. which
required significant proportional reasoning to resolve. This mathematical rea-
soning played an integral role in their understanding of representations that
they constructed in their design projects, and thereby had significant functional
meaning in their activity. This contrasted with the same students’ work on stan-
dard problem sets involving conversion of uaits of length and area, in which
they carried out computations that lacked referential meaning.

Knudsen (1994) analyzed participation structures focusing on the contri-
butions of teachers in organizing and leading the classes’ learning activities.
She has developed a framework that distinguishes three dimensions of teiach-
ers’ activity that she calls facets of teaching, planning and improvising, and
concerns. Facets of teaching include identifiable kinds of functional classroom
activity such as guiding a group of students’ design process, discussing rela-
tions between classroom activities and students’ experiences out of school, fa-
cilitating the interactive work of student groups, and assessing and adjusting
materials and methods to facilitate the progress of different groups of students.
Planning and improvising are modes of teachers’ work that reflect both the
need for and the limitations of preparation for teaching when the activities of
learning are distributed and open-ended. Concerns are categories of awareness
that function in teachers’ work as broad organizing principles. These include
fostering students’ mathematical understanding, equity of students’ access to
and participation in mathematical activities, maintaining a balance between
progress on general educaticnal goals and progress in the detailed requirements
of classroom activities, and reflection on and revision of their own teaching.

Conclusion: Participation as an Organizing Aim in Education

I have proposed participation as a unifying concept that reflects several
aspects of the goals of mathematics education reform. This proposal can be
considered in two ways, and 1 will close by mentioning the distinction between
them.

One way to consider this proposal can be called participatory instrumen-
talism. This is a hypothesis that participation is an important condition for ac-
quiring mathematical knowledge. There is much evidence that this is the case,
and it is a hypothesis that fits well with constructivist views. After all, if learn-
ing is a process of constructing mathematical knowledge, students’ behavior is
the crucial factor in whether they will be successtul in this constructive work.
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The other view, which is more radical, can be called participatory funda-
mentalism. According to this view, mathematical knowledge is participation.
That s, what we mean by knowing mathematics is sustained participation in
mathematical practices, contributing to the functioning of groups and develop-
ing an identity as an engaged and competent learner, knower, and user of math-
ematics. In this view, rather than thinking of participation as an important con-
dition for learning mathematics, we can understand learning of mathematics as
learning to participate effectively in mathematical practices.

This fundamentalist view of participation does not exclude skills and con-
ceptual understanding as important aspects of mathematical knowing. This view
does. however, reframe the roles of skill and understanding, treating them as
aspects.of participation. Individuals can participate more effectively in math-
ematical practices if they are fluent with computational procedures and can
contribute successfully to mathematical understanding in the communities in
which a person is engaged. In this view, students’ mathematical skill and un-
derstanding are instrumental to their participation, which contrasts with the
cognitive and bebaviorist views, in which participation is instrumental to stu-
dents’ acquiring mathematical understanding or skill.

In this view, ‘he classic debate between skill and understanding does not
disappear, but it is framed differently. Instead of arguing whether skill or un-
derstanding is more important (unqualified). we need to specify the kinds of
mathematical practices that we consider important, and carry out a serious analy-
sis of the kinds of skill and understanding that wili support effective participa-
tion in those practices.

If this view of participatory fundamentalism is adopted, the most important
questions are (a) what are the mathematical practices that are most important
for students to learn to participate in, and (b) what are the leaming activities in
which students can best become able to participate effectively in those prac-
tices. The mathematical practice that dominates much of current mathematics
education is test taking, and it is important to ask whether we consider that
particular mathematical practice as valuable as other kinds of practice that could
be emphasized more. We can take the NCTM Standards and other related docu-
ments as assertions that practices other than test taking should be given more
emphasis. .

We need to recognize that the practices of mathematical reasoning and com-
munication that are emphasized in mathematical reforms have a much weaker
basis in research and theory than the practices of taking tests. This motivates an
important rescarch agenda for the ficld. The discussion of relative importance
of different kinds of practices us educational sims will be more valid if we can
provide more specific and coherent descriptions and explanations of the sys-
tems and processes of learning that are focused at all of the levels of analysis




that are involved in the several alternatives. At this point, we have analyses of
individual behavior and cognition that are developed significantly. Although
there 1s much still to be accomplished with research on individual mathemati-
cal behavior and cognition, the analyses that we have of processes at the level
of participation in mathematical practices are much less well developed. Re-
search that develops analyses of participation in mathematical practices scems,
then, to warrant a high priority for us.
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ADVANCED MATHEMATICAL THINKING




AN UNDERGRADUATE STUDENT’S
UNDERSTANDING AND USE OF
MATHEMATICAL DEFINITIONS

IN REAL ANALYSIS

Barbara S. Edwards
Oregon State University

The purpose of this paper is to focus on one undergraduate mathematics major’s under-
sqanding and use of the formal mathematical definitions of real analysis. The researcher’s
analysis of four task-based interviews with Stephanie, a junior mathematics major,
focused on Stephanie’s understanding of the role of mathematical definitions and the
logical and conceptual complexities of certain definitions. Many of Stephanie’s under-
standings and beliefs conflicted with those accepted by the mathematics community
which resulted in difficulties for her when she attempted to understand formal math-
ematical definitions. An understanding of Stephanie’s understanding can contribute to
the improvement of the undergraduate learning experience in mathematics.

Background

The purpose of this paper is to present some of the results of a study which
characterized the way undergraduate mathematics majors understood, or at-
tempted to understand and use, mathematical definitions with which they had
varying levels of familiarity. This paper, which is part or a larger study, ad-
dresses one student’s understanding and work with definitions in light of such
factors as the student’s understanding of the role of definition in mathematics,
and her understanding of certain concepts trom real analysis which underlie
the formal mathematical definitions.

Over the past few years there has been an increased interest in studying
advanced mathematical thinking (Tall, 1992). Although no one claims to be
able to specify indisputably the characteristics which uniquely describe ad-
vanced mathematies, Tall has written, "Advanced mathematical thinking . . . is
characterized by two important components: precise mathematical definitions
(including the statement of axioms in axiomatic theories) and logical deduc-
tions of theorems based upon them™ (p. 495). For many students the increased
attention to definitions, theorems and proof occurs in their post-calculus courses,
and the transition from calculus to these courses can be difficult.

There is an abundance of anecdotal evidence and some research which
indicates that students struggle with proof-writing in their first courses in such
areas as real analysis and abstract algebra. Hart (1986) studied the connection
between students’ proof-writing abilities in abstract algebra und the depth of
the students’ conceptual understanding, and recommended that the emphasis in
advanced mathematics should not be on how to do proof, but should be on
“stabilizing unstable concept systems™ (p. 137). Moore (1994) found that the
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proof-writing difficulties for students in introductory real analysis were closely
related to their understanding of the concepts involved as weli as their ability to
state and use the formal mathematical definitions (p. 252).

In the literature definitions have been described as being either “logical'™
or lexical (Landau, 1989). A “logical” definition “attempts to analyze things
in the real world” (p. 120) such as a definition for the word “love™ might try to
describe love in a way that would be generally acceptable to most people. A
lexical definition, on the other hand, delineates the characteristics or features of
a given concept in such a way that the concept is completely determined by that
definition. In a sense, the conept is created by the definition. Mathematical
definitions are lexical, and therefore understood by the mathematics commu-
nity to be precise and unambiguous. At the same time there is a flexibility
available with (lexical) mathematical definitions in that one may freely create a
new definition which will fit one’s needs if there is no existing definition that
will do so.

Although mathematicians assume definitions have basic importance in
muthematics, very little research has been done which investigates how stu-
dents deal with them. The notion of concept image-concept definition (Vinner,
1991), emphasizes not the student’s struggles with the formal mathematical
definition, but the leamer’s concept image in which the definition may or may
not play a part. Issues'such as whether one has flexibility in creating, interpret-
ing or using definitions appear in the literature (Landau. 1989; Tall, 1994;
Wilson, 1990) but research on post-calculus undergraduate student’s use of
definitions is rare.

Theoretical Framework

This study is grounded in certain epistemological and pedagogical beliefs
of the researcher. The mathematical understanding that a student creates is de-
pendent upon two things - the individual’s viewpoint and his or her previous
knowledge. Since it is “human nature™ for us to avoid states of confusion and
conflict, if a new cxperience causes cognitive conflict with our current under-
standing our goal is always to return to a state of equilibrium. Through further
actions and reflective abstraction we deal with cognitive conflicts in a way that
either leads to new or modified understandings or rejects the conflicting expe-
rience. In this way “learning™ occurs. However, it is precisely one’s view of
things that determines if a new experience is in conflict with previous knowl-

U The word “logical™ in "logical”™ definttion is not consistent with the use of the word
logical in mathematics. For this reason in this paper, whenever Mogical™ defini-
tions are mentioned, the word “logical™ will be in quotes.
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edge. This is individual and thus it is quite possible that a cognitive conflict for
one person will not be viewed as a conflict by another,

One’s accumulated mathematical knowledge can be described in terms of a
concept image - concept definition framework (Tall, 1992; Vinner, 1991). Us-
ing the concept of limit as an example, the concept image can be described as
the collection of all understandings about a certain idea, in this case the limit,
held by an individual. These may include primitive notions of limit as well as
the understandings that have developed formally in mathematics courses. The
concept definition is the body of words used to designate that concept. It may
not be known to the learner, may be “‘separate” from the concept image or may
be included, possibly incorrectly or incompletely in the learner’s concept im-
age. The evoked concept image is that part of an individual's concept image
which is brought forth in any given situation where the individual finds the
need touse a given concept. Itisthe researcher’s belief that only an individual’s
evoked concept image is “knowable™ to the researcher, and, more importantly,
that it may vary from situation to situation and over time.

Part of the enculturation of college mathematics students into the field of
mathematics involves their acceptance and understanding of the role of math-
ematical definitions - that the words of the formal definition cmbody the entire
meaning of the concept or entity being defined. If students do not understand
the role of the definition in this way they may allow their previous and emerg-
ing concept images to dictate the meaning of a definition rather than the words
of that definition. Thus, a student’s understanding of the role of mathematical
definitions is itself part of his or her concept image.

Method

Stephanie was one of eight undergraduate students, junior- and senior-level
mathematics majors, who volunteered to participate in the study. The students
were members of an introductory real analysis course. The researcher inter-
viewed each of the students four times and audio-taped and video-taped und
verbatim transcripts were produced which included a record of non-verbal ac-
tions as well. During the interviews the researcher presented to the students
formal definitions for such notions as an infinite decimal, pointwise continuity,
connected set and an absolutely continuous function. The rescarcher asked the
students to read the definition and then guestioned the students as they rea-
soned about the meaning of the definition. Students were asked to explain their
understanding of any mathematical terminology they used as well as to explain
any conjectures they made.

Data analysis involved several careful readings of Stephanic’s interview
transcripts. The rescarcher began writing the “story” for Stephanie carly in the
analysis process, revising daily as the emerging themes trom the transcripts
became refined and clarified.
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Resuits

Stephuanie’s understanding of the role of mathematical definitions seemed
to be primarily a “logical” one. She talked about mathematical definitions as
being discovered rather than created and as being open to the interpretation of
others to establish thetr authenticity. During the first interview she spoke of
addition as a “‘concept that existed, but we defined it.” In the fourth interview
Stephanie said that when one presents a new definition “you have to like have
your colleagues review it, make sure it’s legitimate and there’s no errors.” Since
a lexical definition creates the concept it defines it is inconsistent to question its
legitimacy. Further, a student with a “logical™ understanding of mathematical
definitions who sces a conflict between her understanding of a definition and
her understanding of the concept defined by that definition is likely to allow the
conceptual understanding to dominate. Stephanie seemed to have a procedural
understanding of many of the concepts discussed in the interviews. In the first
interview she said she could “find™ a derivative but 'when asked what it meant
she said, “I have no idea.” In the interviews when Stephanie talked about the
limit she often described it as a process of approaching some number although
she also said the limit was a number. Stephanie reason procedurally when she
worked on the definitions for an infinite decimal and the continuity definitions.
In the interview on the absolutely continuous function definition, Stephanie
chose f{x)=x" as an example and carried out a procedure involving the calcula-
tion of the lengths of intervals and the summing of function value differences
to determine if the function was absolutely continuous.

In the first interview Stephanie was asked to discuss the sequence

S ={.9,.99..999.,..._n is a natural number}, its related infinite decimal, .999...
and a definition for an infinite decimal that the professor in the Concepts in

Real Analysis course had presented in class. The definition was given as fol-
lows.

Definition. Letc . ¢, bL an infinite sequence of mtcgurs wuh
0_c_9. The numbu sup{ < Gy, _n=1.2.3,..}isdenoted by .c c,.
and is called an infinite dc.umal

Stephanie was asked to discuss the potential equivalence of 999... and 1 and
then was shown the definition for an infinite decimal which had been prescated
in class. Essentially the definition stated that every infinite decimal has two
representations which, in the case for all ¢; equal to nine, were .999... and 1.
Before seeing the definition, Stephanie was adamant that .999... did not equal 1
even though the researcher tried to convince her otherwise. She said that (333,
was equal to 1/3, but that was because one could divide 3 into | and get .333...
According to Stephanie, “If you divide 1 into 1 you don't get .999...'" There
was a procedure for .333... but there was not a procedure for .999.
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If Stephanie had interpreted the formal definition as intended it most prob-
ably would have created cognitive conflict for her. but she did not. As she
discussed it, Stephanie seemed to have an adequate understanding of the term
“supremum,” since she explained that the supremum of a set was its least upper
bound and that there could be no member of the set between it and any other
upper bound of the set. Further, she acknowledged that I was an upper bound.
However, for Stephanie .999... was the least upper bound even though one could
always make a larger number by “adding” another nine to the end of the string
of nines in the decimal. She said, “That’s what the repeating is, it just goes on
forever and ever.” Stephanie, perhaps unconsciously, interpreted the definition
to fit her prior conceptual understanding.

It is important to emphasize that Stephanie seemed to have the conceptual
understanding necessary to interpret the words in the definition for infinite deci-
mal. Her rejection of that definition did not seem to be on the basis of an
inability to reason about its written meaning. It seemed that Stephanie had
found a meaning for infinite decimal that made sense to her, based upon her
understanding of infinite processes perhags, and her “logical” interpretation of
mathematical definitions made it reasonable for her to interpret the meaning of
the formal definition based upon her previous conceptual understandings.

Discussion

As mathematics students like Stephanie move from courses that are more
procedural into theoretical, proof-intensive courses it becomes more important
that they know how to use and understand mathematical definitions. Stephanie’s
previous mathematical experience may have de-emphasized familiarization with
formal definitions and emphasized an establishment of more robust understand-
ings of the concepts themselves. Often definitions are memorized and then the
formal words are shoved aside in favor of knowing. as one participant said,
“what it really means.”” However, a robust understanding of the role of math-
ematical definitions is needed too if students are to be able to use them effec-
tively in more theoretical settings.
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MIS-GENERALIZATION IN CALCULUS: SEARCHING
FOR THE ORIGINS

David E. Meel
Bowling Green State University
meel@math.bgsu.edu

This paper discusses how a mis-generalization leads to an erroneous belief held by
some calculus students studying from iraditional texts. Mis-generalization can be the
result of a variety of conditions and this paper will characterize them. The focus of this
paper will be on a previously unidentified mis-generalization, held by some students,
that a corollary to Rolle’s Theorem is applicable across the general class of functions.
In addition, an examination of student reliance on polynomial-based functions when
providing calculus examples will be reported.

Introduction and Theoretical Framework

Much of the previous research on student mis-generalization of mathemati-
cal concepts or procedures has focused on whole numbers, fractions, decimals
and algebra (Brown & VanLehn, 1982; Hiebert & Wearne, 1986; LeFevre, 1984;
Mack. 1990; Matz, 1980, 1982; Resnick & Omanson, 1987; Resnick et al.,
1989; Sleeman, 1981, 1984). The studies concluded that students have excep-
tional capabilities for extrapolating salient properties from sets of examples;
although mis-generalizations have been attributed to problems in identifying
necessary and sufficient characteristics for distinguishing examples and
nonexamples of concepts. In particular, overgeneralization, the classification
of a nonexample as an example of a concept, results from not distinguishing
the concept’s fundamental attributes necessary for making discriminations;
whereas undergeneralization, the classification of an example of a concept as a
nonexample, ensues from the identification of attributes inconsistent with the
cencept as a whole (Dempsey, 1990).

Hiebert and Carpenter (1992) identified an origin of mis-generalization
when they noted that “many errors in mathematics may result from students’
attempts to build connections within overly restricted domains™ (p. 89). The
restricted domains, holding an insufficient cache of examples and nonexamples,
obstruct proper generalization of a concept definition. In particular, perceived
characteristics may not hold universally thereby becoming obstacles to under-
standing. The restricted domain can impact how students define a concept and
decide whether a given mathematical object is an example or nonexample of a
concept. According to Vinner and Dreyfus (1989}, a student’s image of a con-
ceptis resultant from experience with the provided examples and nonexamples
of a concept. In particular, all the various images descriptive of a concept
presented to a student, whether they be examples or nonexamples, have the
potential to be used in the student’s formulation of a personal concept defini-
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tion. However, a student’s personal concept definition may not correlate well
with the concept’s mathematical definition (Vinner & Dreyfus, 1989). The
reason for this is that students have been found to formulate their personal
definitions and decisions based on a concept image. that is, the set of all mental
pictures associated in the student’s mind with the concept’s name, together
with all the properties characterizing them. This creates the possibility of a
situation where “the set of mathematical objects considered by the student to
be examples of the concept is not necessartly the same as the set of mathemati-
cal objects determined by the definition” (Vinner & Dreyfus, 1989, p. 356).
Thus, the set of examples and nonexamples presented to a student can impact
both the accuracy and development of a personal concept definition as well as
influence decision making based on the concept definition.

At first, this might seem to infer that if a large set of examples and
nonexamples are presented to students, then students would recognize the im-
portant features and develop a personal concept definition consistent with a
concept’s mathematical definition. However, the use of a large, overly restricted
set of examples and nonexamples to characterize a concept’s salient qualities
does not always achieve the desired goal. A robust set of examples and
nonexamples. in terms of scope, quality, and quantity, must be presented. The
diversity of the set should aid students in determining what further conditions
should be placed on their student-developed definitions and result in defini-
tions more consistent with a concept’s mathematically correct definition.

According to Tall (1989), the use of simplified examples as the motivating
basis for a concept has some problematic aspects. Polynomials form the pri-
mary example space for most treatments of calculus concepts in standard cal-
culus texts even though they have attributes which do not hold for the general
class of functions. As a result, the use of polynomial functions as the central
example space potentially can lead to a variety of incorrect and inadequate
beliefs which can form the basis for obstacles to the development of under-
standing calculus and analysis concepts. In particular. Tall (1990) found be-
liefs that “a function must be given by a formula (and only one formula is
allowed); that every function is differentiable, except possibly at a few isolated
points: that the graph of a function looks fairly smooth with reasonably shaped
maxima and minima: that graphs always have tangents; that a tangent touches
the curve at one point only and does not cross the graph, etc.” (p. 56). This
paper extends Tall's listing by identifying how instruction using polynomial-
based functions as the primary example space leads to an additional mis-gener-
alization.

Methodology of this Study

During the Fall of 1995, students in a large calculus class (n = 85) at a level
1, private research university participated in a series of examinations focused
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on student reliance on polynomial-based functions and the impact of such reh-
ance. The study triangulated on students’ dominant conceptualization of ex-
emplar functions for calculus through three instruments. The first instrument
focused student responses to the following statement:

True or False. If f(x) has n real roots, i.e., for ¢, ¢, ¢;,.... ¢,
f(c,)=0 and ¢, € R, then f (x)has at most n real roots. Explain
why or why not and provide an example.

The second and third instruments requested the provision of examples of func-
tions with certain attributes and the identification of the type of function gener-
ally chosen by the student to ascertain if a mathematical statement about a
calculus concept is valid or not.

Of the 85 students. 45 responded to all three instruments. As a result, the
sample was restricted to these 45 students and their responses to the assessment
items form the basis of this study’s conclusions. Students’ responses to the
instruments were categorized and linked to distinguish a variety of typical re-
sponses. The analysis focused on qualitative differences between responses
and students” inclination toward polynomial-based functions and if this predi-
lection held under different conditions. Such information provided a indicator
of the strength of reliance on polynomial-based functions and their use in ex-
amining calculus concepts.

Results

The study found that the presentation of calculus concepts, using a con-
stricted example space composed of predominantly polynomial-based func-
tions, harbored the possibility of students mis-generalizing characteristics as-
sociated with polynomials to the general class of functions. In particular, 37 of
the 45 students were found to incorrectly associate the derivative of a function
that had n real roots to have (a) less than n roots (#, = 7). (b) at most n roots
(n,=12),0r (c) at most n—1 roots (11, = 18). Students’ typical explanations
revealed that the conclusions were based upon polynomial-based examples.
For instance, students made comments typical to these:

1. “False, the derivative of a function will always have fewer real roots
than the original function. For example, 3rd degree polynomial func-
tions have at most 3 real roots. while 2nd degree polynomial functions
have 2 real roots™

12

“True ~ If the function has # real roots then the derivative of the func-
tion cannot have more than 11 roots because when you find the de-
rivative of a function, the degree of the function is lowered and thus the
number of real roots is going to be less than or equal to 7. An example
is the function f(x) = x'+ 23" + 3x — 6 has 3 possible roots and the




derivative of the function is f" (x) = 3x” + 4.x + 3 which has the pos-
sibility of at least 2 roots™; and

3. “False — f (x) is the derivative of f and the derivative's power is
(functions power -1). The number of roots of a function is equal to the
exponent of the function. .. f has n roots. .. f* has n—1 roots.
Which means f (x) can have at most n—1 real roots and not n real
roots”.

In contrast, eight of the 45 students concluded that it was impossible to deter-
mine the number of real roots by indicating that it was possible to obtain more
roots from the derivative than were found with the original function. Gener-
ally. these conclusions were based upon either generic examples (see figure 1),
i.e., those not tied explicitly to a particular functional statement. or to specific
- examples which identified original functions with no roots and then showed
their derivatives to have at least one root, i.e.. f(x)=Sand f (x) =0.

These results point to the conclusion that in deciding the veracity of the

provided statement, students generally appealed to polynomial-based functions
as a means of reconciling the statement and their statements echoed the corol-
lary to Rolle’s Theorem that “a polynomial of degree n has at most »n real
roots”. The students who established the first item’s falsehood and provided a
correct and reasonable explanation reached beyond polynomial-based examples
to consider a more global sense of functions and functional representations.

QO =rootof f{x)
S O =rootol f1(x)

? ¥

Figure J. Generic representation of a function with
more roots for f (x) than f(x).

This ability of the students who obtained a correct and reasonable answer
to the first instrument’s item to reach beyond polynomial-based functions was
again evidenced in the analysis of the students’ responses to the second and
third instrument’s items asking students to provide an example of a function
which: (a) is increasing over its domain, (b) is both increasing over its domain
and concave up over its domain, (¢) has at least 5 roots (i.e., S or more) over its
domain, (d) is always increasing over its domain but changes concavity at some
x-value in its domaip, () is integrable over its domain but not differentiable
over its domain, (f) | f(x)dx =0, (g) is decreasing over its entire domain,
(h) is decreasing and concave down over its entire domain, and (i) is always
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positive, always increasing, and changes concavity at only one point over its
entire domain. A two-group Wilcoxon test, examining the percentage of poly-
nomial-based responses to the above questions with respect to the first
instrument’s  responses, found a  significant  difference
(T,.(8,37) =101, & <.05) indicating a comparably reduced appeal to poly-
nomial-based functions by students providing a correct and reasonable answer
to the first instrument.

Analysis of student responses to the question “When you are asked to pro-
vide an example in calculus, what type of function (would you) think of ini-
tially? why?” revealed that 32 of the 45 students reported that polynomial-
based functions would be the type of function used to develop examples in
calculus. Four additional students identified a blend of polynomial and tran-
scendental functions as aiding their decisions. Only nine students indicated an
initial example function coming from a domain not necessarily having a poly-
nomial-based component. It was of interest to note that of the eight students
correctly establishing the falsehood of the statement of item in the first instru-
ment, six of them stated that they would initially investigate either a polyno-
mial-based function or a function with a polynomial component. The general
reasons cited for the initial use of polynomial-based functions included:

1. “[I] used them the most so much over the last 4 - § years.”

2. “[A] student is usually asked to take the derivative of a polynomial

function on exams.” ’

3. “[It’s what is easiest to work with and what 1 am most comfortable

with.”

4. “lt’s the most fundamental function in mathematics.”

Obviously, students recognize what has been modeled by instructors, texts, «nd
examinations.

Conclusions and Implications

This paper has identified an additional mis-generalization evidenced by
multiple students studying calculus from a standardized calculus text. In par-
ticular, it was found that students were consistently presented with a restricted
domain of examples and non-examples derived from polynomial-based func-
tions. This consistent presentation resulted in many students improperly ex-
trapolating a corollary to Rolle’s Theorem, i.c., “a polynomial of degree n has
at most 1 real roots” to be applicable to the entire class of functions. The
student responses revealed that their conclusions were predominantly drawn
from the mere examination of polynomial-based example functions and the
reasons provided for vsing such functions for decision making in calculus fo-
cused on the preponderance of such functions in class examples, texts, and
assessments. Those students who were able to avoid making such a inis-gener-
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alization revealed that they were able to appeal to either generic examples of
functions or non-polynomial-based functional representations.

This study has implications for student learning and pedagogy. The recog-
nition of traits from examples and nonexamples is an integral aspect of devel-
oping understanding of a concept. However, conceptual errors are almost in-
evitable as students develop their own understandings of mathematical con-
cepts and classroom instruction cannot provide students with a sufficiently com-
prehensive experience to eliminate this possibility (Resnick et al., 1989; Davis
& Vinner, 1986). Instruction needs to use diverse representations, robust with
quality examples and nonexamples, to minimize the occurrence and virility of
these conceptual errors. This should improve the presentation of mathematical
concepts and help students avoid some of the obstacles associated with them.
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STUDENTS’ COGNITIVE APPROACHES TO THE
CONCEPT OF RATE

Rodolfo Oliveros Manuel Santos-Trigo
UACH, Cinvestav Cinvestav-IPN

What type of learning activities help students develop mathematical resources and strat-
egies that can be applied successfully in their study of mathematics. This is an impor-
tant question that involves the design of instructional problems in which students have
the opportunity to use their mathematical resources and to apply several strategies dur-
ing their interaction with the problems. That is, problems are used as a vehicle to
problematize the content and they are taken as a platforms to reflect on other related
mathematical ideas. This study documents the work shown by high school students
during the study of the concept of rate. 1t focuses on the analysis of the type of question
that students discuss as a means to understand this concept.

Introduction

Problem solving has become an important instructional component in
the learning of mathematics. Research studies have provided useful informa-
tion about the main ingredients that influence the way students solve problems;
however, there is little research on the impact that problem solving instruction
actually produces in regular mathematical classroom. A problem solving ap-
proach may include instructional activities in which students are encouraged to
participate actively in discussions that help them solve diverse problems. Thus,
problems are identified as the main vehicle to understand the mathematical
content, to propose conjectures and analyze the information given in the prob-
lem, and to discuss and pursue diverse methods of solution. Therefore, it is
important to document what students do while the instructional activities imple-
mented tn the classroom ask students to problematize the subject. Specifically,
this study documents what students show when they study the concept of rate
under the perspective of a mathematical problem solving approach.

Background to the Study

The study took place in a first caleulus class in grade 12, During the devel-
opment of the course, the students were encouraged to work on a set of prob-
lems. These problems were designed by the instructor and the researcher in
accordance with the main topic to be studied throughout the course. The cen-
tral theme that is used to analyze the students” mathematical behaviors is the
concept of rate. This coneept has been identified as difficult to understand by
the students and its understanding plays an important role in the study of the
concept of derivative (Thompson, 1995). Yo analyze the work shown by the stu-
dents as a result of the activities implemented during the course, it was decided
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to focus the analysis on two complementary activities that appeared consis-
tently during the class development:

(a) The students’ participation in the small group discussions.

{b) The students’ participation during the whole class discussions.

Since there is interest to document the students” participation while work-
ing cooperatively. it becomes important to mention that the fearning activities
implemented in the classroom included aspects such as:

(a) The students were aware of their responsibility as member of a small
community. Here they knew that it was important to express their ideas
and to listen to the others. To understand one mathematical idea or
problem meant that cach member of the group had grasped it and ex-
plained it to the others.

(b) The students® evaluation process throughout the course took into ac-
count the group work involved.

(¢) The students spent a significant amount of time working as a group in
the classroom, in the computer lab, and in homework assignments.

Conceptual Framework

It is important to mention that we based the analysis of the students’
work on the idea that the process of learning any mathematical concept is an
ongoing process in which it is possible to identify important changes in the
students’ understanding of that concept. Thurston (1995) pointed out that “people
have very different ways of understanding particular pieces of mathematics™
(p. 30). He cites an example in which the concept of derivative could be seen
from diffcrent angles:

(1) as aratio of simall change (infinitesimal), (i1) as a symbolic manipula-
tion of sign (the derivative of x" is nx" ', etc.), (iii) as a formal definition which
involves the concept to limit. (iv) as the geometric representation (the slope of
a line), (v) as the instantancous speed of f(t), when tis time, and (vi) as an
approximation in which the derivative of a function is the best linear approxi-
mation to the function.

As Thurston mentioned, the above list does not include all the possible
ways of thinking about derivative; however, an explicit discussion about what
cach conception entails, and what connections are important among them could
help students to make more robust their understanding of the concept of deriva-
tive. Therefore, the analysis of the students” work focused on to what extent the
students were able to show conceptual ideas related to the concept of rate while
dealing with a varicty of mathematical tasks.

It is important to mention that the use of the small and whole group
discussion during the session’was based on the ideas suggested by Reynolds, et
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al. (1995). Analysis of the following questions helped organize the work shown
by the students and are used as framework to present the main results:
(1) In which type of mathematical aspects did the students exhibit certain
types of difficulties in their conceptualization of the concept of rate?

(2) What type of discussica (questions, explanation, and arguments) helped
students to spot their difficulties and to improve them?

(3) When did students show significant progress in their understanding of
the concept of rate? What evidence showed that they were able to use
and interpret data that include tables, graphs and algebraic representa-
tions, etc.? '

Results

An important result that emerged from the data is that working in small
groups helped students identify a variety of conceptions that they held about
the term rate and how to operate with the rate concept. For example, one idea
that seemed to be problematic for the students while working on the first prob-
lem was that they used the procedure to calculate the arithmetic mean to obtain
the average flow. The written report handed in by one small group included the
following ideas.

It was clear that the students needed to discuss and contrast differences
between the meaning of rate of flow and the way of finding the average flow
and the idea of arithmetic mean. Indeed, the presence of these ideas during the
small group discussions was an aspect that motivated the students to consuit
textbooks and their notes in order to attach mathematical arguments to their
work. It seems that the students were aware of the importance to present math-
ematical arguments to support their ideas.

Another aspect that appeared consistently in the students’ approaches was
to see the instantaneous flow as direct quotient between two quantities. That is,
they took the data given in the table as final records and not as a points of
reference to approximate the instantaneous flow.

A problem that was used during the interview with pairs of students in-
volved a situation which described the growth of a tumor. Data here were
given in three different forms of representation: a table, a graph, and an alge-
braic representation. With this information. the students were asked to pose
and respond to three questions. Hence, the students needed to understand clearly
the information of the situation in order to deal with the data. For example, the
statement of the problem was clear to indicate that the three forms of present-
ing the data represented the same information of the problem. However, there
were soine students who thought that the infornuttion came from three differ-
ent situations. For example, Ann and Maria thought that they had to formulate
one question for each representation of the data.
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Formulating the questions resulied in being another difficulty shown by the
students. It seems that getting a sense of the data is a process that involves
working for a while with the richness (or lack of it) included in it before trying
to put the information into arelationship. For example, some students realized
that the three representations of the dat. offered different advantages or disad-
vantages to analyze the phenomenon. While the table representation shows
discrete information, the graph representation shows a continuous phenom-
enon. The algebraic representation has the advantage of allowing the student to
find more information accurately and easily than the other two representation.
That is, they could find, for example, what happens to the tumor at 7.99 weeks.
In fact, these differences become explicit in the students’ work after they had
worked on one of the first questions they had proposed.

The list of questions that students proposed included: What is the aver-
age weight of the tumor at the 8th week? How much did the tumor increase its
weight between the fourth and eighth weeks? In which week did the tumor
reaches its highest growth? How much did the tumor increase in the 9th week?
How could you explain the behavior of the tumor in relation to the graph?
What is the rate of growth of the tumor in the 8th week? Although one may
think that the activity of asking the students to formulate questions gives them
various options and these may or may not be related to the concept of rate. it is
important to mention that the instructional problems discussed during the class
and other assignments that the students worked involved directly the concept of

§ * rate. Therefore. in this task, it was important to evaluate the extent in which

students were able to identify the concept of rate as means to problematize the
given information.

A pair of students worked on finding the rate of growth of the tumor at the
8th week. During their initial interaction, they discussed aspects related to the
differences between the terms average growth and rate of growth. In fact, some
students used the term average to indicate rate of growth initially and they be-
came aware of their differences after they got involved in some calculations.
For example, Martha and Amir decided to find the average weight of the tumor
but they introduce the idea of slope of a line to calculate it. It seems that these
students focused their attention to the graphical representation to identify points
which were close to 8. However, they realized that this representation did not
give them the exact value of the weight of the tumor at for example 7.9 or 8.1
weeks. It was here when these students were aware of the potential of the
alzebraic representation. Thus, they found the value of p(t) with t = 7.9 and
8.1. These students also observed that the tumor does not grow evenly and they
posed the question: In which week the tumor reaches its highest growth? To
answer it, they decided to check the behavior of the graph and compared the
run and rise for cach interval. They concluded (incorrectly) that during the 9th
week the tumor reaches the highest growth. It is important to mention that they
never tried to check their responses.
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Conclusions

To what extent students exhibited consistency in their use of problem solv-
ing strategies to deal with situations that involved the concept of rate of change?
This is a fundamental question that needs to be discussed in terms of the stu-
dents” work. There is indication that students were aware of the presence of
this concept in situations that included contexts such as moving objects (speed).
growing of atumor, or filling a water tank. This was an important instructional
goal. It was observed that students, in general, used the method of calculating
slopes of secants to get approximations to the slope of the tangent in a particu-
lar point (growing of the tumor in the 8th week, for example). However, it was
not clear if the students actually thought of the idea of limit as an important
concept to relate the calculations of slopes of secants to the concept of rate.
That is, the students only reported the calculations of two or three slopes with-
out mentioning the limit process. Dealing with data that included different
representations helped students discuss the meaning of instantaneous rate within
the context of the situation. Finally, it is imp-rtant to mention that although the
instructional activities encouraged the stud. nts work as a part of a community,
this aspect does not appear consistently in the students’ interviews, It seems
that the students need more time to assimilate and exploit this type of practice.
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EFFECTS OF DIFFERENT INSTRUCTIONAL
APPROACHES ON CALCULUS STUDENTS’
UNDERSTANDING OF THE RELATIONSHIP
BETWEEN SLOPE, RATE OF CHANGE,
AND THE FIRST DERIVATIVE

Donald T. Porzio
Northern Illinois University
dporzio@math.niu.edu

The impact of the instructional approaches used in three different differential calculus
courses on students’ understanding of the relationship between slope, rate of change,
and the first derivative was investigated. A total of 100 students were taken from
traditional calculus courses, a course that made use of graphics calculators, and the
clectronic course, Calculus & Marthematica. Results from interviews with 12 students
from cach course indicated a greater lack of understanding of the relationship between
the first derivative of a function at a point and its slope or rate of change at that point
amongst the traditional and graphics calculator students than amongst the Caleulus &
Mathematica students. When analyzed using a theoretical framework derived from the
work of Hicbert and Carpenter (1992) and Dubinsky (1991). the results suggest differ-
ences between the students from the different courses may be related to the amount of
time students spent working on problems designed to help them make connections
between different representations of the concept of slope.

Over the last decade, various studies have provided evidence that concep-
tual understanding can be improved by using technology to increase emphasis
on concept development and decrease emphasis on computational skills (e.g.,
Boers & Jones, 1993: Cooley, 1996: Lauten, Graham, & Ferrini-Mundy, 1994,
Park, 1993). These studies typically compare test scores of students in tradi-
tional and ““technology-rich™ calculus courses. These tests usually consist of
procedural and conceptual problems taken from the traditional course’s cur-
riculum. Since the goals of “technology-rich™ caleulus courses typically differ
from those of traditional courses, problems taken from a “traditional’ curricu-
lum may not provide a fair or valid comparison of students from the different
calculus course. One possible way to overcome this difficulty is to look not at
test scores but at how students solve problems. This was the basis for the
present study which compared students from three calculus courses on their
abilities to use numerical, graphical, and symbolic representations when solv-
ing calculus problems. The portion of this research addressed in this paper
focuses on the impact of the instructional approaches in these courses on stu-
dents’ understanding of the relationship between slope, rate of change, and the
first derivative.




Subjects and Environment

Participants were undergraduate students from intact classes from three
calculus courses at a large midwestern university. Each course was the first in
a four-quarter sequence designed for mathematics, science, and engineering
students. One was a traditional differential calculus course like those typically
taught at most colleges and universities. In this course, new material was pre- .
sented by the instructor during lecture and problems from homework assign-
ments and examinations were discussed by a teaching assistant during recita-
tion. Students in this course were allowed to use graphics calculators in class
and on homework assignments, but could not use them on quizzes or examina-
tions. Graphics calculators were never used as part of course instruction.

The second course was similar in content to the first course but was de-
signed so instruction and assignments stressed use of symbolic representations
and graphical representations generated via graphics calculators. Symbolic
and graphical representations were used on a regular basis when new material
was presented by the instructor during lectures and when problems were solved
by the teaching assistant during recitation. Students were required to have a
graphics calculator and use it during class, on homework assignments, and dur-
ing portions of their examinations. It should be noted that the university re-
quired 75% of the problems on each examination in the course to be equivalent
to those used in the “traditional” course. This meant that the problems were to
be solved using only symbolic methods (F. Demana, personal conmununication,
April 18, 1994).

The third course was Calculus & Mathematica (Davis, Porta, & Uhl, 1994),
an electronic calculus course designed around the computer algebra system
Mathematica. During class, students worked individually or in assigned coop-
erative groups on the different Mathematica notebooks that comprised the
course. These notebooks were live electronic documents consisting of a mix-
ture of static text and active programs that could be activated by students to
view examples or alter by students to create their own solutions to problems.
Course assignments emphasized the use of symbolic, numerical, and graphical
representations and contained numerous problems designed to help students
make connections between different representations of concepts. Except for
an occasional instructor-led class discussions on problems that were causing
significant difficultics for the students, no lecturing was done in this course.

Theoretical Framework

A framework derived from the theories of Hiebert and Carpenter (1992)
and Dubinsky (1991) was developed to help analyze differences in students’
understanding of different concepts. Hicbert and Carpenter propose a theoreti-
cal framework for defining understanding. The premises behind this frame-
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work are that knowledge is represented intemnally, internal representations can
be connected, and when intermal representations are connected, they produce
networks of knowledge. They theorize that a mathematical idea or procedure
is understood if its internal representation is part of a network of knowledge
and that the degree of understanding is determined by the number and strength
of the connections in the internal network containing that representation. Un-
der this framework, differences in students’ understanding of the relationship
between slope, rate of change, and the first derivative can be analyzed in terms
of the internal networks of knowledge students were likely to form based upon
the instruction received in the different calculus courses.

Dubinsky ({991) applies Piaget’s notion of reflective abstraction to ad-
vanced mathematical thinking to form a theory of mathematical knowledge
and its construction. Dubinsky posits that reflective abstraction occurs as part
of a student’s construction of new knowledge during the process of solving
problems. If a problem is solved successfully, then the student assimilates the
problem and solution into one or more schema. If the problem is not solved
successfully, then the student may or may not make accommodations in exist-
ing schema to handle the unsolved problem. Dubinsky’s (1991) theory is rel-
evant to this research since, along with differences in the type of technology
used, there were differences in the types of problems emphasized by the in-
structors and solved by the students in each course. [t was applied to situations
where differences in students’ understanding could not necessarily be explained
through analysis of differences in the networks of represented knowledge likely
to be formed by students from the different courses.

Data Collection

Data collected included twice-weekly class observations of each course, a
posttest, and 36 student interviews. Class observations were made to docu-
ment use of numerical, graphical, and symbolic representations during instruc-
tion and on assignments. The posttest was used to assess students” abilities to
use different representations when solving calculus problems. The following
posttest problem was designed, in part. to assess students” abilities to use dif-
ferent representations to solve problems dealing with the slope, or rate of change,
of a function.

The population of a herd of deer is given by the function P(t) = 4000 -
500(cos 2mt) where t is measured in years and t = 0 corresponds to
January 1.

. When in the year is the population at its maximum? What is
thut maximum?
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When in the year s the popuiation at its mimmum? What is

that minimum?

¢.  When in the year is the population increasing the fastest? de-
creasing the fastest?

d. Approximately how fast is the population changing on the
first of July?

The problems used on the posttest were designed by the researcher so that they
might be solvable by any calculus students, no matter what calculus course
they completed. Content validity was established by a panel of mathemati-
cians and mathematics educators from across the United States.

The posttest was given during the final week of classes to 100 of the stu-
dents (40 traditional. 24 graphics calculator, and 36 Calculus & Mathematica).
From this group, 12 volunteers from each course were chosen to participate in
a one-on-one interview with the rescarcher. The interviews took place 4-8
weeks after the completion of the course, lasted between 25 and 45 minutes,
and were audiotaped. The interviews were used to clarify how and determine
why students used different representations when solving the posttest prob-
lems. They also provided an opportunity to have students soive these problems
using representations different from those used on the posttest, and explain
their reasoning for using these representations, while being observed and
prompted by the researcher. Student responses during the interview, particu-
larly those related to uses of different representations to solve the problems,
formed the basis for the researcher.

Findings

Analysis of the data suggests that the traditional and graphics calculator
students had more difticulty than Calculus & Mathematica students recogniz-
ing the relationship between the first derivative of a function at a point and its
slope or rate of change at that point. During the interviews, these students
could describe how to use the first derivative to determine the local extrema of
the function but did not make the connection between the slope of the graph at
the local extrema and setting the first derivative equal to zero, as the following
interview excerpts suggest.

Subject G12: I would probably find the derivative. And then just find . . .
that equal to zero.

Interviewer:  Why zero? . Why does it tell me a maximum oceurs?

Subject GI12: Uh - cause that’s just the way derivatives work.

Interviewer: What information is the derivative giving me? ... Is there any
way that mavbe the derivative is somehow connect with stope?
Daes that ring a bell?
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Subject G12:

Interviewer:

Subject T11:

Interviewer:

Subject T11:

Interviewer:

Subject TI1:

No.

Why is the first derivative 0 at the local maximums and local
minimums’?

If you kinda follow the graph along. at those points, it doesn’t
have a slope.

So the first derivative gives me slope?

[think. If you look at the maximum, then the graph completely
changes and goes in a different direction. Then, at a certain
point on there, it doesn’t have - I mean it has a slope but the
slope is 0. That’s another way to look saying that, you know,
that’s where the slope is 0.

Is the first derivative - is it giving me slope of the function? Is
that what it does?

[ don’t want to exactly say that it gives you what it is cause I'm
not really sure what you plug in to give you the exact - I mean
it tells you where 1t’s zero.

Many graphing calculator students could not remember how to use the first
derivative to locate local extrema. Nine of the 12 students interviewed were
unable to describe how to locate extrema algebraically without prompting. Two
traditional and two graphics calculator students could not describe this tech-

nique even with prompting. Traditional and graphics calculator students also
had difficulty recognizing that how fast the population changed on one day
corresponded to the value of the first derivative for that day, as the following
interview excerpts suggest,

Interviewer:

Subject G:

Interviewer:
Subject G&:

Interviewer:

Subject G&:

Interviewer:

What am I asking for when I ask how fust the population’s
changing? ... Does any function give me that information? ...
Does the derivative give me that information?

[ don’t think so.

What does the derivative give me? ... What information does
it give me?

Gives you the max and nyin.

Does it give me anvthing else? For example, sav I put .25 in

[Pt ] 'l end up getting about 1000 What does that number
represent?

The number of deer.

Is that what the first derivative tells me is rate of change ? How

fast it’s changing?




Subject T7:

Intenviewer: What information does the first derivative give me? What does
it tell me?

Um - I don’t know. I totally forget. Um -

Subject T7: Max, min, intervals where the function’s increasing or decreas-
ing, and - [ don’t know.

Interviewer: When I put in one-half, the derivative gave me zero. What
does that zero tell me?

Subject T7: That obviously gives you the . .. max. Um. I don’t know.

Few Calculus & Mathemuatica students had the same difficelties as the other
students describing solutions to the various problems. The following interview
excerpts, which represent typical response by these students, illustrate how they
seemingly had a better grasp of the relationship between slope, rate of change,
and the first derivative than the other students.

Subject C8: The population is increasing the fastest for when P(t) is great-
est ... decreasing the fastest for when P(1) is smallest, because
P(t) represents the instantancous growth rate of the function. .
.. I know that the [first] derivative would have to be at its
lowest and highest points in there. I could take the second de-
rivative . . . and find where those poinis are zero, . .. finding
where the maximum and minimum values for {the first deriva-
tive] are.

Subject C3: {Glet what halfwiy would be and plug that into the equation
[to solve part d].

Interviewer:  Of the first derivative or of the population?

Subject C3: The population.

Interviewer:  Will that give me how fust the population’s changing?

Subject C3: Actually, no. You wanted to put it into the derivative. You have
to find the change, and not the actual population. . .. So, you'd
put it into the derivative.

An analysis of the instructional approaches of cach course in terms of the

study's theoretical framework helps provide possible explanations for the dif-

ferences in students” understanding of the relationship between slope, rate of

change. and the first derivatve.

Analysis of Findings

In the traditional course, instruction heavily emphasized use of symbolic
representations to present concepts and solve problems.  Students were not
provided with opportunities to develop different mental representations of slope
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beyond those based upon symbolic representations. As such, students in this
course were more likely to form a disjoint or weakly-connected internal net-
works of knowledge related to the concept of slope which would help explain
their lack of understanding of the relationship between slope, rate of change,
and the first derivative.

In the graphics calculator course, instruction emphasized use of graphical
and symbolic representations to present concepts and solve problems. As such,
students in this course were more likely to form well-connected internal net-
works of knowledge related to the concept of slope since they had opportuni-
ties to develop different mental representations of slope. However, class obser-
vations indicated that students solved few problems designed to help them make
connections between different representations of concepts. Thus, they had little
opportunity for the type of reflective abstraction during problem solving neces-
sary for the construction of knowledge relating these representations. Thus,
graphics calculator students may only have formed weakly-connected internal
networks of knowledge related to the concept of slope, which would help ex-
plain their lack of understanding of the relationship between slope, rate of change,
and the first derivative.

In Calculus & Mathematica, instruction emphasized use of multiple repre-
sentations to present concepts and solve problems. As such, students in this
course, like those in the graphics calculator course, were more likely to form
well-connected internal networks of knowledge related to the concept of slope
since they had opportunities to develop different mental representations of slope.
Calculus & Mathematica students also solved problems designed to help them
make connections between different representations of the same concept. Thus,
unlike the graphics calculator students. they had the opportunity for the type of
reflective abstraction during problem solving necessary for the construction of
knowledge relating these representations. As such, Calculus & Mathematica
students were more likely to form strongly-connected internal networks of
knowledge related to the concept of slope. which would explain their greater
understanding of the relationship between slope, cate of change. and the first
derivative they exhibited during the interviews.

Discussion

Findings from this study point out the need for further rescarch on the ef-
fects of instruction emphasizing use of multiple representation in the presenta-
tion of concepts. Difficulties experienced by graphics calculator students sug-
gest viewing multiple representations of a concept does not necessarily help
students develop better understanding of the concept. Apparently, having stu-
dents solve problems designed to help them make connections between differ-
entrepresentations of a concept, as Caleulus & Mathematica students did, rather
than having connections pointed out to them, as class observations indicated
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was the case in the graphics calculator course, is also important. The need for
further investigation becomes even more apparent when one considers tech-
nology that can create multiple, dynamicaily linked representations of different
concepts for students will soon be readily available for use in the classroom.
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THE PROCESS OF PERIODICITY

Gilli Shama and Nitsa Movshovitz-Hadar
Technion, Haifa, Israel
shama @ gwu.seas.edu

This paper presents results from a study of the ways students in grades 3 to 12 perceive
periodicity. The study was conducted in two consecutive phases: a qualitative phase
followed by a quantitative one. The study revealed common students behaviors. Two of
them are a tendency to assign a direction {from left to right) to a periodic process, and
to not distinguish a periodic process from its non-periodic product. These and other
findings constitute supportive evidence to the claim that students grasp periodicity of
phenomena and of functions as a process, rather than an object.

In 1992, as we started to investigate the ways students perceive the notion
of periodicity' very little (if any) previous research in this area had been pub-
lished. Consequently, we set up our study to establish a field-grounded theory.
Naturally, issues related to validity and reliability of the instruments, as well as
generalizability of the results, were among our concerns. Hence, the research
was designed in two consecutive stages.

1. A qualitative stage included:
(a) Semi-structured interviews with 7 teachers.

(b) Open observations at mathematics lessons in grades 6,9, 11, 12,
and of non-mathematics lessons concerning periodicity in grades
310

(¢) Semi-structured interviews with 28 students in grades 3, 6, 9, and
11.

A quantitative stage followed the qualitative one and included a survey
of 895 eleventh grade, math majors. in sampled high-schools, in Israel.
For this stage, a paper-and-pencil questionnaire of 121 items was pre-
pared, based upon the results of the first stage. It included two sub-sets
of close items: (a) 39 items examined period identification; (b) 76 items
examined conceptions of periodicity. Structural validity of each sub-
set was verified by Factor Analysis and by Multi Dimensional Scaling.
The questionnaire included also a third sub-set of 6 open questions.
These were used to validate externally the closc items.

Presented below is part of the results from this study (for a full account see

Shama 1995).
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Understanding Periodicity

This section presents qualitative evidence supporting the claim that rmost of
the students construct their concept of periodicity upon time dependent pro-
cesses.

At the beginning of each interview, the interviewer asked the students to
give examples of periodic phenomena. Each interviewee gave several examples
to periodic phenomena that are time dependent. From the 28 interviewees, 24
gave as a first example one that is time dependent. Ninety-three percent of
interviewees’ spontaneous examples were time dependent, e.g.. “"the seasons of
the year”, “the monthly appearance of the moon”, “the day-night change™. “ani-
mals breathing” and a 9th grader said with no hesitation, *'the clock is the most
periodic thing there is, because those hours always repeat themselves, it goes
all the time.”

The interviewer also asked the students to define a periodic phenomenon
and a period. Of the 28 interviewees, 16 used terms of time and process in their
definitions. e.g.. a student from grade 3 defined. “A periodic phenomenon is
that all the time, all the time it does the same action ... We are doing the same
movement all the time. this is periodicity in my opinion,” a student from grade
6 defined. "It repeats itself all the time, it doesn’t change much. In each time
unit it is repeated.” a student from grade 9 defined. "It is an action that happens.
and in the very moment it ends it is starting again -— it happens again and
again,” and a student from grade 11 defined "It is a process that repeats itself
after a certain period of time.”

In the second stage of the study, students were asked in three open items to
define a periodic phenomenon, to define a periodic function and to define a
period. Of the subjects, 52% used terms of time and process in their answers.

The concept of periodicity as a process seemed to be reinforced by teach-
ers. As observed. the following periodic movements were addressed in non-
mathematics lessons: motion of celestial objects in grade 3: harmonic motion
in grade 11. In observed mathematics lessons periodic processes were ap-
proached. A process of repeating division was used to describe periodic deci-
mals in grade 6 and in grade 9. A process of a cyclic movement around the unit
circle, and a process of movement over a graph, both were used to describe the
periodicity of trigonometric functions in grade 11 and in grade 12. This time
dependent processes were found to be the foci of attention in dealing with peri-
odicity in grades 3 to 12.

A Periodic Process Yields a Periodic Object

The four parts of Figure 1 have a common characteristic. The process of
drawing each of them is periodic, to repeat on an algorithim, but the result does
not represent perindic function nor periodic series. This section presents evi-



Figure 1. Non-periodic graphs and series perceived as periodic.

dence supporting the claim that students tend to assume that a periodic process
vields a periodic object, such as graph, number or series.

In the first stage of the study, interviewees gave the drawings in Figure 1 as
examples to periodic phenomenon. Interviewees brought also other non-peri-
odic examples, which erroneously seem to them as periodic, for example,
*0.7437430743007430007430000", “the order of the day at school is periodic
— we are doing the same thing, but it is increasingly difficult from year to
year”, “‘running faster and faster.”

In the second stage of the study, students were asked whether a function
defined for all real numbers, which is graphically presented in a limited domain
in Figure la or in Figure 1b, is periodic. They were also asked whether an
infinite chain, which is drawn in Figure lc orin Figure 1d, is periodic. Eleven
percent of the subjects identified at least three of the four examples on Figure |
as periodic?

Assigning a Direction (from left to right) to a Periodic Process

This section presents evidence supporting the claim that students assign a
direction (usually from left to right) to a graph of a periodic function and to u
visual representation of a series.

Both stages of the study provided evidence that students prefer to locate
graphs of periodic functions to the right of the y-axis. In the first stage of the
study. 14 interviewees (from grade 9 and 11) were asked to bring an example of
a periodic function. Five of them drew all their examples to the right of the y-
axis (as in Fgure 2a). In the second stage of the study, answering the same
question, 77% of the students drew a graph almost completely to the right of
the y-axis.

= The atems i the same sub set of the questionnane were classitied thiough the valdanon tests - The

nemsan e T were distnguished as one group, as well as those m Fyguie 3
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Given Extension

Figure 2. Directions in graphs of periodic functions.

In both stages of the study, students were asked to continue a finite graphi-
cal representation of a periodic function or a periodic series. In the second
phase of the study, 37% of the subjects extended the two given representations
to the right (as in Figure 2 b).

In the second stage of the study, the students were asked to determine
whether the graphs, that appear in Figure 3. represent periodic functions or not.
Fourteen percent of the subjects identified both graphs in Figure 3 as graphs of
a periodic function. Nine percent identified one of those graphs as representing
a periodic function.

Following the first stage of the study. two habits of the students were re-
vealed. We have found that students prefer to locate graphs of periodic fune-
tions to the right of the y-axis. We also found that students tend to continue a
graph of a periodic function, and a representation of a periodic serices, to the
right. These findings led the hypothesis that there are students who think that
periodicity has a direction. Therefore, in the second stage, we included ques-
tions that will not be answered correctly by such students (see Figure 3). Errors
in students’ answers to these questions were indeed found as demonstrated above.

A B

Here is a limited domain graphical rep-  Here is a limited domain graphical
resentation of a function that is defined  representation of a function that is de-
for all real. Write “Yes™ if you think  fined for all real. Write “Yes™ if you
the graph represents a periodic func-  think the graph represents a periodic
tion, and “No™ if you think the graph  function, and “No™ if you think the
represents a function that is not peri-  graph represents a function that is not
odic. periodic.

I~ U A A A A
/] ARV

. - . . .k
Figure 3. ltems from a pen-and-pencil questionnaire
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Figure 4. Basic period of a periodic sequence in the left end (black) and in the
right end (white).

Left-End Period Preference

This section presents evidence supporting the claim that students prefer a
basic period located on the left end of the grapkical representation.

In the first stage of the study, interviewees were asked to identify a period
in several examples. Seventy-five percent of their answers pointed to a period
at the left end of the representations. Among other assignments, all interviewees
were asked to identify a period in three series of geometrical shapes as in Fig-
ure 4. Twenty-three of 28 interviewees chose a left-end period, as marked in
Figure 4 in black. The other 5 interviewees chose a right-end period, as marked
in Figure 4 in white.

In the first stage of the study, in the observed lessons both teachers and
students preferred a period located at the left side, or a period of a function next
to the y-axis. In trigonometry lessons, angles between 0 and T were chosen as
representatives of a set of solutions of a trigonometric equation, which has a
period of length T.

In the second stage of the study, subjects were asked in 39 items to decide
whether @ marked part of a periodic function or periodic phenomenon is its
period or not. Only in five of those items a left-end fundamental period was
marked. These five items obtained the highest percentage of correct answers,
Ninety-three percent of the subjects answered correctly most of these five items.,

Discussion

According to Stard (1991) there are two aspects of the conception of math-

ematical notion to be considered: an operational aspect and a structural one,

Op: rational coneeption ol a notion is based on processes, algorithms and ac-
tions, Structural coneeption of i notion means: . treating mathematical no-




tions as if they referred do some abstract objects...” (p.4). Regarding the notion
of function, two stages that precede understanding as a process were identified
by Breidenbach, Dubinsky, Hawks & Nichols (1992). They found that in many
cases the concept of function never develops beyond these first two stages. In
the few cases it does, it rarely goes beyond the perception of a function as a
process (Harel & Dubinsky, 1991).

We have found that both the concept image and the concept definition of
the notion of periodicity, held by students, relate to its operational aspect. Most
of the students construct their concept of perioaicity upon time dependent pro-
cesses. Many of the students include, in their definitions of periodicity, the
notion of time or the notion of process.

The understanding of periodicity as a process may explain students” ten-
dency to assume that a periodic process yields a periodic object, such as graph,
number, or series. This tendency may cause some errors. as shown.

Students tend to assign a direction (usually from left to right) to a graph of
a periodic function and to a visual representation of a series. Students also
prefer a basic period located on the feft end of the graphical representation. A
connection between these two findings can be explained as follows. A process,
with an attached direction, is also characterized by a staring point. Students
select the “first” period of this process,
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A ten problem Derivative: Test was designed and used as a written instrument and in
talk-aloud problem solving interviews to explore the relationship between the levels of
understanding of the derivative indicated by subjects’ written and verbal performances.
Each problem on the Derivative Test was categorized by type of derivative interpreta-
tion: Geometric, Physical, Algorithmic, or Relational, and by manner of presentation:
Traditional or Noniraditional. Subjects’ written performances were analyzed quantita-
tively, while their verbal performances were analyzed qualitatively using mapping tech-
niques and the Combined Model of Understanding, an assessmient instrument devel-
oped by the author. A synthesis of these analyses indicated that relationships between
subjects’ performances depended upon the type and presentation of derivative prob-
lems. The study also suggests the uscfulness of the Combined Model of Understand-
ing in analy 2ing qualitative data.

The ideas of calculus long identified as essential for modeling and explain-

ing phenomena in disciplines such as physics and engineering, are now recog-
nized as playing a similar role in many other disciplines. In calculus, changing
systems are modeled by differential equations which describe relationships
between variables in terms of rates of change or derivatives. To model and
solve interdisciplinary applied problems involving change or motion, such as
optimization, rectilinear and curvilinear motion, logistics growth, structural
analysis, mechanical vibrations, and economic models, one must understand
the various interpretations of the derivative and recognize its appropriate use.
Many students who pass a calculus course, however, do so without a clear
understanding of some of the fundamental concepts of calculus. Existing re-
scarch also indicates significant gaps in students’ conceptual understanding of
the derivative (Ferrini-Mundy & Graham, 1994; Orton, 1983; Selden, Selden
& Mason, 1994).

Student understanding is commonly assessed based on what is displayed in
writing and often these displays are interpreted by instiuctors without regard
for the students’ thought processes (Davis, 1992: von Glaserfeld, 1987). Re-
scarchers report that students are rewarded for covrectly performing rituals and
algorithms and yet these reproductions of their textbooks' or instructors® ex-
amples do not accurately reflect their fevels of understanding (Dreyfus, 1991;
Selden, Selden & Mason, 1994; Tall, 1991). This study examined subjects’
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understanding of the concept of the derivative by investigating the relationship
between the levels of understanding indicated by subjects” written and verbal
performances when solving derivative problems. While subjects’ written per-
formances were quantitatively assessed, determination of subjects” understauding
as indicated by their verbal performances required complex qualitative analy-
sis.

Research in the areas of understanding (Davis, 1992; Pirie & Kieren, 1994,
Sierpinska, 1990; von Glaserfeld, 1987), procedural and conceptual knowl-
edge (Hiebert & Lefevre, 1986; Tall, 1991), and concept development (Dreyfus,
1991; Dubinsky, 1991; Sfard; 1991) framéd this study. In order to investigate
subjects’ levels of understanding of the concept of the derivative. this research
was synthesized to first develop a Combined Model of Understanding which
provided general descriptions of acts which indicate understanding at various
levels. Descriptions in the Combined Model of Understanding were then adapted
to describe levels of understanding of the concept of the derivative in order to
analyze the level of understanding of the derivative indicated by subjects’ ver-
bally revealed conceptions.

Methodology

To investigate subjects’ understanding of the derivative, the Derivative Test
and two interviews were employed. The Derivative Test was designed to col-
lect information on subjects’ levels of understanding of the derivative indicated
by their written and verbal performances. The interviews were designed to
collect verbal Derivative Test performance data on subjects’ understanding by
using a talk-aloud problem solving miethodology.

The ten problem Derivative Test was designed to assess subjects’ under-
standing of the geometric and physical interpretations of the derivative. as well
as their algorithmic proficiency with differentiation rules. In addition, sub-
jects” abilities to describe the derivative and form relationships between vari-
ous representations of the derivative were assessed. Problems on the Deriva-
tive Test were presented in two different formats referred to as Traditional and
Nontraditional.

The Derivative Test was administered as a written instrument in a class-
room setting to 225 first year college calculus students at the beginning of the
Calculus 1l course. Tests were quantitatively scored using a predetermined
scoring scale. Results of the written Derivative Test were used to identify lev-
cls of subjects” understunding of the derivative. Eleven subjects then partici-
pated in two individual interviews where they re-solved the ten Derivative Test
problems in a “talk-aloud” manner. Analyses of data from five of the inter-
views were used in the study. Cognitive mappings and Pirie and Kieren (1994)
mappings were developed for each problem for cach subject to capture the
interview data in a condensed and visual format. These mappings were then
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analyzed within the framework of the Combined Model of Understanding to
determine subjects’ leve!s of understanding of the derivative indicated by their
verbal performances.

A synthesis of the quantitative and qualitative Derivative Test analyses was
used to determine if there existed a relationship between the levels of under-
standing of the derivative indicated by subjects’ written performances and those
indicated by their verbal performances.

Results and Conclusions

Written Performances

Quantitative data from the written Derivative Tests were used to determine
descriptive statistics for all problems and subproblems, and for the Geometric,
Physical, Algorithmic. Relational, Traditional and Nontraditional problem
groups. Analyses of these quantitative data identified various classification
levels of subjects’ understanding of the derivative. Based on their Derivative
Test scores. subjects’ written performuance understanding levels were classified
as either HIGH or LOW in Traditional and Algornithmic problems, referred to
as the T-A category. and as either HIGH or LOW in Nontraditional and Rela-
tional problems, referred to as the N-R category. Each subjects’ overall written
performance on the Derivative Test was then classified as HIGH-HIGH, HIGH-
LOW. LOW-HIGH. or LOW-LOW indicating their level of understanding in
the T-A and N-R categories, respectively. The following table contains the
results of the written performances.

Table 1. Classification of 225 Subjects Based on Written Derivative Test Scores

Classification  HIGH-HIGH HIGH-LOW  LOW-HIGH LOW.LOW

Frequency 13 21 34 157
Percent 5.8 9.3 15.1 69.8

Verbal Performances

Interview data in the form of cognitive mappings and Piric and Kieren
mappings for each problem for cach subject were analyzed in terms of the
Combined Model of Understanding to describe the levels of understanding in-
dicated by subjects’ verbal performunces. The cognitive mappings provided
the picces of information and connections between those pieces of information
subjects used in their solution processes. The Pirie and Kieren mappings repre-
sented the progression of subjects’ solution processes through the levels of Pirie
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and Kieren’s (1994) theory of understanding. The Combined Model of Under-
standing included descriptions of three primary levels of understanding: Level
I (Low). Level 3 (Intermediate), and Level 5 (High). Secondary levels, Levels
2 (Low-Intermediate) and 4 (High-Intermediate) indicated that a subjects’ level
of understanding fell between two primary levels. The levels of understanding
indicated by subjects’ verbal performances were determined for the T-A and N-
R problem categories resulting in two number designations. The five interview
subjects were classified as 4-4, 4-3, 4-2, 3-3, 2-2. A classification of 4-3, for
example, indicates a High-Intermediate level (Level 4) of understanding of
derivative problems in the Traditional and Algorithmic groups and an Interme-
diate level (Level 3) of understanding of derivative problems in the Nontradi-
tional and Relational groups.

Relationship of Performance

The quantitative and qualitative data from each of the five subiects’ written
and verbal performances were synthesized to examine the relationship between
the indicated levels of understanding of the derivative. There was not a consis-
tent relationship between all subjects’ written and verbal performances. One
subject whose written performance levels of understanding were consistently
HIGH across problem groups also revealed a high-intermediate to high level
(Levels 4 and 5) of understanding across problem groups in his interview. Other
subjects whose written performances were inconsistent across problem groups
revealed inconsistent levels of understanding in their verbal performances.
Similar levels of understanding were observed in both written and verbal per-
formances in the Traditional and Algorithmic groups. while a consistent rela-
tionship was found between subjects’ actual written Derivative Test scores in
the Physical group and their verbal performance levels. Analysis revealed no
relationships in the Nontraditional, Relational. and Geometric groups.

The small sample size made it difficult to confirm possible explanations
for the presence or absence of relationships between subjects” written and ver-
bal performance levels. Two subjects, whose performance levels in the T-A
category were not related, exhibited difficulty in recalling formulas and algo-
rithms. Their written Derivative Test solutions showed incorrect algorithms
and errors on Traditional and Algorithmic problems. but when verbalizing their
solutions during interviews, they reconstructed many of the required proce-
dures from conceptual knowledge and formulated correct solution processes.
When instruction emphasizes procedures and definitions, it seems subjects’
performances on Traditional and Algorithmic problems should be similar. In
this case, however, because they could not recall procedures and definitions
during the written test, it appears their written solutions masked some of their
understanding.

Two subjects” performances were not related in the N-R category. One




subject displayed a HIGH written performance level, but during the interview
his apparent conceptual insights were mitigated by inconsistencies across prob-
lem groups and difficulties in applying specific algebra and calculus proce-
dures. The second subject whose written performance level was LOW revealed
understanding at Level 3 during her interview. She verbally expressed insights
at an even higher level, but often dismissed them in favor of inappropriately
applying rules and procedures to some Nontraditional and Relational prob-
lems. Her actions may have stemmed from an emphasis on these procedures
during instruction.

Relationships found in the Traditional and Algorithmic groups may be ex-
plained by the familiar nature of these problems. Subjects solved these prob-
lems by following prescribed processes or standard algorithms. The relation-
ship within the Physical group may be explained by the fact that after initially
introducing the derivative using the geometric image of the slope of the secant
linz, algorithmic rules were introduced and classroom discussions focused on
iainiliar applications, such as velocity, which involve the physical interpreta-
tion of rate of change.

One implication of this study is that results of assessments which use only
problems from either the Traditional- Algorithmic (T-A) or Nontraditional-Re-
lational (N-R) categories, or from only one of the Geometric. Physical, Re-
lational, or Algorithmic groups. may not fully capture a student’s level of un-
derstanding of the derivative. Although the use of talk-aloud problem solving
offers students more opportunity to reveal their depth of understanding, this
technique is difficult to apply as an assessment tool in the classroom. It is
possible that if the subjects in this study were exposed to many different types
of problems both in class and on exams, and if they had opportunities to discuss
and verbalize solutions to those problems, then their written performances might
more closely match their verbal performances.
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FOSTERING STUDENTS’ CONCTRUCTION OF
KNOWLEDGE DURING A SEMESTER COURSE
INABSTRACT ALGEBRA

Thomas G. Edwards and Lawrence Brenton
Wayne State University
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Student difficultics in abstract algebra are a source of concern in math-
ematics departments across the country (Dubinsky et al., 1994). However, if
learning truly is a constructive process (von Glasersfeld, 1987), then a
constructivist perspective may hold promise for the leamning and teaching of
advanced mathematical structures such as abstract algebra. )

The authors co-developed and co-taught an undergraduate course in ab¢
stract algebra grounded in a theory of “‘action-process-object-schema” (Dubinsky
etal., 1994). A series of concrete contexts were used to foster students’ ability
to construct knowledge of abstract algebra. Within these contexts, students
transformed their physical actions into mental actions and their mental actions
into first processes, and then objects.  Students often worked in small coopera-
tive groups and were invited to engage in a “Socratic dialogue™ during whole-
class discussions. Moreover, new notation was held to a minimum and the
introduction of any notational device was delayed until students had an oppor-
tunity to construct a mental image of the referent.

At the close of the semester, every student in the class completed a brief
survey. Using a six-point Likert scale, students were asked to assess the degree
to which these instructional strategies had proven helpful. Mean student re-
sponses to the survey items ranged from a low of 4.9 to a high of 5.4, with §
representing “agree” and 6 representing “strongly agree.”

During the semester, most students responded appropriately to the instruc-
tional strategies that were used and many commented favorably about them.
Students communicated their appreciation for an interactional style with which
they could engage, rather than a lecture format. These comments weie perhaps
best summarized by a student who wrote, I understand better as a result”
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THE ROLE OF GENERAL LOGIC ACTIONS
DEVELOPMENT IN TEACHING
MATHEMATICS
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The foundations of the Stage by Stage Development of Mental Actions
Theory (further DMA theory) were developed in the 1950s-60s by Russian psy-
chologists A. Leontiev (Leontiev, 1972), P. Galperin (Galperin & Talizyna, 1979),
and T. Talizyna (Talizyna. 1975). We developed DMA theory in application to
computer based instruction (Bouniaev, 1996). The process of instruction is
considered to be a process of developing mental actions with objects of the
studied field.

The objective of the presentation is to analyze the structure of different
actions in undergraduate mathematical courses to be developed in students’
minds. We’ll show that these actions as a rule have a general logic component
and a specific component. Examples of general logic actions are: classifica-
tion, attributing to the concept, etc. .c. implication, etc.; . . . . To illustrate our
theoretical concepts we consider examples from calculus, particularly the ex-
ample of finding limit of rational function. .c. examples from calculus, particu-
larly the example of finding limit of rational function. Analysis of specific
actions that must be developed in the calculus course shows that it is this gen-
eral logic component that causes students mostly difficulties in performing the
entire action. .c. Mostly it is this general logic component that causes students
difficulties in performing the entire action.
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LEARNING RATE OF CHANGE
Gamet S. Hauger
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Objectives

Rate of change is important in mathematics but it is a difficult concept for
high school and college students to learn (Nemirovsky & Rubin, 1992; Monk,
1992). This study investigates knowledge of precalculus, calculus, and
postcalculus students and how it may support their learning of rate of change.

Theoretical Framework

Knowledge us strategics has been used by others to study leaming. Sicgler
and Jenkins (1989) examined strategies 4- and S-year-olds used for addition
and how these strategies helped them learn other strategies. Smith (1990) in-
vestigated strategies 11-, 14-, and 17-year-olds used to work rational number
tasks and formed one view of learning rational number. This study considers
strategies high school and college students use with rate of change and how
these contribute to learning.

Methods and Data

In individual taped interviews, 12 precalculus, 15 calculus, and 10
postealculus students worked three tasks in which two people start at opposite
corners of a room, walk toward cach other. pass, and proceed to opposite cor-
ners: (1) slow down, pass, and then speed up: (2) maintain a steady pace the
whole way; (3) speed up, pass, and then sfow down. Students were asked to
construct graphs and tables showing the distance between the two people at
cach point in time and to explain how these showed the two people slowing
down, speeding up. and maintaining steady pace.

{
. Results

When makin'g graphs, students drew different shaped ares or plotted points
and referred to distance raveled cach second or visual slope t explain how
their graphs showed slowing down, speeding up, or constant pace. When mak-
ing tables, most students read points from their graphs and referred to distance
traveled each second to explain how their tables showed varying speed. For
these students, distance traveled each second (changes over intervals) was a
primary way to think about rate of change. Students also connected shape of
graph and visual slope to varying rates of change.




Implications

To help students learn more about rate of change, teachers and curriculum
writers should capitalize on students’ tendencies to use changes over intervals
in making sense of varying change in situations involving graphs and tables of
values. They should also make a more direct effort to connect shape of graph
and visual slope to rate of change since these features of graphs are also used
by students when thinking about rate of change. Furthermore, they should
think about how changes over intervals and shape and visual slope of graph
and other knowledge students have of rate of change in situations involving
graphs and tables of values could be used to help students learn about rate of
change in situations involving functions as represented by equations.
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TEACHERS’ CONNECTIONS AMONG VARIOUS
REPRESENTATIONS OF SLOPE

Sheryl L. Sturﬁp
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This study examined the connections that teachers make among various
representations of slope: algebraic, geometric, physical, functional, trigono-
metric, and ratio (Stump, 1996). It investigated secondary mathematics teach-
ers’ concept images and concept definitions (Tall & Vinner, 1981) of slope,
mathematical understanding of slope, and pedagogical content knowledge
(Shulman, 1986) of slope. It also compared the knowledge of preservice and
inservice teachers. Data from 18 preservice and 21 inservice teachers were
collected from paper-and-pencil surveys. Preservice teachers were undergraduate
students enr»lled in a secondary mathematics methods course. Inservice teach-
ers were from the mathematics departments of four high schools. Random sub-
sets of eight preservice teachers and eight inservice teachers were selected for
interviews.

The geometric representation of slope was included 1n all teachers’ concept
images and concept definitions. Functional and physical representations were
cited more often than algebraic, trigonometric, or ratio representations.

Both preservice and inservice teachers had trouble recognizing the param-
eters of a linear equation that involved only literal symbols. Some had diffi-
culty answering questions involving rate of change, and several failed to recog-
nize the trigonometric representation of slope. Inservice teachers had greater
understanding of the trigonometric representation of slope.

Physical representations were most often included in teachers’ descriptions
of classroom instruction. Geometric and functional representations were the
second and third most frequently mentioned. Algebraic and ratio representa-
tions were named less frequently.
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SYNTHESIS BETWEEN VISUAL AND ANALYTIC ACTS
IN LINEAR DIFFERENTIAL EQUATIONS THROUGH A
GRAPHICAL ARGUMENT

Miguel Solis Esquinca Francisco Cordero Osorio
Cinvestav IPN, México Cinvestav 1PN, México
msolis@mvax |.red.cinvestav.mx fcordero@mvax.red.cinvestav.mx

This work deals with mathematics at the undergraduate level, specifically
with differential equations. We have some evidence that today the instruction,
in this topic, is more centered in the algebraic and analytic modes. In our work
we found a graphical argument that allows us to relate “graphical arithmetic”
with the composition of functions (Cordero & Solis 1997). We work with the
fundamental structure: yv(x) = A [f(x) + b]+ B which is obtained from a linear
iteration that starts with ¥(x) = ax + b, where the analysis of graphic behaviors
is fundamental. The function is now conceived as an instruction that organizes
behaviors. This idea, carried to the domain of differential equations, is the
argurment that allows us to relate the graph of the solution with the algebraic
expression of the equation, but, when it is worked out via the fundamental
structure above allows us to simulate graphical behaviors that connect with the
analytic structure of the equation. There are now a new kind of problems,
whose main goal is to simulate and predict the graphical behaviors of the solu-
tion when the coefficients of the equation are varied.

To apply to students, we will design activities, in which we will consider
five situations where the aforementioned arguments are discussed: 1) variation
of parameters, 2) simulation of first order linear differential equations, 3)
“tendencial behavior” of the solution, 4) analytic arguments and S) generaliza-
tion of “tendencial behavior”.
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ON THE RELATIONSHIP BETWEEN CONCEPTUAL
AND ALGORITHMIC ASPECTS IN INTEGRAL
CALCULUS: AN EXAMPLE IN KINEMATICS

Germdn Muiioz Ortega :
CINVESTAV-IPN and UAEH. México

This study is based on the approach called **Academic Mathematical Dis-
course” (AMD). The problem that we are going to deal with consists of a
disequilibrium between the conceptual and the algorithi.dc aspects in the teach-
ing of integral calculus. That is, the students are taught procedures to calculate
integrals using integration methods only through drill exercises, and in a way
separate from the conceptual part. It is only when they see the “‘applications™,
they study some notions related to integration. Because of the characteristics of
" the problem we seek the help of the theory of the conceptual fields. (Vergnaud,
1990). In this presentation we are only going to deal with one of the objectives
of our research: to obtain information abcut what “to comprehend an algo-
rithm” may mean. In the domain of AMD, one necessary condition to arrive at
the relationship between the conceptual and algorithmic aspects is to propose a
specific problem that requires solution by integration (Mufioz, 1996a,b).
Through a problem in kinetics we are going to discuss the following points: 1)
Problems of the following type: If a body falls freely from a certain height
starting at rest, this has a constant acceleration. To calculate the next position
of the body at any instant of time t and at a particular instant t , if we ignore the
air resistance. 2) With respect to what “to comprehend an algorithm” might
mean, we make the following premise: the student does not acquire pre-estab-
lished procedures by simple conditioring through repetitive exercises, but what
he acquires is rules that may and should be applied to new problems. He ac-
quires them only if he comprehends them. that is, if he realizes the relationship
that they maintain with the relational structure of the problems to which they
are applied to (Vergnaud, 1991). Among the rules of the extreme point, trap-
ezoid, tnid-point, Simpson and Taylor series. we identify the relationship that
they maintain with the relational structure of the specific problems in kinemat-
ics. In this case the implicated relationships are between the quantities of dis-
tance ahd time. Furthermore, the structure is formed according to how each
procedtre of the rule allows the passage from one quantity to another, or if the
operatigns contain only one type of quantity. It is necessary to clarify that we
do this identification by having a socially established canonical procedure, and
a kinematics problem whose solution requires integration.  However, how to
make que that the student would realize the relationship of the rule to the struc-
ture of the problem, is a rescarch problem that we will deal with later. 3) When




forming the relational structure, we discuss the notions of prediction, accumu-
lation, constantification of the variable, that have been studied in some form by
Cantoral (1990) and Cordero (1994). Finally, we comment that this is an ongo-
ing research and it is directed toward the identification of the genesis of the
aforementioned notions and rules when the student is confronted with a prob-
lem situation that requires to be solved by integration.
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INTERACTIONS WITH MENTAL
CONSTRUCTIONS IN THE CONCEPTS
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To describe the understanding of the concepts of calculus consists not only
in thinking about a structure that organizes the concepts of calculus and look-
ing for an epistemological framework that describes the mental constructions
that a student makes. it is also necessary to consider that there exists a Calculus
that is taught in scheols; that is, it is necessary to consider the didactic transpo-
sitions in Calculus.

Therefore, it 1s important to describe the understanding of the concepts in
the context of different epistemological frameworks for the Calculus and the
phenomena in the representations between different frameworks. This descrip-
tion of understanding acquires the very characteristics of a functional. and not
a structural, nature. It is true that the mental constructions characterize the lev-
els necessary to reach a certain understanding of the concepts, but the func-
tional nature must pay attention to the restrictions of knowledge in relation
with the mental constructions. For example, from a perspective of the didactic
transposition it is not sufficient to consider the concept of function in calculus
as a structure of relations between two sets. It is necessary to look at its devel-
opment in the concept of different epistemological frameworks and in the phe-
nomena of representations. If f(x) is the expression or description of the con-
tinuous variation of a certain quantity. or if f(x) is a formula, or if f(x) is an
organizer of graphical behaviors, what are the different representations, their
forms and levels? What are the different planes of representation and possible
homomorphisms between them? What are the locally coherent operating pro-
cedures that are derived from the representations?

The nature of these relations necessarily leads to carrying out visual and
analytic acts, that can be explained through processes and objects constructed
by the relationships which are established between the internal and external
representations. Therefore, our hypothetical statement is that a graphical situa-
tion favors more constructing processes. objects, encapsulations, and
deencapsulations moving in a mathematical topological context. That is, the
description of the form of the graph is sometimes local and sometimes global:
picces of the graph and the graph as a whole. Furthermore, depending on the
representations that come into the play in the descriptions, operational proce-
dures are derived to establish the relationships.
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ON UNDERSTANDING OF RELATIONS BETWEEN
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This study tries to explain how students understand the relationship be-
tween function and derivative. Relationships will be studied through situations
that deal with contexts that move back and forth between graphic and analytic
aspects.

The nature of these relationships carries visual and analytic acts. These
can be explained through processes and objects, but these processes and ob-
jects are constructed by external and internal representations. So our hypotheti-
cal point is that in a graphic situation the student must necessarily construct
processes, objects, encapsulations and de-encapsulations. These constructions
take into account a mathematical content in a topological sense, that is, the
description of the graph form is sometimes local and, at other times, global: the
piece of the graph and the graph as a whole. However. the procedures depend
of the representations that play a role in the descriptions.

The effects of the interchange of the mathematical content, representations
and procedures are elements that let us to describe the “structure of develop-
ment” of understanding. In this sense, we are designing situations to move
back and forth among different contexts: graphic context -> analytic conteaxt,
analvtic context -> analvtic context, analvtic context -> graphic context and
graphic context -> graphic context. For example, the graphic tendency behav-
ior between the derivative and primitive functions could carry to situations that
to move back and forth several contexts. The graphic of £ and its position in
relation to the coordinates provides information on the graph of the function
primitive f. But on the other hand, knowing what happened with the behavior
of f* and Land adding a constant to f’, i. e f’+ a it is logical to ask about the
new graphic oehavior of f . This type of situation results in a quantitative
analysis.

In oup study, these situations will be sequences of questions provoking dis-
equilibrium in student conceptualizations.

The theoretical framework on which the analysis of this study is based in
relation to the mental construction: actions, processes. objects, and shames.
However, because the nature of the study depends on a specific situation, we
will only use conceptual tools of this theory that help or explain the situation.
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UNDERSTANDING OF CHAIN RULE IN A GRAPHIC
CONTEXT
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We are looking for explanations of the understanding when the concepts
are in a different kind of context. In this sense, our main questions are focusing
on the representations phenomenon and the procedures that depend of the con-
text. As a special case, we are paying attention to the chain rule concept in a
graph context. And we have found an argument in relation to the graph of the
function. Currently, we are trying this argument within an epistemological
framework. In this framework it describes how the graph context helps to con-
struct special graph operations that we have called “tendency behavior of the
graph.” In this sense, “to recognize patterns of functions and their graphs”
plays a special role in the construction of the chain rule concept.

We are designing situations with the use of graph calculators where the
variation conception is necessary for the construction of the special graph op-
erations.

Therefore, in this work we are looking for elements in order to appreciate

cognitive aspects that are in the construction of chain rule by observing graphi-
cal procedures verifying heuristic value and revising the suggested mental struc-
tures in the light of empirical experience.
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METHODOLOGY TO STUDY TEACHER CHANGE IN
A REFORM CALCULUS CURRICULUM

Thomas Fox
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In order to examine the extent to which one secondary school teacher’s
beliefs and practice may have changed during the first year of implementation
of a reform calculus curriculum, the following research methodology was de-
signed. The data was used to construct, using grounded theory, a case study
about the implementation of a reform calculus curriculum at the high school
level. The methodology was as follows. At the beginning of the year, the
teacher was interviewed regarding teacher beliefs, knowledge, and lesson plan-
ning. This interview was re-administered halfway through and at the end of the
first year of implementation: In another interview, the teacher reconstructed
lessons from the previous text so that instruction from both curricula couid be
compared. This interview focused on lessons in key calculus topics such as
limits, continuity, conceptual and procedural development of the derivative and
integral. In addition, a quantitative beliefs instrument was administered at the
beginning and end of the first year of implementation. This survey focused on
teacher beliefs regarding the discipline of mathematics and its teaching and
learning.

Classroom observation data were also collected. The focus was a period of
daily observations for eight weeks. The remainder of the school year, a sys-
tematic sample of observations was made. All lessons pertaining to the key
calculus topics mentioned previously were also observed. Each observation
was followed by an interview focusing on the teacher’s perception of the les-
son. Interviews focusing on the teacher’s goals for the chapter and the extent to
which these goals were met were also conducted at the beginning and end of
each text chapter. In addition, the following data were collected from both the
previous text and the reformed text: (a) teacher lesson planning notes, (b)
evaluation instruments and classroom handouts, and (c) two student class note-
books to help document calculus lessons not directly observed.
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THE EFFECT OF CONTEXT ON STUDENTS’
PROCEDURAL THINKING

Ted Hodgson
Montana State University
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In his recent analysis of students’ ability to construct Venn diagram repre-
sentations of multi-operation set expressions, Hodgson (1996) reports that al-
though the task elicits an “unexpected” number of errors, the distribution of
errors across operations is not uniform. In particular, expressions containing
both complementation and union operators elicited a majority of the observed
errors. Moreover, the predictable (rather than random) nature of these errors
suggests that error-prone students actually construct and implement procedures
to complete the task, a belief that production system modcls and follow-up
interviews later confirmed. This research, which represents a continuation of
the preceding study, compares students’ efforts to construct Venn diagram rep-
resentations with their ability to determine the elements that correspond to set
expressions. Specifically, this research examines an interesting phenomenon
in which students can successfully identify the elements corresponding to a set
expression (one involving the complementation and union operators), yet are
unable to construct the Venn diagram representation of the very same expres-
sion. In-depth analysis of students’ solutions reveals consistency in their ap-
proach to each task, suggesting similarities in the procedures used. However,
the fact that errors occur in one context and not in another suggests that context
plays an important role in the initial proceduralization of cach task. In particu-
lar. students” proceduralization of the underlying mathematical definitions - the
union of two sets and set complementation - appears to be context dependent.
In addition to the presentation of students” work and the author’s interpretation
of the data, this poster explores the implications of these findings for education
{What do the results imply about the teaching and usc of mathematical defini-
tions in the classroom?) and invites the feedback and participation of viewers.
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MATHEMATICAL PATTERNS IN THE MIDDLE
GRADES: SYMBOLIC REPRESENTATIONS
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Joyce Wolfer Bishop
Eastern Illinois University
cfijdbl @eiu.edu

This study investigated the strategies used by twenty-three seventh- and cighth-grade
students to answer questions about four sequential perimeter and arca problems. The
study explored the strategics used to find perimeter and arca; gencralize the pattern
relationships and express them symbolically; assess the validity of alternative expres-
stons; and solve ecquation-evoking situations, that is, questions that could be answered
by solving an equation. The data suggest at least four clusters of reasoning about se-
quential perimeter patterns: (1) Students mode! and count to find the perimeter without
identifying a relationship between the number of a figure and its perimeter or area, (2)
Students attempt to describe the critical relationships with a single operation, (3) Stu-
dents perceive the relationship in terms of the perimeter or arca of consecutive figures,
and (4) Students recognize the critical relationships and cxpress them symbolically.

Purpose of the Study

The far-reaching changes which have swept through American society dur-
ing the past century have created a need for a redefinition of mathematical
competence (National Council of Teachers of Mathematics, 1989). The chang-
ing workplace now requires workers with “mathematical power” based on the
abilities 1o explore, conjecture, and reason logically (Committee on the Math-
ematical Education of Teachers of Mathematics, 1991). Calculational skills
receive less emphasis while effective reasoning about quantities and quantita-
tive relationships has become more important (Thompson & Thompson, 1995).
Because algebra provides concepts and language that facilitate reasoning about
relationships within problematic situations, the shifting emphases in the work-
pla e have contributed to a renewed interest in the teaching and learning of
algebra. In the Curriculien and Evaluation Standards for School Mathematics
(CESSM) (1989), the National Council of Teachers of Mathematics (NCTM)
recommends that experiences with patterns and relationships provide an intro-
duction to algebraic concepts in grades K-4 and be extended to focus on analy-
ses, representations. and generalizations of function refationships in grades
8.

If the study of pattermns is a valid means of preparing students for algebra,
then more information is needed describing how children think aboeut patterns.,
The purpose of this study was to explore seventh and cighth grade students’
thinking about patterns by conducting task-based interviews in which the stu-
dents were asked to solve problems about sequential perimeter and area prob-
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lems modeled with pattern blocks and tiles, generalize the relationships related
to the patterns, represent the relationships symbolically, and identify other valid
symbolic expressions of the pattern. The students also encountered equation-
evoking situations which a student with knowledge of formal algebra might
address by solving an equation. The research questions were as follows: What
are the strategies that middle school students use to solve pattern problems
involving perimeter and area? What are the relationships among the following:
(1) the strategies middle school students use to reason about pattern problems,
(2) the symbolic representations the students develop, (3) their interpretations

of symbolic representations, and (4) their strategies for solving equation-evok-
ing situations?

Theoretical Frameworks

The concept of quantitative reasoning as described by Thompson (1993,
1994) and Thompson and Thompson (1995) provided the theoretical frame-
work for the design of this study. True algebraic power requires an awareness
of underlying relationships and should be built on a foundation of quantitative
reasoning (Thompson & Thompson, 1995). This reasoning is developed in situ-
ations where students reason about quantities and quantitative relationships.
and use arithmetic notation to represent their reasoning {Thompson, 1993). The
design of the study was also guided by Carey's (1991) study which found that
the domain of numbers in problems influenced the problem-solving strategies
used by children and that the use of alternative number sentences provided a
revealing context for studying children’s thinking.

Two models provided structure for describing children’s thinking about the
pattern problems in the study. The dual nature of Sfard’s (1991) framework for
describing the acquisition of mathematical concepts is particularly appropriate
for the studying the development of algebraic thinking: the operational aspect
relates to the modeling and skip-counting strategies used by some students in
this study, and the structural aspect corresponds to the abstract strategies such
as solving equations also used by some students.

The three stages of concept development described by Sfard (1991) pro-
vide a framework for characterizing the most frequently used strategies for
evaluating symbolic expressions. Some students who were asked to decide
whether a given expression described a particular mathematical pattern accom-
plished the task by substituting the numbers for every known figure into the
expression, an operational approach suggestive of interiorization. Other stu-
dents related alternative expressions to different characteristics of the physical
models, a strategy suggestive of the condensation phase. Another group of stu-
dents compared the given expressions to other student-invented or symbol-card
expressions and stated that the pairs of expressions were ¢ither equivalent or
not equivalent, in cffect treating the expressions as objects separate from the
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patterns which generated them. This strategy is suggestive of reification in re-
spect to the identification of expressions which describe pattern situations. The
findings of this study support Sfard and Linchevski’s (1994) observation that
reification appears to require the introduction of symbolic notation, possibly
because compact symbolic expressions facilitate structural thinking.

The other model resulted from research into children’s solution strategies
on simple addition and subtraction problems (Carpenter & Moser, 1984). Like
the first-, second-, and third-grade students solving addition and subtraction
problems in Carpenter and Moseér’s study, students in this study modeled the
problem situations, skip-counted, and sometimes used a more abstract strategy.
For first- and second-graders, recalling number facts directly is an abstract strat-
egy; among the seventh- and eighth- grade students in this study, application of
an equation or an expression was the most abstract strategy used. Carpenter
and Moser demonstrated that children mry use a combination of strategies that
over time gradually shifts from less abstract to more abstract strategies; specifi-
cally from direct modeling to counting, and eventually to derived facts or re-
call. Although the present study was not longitudinal, some students adopted
increasingly : bstract strategies as they worked through four pattern problems.

Methods of Inquiry

This study followed ihe naturalistic paradigm of qualitative research (Miles
& Huberman, 1994; Stake, 1995) in the respect that the data were collected in
a school setting and the intent of the research was to develop an integrated
understanding of students’ reasoning about pattern problems (Miles &
Huberm:in, 1994). An emergent research design (Stake, 1995) was used be-
cause there exists no model for describing children’s thinking about patterns
and because it allowed for adjustments to accommodate information which
developed in the course of the study.

Each student in the study participated in a two-part interview during which
he or she engaged in four sequential pattern problems: three perimeter prob-
lems modeled with pattern blocks and one area problem modeled with tiles.
For each problem the students were shown the first four figures of the sequence.
Then they were asked to predict the perimeter or area for several figures from
later in the sequence. (For pattern problems, see Figure 1.)

Students were also asked how they would tell someone to find the perim-
eter or area of the figure no matter what the number of the figure was, in effect
a request for a generalization of the pattern. Then students were asked to write
what they had said with mathematical symbols and numbers. Students were
also shown a series of symbol cards and asked whether or not the expressions
on them described the pattern in the problem. Finally. students encountered an
equation-evoking situation for each problem in which they were given a perim-
eter or an area and asked to find the number of the figure. At every step students
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Problem 1 [Perimeter = 2n + 2] Problem 2 [Perimeter = 3n + 2]

RENEANEN

Fig.1 Fig2 Fig.3 Fig. 1 Fig. 2 Fig. 3

Problem 3 [Perimeter = 2n + 3] Problem 4 [Area=2n - 1]

Fig. 1 . Fig. | Fig. 2

Figure 1. Sequential Perimeter and Area Problems

were asked to explain their reasoning. All written work completed by the stu-
dents was collected and saved.

Data Sources

The interviews were audio- and video-taped and later transcribed. The tran-
scribed notes and the students” written work were coded according to strategies
used by the students, accuracy of outcomes, and implications for student un-
derstanding. The four sections for each problem were analyzed separately to
determine the range of strategies and identify clusters of similar strategies, then
data from the four sections of the problems were analyzed to identify relation-
ships among the strategies for the four sections.

Results

The data suggest at least four clusters of thinking about the type of math-
ematical pattern used in this study. It appears that students” ability to recognize
the critical relationships of a pattern and describe them symbolically strongly
influences the strategics used to solve problems about the patterns. The ability
to relate the clements of an expression to the physical characteristics of the




model also appears to support quantitative reasoning about the problem situa-
tion.

Model and Count. In the most concrete cluster, students modeled the
figures and counted to find perimeter or area and to solve equation-evoking
situations. When asked to generalize a method for finding perimeter or area,
students in this cluster gave verbal directions for counting the number of block-
sides in the figure. Their most effective strategy for identifying alternative ex-
pressions was substituting a number into an expression and comparing the re-
sults to a known perimeter or area. They demonstrated little or no awareness of
the relationships between the number of the figure and its perimeter or area.

Single-Operation Relationship. Inthe second cluster, students demonstrated
an awareness that there exists a relationships between the number of the figure
and its perimeter or area, but they did not fully understand the relationship,
expressing it in terms of only a single operation. These students might write an
equation such as 3 x n =p fora 2n + 3 situation. Some students in this cluster
did not recognize that the relationship incorporated two operations. while other
students recognized that some aspects of the figure remained constant while
others varied, but they appeared not to know how to express symbolically such
a relationship; in both cases students incorporated a single operation into their
generalizations. These students attempted to find perimeter or area and solve
equation-evoking situations by applying a single operation in one case and re-
versing it in the other. Since their understanding of the pattern was incorrect,
they were unsuccessful.

Consecutive Figures. Students in the third cluster perceived the patterns in
terms of the relationships between the perimeter or area of consecutive figures.
Students who recognized that the perimeter or area increases by one or two
from one figure to the next often skip-counted to find perimeter or area and
solve equation-evoking situations. Skip-count strategies were effective within
a domain of small numbers but did not generalize well to all situations. In a
situation where consecutive perimeters increase by 2, students in this cluster
might write x + 2 where x represents the perimeter of the previous figure. Sev-
eral students who used skip-count strategics to find perimeter and area later
recognized the relationship between the number of the figure and the perimeter
or arca and adopted strategies consistent with the fourth cluster.

Appropriate Symbolic Expression. Students in the fourth cluster recognized
the relationships between the number of the figure and its perimeter or area and
expressed the relationships symbolically. Students in this cluster were more
likely to explain their calculations in terms of the characteristics of the figures,
and all but one demonstrated that they could manipulate the terms of the ex-
pression without reference to the figures on which they were based. Students in
this cluster demonstrated that they could reason quantitatively in a manner which
would support formal mathematics.




Conclusions

The results of this study suggest that problems of this type provide an
appropriate opportunity to develop students’ ability to reason about mathemati-
cal relationships and express them symbolically. One possible reason that this
type of problem appears to promote the development of quantitative reasoning
is that the relationships are accessible through a variety of number patterns and
interpretations of the figures. Well-orchestrated classroom discussions could
provide students opportunities to describe the pattern relationships in familiar
language and then connect their language and understanding to symbolic rep-
resentations of the relationships. A level of classroom discourse which elicits
and explores a variety of expressions for each pattern situation is needed to
provide adequate opportunities for students to develop an appreciation for the
meaning of an expression. Special attention must be given to identifying and
expressing the relationships among components in the pattern because those
students who did not develop valid symbolic representations of the relation-
ships were unable to use equations to answer questions about the patterns, and
that powerful concept is critical for algebraic reasoning.
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THEIR CHOICE OF REASONING STRATEGIES
FOR SOLVING ALGEBRA PROBLEMS
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This study involved 25 undergraduate mathematics specialists who are planning to
teach at the K-9 level. We examined both their beliefs about learning and teaching
mathematics and their reasoning strategics. Findings suggest that students whose re-
ported beliefs reflect an internal locus of mathematical authority and an importance
placed on understanding in a mathematics learning community are more successful in
developing their reasoning strategies.

Although it is widely recognized that there are several facets to school
algebra (Bednarz, Kicran, & Lee, 1996; Kaput. 1995), it is also accepted that
students leave their school experiences with a narrow perspective of what con-
stitutes doing mathematics, particularly algebra (Kieran, 1992; Sfard &
Linchvski, 1994). Beliefs about the leaming and teaching of mathematics play
an integral role in developing this perspective. Lampert (1990) and Schoenfeld
(1992) found that students’ beliefs abecut mathematics develop as a result of
their classroom experiences, reflecting the perspective that mathematics is a
fixed static discipline and that doing mathematics means memorizing, manipu-
lating symbols, and identifying and applying the right cquations. Further,
Schoenfeld (1994) emphasized the importance of student belief about the locus
of mathematical authority within the classroom culture. This authority, he noted,
ultimately needs to reside “deeply in individuals and collectively in the math-
ematical community™; he believes that learning environments must develop “a
community of mathematical judgment” that use standards to determine the ve-
racity of their mathematical discourse (p. 62).

Although there have been studies of how beliefs impact the mathematical
performance of teachers, the goal of our study is to investigate the relationship
of college students” beliefs about the learning of algebra to their selection and
quality of rcasoning strategies for solving algebra problems.  In this paper. we
present information about what students perceive to be the locus of authority
for the leamning of algebra and discuss in what ways their beliefs may aftect the
reasoning they use to solve algebra problems.

Background

The mathematics course in which data were collected focused on develop-
ing reasoning and problem solving skills in algebra. Instruction assumed that
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algebraic understanding is actively constructed by each student and includes
the student being able to reason and make sense of algebraic situations and to
communicate to others their sense-making and reasoning. The overall instruc-
tional pedagogy was to use problems as the main vehicle by which to develop
this algebraic reasoning and sense-making and to help students become their
own arbiters of the validity of their mathematical reasoning. Instruction fo-
cused on the use of problem situations for which expressions and equations
could be assigned meanings from the problem. The ideas of “quantity-based
algebra” (Thompson & Thompson, 1993) and “conceptual orientation” (Th-
ompson, Philipp, Thompson, & Boyd, 1994) were important instructional com-
ponents. The processes of exploring, investigating, conjecturing, explaining,
and justifying were used consistently with students to help them develop their
reasoning and problem solving skills in order to “deflect inappropriate teacher
authority” (Schoenfeld 1994, p. 62). Social interaction among students and
questioning from the instructor provided a framework for students to develop
confidence in their mathematical reasoning. The importance of memorization
of techniques and procedures was de-emphasized by allowing students to use
all their notes on quizzes and exams.

Rationale

During the fall semester of 1995, two of the authors were team teaching
two sections of this course. Reflecting on what was occurring in our classes,
one of us noted that, on quizzes, students tended to mimic the reasoning pro-
cess of other students or of the instructor which had occurred during the clo-
sure discussion of in-class problems. These students focused only on what
calculations had been done, rather than relying on their own sense-making of
the discourse. The other instructor, having assessed students’ pre- and post-
class beliefs about the learning and teaching of algebra, noticed that students
who matured in their problem solving strategies more often believed learning
was their responsibility and not based on careful teacher explanations.

Thus, our observations and assessments, combined with the robustness of
resistance by many of our students to establish their own reasoning and under-
standing, suggested that we look at the belief systems of these students with
respect to the strategies they selected as they proceeded to “do algebra.”” The
decision to look at the role of authority when assessing mathematical correct-
ness was an additional area to explore, especially when one student responded
to the question “What is represented by this algebraic expression 7” by stating
she didn’t know, “This is how I was taught to do it in high school” suggesting
that the authority of correctness rested in her high school teacher and not in her
own reasoning and understanding.
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Methodology

The subjects were 25 pre-service K-8 teachers, specializing in mathemat-
ics, at a midwestern university. Each had taken a standard one-semester math-
ematics course for K-8 teachers and were in the first course in a sequence of
specially designed courses for mathematics specialists. Their self-reported
backgrounds in high school mathematics are approximately: 25% with three
years (two years of algebra and one year of geometry); 15% with the traditional
four years, and 60% with 4 years including at least one additional college course
in mathematics.

The data consisted of responses collected in the spring of 1996 from 1) a
Survey on Students’ Beliefs about Learning Algebra (SBLA) (Otto & Lubinski,
unpublished), 2) the first quiz, 3) the final exam, and 4) final grades which in
our classes reflect students’ quantitative reasoning and communication of this
reasoning both verbally and in wniting. Pre- and post-responses to three of the
five prompts on the SBLA were analyzed. These prompts were chosen because
they provided the most information on locus of authority. The prompts are:
Describe the role of an algebra teacher; Describe the role of an algebra student;
and Describe a memorable algebra experience you have had. Three research-
ers categorized responses as reflecting an internal or external locus of authority
or mixed. Discussions among raters continued until 92% agreement was reached.

Classroom Culture
The first problem assigned for the class to solve was the following:

A bus travels up a I mile hill at an average speed of 30 mph. At what
average speed would it have to travel down the hill (1 mile) to average
60 mph for the entire trip?

The intent of this problem was to establish a degree of cognitive dissonance to
establish the importance of making sense of the use of symbolic expressions.
(All students used, in one form or another, the representation for a simple aver-
age and got the inco.rect answer of 90 mph.) Ensuing discussions of this prob-
lem were conceptually oriented.

On the sixth day of class, the following problem was introduced: “Is there
a temperature that has the same numerical value in both Fahrenheit and Cel-
sius?" The students knew the boiling and freezing points on each scale. No
other information was provided. Discussion of this problem took parts of sev-
eral class periods. Initially, the pro lem was solved computationally by sub-
tracting multiples of 9 and 5. respectively, until a common value was found on
both scales. Some students remembered conversion equations or developed
them using point-slope methods. Then. they either graphed both equations to
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find the common point or set “F” equal to “C” and solved using Algebra I
procedures. Finally, the focus of the discussion turned to the development of
the equations used to convert from one temperature scale to the other, redirect-
ing the mathematical discourse from a computational orientation to a concep-
tual orientation. The emphasis was on making sense of the algebraic parts of
an equation for conversion, such as C = (5/9)(F - 32). Students were asked to
explain w hat quantity was being described or represented by F - 32, then by 5/
9, and finally what quantity was being represented by multiplying the quantity
F- 32 by 5/9. A similar discussion ensued for the conversion equation F = (9/
5)C + 32. Focusing these discussions on what waus being represented, not on
what calculations were being done, encouraged students to make sense of the
algebraic expressions. This was done so that students could gain confidence in
their own ability to judge the correctness of these formulas instead of relying
upon previous memorization. The role of instructor throughout these discus-
sions was one of probing and questioning students’ responses with questions
such as, “What number is being represented by that expression?”

Results

Students’ Beliefs about Learning Algebra
and Their Final Grades

Students’ initial beliefs indicated general dependence on others for their
leamning; they stated that algebra teachers were responsible for providing ex-
amples. explaining material clearly, and teaching multiple ways to arrive at an
answer. Being patient and having knowledge of the material were recurring
themes. A typical response was, “To be able to explain algebra at different
levels according to the leamning ability of the student. The key to teaching
algebra would be patience, because mainly students will want to block algebra
out and some will just not comprehend it at first.” Reported beliefs about stu-
dents were that they were to listen, watch the teacher, ask questions, and prac-
tice (problems similar to examples presented in class). One student wrote.
“Should listen and watch the teacher when they are learning new areas for the
first time. Ask questions if they are lost and don’t understand something.” A
recurring theme was to be open minded. Initially, memorable algebra experi-
ences referred to getting good grades. having a teacher that explained the mate-
rial well. developing understanding (procedural), and having fun.

At the end of the semester, more responses than at the beginning reflected
an internal locus of authority. For example. one student wrote, “The role of an
algebra teacher is to NOT give answers, but to let the students figure out things
on their own. . . The algebra students need to contribute to problems and class
discussions to not only help themselves learn, but to help others learn as well.
This is difficult to do if the work is not done before class.” Nine students
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indicated that this class was most memorable. One student said, “I believe that
it was this semester working on our quizzes in our group. [t made me proud
that we worked very hard on explaining, to our best, our answer. I was very
excited when I was able to find an answer for the story problems. . . I can
actually spend hours on end trying t find an answer and be able to explain how
I derived it.” Responses such as these reflect an internal locus of authority.

We looked at change on a continuum from external to internal locus of
authority and classified students as either external, internal, or mixed on each
of their three responses to the SBLA prompts. Then, we noted whether they
focused on understanding in their end-of-the-semester response involving their
most memorable experience. Initially, all students’ responses were classified
as external for the prompts about the role of the algebra teacher and the role of
the algebra students. Atthe end of the semester, all students made some change
towards the internal end of the continuum: ten were still external; seven were
mixed; and seven were internai {one student’s data were unavailable).

In regard to a memorable experience, students were initially classified as
15 external, four mixed, and six internal. At the end of the semester, six stu-
dents were classified extemnal, six mixed, 11 internal, and two uncodeable. Of
the 11 students classified as internal: three received As, four Bs, and four Cs;
nine mentioned the most memorable experience as being this class; and nine
focused on the importance of understanding in their end of semester responses.
It is important to note that the majority of students receiving Cs and Ds did not
mention this class as a memorable experience nor the importance of under-
standing; their responses tended to emphasize a focus on procedures and three
of them mentioned experiencing math anxiety. Of the 25 students, there were
three As, eight Bs, nine Cs, and five Ds.

All students changed from external toward internal locus of authority or
the continuum in regard to the prompts on teacher’s role, student’s role, and
memorable experiences. We classified these changes as either minimal, some,
or great. Of the three students who received As: one had a minimal change and
two had some; and all noted the importance of understanding and the impact of
this class. Of the eight B students: changes were minimal for three, some for
three, and great for two; four noted the importance of understanding; and three
realized the impact of this class on their thinking about mathematics learning
and teaching. Of the seven Cs: 1 had minimal change (mentioning both the
importance of understanding and this class), five had some. and two had great
change. Of the four Ds: three had minimal change and one had missing data.
First Quiz and Final Exam

The following question appeared on the first quiz:

In order to work with new chemical compounds in a laboratory, it is
necessary to develop two new scales, named “Up” and “Down” for
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measuring temperature. In one room the Up scale is showing a tem-
perature of 52 degrees while the Down scale is showing a temperature
of 61 degrees. In a second room the Up scale is showing a temperature
of 132 degrees while the Down scale is showing a temperature of 201
degrees. Develop a formula for converting from the Down scale to the
Up scale.

Slightly more than half (13 out of 25) of the students obtained a valid conver-

sion equation. Two of the 13 students used information about slope and equa-
tions of lines, but provided only calculations with minimal explanations: they
earned As in the course, having shown some change in beliefs, recogniticn of
the importance of both understanding and this class. No student referenced the
need for a constant rate of change to employ the equations. One student mim-
icked what was done in class by using the original data, but did not provide a
coherent explanation for what was being represented by the algebraic expres-
sions; this student received a final grade of C, showed some change in beliefs,
but never reflected an internal locus of authority in responses, and mentioned

neither understanding nor the impact of this class.

Ten of the 13 students appeared to have chosen a strategy from the problem
situation resembling the conversion of Fahrenheit to Celsius by subtracting
multiples of sexcn and four until the Down scale had a 0, or O on the Up scale
for those doing the reverse direction. Their choice of this strategy is appropri-
ate, but indicates an unwillingness to use the reasoning that developed from
class discussions. These students did not recognize the need to still provide a
meaningful explanation for their algebraic expressions. Several students pro-
vided no or minimal explanations, appearing to just track the numbers by di-
rectly mapping to numbers used in class solutions. Some provided explana-
tions that caused one to doubt their understanding. Some explanations empha-
sized what operation was being used rather than what the result of the opera-
tion represented. reflecting a computational orientation. No student provided a
complete explanation. Six of these students received As or Bs in the course;
one earned a D.

The work of students who did not get the right equation ranged from virtu-
ally nothing to explanations that lacked meaning. A couple of attempts to use
quantitative reasoning on the original data met with little success. Most of
these students received Cs or Ds in the course. Two of the three that received a
B made great changes in their beliefs and one realized the importance of under-
stunding.

On the final examination the following problem appeared:

Scientists are using two different temperature scales to conduct experi-
ments on a newly discovered chemical compound. For simplicity the
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two temperature scales are called the A and B scales. On the A scale,
water boils at 173 degrees and on the B scale water boils at 152 de-
grees. It is also known that an 8 degree change on the A scale corre-
sponds to an 11 degree change on the B scale. Develop a formula for
converting from the B scale to the A scale. (You may not use formulas
from Algebra | and 2. If in doubt, check with me.)

Of the 25 students who took the final exam, only seven presented any solution
that had substance. The other 18 students did little more than find the rate of
change between the two scales, an expected strategy since they had access to
their notes. Of particular interest was the attempt by several of these students
to incorporate 21 into their explanation without stating what the 21 represented
(the difference between the two boiling points). Little attempt was made by
these students to employ any reasoning about the quantities involved. One stu-
dent perhaps best described her situation when she wrote, “I tried so hard to
understan and make sense of this problem, but I just could not do it.”” The
majority of these 18 students received Cs or Ds.

Of the seven students who provided a correct equation, only one tried to
assign meaning to the equation using the original data, but her explanation
focused on calculations rather than on what the expressions represented. This
student had done poorly on quiz one, made great change in her beliefs, did not
write about the class being memorable, but did note the importance of under-
standing. Six students adopted the quiz strategy of adjusting corresponding
points on the two scales until the B scale reached 0 and then mimicked the
strategy of converting from Celsius to Fahrenheit. As with the first student,
their explanations focused on calculations rather than on the meaning of alge-
braic terms; however, their explanations were clear and relatively complete.
With the exception of one, all of these students received an A or B and all used
conversion equations with weak explanations on quiz one.

Discussion

As we review our data, we realize the students overall are not reflecting the
corceptual orientation we strive to achieve within the classroom culture; how-
ever, we recognize the progress they have made towards developing an under-
standing of mathematics that they had never before realized possible. We con-
cluded that those students whose beliefs changed to reflect a more internal
locus of authority, who placed an importance on understanding, and who ac-
knowledged the impact of this class to their learning developed their ability to
explain their reasoning strategies (as reflected in their grades). These connec-
tions are more clearly recognized as we looked at where these students were at
the beginning (first quiz) and end (final exam) of the semester in relation to
their reasoning strategics.




As students of mathematics, many of these students would be considered
“calculus ready.” We may ask how their computational learning style will im-
pact their performance in higher level mathematics. They might bring the type
of manipulative focus described by White and Mitchelmore (1996) to these
classrooms; further, the issue of developing a conceptual orientation in regard
to their reasoning strategies might be compounded if their locus of authority is
external.

As teachers, we expect them to teach in a manner consistent with reform
recommendations. Thus, they must be able to make sense of the mathematics
themselves and believe that it is possible for their future students to decide on
the correctness of their own reasoning. Qur results suggest that this process
will not be easy. It will be equally as important for them to change their beliefs
as to experience doing mathematics.

References

Bednarz, N., Kieran, C., & Lee, L. (Eds.). (1996). Approaches to algebra:
Perspectives for research and teaching. Dordrecht: Kluwer.

Kaput, J. (1995). A research base supporting long term reform. In D. Owens,
M. Reed, & G. Millsaps (Eds.), Proceedings of the Seventeenth Annual
Meeting North American Chapter of Psychology of Mathematics Educa-
tion , Vol. | (pp. 71-94). Columbus, OH: ERIC.

Kieran, C. (1992). The learning and teaching of school algebra. In D. A.

Grouws (Ed.), Hundbook of research on mathematics teaching and learn-
ing (pp- 390-419). NY: Macmillan.

Lampert, M. (1990). When the problem is not the question and the solution is
not the answer: Mathematical knowing and teaching. American Educu-
tional Research Journal, 27(1), 29-63.

Schoenfeld, A. (1992). . earning to think mathematically: Problem solving,
metacognition, and sense making in mathematics. In D. A. Grouws (Ed.),
Handbook of research on mathematics teuching and learning (pp. 334-
370). NY: Macmillan.

Schoenfeld, A. (Ed.). (1994). Reflections on doing and teaching mathematics.
In A. Schoenfeld, Mathematical thinking and problem solving (pp. 53-70).
Hillsdale, NJ: Lawrence Eribaum Associates.

Sfard, A. & Linchevski, L. (1994). The gains and the pitfalls of reification:
The case of algebra. Educational Studies in Mathematics, 26, 191-228.

Thompson, A. & Thompson, P. {1993). A cognitive perspective on the math-
ematical preparation of teachers: The case of algebra. In C. Lacampagne,
W. Blair, & J. Kaput (Eds.). The algebra initiative colloguium
(Vol. 1, pp. 95-116). Washington, DC: Dcpartment of Education.

Thompson, A., Philipp, R., Thompson, P., & boyd, B. (1994). Calculational
and conceptual orientations in teaching mathematics. In D. Aichele & A.




Coxford (Eds.) Professional development for teachers of mathematics:
1994 Yearbook (pp. 79-92). Reston: VA: The National Council of Teach-
ers of Mathematics.

White, P. & Mitchelmore, M. (1996). Conceptual knowledge in introductory
calculus. Journal for Research in Mathematics Education, 27, 79-95.




TEACHERS’ BELIEFS AND STUDENT FAILURE IN
ALGEBRA '

Daniel K. Siebert
San Diego State University
dsiebert@crmse.sdsu.edu

Previous studies imply that algebra teachers” beliefs may affect instructional practices
and student leamning in algebra. The two summer school algebra teachers in this study
believed that their success at helping students learn algebra was largely due to their
ability to relate with their students and to foster a relaxed yet motivating classroom
environment. Teacher practices for dealing with failing students were consistent with
their beliefs about what caused the failure, and sometimes had undesirable consequences
for students. Beliefs about algebra teaching and learning were consistent with instruc-
tional practices. Both teachers focused on teaching procedures and calculations, and
helieved that students’ mistakes were best corrected by warning students of commonly
made errors and showing them the correct steps to use while doing the assigned exer-
cises. Their heavy emphasis on procedures may have led their students to develop an
instrumental understanding of algebra.

Research pertaining to the teaching and learning of algebra has often fo-
cused on teaching practices and student thinking to explain why many students
have great difficulty learning algebra (see Kieran, 1992). One explanatory vari-
able that has frequently gone overlooked in this body of literature is teachers’

beliefs. There are many ways that teachers’ beliefs might affect student leamn-
ing, perhaps the most well-documented one being the relationship between teach-
ers’ beliefs and instructional practices (Thompson, 1992). Thompson (1984)
found that teachers’ beliefs and conceptions conceming what constitutes math-
ematics and mathematical activity were fairly consistent with their instruction.
This suggests that teachers’ beliefs about algebra and algebra teaching and learn-
ing may affect their instructional practices, which in turn can impact student
leaming.

Teachers’ beliefs about their students may also affect instruction and stu-
dent learning. In his observations of a first year high school mathematics teacher,
Gregg (1995) noted two beliefs Ms. Weston, the teacher in his study, held that
might have contributed to student difficulties in learning mathematics. She be-
lieved that certain students in her classes had limited abilities for learning math-
ematics, and that other students were willfully refusing to learn. This led her to
give up on some of her students, which significantly altered the attention and
instruction they received. These two beliefs may play a prevalent role in alge-
bra learning and teaching, because many students who struggle with algebra
might be perceived by their algebra teachers as fitting into at least one of these
two categories.




In this paper, I will describe a study I conducted to examnine how algebra
teachers’ beliefs about their students, algebra, and algebra learning and teach-
ing were related to their instructional practices. By doing so, I hope to suggest
ways that teachers’ beliefs might influence student learning in algebra.

Method

Two high school mathematics teachers from an inner city high school in
Southern California participated in this study. Both teachers were teaching al-
gebra units from integrated mathematics courses during summer school. I em-
ployed ethnographic methods of data collection, which included a week of class-
room observations and three or four interviews with each teacher, all of which
were conducted during the third and fourth weeks of summer school. Data col-
lection during classroom observations consisted mostly of field notes, although
two-thirds of the observations were audiotaped. I occasionally referred to these
tapes to supplement my notes. The interviews were audiotaped and transcribed
in full. During these interviews, I not only probed teachers directly about their
beliefs concerning their students and algebra teaching and leamning, but also
questioned them about instructional practices that I had seen in their classes. 1
hoped that by framing questions within the context of their teaching, I would
obtain a more accurate report of their beliefs, since general questions or hypo-
thetical situations might lead the teachers to voice beliefs about an “ideal” or
“non-real” situation.

My beliefs about the nature of knowledge and the learning and teaching of
algebra guided my observations, data gathering, and analysis. First, my accep-
tance of radical constructivism led me to recognize both the teachers and my-
self as active constructors of knowledge. This in turn implied that the teachers
and I most likely had different perceptions of what happened in their class-
rooms. As a result, I faced the challenge of attempting to view classroom situ-
ations from their perspectives, while at the same time realizing that at best 1
would only achieve a “good fit” between my explanations and the data I col-
lected, not an exact account of their perceptions. Second, the realization that
students also constructed knowledge led me to assume that teachers under-
standing their students’ thinking was a critical part of teaching algebra. Conse-
quently, I looked for ways that teachers accessed and responded to student think-
ing in their classes. Third, I valued mathematicul understanding that included
not only the ability to perform calculations, but also the knowledge of when
and why to perform them. This type of understanding is often referred to as
relational understanding (Skemp, 1978). Discourse in the classroom that fo-
cuses on conceptual understanding rather than calculations is an important means
for helping students develop relational understanding (Thompson, Philipp,
Thompson, & Boyd. 1994). Fourth, Kieran (1992) identified several concepts
and mathematical structures, such as variables and functions, that students usu-
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ally study formally for the first time in algebra. This led me to search for evi-
dence that teachers were sensitive to students’ struggles with these new con-
cepts and for teachers’ beliefs concerning what teaching practices were best for
helping students acquire them.

Results and Discussion

At the time of the study, Peter and Jason, the names by which I shall refer
to the teachers in my study, had been teaching high school mathematics for 3
and 25 years, respectively. Peter’s major and Jason’s minor in college were
mathematics. Both teachers confided to me that they were covering the same
units, teaching the same lessons, using the same tests, and assigning the same
homework problems as they had during the regular school year. This was done
in part to reduce their workload of having to teach three or four different les-
sons each day. At least two-thirds of their summer school students were retak-
ing their courses, having failed the first time. Nonetheless, both. teachers re-
ported that the percentage of students who were passing their classes halfway
through summer school was much higher than the district pass rate during the
regular school year.

Beliefs About Social Relationships In The Classroom

Both Peter and Jason believed that a large part of their success in teaching
summer school could be attributed to their ability to relate to their students.
They felt this was an important factor in motivating students to learn. Peter was
particularly concemed about being perceived as a “traditional” mathematics
teacher:

P. I'm probably different. . . . Like I wouldn’t want to be a traditional

math teacher.

Where do you see yourself as being different?

Uh, I don’t know. . . . I'm just a lot different, I think, than the math
teachers that I had. . . . Maybe [I'm] more understanding, . . .

I.  What do you mean by understanding?

P.  Uh, understanding that . . . it’s OK to make a mistake. . . . where maybe
other people would say, “No, that's not how you do that!”

Peter’s use of the term understanding seems to refer to his sensitivity to stu-
dents’ feelings, an interpretation I find consistent with my observations in his
classroom. Peter related very well to his students. He had a lot in common with
them, and often capitalized on shared interests, such as using a song lyric from
a popular song to catch the attention of his class. I enjoyed being in Peter’s
class because of the relaxed and respectful atmosphere there. Students took
turns speaking, asked permission to leave their seats, said “bless you™ when
someone sneezed, spoke in quiet voices, worked diligently during independent
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practice, and seemed genuinely pleased to be in class. Peter acknowledged that
he pushed students to “be nice” and complete their work. It was a common
occurrence in class to hear him say things like “‘Ladies and gentlemen, please
be” (i.e., please be ladies and gentlemen), or “Maria, I'm missing your explora-
tion write-up.”

Jason also acknowledged the importance of being sensitive to students’
feelings and interests. However, he attempted to relate to students in a different
way than Peter:

J. Ttry to make it a personal thing. . . . I try to think back on my child-

hood. Why was I afraid to screw up someplace? Because I knew that .

.. my parents would be disappointed in me, and they would let me

know they were disappointed in me, and that would hurt me. And 1

know my kids feel the same way about me. Now these are not my own
children, but I can use a lot of the same theory on them.

Student-teacher relationships in Jason’s classroom were also respectful and re-

laxed. Jason seemed very approachable, and actively encouraged questions from

his students. He allowed students to talk with one another at almost anytime

during class, including lectures. He permitted these discussions so that students

could engage in “peer tutoring,” which he said he hoped would compensate for

the lack of organized group work in his class. Consequently, there were often

many student conversations taking place in Jason’s class at any given moment.

Jason tried to keep track of those who were not working, and would “cajole” or
“prod” them to get back to work.

Beliefs About Student Failure

Peter had two failing students in his class of 30. When I asked him why

they were failing, he responded as follows:

P: [They] just didn’t do any work. I don’t think the work is too fast. It’s
not that it’s so challenging that they can’t do it. Well, it's challenging
that they have to keep on working. Some people aren’t used to work-
ing.

Peter seemed to feel that failing students in his class did not have appropriate
work habits. However, it did not appear that he felt they were willfully choos-
ing to fail his course. like the teacher Gregg (1995) observed. When I asked
Peter what he did to help these students, Peter responded that he gave them
opportunities to make up missing assignments. I also noticed that he would
occasionally walk over to these students during independent practice, wait by
their sides until they took out a sheet of paper, and then talk them step-by-step
through the first one or two problems, telling them what to write down as they
went along. Peter’s belief that student failure was caused by poor work habits
led him to treat failure as a motivational problem.




Five of Jason’s 33 students were failing his class. Jason felt that one of
these five students was not getting adequate rest, and that this was the cause of
her poor performance. Jason described the remaining four as follows:

J.  There’s another couple of kids that I haven’t really gotten to know that
well yet. But there are a couple that...probably don’t know their times
tables. They probably don’t know their addition facts...They’ve prob-
ably struggled all their lives in math....We could talk about right brain
left brain. We could talk about the creative types. But there are a couple
that...seem to struggle.

Jason’s comments seem to indicate that he believed that some of his students
had a limited capacity for leaming mathematics. Jason said that when he first
began teaching, he felt he could teach anyone anything. Early experiences in
the classroom convinced him that some students could not leam, that ““a dense
fog™ surrounded their brains. Even so, Jason stili believed that every student
should be able to pass his class. Jason indicated in an interview that the way he
helped failing students was by reviewing material and providing one-on-one
help. During my observations, however, I saw only one instance where Jason
provided a failing student with individual assistance. Reviews were also infre-
quent, usually taking place only before an exam. My observations yielded no
indication that Jason had altered his instruction in any way so as to specifically
address the needs of the failing students. Whether intentional or not, such ac-
tion was consistent with his belief that these students could not learn math-
ematics regardless of how hard he tried to teach them.

Beliefs about Teaching and Learning

Both Peter’s and Jason’s instructional activities were traditional in nature.
Peter frequently lectured, providing students with step-by-step procedures they
could use to do the exercises in the text. While Peter occasionally used the
discovery leaming activities in the book to introduce new topics, these were
done as whole class activities, where Peter performed the task at the front of the
class and students copied at their desks. Peter felt this was the best way to
engage students in these hands on activities: “And it was real neat, too. . . . As
we did it together, they could check their work, ‘cause their work should have
been the same thing that we had on the board.” Similarly, Jason also based his
instruction on lectures that focused on learning procedures so that students could
do the exercises in the problem sections. In both classes, very little time was
spent on explaining why the procedures worked or why they were used, nor did
my discussions with the teachers indicate they valued this type of activity.

Peter and Jason’s emphasis on procedures and computations was consis-
tent with their beliefs about what difficulties their students had with algebra
and what they should do to help their students. Both teachers seemed to be well
aware of the assignments or sections their students would find difficult; they




would frequently warn their students about commmon mistakes or teli me about
the proceJures their students struggled with. However, at no time during the
interviews did either teacher exhibit an awareness of the relationships or struc-
tures in aigebra that might have required their students to develop new concep-
tions or modify existing ones. Instead, their talk focused on the wrong steps
students performed. This emphasis on procedures was compatible with their
belief that student mistakes could be corrected by showing them the proper
procedure or forewarning them of common errors. It also very likely served as
a barrier to their students’ development of a relational understanding of math-
ematics.

Conclusion

Both teachers in this study were very successful in establishing a class-
room environment where students felt relaxed and which motivated students to
do their work. Given the background of the students and the school setting, this
in itself may be viewed as a major accomplishment. and perhaps one of the
biggest reasons for high student pass rates in their classes. The teachers’ meth-
ods (or lack thereof) for helping failing students seemed to be consistent with
their beliefs about what was causing their students to fail. In particular. Jason’s
belief that some of his students were failing because they lacked the ability to
learn mathematics was accompanied by no apparent attempt to assist these stu-
dents. Their emphasis on procedures and computations most likely led their
students to develop a “rules without reason’™ (Skemp, 1978, p. 9) understanding
of algebra. a type of understanding analogous to knowing how to navigate the
streets of a city by only a few well-known routes. Students who have this
understanding of algebra may have a difficult time navigating the mathematical
cityscape in their next mathematics classroom, especially if it offers variations
of or innovations on the procedures they learned over the summer.
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Covariation, the relationship between changes in one quantity and simulta-
neous changes in another, is viewed as a pivotal concept as students develop
their ideas of algebra (Harel & Confrey, 1994). For example, when considering
an increasing quantity, students use ideas of covariation to determine if another
quantity is increasing, decreasing, or remaining constant. The purpose of this
study was to explore students’ understanding of covariation of linear functions
through the use of graphical, tabular, and verbal representations. Specifically,
we were interested in the following questions. What ideas do Algebra I stu-
dents have concerning the concept of covariation? How stable are these ideas?

Algebra I students from grades 8 and 9 completed a 30-minute written
assessment comprised of nonstandard, open-ended items involving translations
among graphs, tables, and words. The participants’ responses were analyzeéd in
a qualitative manner based on multiple sorts of the data. Four themes of
covariation emerged from the data analysis - dependency. linear patterns of
covariation, generalizability of patterns, and multiple patterns of covariation,
(Algebraically, multiple patterns of covariation are represented by piecewise-
defined functions.) Only one-third of the participants indicated stable under-
standing of dependency, almost two-thirds of the participants indicated stable
understanding of linear patterns of covariation, and about one half of the par-
ticipants indicated stable understanding of generalizability of patterns. A major
finding of this study was that the majority (80%) of participants demonstrated
stable understanding of multiple patterns of covariation, even though students
in precalculus and calculus often have difficulty with piecewise-defined func-
tions. These data suggest that perhaps a curricular approach which enabled
students to build on their previous knowledge of graphic, tabular, and verbal
representations of multiple patterns of covariation would enhance students’
understanding of piece-wise defined functions in precalculus and calculus
courses.
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COLLEGE ALGEBRA: STUDENT SELF-PORTRAITS
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This pilot study examined the mathematical beliefs and conceptions of
College Algebra students. Subjects came from College Algebra classes at two
Southern universities. The study addressed the following research questions:
(1) What are siudents’ beliefs regarding the purpose, setting, and content of a
College Algebra course? (2) How do students’ general beliefs about mathemat-
ics influence their performance in a College Algebra course? (3) What math-
ematical conceptions do students develop during a College Algebra course?

A mathematics beliefs and attitudes survey developed by Yackel (1984)
was administered to the College Algebra students. In addition, 20 students par-
ticipated in a series of individual teaching interviews, which occurred bi-weekly
and lasted about 40 minutes each. The interviews included a session during
which the student solved a set of learning tasks; in addition, the student was
allowed to introduce his or her own problems and questions. Since both re-
searchers also served as . istructors, the interviews provided them with on-go-
ing feedback for teaching the classes. Data sources included videotapes of the
interviews, the researchers’ field notes, the students’” written work, and tran-
scripts of the tapes. Case studies were developed from the data analysis.

The results indicate that College Algebra students hold rigid beliefs about
mathematics and the role it plays in their lives. While many students were
familiar with the content of College Algebra, their belief that they already knew
the miaterial was not borne out in subsequent interviews and tests, nor were they
convinced of its utility in either their everyday lives or with regard to their aca-
demic majors. While it was expected that our interviews with students would
reveal their “*mis-conceptions™, other interesting results were found among aca-
demically successful students. While these students achieved levels of com-
petence adequate to pass the course, their interviews indicated that they held, at
best, fragmented understandings about algebra concepts.

Our future work will focus on developing action-based models of student
belief systems. that will help explain the students’ deep-rooted “misconcep-
tions”. We will also consider how the use of technology impacts the beliefs that
students bring to a College Algebra class. We believe our work will yield novel
approaches for working effectively with future College Algebra students.
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THE MEANING OF ALGEBRAIC VARIABLES: AN
EMPIRICAL STUDY WITH STUDENTS AGED 16-18

Verénica Hoyos Aguilar
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This work 1 part of a wide theoretical-observational study performed with
students from approximately 17 years of age, who studied the second year of
high school in Mexico City. It is inscribed in the inquiry about the construction
of meaning of the lineal equations with two unknown values, inaugurated by
Herscovics (1980), and tries to establish bonds among the operational uses of
the algebraic variables with superior order uses: those we have acknowledged
as analytical uses of algebraic variables, and which take place in the tasks of
translating from geometric field to the algebraic one.

We observe the type of thought that is unfolded when the student is asked
tc obtain the equation of a given straight line that does not cross the (0.0),
inasmuch as the Cartesian plane has been introduced and a geometrical mean-
ing of the slope of straight line given.

Depth observations were performed with three cises in clinical interview.
The analysis of what occurred in the interviews was carried out based on the
actions performed by the students during the join resolution between the inter-
viewer and each of the selected students, each of whom worked on the follow-
ing problem: “Find the equation of the circumference that crosses point (6.2),
and that is tangent to the straight line 2x + y = 16 in the point (8,0)". Any of the
possible analytical solutions will demand that the student face repeatedly the
production of different lineal equations. Such production constituted the em-
pirical motive of the rescarch presented here.
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The question of how to enhance student conceptual understanding of math-
ematics drove this research. For years, Perry’s (1970) stages of male inteliec-
tual development served as the baseline for mathematics curriculum. The
Belenky, Clinchy, Goldberger, and Tarule (1986) research noted that female
cognitive development differed in the number of stages and steps from Perry’s
model. Based on these findings, this research looked into whether female stu-
dents formulated their mathematical concepts into reasoning patterns that dif-
fered from the established male standard.

This field studies design employed content analysis to explore reasoning
characteristics for gender-based patterns.  The researcher took five female, five
male, and two common reasening characteristics from Perry’s (1970) and
Belenky's et al. (1986) early stages of intellectual development. Expert math-
ematics educators identified which gender was the primary user of each char-
acteristic. The twelve reasoning characteristics were used for the content analysis
coding.

The subjects were forty high school students: twenty male and twenty fe-
male students between the ages of 15 to 18, taking-a third year of required
mathematics. The subjects lived in a middle class, white, suburban neighbor-
hood in southwestern Ohio. During the one hour interview, cach subject used
the prescribed “think aloud” protocol while working on two algebraic word
problems.

The data analysis revealed three observations. First, expert mathematics
educators placed the twelve reasoning characteristics into gender groups that
differed from the single gender studies. Secondly, the subjects used only three
reasoning characteristics at a significantly different rate based on gender. Third.
female subjects spoke almost twenty-four percent more phrases than the male
subjects. Reasoning characteristics used by mals and female students did not
differ greatly, but teachers’ perceptions of the reasoning characteristics pre-
ferred by each gender did.
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GENERALIZATION OF PATTERNS AND
RELATIONSHIPS BY PROSPECTIVE
ELEMENTARY TEACHERS

Jane O. Swafford, Cynthia W. Langrall, & Gladis Kersaint
Illinois State University

Prospective elementary and middle school teachers’ ability to generalize
algebraic patterns and functional relationships were investigated using open
response written items and interviews. The mathematics content domain ana-
lyzed were arithmetic sequence, direct variation, linear relationships, geomet-
ric sequences, and inverse variation. Subjects were asked to describe and repre-
sent contextual problems with an equation and to solve problems involving
specific cases. Results show that the majority could generalize linear relation-
ships and arithmetic sequences. However, these prospective teachers experi-
enced greater difficulty when asked to represent problems involving inverse
variations and geometric sequences. Sfard’s model of conceptual development
was used a framework for examining students’ understanding.




A HYPERTEXT RESOURCE FOR THE TEACHING
AND LEARNING OF SCHOOL ALGEBRA

Daniel I. Chazan
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Examinations of the current reform movement’s attempts to change the
nature of mathematics teaching suggest that the proposed, “new” ways of teach-
ing require a high level of teacher subject matter knowledge (e.g., Ball, 1996).
This project explores the potential of hypertext documents as a resource for
teachers seeking to develop their subject matter knowledge and change their
instruction. Situated in the domain of school Algebra, the materials provide
teachers with oppportunities to understand how reformers are reconceptualizing
Algebra as an intellectual field of study which can be explored through a vari-
ety of coherent paths, rather than a series of discrete, hierarchical skills to be
mastered. This reconceptalization of Algebra views the x’s and y's of Algebra
as a representation of relationships between quantities and emphasizes the use
of other representations as well, like tables, Cartesian graphs, diagrams, ges-
tures, and everyday language (e.g., see chapters in Romberg et al., 1993 or
Bednarz et al., 1996).

Central to the structure of the hypertext environment are tasks designed to
support student exploration and whole group discussion. The materials also
include links to essays on the mathematical content of Algebra, teacher-written
narratives about the use of these tasks, and rich annotations of the problems.
Annotations include typical student strategies, purposes of the tasks, reasons
for particular wordings, and more. The tasks can be browsed in a course/topic
mode which presents paths that particular teachers have chosen with specific
classes and a mode which views the curriculum as an examination of four sorts
of operations on representations of functions.
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MANDATED ASSESSMENT INSTRUMENTS:
HOW DO TEACHERS VALUE THEM?
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A large Southeastern school district designed a reform-based curriculum and created
mandated assessment instruments to reinforce and drive the curriculum. Although the
primary goal of introducing the assessment instruments was to inform teaching, teach-
ers’ focus on the numerical score affected their perceived value of the instruments.
Using the instruments compelied teachers to adhere to the curriculum more closely but
also diminished some teachers’ sense of autonomy. Teachers’ concerns focused on
technical aspects of the instruments such as the amount of time required to administer
and score them. Howecver, tecachers who valued the pedagogical usefulness of the in-
struments reported fewer technical problems.

Assessment for a Standards-Based Curriculum

In the reform atmosphere permeating discussion of mathematics education
there has been an evolution in the thinking of many mathematics educators and
researchers away from a reductionist view of mathematics to a cognitive ap-
proach (Putnam, Lampert, & Peterson, 1990), wherein children are seen as
active constructors of their own mathematical knowledge. Consistent with this
approach to learning, the NCTM Standards (NCTM, 1989) recommends that
teaching focus on the development of conceptual understanding, reasoning,
and problem solving. This constructivist theory (Cobb & Bauersfeld, 1995)
framed the study.

Teachers’ assessiment of student understanding should be aligned with the
philosophy implicit in a curriculum (NCTM, 1989, 1995.) Although substan-
tial research on assessment is currently being conducted, implementing alter-
native assessment techniques in the classroom poses problems not encountered
in research settings (Marshall & Thompson, 1994). When teachers begin using
alternative assessment methods, they report loss of predictability and increased
demands on their time (Cooney, Bell, Fisher-Cauble, & Sanchez, 1996). More
importantly, if teachers’ beliefs and attitudes affect the way in which they imple-
ment curricula and interpret assessment results (Thompson, 1992), then teach-
ers who view mathematics as rule-driven and who believe children learn through
passive absorption of discrete bits of information are likely to encounter diffi-
culty adjusting to a Standards-based curriculum.

In an effort to reform the teaching of elementary school mathematics, a
large Southcastern school district created a curriculum, Continwous Achieve-
ment, to implement the goals of the NCTM Srandards (NCTM, 1989) and to
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meet the needs of a diverse student population. The curriculum promotes de-
velopment of conceptual understanding, reasoning and problem solving skills
and is designed to actively involve students in “doing” mathematics by requir-
ing them to interact with physical objects and other students. Continuous
Achievement was developed by a team of curriculum specialists, called In-
structional Resource Teachers (IRTs) and teachers from within the county un-
der the direction of the County Coordinator for Mathematics. The knowledge
and skills expected to be learned at each grade are divided into three levels and
students are grouped by level of instruction so that cach student can progress at
his or her own pace.

After the curriculum was implemented throughout the district, assessment
instruments, called Cumulative Assessment, were created to promote the use of
the curriculum and to inform instruction. Teachers are required to administer
these instruments before the students can advance to another level.

The assessment instruments are closely tied to the curriculum, both con-
ceptually and contextually.  In the assessment process a student may be re-
quired to model an addition problem using Dienes blocks or to draw and label
a bar graph from data. Many questions are open-ended and grading is partly
based on teacher observation. The scoring rubrics provide general guides but
permit the teacher to use his or her own discretion in determining a “reason.
able” answer. The IRTs informally assist teachers with curriculum and assess-
ment decisions.

Purpose Of The Study

Continuous Achievement and Cumulative Assessment represented a dra-
matic shift away from more traditional curriculum designs and tests. A change
of this magnitude can have a profound impact on teachers, both in their percep-
tions of their role as teachers and their understanding of the mathematics of
their students. We focused on the impact of Cumnuldative Assessment on teach-
ing in the elementary grades and investigated the following questions:

1. In what ways do the teachers” views of the role of the mandated assess-

ment instruments reflect or diverge from those of the Curriculum Co-
ordinator and the IRTs?

2. In what ways do the teachers use the mandated assessment instruments
to inform instruction?

The rescarch was not designed to provide a quantitative analysis of teach-
ers’ reactions to the Cumulative Assessment or 1o measure the impact of the
assessment instruments on teaching. Rather, our objectives were to begin to
understand whether teachers’ views and goals coineided with those of the de-
signers of the instruments and whether the instruments did. indeed, inform in-
struction.




Methodology

In the spring of 1995, semistructured, 45 minute audiotaped interviews
were conducted with the County Coordinator for Mathematics, four Instruc-
tional Resource Teachers and ten elementary teachers. The IRTs were from
different socio-economic areas and had been identified as people who were
concerned with assessment and who would be interested in the study. In turn,
the IRTs were asked to schedule interviews with teachers who were evenly
distributed over grade level, had a wide range of teaching experience and who
would be likely to provide a range of attitudes and impressions about the as-
sessment instruments. The opinions of the teachers were not known to the
interviewer in advance.

The interviews focused on the teachers’ methods and attitudes toward ad-
ministering and scoring the assessment instruments, the teachers’ perceived
value of the assessment instruments, and the changes in instruction that had
been expected to occur or did occur as a result of using the instruments. The
interviews were analyzed using analytic induction, which involves scanning
the data for themes and relationships, developing hypotheses, and modifying
them on the basis of the data (LeCompte, Preissle, & Tesch, 1993).

Results

Question 1

According to the Curriculum Coordinator, one of the goals of the assess-
ment instruments was to promote the goals of Continuous Achievement and to
encourage the teachers to use the curriculum. She indicated that some teachers
had continued to use the old textbooks in a lockstep manner despite the fact the
county had adopted their own Continuous Achievement program, Miriam' (IRT)
pointed out that the assessment instruments compelled the teachers to adhere to
the curriculum more closely because it is “hard to test something you're not
teaching.” Patricia (teacher) said that some teachers actually learned what was
in the curriculum when they used the assessment instruments. Anne (teacher)
admitted that the assessment instruments helped her follow the curriculum be-
cause she had to make sure she *“covers all the objectives.” However, Elizabeth
(teacher) felt that she was “not trusted” as a teacher to use her own assessment
methods with her students. Deborah (teacher) stated that “the reason we're
giving these tests is because Big Brother is looking over our shoulder and not
thinking that we're doing the right thing,” although she also admitted that “the
truth is, there are plenty of tcachers who aren’t doing what they are supposed
to be doing in the classroom.”

' All names are pscudonyms,




The Curriculum Coordinator reported that although teachers were required
to report the scores generated by the assessment instruments, the primary goal
of assessment was to inform teaching. However, three teachers mentioned
their concerns about the numerical scores. For example, Angela (teacher) ques-
tioned the accuracy of a score that requires so much subjective judgment and
the validity of a score that is generated from cooperative effort. She thought
that the amount of guiding that she does when she administers the instruments
compromised the validity of the scores. She was adamant that the instruments
provided valuable feedback about her students but because the students worked
cooperatively, she felt that the scores were not a valid measure of their math-
ematical ability. To her, tests should be a means of “finding out what kids can
do independently.”

The developers of Cumulative Assessment felt that the assessment process
itself provided opportunities for student learning. However, at feast two teach-
ers indicated that they thought that assessment and instruction should be mutu-
ally exclusive activities. That is, if they are not mutually exclusive activities
then tcachers would not feel that time spent on assessment was bought at the
price of instructional time. For example, Elizabeth (teacher) did not seem to
think that the time students spent on Cumulative Assessment was as valuable as
the regular class time because she mentioned the instructional time that was
“lost” due to the time spent on assessinent. Tina (teacher) was aware of in-
struction that occurred in the assessment process, but thought that too much
instruction invalidated the assessment scores.  She admitted that when she
administered the instruments she “kind of reteaches it” but said that tests should
be a measure of whether children have “mastered™ the material.

Question 2 '

Cumulative Assessment was designed to inform instruction. Wendy (1cacher)
said that she learns which children can work independently and became aware
of how much she was helping them in nontesting situations. Leamning observa-
tion techniques necessary to administer the assessment instruments have helped
her to become a better observer in her teaching. She also said that she has
changed her teaching of problem solving strategices because of the questions
that are on the assessment instruments.

Although Angela was uncomfortable with the scores she recorded she said
that the instruments are a “wonderful tool™ for informing instruction because
they test students’ problem sotving ability and require “real high-level thinking
skills.”

All but one of the teachers felt that the assessment instruments were similar
to their informal assessment activities and they expressed mixed views about
the value of the instruments, depending on whether they felt the instruments
were merely redundant or a verification of their observations. Virginia (teacher)
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said that although she “probably knows beforehand” how her students will do,
the instruments help her decide what to emphasize in her teaching. Elizabeth
(teacher) said that she receives no new information from Cumulative Assess-
ment. She said, “I've been assessing all along, doing thumbs up, thumbs down,”
and Marie said that while there was some value in the assessment instruments
they didn’t warrant the time spent on them. Referring to an item that requires
students to count money, Marie said, “it takes a lot of time for.each child to
count out coins when I’ve seen them count out coins fifty times and I know
whether or not they can do it.” Two teachers said they appreciated having the
written documentation the instruments provided for communication with par-
ents. Another two teachers admitted that if they were to spend more time ana-
lyzing and reflecting on the results of the instruments they would derive more
benefits from themn.

Teachers’ immediate concerns were centered more on the instruments them-
selves. Every teacher in the study mentioned the length of time it took to ad-
minister the instruments. There were also comments about the mechanics of
test administration such as having to collect the materials and the difficulty of
assessing students in groups rather than individually. There were also concerns
about scoring consistency.

Upon reviewing the teachers’ commments it became apparent that teachers
who felt that the assessment instruments had strong pedagogical value also
reported having fewer problems with the technical aspects, such as distributing
manipulatives and grading. Similarly, teachers who felt that the instruments
did not inform instruction were most critical of the technical aspects. To test
this hypothesis we assigned numbers to the individual teachers based on com-
ments they made about the pedagogical value of Curnidative Assessment. Teach-
ers who believed that the instruments provided beneficial information about
their students received a “five.” Those who felt that the instruments were not
useful received a “one.” Of course, most teachers' views were not only mixed
but varied in emotional intensity. so the scoring was necessarily subjective and
was partially a function of our general impressions of the teachers’ beliefs and
attitudes, as evidenced by the interview data.

We also rated the teachers by the numbers and kinds of comments they
made about the technical aspects involved in administering the instruments.
Again, those who said they encountered minimal problems received a “five”
while those who felt that the technical problems bordered on being insurmount-
able received a “"one.” Table | summarizes our ratings. Note that four teach-
ers’ rating on the two categories were identical, three teachers ratings differed
by one point, and the other two teachers differed by two points. One teacher
did not discuss pedagogical issues.

Although causality and direction of impact are open to interpretation, we
suspect that pedagogical value and the problematics of technical issues are in-

e
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Table 1 Ratings of Teachers’ Views of Cumulative Assessment

Ease of Administration

Pedagogical 2 3 4
Value

Patricia
Virginia Wendy
Anne Angela
Elizabeth Marie
Tina Deborah

tertwined, that is, the teachers’ perceived pedagogical usefulness of Cumuda-
tive Assessment subjectively magnifies or diminishes the problems they en-
counter in administering the tests. In turn. technical difficulties tower the rela-
tive pedagogical value the teachers place on the assessment process. Teachers
reported that they assessed on an ongoing basis and so being required to gener-
ate a score with an unwieldy test may be have been viewed as a needless use of
valuable teaching time. However, the majority of the teachers felt that they
received useful information from Crenudative Assessment. Most teachers found
value in at least parts of the instruments and said that they would continue to
use them even if they were not mandated.

Conclusion

Philosophically, some teachers may agree that assessing and teaching are
overlapping and even inseparable activities. On the other hand, they may think
that when a numerical score is generated from their assessment information,
the information should illustrate what a student can do alone and unaided.
However, as teachers gain experience by observing students and by discussing
student responses with colleagues they might feel more comfortable when they
assign numbers as a measure of student reasoning abilities.

Little rescarch has been done on the relationship between assessment and
grading in the clementary classroom. None of the teachers in the study used
the results of the assessment instruments as part of their grading system even
though they were required to record the scores. Senk, Beckmann & Thompson
(1997) studied the assessment practices of secondary teachers and suggested
that determining aggregate measures of assessment is a difficult task for teach-
ers and should include more than numerical information. One of the teachers
in the Cumudative Assessment study, Angela, who had been uncomfortable as-
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signing numerical scores to the students based on the instruments, suggested
making notations on the students’ records. Other teachers had expressed con-
cerns about the consistency of scores, suggesting that written records might be
a viable and preferable alternative to numerical representations of student abil-
ity.

There is considerable rhetoric about the role of assessment, particularly
alternative assessment, in our schools today. In this study teachers expressed
mixed views about the assessment instruments and about alternative assess-
ment in general. The length of time required to administer the instruments
seemed to be the teachers’ greatest concern. The instruments are relatively
new, so practice administering and scoring will alleviate some of the stress, and
changes in the instruments and reporting methods have already helped.

This study illustrates that teachers’ views are not always consistent with
the views of those who design such instruments. As teachers gain experience
using the assessnient instruments they may learn new ways of assessing knowl-
edge and carry this knowledge into their daily teaching activities.
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USING ASSESSMENT PRACTICES AS A TOOL FOR
CHANGING TEACHING METHODOLOGY

Daniel J. Brahier
Bowling Green State University
brahier@bgnet.bgsu.edu

An inservice project, funded by the Eisenhower Program for Mathematics and Science,
was conducted with approximately 40 tcachers in the Midwest. After a full-year of
staff development, teachers showed significant gains in their knowledge and use of
several authentic assessment strategies. In addition, the project reversed several of
their fundamental beliefs about the nature of assessment and mathematics and empow-
ered them to emphasize the mathematical process skills of problem solving, reasoning,
and communication in their classrooms. As teachers reflected upon alternative assess-
ment strategies, they also tended to rethink curricular and instructional issues.

The Curriculum and Evaluation Standards for School Mathematics (1989)
of the National Council of Teachers of Mathematics (NCTM) made it clear that
a shift in the curriculum from isolated procedure memorization to one of in-
quiry and problem solving implies a significant change in the ways teachers
assess student progress. Clearly, if the objectives are increasingly process-
oriented and involve the use of manipulatives and an emphasis on writing and
communication, the assessment procedures also need to change. Curriculum,
teaching, and assessment are almost inseparable, and a change in one necessi-
tates a change in the others.

The Assessment Standards for School Mathematics (1995) emphasized
that assessment is much more than assigning grades. Instead, it is a process by
which the teacher gathers information about what the student can do and thinks
about mathematics. As such, assessment plays a number of roles in the class-
room, not the least of which is to provide day-to-day, formative data about how
students are attaching meaning to mathematical concepts to enable to teacher
to better serve the needs of his/her students. Documents by the Mathematical
Sciences Education Board, Measuring Up: Prototypes for Mathematics As-
sessment (1993) and Measuring What Counts: A Conceptual Guide for Math-
ematics Assessment (1993) argued for the development of meaningful assess-
ment tasks to “provide concrete illustrations of the important goals to which
students and teachers can aspire” (NRC, 1993, p. 3). Therefore, the implemen-
tation of alternative assessment techniques simultaneously promotes the use of
problem solving and inquiry in the classroom. Resnick and Resnick (1992)
wrote that a change in assessment practices can have a significant impact on
classroom teacher behaviors.  Furthermore, the use of authentic assessment
strategies, such as rubrics, projects, and portfolios, significantly contribute to
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academic achievement (Kerr, 1996) and student motivation to do mathematics
(Chinni, 1996).

While the changing of assessment practices appears to be a cornerstone in
mathematics education reform, there is a significant lack of research regarding
“typical” classroom assessment practices in general. Most of the current re-
search relates to secondary mathematics teachers and their strategies. For ex-
ample, one study (Senk, Beckmann, & Thompson, 1997) showed that second-
ary teachers still rely heavily upon tests, quizzes, and homework to assess stu-
dent progress and that most test items tend to be low-level and are not open-
ended, while a previous study by Garet and Mills (1995) suggested that assess- .
ment practices are still dominated by short-answer and multiple-choice tests
and that there has been little change in the use of these techniques over time.

In 1996. a year-long inservice program was conducted with approximately
40 classroom teachers. grades K-12. in one county in the Midwest. The project,
titled "Assessment Project for Erie County Teachers™ (ASPECT), was designed
to assist teachers in the implementation of the NCTM assessment Standards.
Instructors for the project were university mathematics educators, teamed with
classroom teachers who had previously undergone teadership training. The
project was funded by a grant from the Dwight D. Eisenhc ser Mathematics
and Science Program.

Teachers were involved in a series of inservice sessions through the Spring
of 1996. which included testing a variety of teaching and assessment strategies
in their classes and sharing results. During the summer, they were involved in
nearly 40 hours of intensive work to develop assessment plans for the follow-
ing school year. Finally, in the Fall of 1996, teachers attended a series of fol-
low-up sessions. designed for them to share ideas and to fine-tune their plans.
As an outgrowth of the ASPECT project, a number of research questions were
pursued by the project director and the instructional team: (1) How did the
participants’ knowledge about and use of authentic forms of assessment change
as a result of their participation in the project? (2) Besides instructing teachers
on “how to" use alternative forms of assessiment. what other effects did the
project have on the participants? (3) What were the key factors that convinced
teachers that they needed to rethink and/or change their assessment and teach-
ing practices?

Method

Participants in ASPECT were pre-tested in March of 1996, prior to the
project. They were asked for their opinions about assessment, their knowledge
about various assessment techniques, and the degree to which they were using
those strategies. During the Spring sessions, participants wrote journal entries
about the progress they had made in rethinking their classroom practices. In
the Summer. participants were interviewed in small groups and asked a variety
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of questions regarding the effectiveness of the program and the degree to which
they had changed their strategies. Finally, in the Fall, participants were sur-
veyed and asked many of the same questions they had been asked in the Spring.
While formal classroom observations were not part of the evaluation, the project
director visited several project participants on-site to discuss their progress.

Since most of the survey questions were answered through the use of a
Likert Scale, and participants coded their pre-test and post-test sheets, the data
was used to determine whether knowledge about and use of alternative assess-
ment strategies had shown a statistical change. Furthermore, open-ended re-
sponses to survey questions and transcribed interview data were used to quali-
tatively examine the effectiveness of the program and the changes in beliefs
and practices of ASPECT participants. Triangulation of quantitative survey
data, qualitative survey data, journal entries, interview data, and informal school
visits were used to provide a consistent “‘big picture.”

Results

Question #f:  How did the participan's’ knowledge about and use of authen-
tic forms of assessment change as a result of their participation
in the project?

On the pre-project and post-project surveys, participants were asked to rate
their knowledge of assessment strategies on a Likert scale from 1 (No Knowl-
edge) to 5 (Expert). Likewise, they rated the extent to which they used the
same strategies from 1 (Never) to 5 (Once Per Day). A paired-sample, two-tail
t-test was used to analyze the changes in knowledge level and use of these
strategies. The quantitative analysis yielded the results shown in Table 1.

Overall, participants expressed the most significant knowledge gains in areas
related to communication in mathematics—the use of interviews, writing and
journaling in the classroom and scoring those products on rubrics, and the use
of portfolios to assess progress. Project participants were most likely to have
adopted the use of writing in the classroom (including journals), portfolios, and
rubrics to assess student products. A relative decline in the use of observations
in the classroom appears to be due to the fact that the project developed formal
observation skills, and participants may have responded to the question about
observation as an informal process when they filled-out the pre-project sur-
veys,

Question #2; Besides instructing teachers on “how to” use alternative forms
of assessment, what other ceffects did the project have on the
participants?

Survey and interview data were collected to detect changes in attitudes and
beliefs of the participants toward assessment and some pedagogical issues. Five
teacher beliefs were identified as having made significant shifts during the pro-




Table 1 Survey Data On Changes in Knowledge Level and Use of Various
Assessment Strategies

Assessment Strategy t-value (Knowledge) t-value (Use)

Portfolios 5774 * 4.255 *
Journaling 4.625 * 4.960 *
Investigations 2.130 % 0.683
Open-Ended Questions 2.927 * 2.929 *
Interviews 5.9064 * 3.138 *
Observations 2414 * -1.455
Rubric Scoring 6.026 * 5.688 *
Writing 6.583 * 3.861 *
Performance Tasks 0.000 -0.903
Standardized Tests -0.236 0.776
Multiple Choice Tests -1.000 0.845
Competency Tests 0.495 0.776

* Significant 2-tailed t-value, ... < 0.05.

gram. For example, the most significant change of thinking regarded the state-

ment that ““The main purpose of assessment is to assign grades.” Initially, par-

ticipants agreed with the statement, but by the end of the project, they had
reversed their belief to strongly disagree. Table 2 includes a list of the five
changed beliefs.

Another belief that showed a marked reversal in thinking, although not
statistically significant, was, “Students are generally incapable of assessing their
own progress and need the assistance of ateacher.” The results indicate that not
only did the project change teacher behaviors, but it also began a change pro-
cess in their beliefs, which may be the most important product of the program.
For example, if one believes that the mathematical thinking process is impor-
tant, he/she will emphasize more than just the “final answer.”’ Not only will this
teacher tend to "1sc alternative assessment strategics, but he/she may be more
likely to select richer problems and activities.

Question #3:  What were the key factors that convinced teachers that they
nceded to rethink and/or change their assessment and teaching
practices”?

Cuban (1993) wrote that teachers will only change their beliefs and prac-
lices when they perceive the reform as being a benefit to themscelves and thetr
students. Clearly, the project demonstrated these bencfits. On the final survey,
participant were asked to cite specific experiences that may have caused them
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Table 2 Teacher Beliefs Showing a Significant Reversal as a Result of AS-
PECT

The main purpose of assessment is to assign grades.

When assessing a checklist item, it is important to evaluate all children in
the class on the same day.

When analyzing a child’s work sample, the emphasis should be on the
final answer.

The use of technology in assessment in mathematics classrooms is inap-
propriate.

The only truly objective form of assessiment is a multiple choice test.

to rethink their practices. Three major themes emerged in the final surveys and
interviews: (1) the importance of field-testing, (2) the connection between cur-
riculum, teaching, and assessment, and (3) the value of discussing progress
with peers.

Many of the participants talked about how field-testing assessment ideas
had convinced them of the value of those strategies. For example, one partici-
pant wrote that “[using journals in my class this year] gives me an opportunity
to evaluate my own teaching strengths and weaknesses.” Another said that
student portfolios “‘allowed me to conduct conferences easily as I showed par-
ents what we had been doing in math.” Several teachers discussed how conver-
sations about assessment got them to rethink what they saw as important in
curriculum and teaching. For example, one participant stated, “In our discus-
sions in class I decided that I needed to improve communication skills and I
wanted my students to explain how they solved the problems, not just write
down the answer.” Another said that “discussing the NCTM [Standards] really
started me thinking and helped me to change.” One participant commented
that “the background information about the NCTM standards . . . showed me
how I needed to change the way I teach as well as how I assess.” Finally,
participants frequently described the power of meeting with colleagues to dis-
cuss successes and challenges, consistent with the writing of Chittenden and
Wallace (1992). They found it beneficial to meet with grade-level counterparts
while planning and implementing assessment plans. One participant talked
about the importance of sharing progress with peers and that interacting with
other teachers is “"something we don’t get to do often enough.”

Discussion and Conclusions

While the focus of ASPECT was on assessment, the process incvitably
involved an analysis of the entire teaching and learning process. While partici-




pants in the project grew in their knowledge and use of alternative methods of
assessment, they also demonstrated emphasis changes in content and peda-
gogy. Teachers felt empowered to encourage problem solving, reasoning, and
communication in the classroom as they developed means by which to assess
process skills.

Fullan (1982) pointed-out that some classroom teachers simply do not have
the desire to change at all. Participants in ASPECT were clearly self-selected
because they were interested in improving their performance as teachers. But
when the participants were faced with the complex interplay of the teaching
and leaming process, many stated in interviews that they had *“gotten more than
I had ever expected from the program.” Two major questions about this inservice
process remain to be answered: (1) Will there be significant gains in student
achievement in these teachers’ classes over the next few years as a result of
their participation in ASPECT? After all, the bottom line for most teacher
enhancement programs is the effect on the students. (2) Is the change “perma-
nent” for the participants, or will they snap back to more traditional teaching
and assessment strategies over time? In California, for exarnple, many teachers
who were extensively inserviced on the mathematics framework still did not
change their teaching styles (Cohen & Ball, 1990). Goodlad (1984) stated that,
despite our best efforts, teachers still tend to teach as they were taught. Perhaps
the Key to continued success is for teachers to network with others who are
attemnpting similar changes, as evidenced by recent rescarch on assessment prac-
tices by Meisenheimer (1996).
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A PROPOSED METHOD FOR ASSESSING TEACHERS’
PEDAGOGICAL CONTENT KNOWLEDGE

Janet Warfield
Purdue University
warfield@purdue.edu

Case studies of two Kindergarten teachers were conducted in order to understand: 1)
the knowledge they acquired of the mathematical thinking of their children; 2) the
ways in which they acquired that knowledge: and 3) the uses they made of that knowl-
edge. A Prediction/Solution Comparison was developed to assess the teachers’ knowl-
edge of the mathematical thinking of their children. Each teacher selected problems,
predicted whether each child in her class would correctly solve each problem and the
strateg's the child would use to do so, and adminuistered the problems to the children.
The teachers’ predictions were compared to the children’s solutions. In addition to
providing information about the teachers’ knowledge of the mathematical thinking of
children in their classes, the procedure provided information about the ». achers’ knowl-
edge of research-based information on children’s thinking. It is suggested that discuss-
ing the mathematical thinking of a teacher’s children canprovide i sight into the teacher’s
pedagogical content knowledge.

Inherent in much of the recent reform literature in mathematics education
is the position that learning occurs when connections are formed between new
information and already existing knowledge structures or when new informa-
tion leads to cognitive conflict and, therefore, to reorganization of existing struc-
tures in order to resolve the conflict (Hiebert & Carpenter, 1992). An implica-
tion of this view of learning is that individuais construct their own knowledge
as they add to and reorganize their knowledge structures. Related to the belief
that individuals construct knowledge is a view of teachers, not as transmitters
of knowledge, but as facilitators of children’s construction of knowledge within
the social context of the classroom. Also related to this belief, is the idea that
teachers, as well as children, construct knowledge in classroom contexts.

It is widely accepted that what teachers know influences their instruction.
However teachers’ knowledge, like all knowledge, is complex and is made up
of many components that are connected in cognitive structures in memory.
Because of the many strong connections, the components of teachers’ knowl-
edge cannot easily be scparated (Fennema & Franke, 1992). Researchers, how-
ever, have generally focused on specific components of teachers’ knowledge as
if they could be separated from others. Many studies have focuscd on teachers’
mathematical content knowledge. Such studies have often failed to find a sig-
nificant relationship between teachers’ knowledge of mathematics, as measured
by the number of college mathematics courses the teacher had taken or perfor-
mance on mathematics tests, and the leaming of the students in their classes
(Eisenberg. 1977). The argument has been made that the failure of this research




to show a relationship was due to the methods used to assess the teachers’
knowledge (Carpenter, Fennema, Peterson, & Carey, 1988).

Since Shulman wrote about pedagogical content knowledge in 1986, a num-
ber of studies have indicated that there is a relationship between teachers’ peda-
gogical content knowledge, including their knowledge of students’ understand-
ing of subject matter content, and their instruction (Carpenter, et al., 1988;
Grossman, 1990; Wilson, Shulman, & Richert, 1987). A theme of this work is
that teachers’ pedagogical content knowledge develops as teachers plan for in-
struction and teach. A conclusion that can be drawn from this view of knowl-
edge development is that, if we are to understand teachers’ knowledge, we must
examine it in the context of their teaching. In this paper a procedure that was
used to examine teachers’ knowledge of specific content, research-based infor-
mation on children’s mathematical thinking will be described.

Two kindergarten teachers teaching mathematics were studied. The foci of
the study were: 1) the knowledge the teachers acquired of the mathematical
thinking of individual children in their classes; 2) the ways in which they ac-
quired that knowledge; and 3) the uses they made of that knowledge in subse-
quent instruction. The teachers’ beliefs about learning and teaching and knowl-
edge of research-based information about young children’s mathematical think-
ing was also investigated to understand how it contributed to their knowledge
of the thinking of their children.

Methodology

The subjects of the study were Ruth Anderson and Sarah Wilson (names
are pseudonyms), two all-day kindergarten teachers who had participated in
workshops conducted by the Cognitively Guided Research Project (CGI) and
who were selected because they were reported by workshop leaders to be teachers
who knew about their children’s mathematical thinking. At CGI workshops the
teachers had opportunities to learn about resecarch-based information on
children’s thinking about word problems. That information is organized into a
framework with two main components. First, there are several types of word
problems that young children are able to solve: these problems are categorized
based on the action or relationship in the problem as well as the location of the
unknown. For example, “Melissa has five Beanie Babies. How many more
Beanie Babies does she need to get to have 11 Beanie Babies?” involves a
joining action. The unknown is how much Melissa’s number of Beanie Babies
needs to change to get from 5 to 1. Thus, the problem is classified as a Join
(Change Unknown) problem.

Second, there are different strategies that children use to solve those prob-
lems. These strategies fall into three main categories: Direct Modeling, Count-
ing, and Facts. Dircct Modeling involves using counters to act out the action or
relationship in the problem. For the problem above, this would entail counting
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out five counters, counting out more counters until there were 11 altogether,
and then counting the second set of counters to get the answer six. Counting
strategies also involve following the action of the problem; however, they entail
counting up or back to arrive at a solution. For the problem above, a child
would say “five” and then count on from five to 11, extending one finger until
11 was reached. The answer would be the number of fingers extended. There
are several subcategories of Direct Modeling and Counting strategies; the sub-
category that is used depends on the structure of the problem. Fact strategies
are of two types. For the above problem, a child using a Derived Fact strategy
might say, “The answer is six, because five and five is 10, so five and six must
be 11.” A Recalled Fact strategy entails knowing the fact called for in the prob-
lem; for the problem above, this would mean knowing that five plus six equals
11.

As teachers explored the problem types and children’s solution strategies
at the workshops, they considered the relationships between a particular type
of problem and the strategies that could be used to solve it. In addition, they had
opportunities to discuss ways in which they could use the framework to learn
about the thinking of their children and consider how they could use what they
learned about their children to inform instruction. A more complete description
of the workshops can be found in Fennema, Carpenter, Franke, Levi, Jacobs,
and Empson (1996).

Participant/observational fieldwork methods were used in this study. Ex-
tensive observations of the teachers’ instruction were conducted over a four
month period. During that time the teachers were also interviewed several times.
At the end of the observation period, a procedure that will be called a Predic-
tion/Solution Comparison was carried out; it is this procedure that is the focus
of this paper. The purpose of the Prediction/Solution Comparison was to deter-
mine what the teachers knew about the mathematical thinking of individual
children. Each teacher was asked to choose mathematics content through which
she could demonstrate her knowledge of her children’s mathematical thinking.
Both teachers chose to use word problems. Each teacher wrote a list of word
problems and predicted whether each of her children would correctly solve
each problem and the solution strategy each child would use. She then read the
problems to small groups of children, allowed the children time to solve the
problems individually, and had each child explain his or her solution strategy.
We both took notes on the children’s accuracy and reported strategies and then
discussed and compared our notes shortly afterward. The discussions were au-
dio-taped. Copies of the problems the teachers used and their written predic-
tions were collected.

Analysis of the data from the Prediction/Solution Comparison consisted of
comparing each teacher’s predictions with how her children reported solving
the problems. As transcripts of the audio-taped discussions were analyzed and
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the teachers’ descriptions of how the children solved problems were compared
to their predictions, discrepancies between the teachers’ statements about solu-
tion strategies and the research-based information became apparent. In order to
learn more about the discrepancies, 1 interviewed each teacher again. In that
interview, I referred to the problems from the Prediction/Solution Comparison
and asked the teachers to further explain their predictions. For example, if a
teacher had said that a particular child would Directly Model a problem, I asked
the teacher to show me what she had meant the child would do. These inter-
views were also audio-taped. The statements the teachers made during these
interviews were compared to the research-based information on children’s think-
ing that had been the focus of the workshops they attended.

Results

A great deal was learned about the teachers’ beliefs about learning and
teaching mathematics. knowledge of research-based information about young
children’s mathematical thinking, and instruction from the observations and
interviews. The Prediction/Solution Comparison provided data about each teach-
ers’ knowledge of the thinking of individual children in her class about word
problems. Those results are discussed elsewhere (Warfield, 1997).

The Prediction/Solution Comparison was also used as a means of learning
about the teachers’ understandings of research-based information on children’s
mathematical thinking. The originators of the Cognitively Guided Instruction
project believe that individuals construct their own knowledge: they recognize
that teachers will select from the information shared by workshop leaders and
will adapt the information they select as they use it in their own classrooms.
The teachers who participated in this study had quite different understandings
of the research-based information.

Ms. Wilson knew the problem types introduced in the CGI Workshops. For
the Prediction/Solution Comparison she prepared a list of problems with each
correctly labeled as to type. Ms. Wilson also understood the distinctions among
the strategies that children use to solve problems and the connections between
a problem of a specific type and the strategies that can be used to solve it.
However, even when she did know the name and definition of a strategy, she
did not, in all cases, use the name in the way she knew it was defined. She
knew, for example, that direct modeling involved modeling the action or rela-
tionship in a problem, and she often talked about children directly modeling
problems. When she did this, she generally qualified her statement. For ex-
ample, one of the problems she posed in the Prediction/Solution Comparison
was "Mickey Mouse had 12 pieces of cheese. He gave some to Minnie Mouse.
Then Mickey had 8 pieces left. How many pieces of cheese did he give to
Minnie?” She predicted that several children would directly model that prob-
lem. To do so according to the definition of direct modeling, would entail count-




ing out 12 counters, taking counters away until 8 were left, and then counting
the counters that had been removed. Ms. Wilson said, however, that there were
different ways the problem could be directly modeled. A child could get 12
counters and take away 8, could start with 8 counters and add more until 12 was
reached, or could get 12 counters and 8 counters and match to see how many
more were in 12 than 8. She told me that she knew she was not using the term
correctly but said it made more sense to her to use direct modeling to refer to
strategies in which the child used counters to make all of the objects in the
problem and then to describe what the child did with those counters. Ms. Wil-
son usually described what a child did to solve a problem, rather than using the
terminology from the workshops. Although for the most part Ms. Wilson had
learned the information shared at the workshops, she had adapted it so as to
make it more useful to her.

Ms. Anderson also knew the problem types; she labeled the problems she
wrote for the Prediction/Solution Comparison as to type and was able to dis-
cuss the distinctions between types. However, when she was asked to demon-
strate strategies, it became clear that her understanding was incomplete. Dur-
ing the Prediction/Solution Comparison, she posed the problem “Manuel had
some candy bars. His mom gave him six more candy bars. Now he has 10. How
many candy bars did his mom give him?"' She said the problem could be solved
by: Direct Modeling, a variety of Counting strategies, Derived Facts, and Re-
called Facts. She was asked to demonstrate each of these. Direct Modeling, she
said, would involve making a set of six cubes, adding more cubes while count-
ing “7, 8,9, 10,” and then counting the cubes that were added. She went on to
say, “But that's not a true Direct Model . . . because what they may do is they
may get the 6 out and then they get the 10 out and they do.” She demonstrated
matching the two sets. In neither of these descriptions did Ms. Anderson con-
sider the essential component of Direct Modeling, that of following the action
in the problem. Several Counting strategies were possible according to Ms.
Anderson. A child could say “6" and count on to 10 using fingers to keep track.
The answer would be the number of extended fingers. A child could extend 10
fingers, count backward while folding down one finger per count until six fin-
gers were remaining and keep track of the number of fingers that had been
folded down. Or a child could start with the 6 and count “7, 8, 9, 10.” Since
there were four counts, the answer would be four. Again, Ms. Anderson did not
consider the order in which things happen in the problem. Ms. Anderson said
that she did not know the difference between a Derived Fact and a Recalled
Fact. Ms. Anderson had not considered it necessary to attend in great detail to
the information about strategies that was shared at the workshops.




Conclusions

Although information about the teachers’ knowledge of the research-based
information on children’s mathematical thinking was collected during the ob-
servations and earlier interviews, most of what was leamed about this knowl-
_ edge came as a result of the Prediction/Solution Comparison and the following
interviews. Focusing the discussions about the specific content from the work-
shops on the teachers’ predictions and understandings of their students’ actual
solutions allowed me to investigate their pedagogical content knowledge as
they used it in interactions with their children, that is, in the context of teach-
ing. It seems possible that this strategy for coming to understand teachers’ knowl-
edge could also be useful in assessing teachers’ knowledge of other content.
For example, it might be possible to leam about teachers’ vnderstanding of
other pedagogical content or, possibly, of specific mathematicai content by ask-
ing them to select problems, predict their students’ strategies for solving the
problems, and then compare the students’ problem solving with the teachers’
predictions. The ensuing discussions would, it is hypothesized, provide infor-
mation about the teachers’ understanding of the content in ways related to teach-
ing rather than in isolation as did the early studies.
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Many open-ended tasks in mathematics are designed to assess students’ conceptual
understanding. Using these tasks for valid assessment may require that teachers pos-
sess different levels or forms of content knowledge than more traditional forms of as-
sesstnent. To investigate this conjecture about different forms of content knowledge, a
study was designed in which undergraduate elementary education majors were given an
open-ended task on fractions developed for fourth-grade students, and then were asked
1o score student work and justify the scores. Findings from the study revealed that one-
fourth of the participants successfully complete2 all components of the activity, while
another one-fourth were unable to respond adequately to the open-ended task itself.
Giving valid justifications for the scores appeared to be dependent on having a concep-
tual understanding of the mathcmatics in the 1ask and on possessing certain pedagogical
content knowledge related to that task.

Introduction

Classroom teachers spend an average of 25 percent of their time engaged in
assessment activities (Stiggins & Conklin, 1992). Such activities include de-
veloping or choosing methods of assessment, gathering the data, evaluating and
interpreting the results, and using the results to guide instruction. In mathemat-
ics education there is a significant effort underway to reform the assessment
practices of classroom teachers (National Council of Teachers of Mathematics,
1995). In particular, teachers are being encouraged to use a wide range of as-
sessment tools, such as open-ended tasks and portfolios. Many of these tools
require that teachers move beyond simply marking student work as “right” or
“wrong.” Instead, teachers are being asked to develop and use scoring rubrics
and other methods designed to analyze more complex responses. It is our hy-
pothesis that the use of altermative forms of assessment designed to measure
conceptual understanding may demand different levels or forms of content knowl-
edge from teachers who use them,

I"The second author's participation in the preparation of this paper was supported in
part by a grant from the National Science Foundation to the National Council of Teachers
of Mathematics (grant no. RED-945318Y). Any opinions expressed herein do not
neeessarily reflect those of the National Science Foundation or the National Council
of Teachers of Mathematics.
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In this paper, we present results from a study designed to investigate the
nature of the mathematical knowledge essential to use one form of assessment—
the open-ended task. Our focus is on the extent to which preservice elementary
teachers can make mathematically valid inferences about students’ written re-
sponses to such tasks. Specifically, we are interested in these research ques-
tions:

» To what extent can preservice elementary teachers respond success-
fully to an open- ended fraction task designed for students in grade 47

» Can they describe the important mathematical concepts that underlie
the task?

»  How successfully can they score students’ responses, using a pre-exist-
ing scoring rubric?

»  How valid are the inferences they make about students” mathematical
understanding?

*  Whatis the relationship between their own understanding of the math-
ematics in the task and their ability to make valid inferences about

students’ understanding?

Background

It is widely accepted that content knowledge is a necessary, though not
sufficient, ingredient when teaching mathematics for understanding (Wearne
& Hiebert, 1988), and the lack of such knowledge among preservice elemen-
tary teachers is well-documented (e.g.. Ball, 1990: Rech, Hartzell, & Stephens,
1993; Eisenhart et al., 1993). What is missing in the research base on teacher
knowledge is the forms of content knowledge necessary for assessing and evalu-
ating students’ written work.

Pedagogical content knowledge is a construct that has been used to de-
scribe the knowledge necessary to convert content into a representation that
enables leaming to occur (Shulman, 1986). Though it has been used only in
the broad context of teaching, we propose that there is a component of peda-
gogical content knowledge necessary for the specific use of open-ended tasks
and the interpretation of student responses. In particular, a teacher who uses
such a task effectively should be able to identify the mathematical content that
the task assesses. Without this knowledge, the teacher’s ability to make infer-
ences about what a student knows may be seriously compromised. Another
important component of pedagogical content knowledge related to assessment
is the anticipation of misconceptions that students may have for that content.

To assess students” work on an open-ended task. it would seem reasonable
to assume that both content knowledge und pedagogical content knowledge
would be essential. Making inferences about students’ mathematical under-

s
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standing (or misunderstanding) requires that a teacher not only be able to rec-
ognize both correct and incorrect responses, but also be able to give a math-
ematically valid justification for those judgments. We suggest that this kind of
knowledge is “assessment knowledge.” and in this study we begin to describe
some of its components.

Methods

Participants for the study were 58 undergraduate elementary education
majors who were enrolled in a mathematics methods course at a major univer-
sity in the eastern United States. The participants completed a muiti-part in-
strument created for this study. The instrument was developed around an ex-
tended constructed-response question, which was a released task from the 1992
National Assessment of Educaticnal Progress (NAEP) in mathematics, and
ancillary materials such as the official scoring guide for the task and sample
student responses. The task, called “Pizza Comparison” in an official NAEP
publication (Dossey. Mullis, & Jones, 1993), appears in Figure 1.

There are three reasons that we chose the Pizza Comparison task for this
study. First. 1t assesses understanding of an important concept for elementary
school mathematics: relative size with respect to the common fraction 1/2. A
complete and correct response to this task requires that a child understand 1/2
as a "meta-relation,” where the ratio of one out of twe parts of a continuous

whole remains the same, even when the area varies (Hunting, Davis, & Bigelow,
1991). That is, relative size must be taken into account when evaluating frac-
tions. Second. while the task elicits a conceptual understanding of 1/2, it also
illuminates misconceptions such as the idea that 1/2 always equals 1/2 and that
more pieces of pizza constitutes more pizza. regardless of the size of the pieces.
Third, the understandings and misunderstandings elicited by the task have the

Pi -za Comparison (NAEP Grade 4 task)

Jos¢ ate s of a pizza.
Ella ate ¥ of another pizza.

Jos¢ said that he ate more pizza than Ella, but Ella said they both ate
the same amount.

Use words and pictures to show that José could be right.

Figure 1. NAEP task usced in this study
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potential to permit analysis of the relationship between content knowledge and
assessment knowledge.

Participants in the study were asked to complete these activities individu-
ally: 1) respond to the Pizza Comparison task, giving their best example of an
exemplary response; 2) describe in writing the important mathematical con-
cepts embedded in the task and identify potential student misconceptions: 3)
use the official NAEP rubric to score nine sample student responses, and 4)
write a rationale for the score given to each sample response. Hereafter, these
four aspects are called the “participant papers.”

Data Analysis and Results

The authors evaluated a subset of 12 participant papers jointly and the re-
maining papers independently. The criteria for the evaluation of the papers
were designed to match some of the research questions: 1) Was the participant’s
response to the Pizza Comparison task complete and correct? 2) Was the par-
ticipant able to explain the task’s important mathematical concepts? 3) Could
the participant evaluate the nine student responses according to the official NAEP
scoring guide? and 4) Were the participant’s reasons for scoring mathemati-
cally valid? Decisions on each of these aspects were based on an evaluation
guide. On the set of 12 common papers, there was 100% agreement on all four
aspects for each paper. Of the S8 papers total. | paper had responses that were
deemed too vague to be evaluated: this paper was omitted from further consid-
eration.

The first analysis of the data was accomplished by looking at each of the
four aspects separately. Of the 57 participants, slightly more than three-fourths
were able to complete the Pizza Comparison task successfully or could identify
the important mathematics in the task. Scoring responses and giving math-
ematically valid reasons for the scores were more difficult for the partici-
pants: only 53 percent of the participants scored responses accurately, and only
40 percent gave mathematically valid rationales.

The second analysis involved a holistic analysis of each paper across all
four aspects. Given that there were four aspects for each participant, and given
that the final classification for each aspect was either Yes (Y) or No (N), there
were 16 possible cases (e.g.. YYYY.YYYN, ... .NNNN). The 57 participants’
papers fell into 11 of the possible 16 cases, as shown in Table 1. For example,
papers that were classified as Cuse 5 belonged to those participants who suc-
cessfully completed the task, were able to describe the mathematics, and could
score student work according to the NAEP rubric, but who were unable to pro-
vide mathematically valid reasons for their scores.,

Looking at Case 1, about one-fourth of the participants completed the Pizza
Comparison task successfully, identified the important mathematical concept
in the task, accurately scored the simple student papers, and gave mathemati-
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Table 1 Distribution of Participants’ Responses According to Cases

Completes Identifies Scores Gives Number of
Task Important  Responses Appropriate Papers in
Case Successfully Mathematics Accurately  Rationales Case (%)

13 (23%)
2 (4%)
2 (4%)
4 (7T%)
i (12%)
2 (4%)
17 (30%)
1 Q%)
3 (5%)
1 (2%)
5 (9%)

:axooouomwa\?-—-
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cally valid reasons for the scores. On a more somber note, five participants (9
percent) did not successfully complete any of the four criteria.

Some cases are interesting to examine in more detail. For example, in Case
6 two participants who at first did not provide a complete and correct answer
and who could not identify the important mathematics, seemed to “leam by
scoring™ and were successful in providing accurate scores and in providing
mathematically valid rationales. Case 9 is also interesting because here the
three participants were successful in scoring according to the NAEP rubric,
despite their inability to do the task themselves, articulate the important math-
cmatical concepts, and give valid rationales for the scores. Lastly, the 17 par-
ticipants in Case 7 might be labeled as ones who do not possess a high degree
of “assessment knowledge:” that is. these participants could answer the task
correctly and identify the important mathematics, but they were not successful
in transferring their own content knowledge into the assessment knowledge
needed to evaluate student responses (at least according to the NAEP rubric)
and to provide mathematically valid reasons for their scores.

Discussion
The data suggest that there may be three levels or forms of knowledge
essential for validity assessing student work on open-cnded tasks. The first
level 1s content knowledge, by which we mean a conceptual understanding of
the mathematics is the task. Such understanding seems to be a prerequisite for
assessing student work on the task. As shown in Case 2, only two of the partici-
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pants were unsuccessful on the Pizza Comparison task and yet were able to
describe the mathematics adequately and also give valid reasons for their scores.
All others who failed to answer the task completely and correctly were also
unable either to describe the mathematics or to give valid rationales, or both.
The second form of knowledge that seems to be essential for valid assess-

. ment is pedagogical content knowledge, here evidenced by describing the math-

ematics in the task and predicting children’s misconceptions. The four partici-
pants (see Case 3 and Case 6) who were unable to describe adequately the
mathematics in the task, yet able to give valid rationales. seemed to learn from
studying the NAEP scoring rubric which contained the major mathematical
concepts in the task, and then to use this knowledge in their scoring. Nine other
participants (see Cases 9, 10, and 11) who could not describe the mathematics
were unable to give valid rationales.

We are proposing that assessment knowledge, the third level or form of
teacher knowledge, is evidenced by the ability to make mathematically valid
inferences about students’ work, and that such knowledge 1s dependent on hav-
ing a conceptual understanding of the mathematics in the task as well as pos-
sessing certain pedagogical content knowledge related to that task. In our study.
only about one-fourth of the participants (see Case 1) showed evidence of hav-
ing some degrees of assessment knowledge. Further analysis of the data and
additional studies will be undertaken to determine whether these three forms of
knowledge are verified, and whether they are, in fact. hierarchical.
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This study describes advantages and issues of an assessment strategy de-
vised to align with the curriculurn and pedagogy of a problem-based develop-
mental mathematics course. The curriculum materials and pedagogy em-
ployed in the project courses were consistent with the constructivist perspec-
tive of learning as essentially reliant on student thinking and diminished by
“teacher telling” . Adopting a perspective of assessment as dialogue led the
researcher-instructors to allow students to resubmit assignments based on in-
structor feedback, which took the form of questions and suggestions for fur-
ther thinking.

Instructor feedback on written work was guided by several compli-
mentary perspectives, including:

+ the fostering of a learning gi ul orientation for the student. as con-

trasted by goals of completion;

the need for raising cognitive dissonance for students to work through
by raising questions or providing relevant (counter)examples, rather
than “correcting™ student work:

the advantage of using student misconceptions as “springboards for
inquiry” rather than as failures to be corrected and avoided (Borasi,
1994).
Hard copies of student work with each submittal and including instructor
feedback were kept by the researcher-instructors for qualitative inalysis. These
will be used to illustrate our findings in this short oral presentation.
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ASSESSING MATHEMATICAL KNOWLEDGE WITH
CONCEPT MAPS AND INTERPRETIVE ESSAYS
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This study explored the use of student-constructed concept maps in con-
junction with written interpretive essays as an alternative method of assess-
ment in a Calculus I class. The objectives were to describe and document: 1)
the use of concept maps and written essays to assess the connectedness of stu-
dents’ knowledge; 2) the correlation between students’ scores on the concept
maps and written essays, course exams, and final grade; and 3) the degree to
which learning was enhanced by the use of concept maps and written essays.

Students were introduced to the construction of concept maps at the begin-
ning of the quarter. Given a list of terms related to the concept of functions,
they were asked to construct a concept map based on these terms and write an
interpretive essay describing the relationships they perceived between the terms
and elaborating on the relationships indicated on their concept map. A second
concept map and accompanying essay using terms from differential and inte-
gral calculus were assigned at the end of the quarter as a summative activity.
Each map and essay was scored using a holistic scoring criteria developed by
the researcher. In the final component of the study, individual student perfor-
mance on the concept maps and written interpretive essays, homework and
quizzes, tests, final exam and course grade were compared.

Findings suggest that concept maps, used in conjunction with written inter-
pretive essays, are a valuable addition to traditional assessment in mathematics
classes. This dual approach provided substantial insight into the degree of
connectedness of students’ knowledge with respect to the given topics. The
combination of these two instruments, each relying on a different avenue of
expression, allowed students to communicate their knowledge in a more com-
plete manner and readily identified many students misconceptions. In addi-
tion, the numerical scores assigned to the concept maps and interpretive essays
were highly correlated with scores obtained on more traditional measures and
final course grades.




DIFFERENT STRATEGIES USED TO SOLVE
CONSTRUCTED RESPONSE SAT MATH ITEMS

Delwyn L. Harnisch
University of Illinois at Urbana-Champaign
harnisch@uiuc.edu

This research study examines the strategies students adopted to solve con-
structed-response(CR) SAT-Mathematics word problems. CR and multiple-
choice (MC) items were administered to students representing a range of math-
ematical abilities. Format-related differences in difficuity were observed at the
itern-level. Analysis of students’ problem-solving processes was a major factor
in explaining difficulty differences. Traub (1993) has noted that some items
are more difficult in the constructed-response format than in the multiple-choice
format. ETS researchers Bennett, Rock and Wang (1991) were unable to docu-
ment differences on computer science items when format appeared to make
very different cognitive demands. The factors that cause such differences in
results between item formats remain unclear. To better understand these differ-
ences we are taking a look at the methods that students use to solve CR items.

A sample of students taking the 1995 administration of the SAT and living
in the midwest were obtained as part of a collaborative UIUC/ETS research
study (Harnisch, 1996). Results from the analysis of the student work on the
CR items and the analysis of video-taped protocols were summarized. Stu-
dents’ strategies used on different item formats were identified based on analy-
sis of the tapes and student work. Strategy categories were developed for solv-
ing CR items (writing and solving algebraic equations, estimation, reasoning
from given material, & plug-in). Item format differences revealed that the CR
items removed the element of guessing and hints based on available distractors.
CR items also placed a high value on the importance of calculation skills and
having an accurate value.

The results from this study point to the complexity of the items and the
interactions of the learner within the context. Improving measurement is not
likely to be found in simply removing the options from the MC items to create
CR items. To have improved understanding of students’ mathematical reason-
ing requires that we consider multiple indicators of student learning, including
those provided by standardized tests.
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MATHEMATICAL ACTIVITIES IN INSURANCE
AGENTS’ WORK
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This paper describes the mathematical activities in the work of insurance agents. These
practices do not involve only arithmetic computation but also estimating, using heuris-
tics. explaining complex relationships between quantities, and describing diagrams.

Research in cognition and learning has pointed out the need for closing the
gap between learning mathematics in and out of school (Carraher, Carraher, &
Schliemann, 1985; D’ Ambrosio, 1991; Lave, 1988: Saxe, 1991). This perspec-
tive redefines what mathematics is and extends mathematical activity to in-
clude more than using rote algorithms. Following this perspective, current cur-
riculum guidelines and standards for mathematics (NCTM, 1989, California
Mathematics Framework, 1989) call for engaging students in “real world” math-
ematics rather than mathematics in isolation of its applications. Detailed ac-
counts of “real world” mathematical practices can serve in closing this gapina
principled manner by framing classroom activities on the basis of what differ-
ent practitioners actually do at work, rather than what we imagine they do or
what practitioners say thev do.

The paper will summurize the mathematical activities observed and docu-
mented in the work of insurance agents and provide examples of the math-
ematical activities in life insurance sales conversations. The account of the
mathematical aspects of insurance agents’ work presents a view of workplace
mathematical competency as involving communication and the use of repre-
sentational resources. Many aspects of the work of agents and staff involve
mathematical activities. Even a task as apparently routine as answering a ques-
tion about a change in an auto premium requires the ability to understand and
explain complicated mathematical relations. We present an account of work-
place mathematical activities as not only mental or individual skills in compu-
tation, but also as a social skill: an ability to communicate about numbers, and
to explain relationships between quantities in the context of selling or servicing
insurance policics. For example, while calculating a premium involves mainly
computation. the social aspect of this mathematical activity is the ability to
explain these results clearly to a chient.

Theorctical framework and methods

This study builds on previous rescarch on the mathematical practices in
cveryday commercial situations such as candy selling (Carraher, Carraher, &
Schhiemann, 1985), dairy (Scribner, 1984), construction foremen (Carraher,




1986), and carpet laying (Masingila, 1994). The framework used to explore
and analyze the mathematical practices of insurance agents draws on activity
theory (Scribner, 1984) and conversation analysis (Goodwin & Heritage, 1990).

This study was part of larger ethnographic project focusing on insurance
agents workplace practices, While conducting this project a team of ethnogra-
phers observed a total of 18 agents for approximately 3 to 10 days per agent.
The ethnographers followed the agents daily activities such as client visits and
phone calls, inspections of residences to determine or verify the value of a
property, and staff training. The ethnographic approach to documenting work-
place practices involved direct observation, extensive field notes, interviews of
agents and staff, as well as audio (and in a few cases video) tapes of conversa-
tions between agents (or staff people) and clients.

Field notes, audio tapes, and videotapes were analyzed by a team with multi-
disciplinary backgrounds (anthropology, linguistics, mathematics education,
and cognitive science) for instances of mathematical activity. From this analy-
sis four situations emerged that were rich in mathematical activity and that
became the focus of more detailed analysis: life insurance sales conversations,
property re-inspections to determine square footage and value. explanations of
how to choose a deductible amount for auto or home insurance, and answers to
billing questions.

An Overview of Mathematical Activities in Insurance Work

The work of insurance agents and staff requires not only competency in
arithmetic, but also the ability to explain to clients complex relations such as:
comparisons of whole life versus term policies, the price structure of life poli-
cies, comparison of life insurance to other financial instruments, the tax conse-
quences of insurance choices, changes in billing, and how to choose a deduct-
ible.

The mathematical practices documented in the work of insurance agents
and staff include:

* estimating figures

* using rules of thumb for calculating quantitics
* producing ballpark figures for quantities
explaining the relationship between quantities in a policy (for example
an increasing premium and constant benefit)

using, constructing and explaining tables, graphs and diagrams that
represent quantities (for example the floor plan of a house. a printout
detailing changes in a life insurance policy over the years, or a diagram
depicting the relationship between the two main quantities in a whole
life policy, “guaranteed cash value™ and “protection™)




» using tools {(for example, a roli-a-tape for measuring the perimeter of a
building, an “Insurance to Value” calculator or a slope meter).

Mathematical Activities in Life Insurance Sales Conversations

Below we provide a description and analysis of the agents’ mathematical
activities in life insurance sales along two themes, communication and the use
of representational resources. These two themes arose from our observations of
the work of agents and the central work situations that involve numbers and
quantities. We describe how agents’ mathematical activities involve multiple
ways of explaining policies and multiple ways of explaining and illustrating
the relationships between quantities.

Communicating Explanations of Life Insurance Policies

Explanations of life insurance policies are central to life sales conversa-
tions. When explaining life policies agents are showing their competence as
well as justifying the purchase of a policy. The issues involved in life insurance
sales are multidimensional: comparisons of term, whole and universal life poli-
cies; comparisons to other financial investment options; tax implications; risk
levels; return levels; rates of cost and rates of change of cost. Yet, while the
underlying issues are complex, it is the task of the agent to explain them to the
client as simply as possible. Part of the agent’s expertise is in providing expla-
nations and materials to manage this complexity.

One way agents manage this complexity is by selecting the factors involved
in a policy to present, depending on the focus of the explanation. While ex-
plaining a policy. an agent includes or omits certain factors, such as the effect
of taxes or fluctuations in the stock market. Sometimes the agent does not men-
tion taxes, while other times taxes become a central part of the conversation;
changes in the stock market are mentioned only when discussing projections
about dividends; and inflation is usually not a part of the explanations. Table 1
presents in more detail the mathematical activities in life insurance sales con-
versations:

A central mathematical activity involved in these conversations is compar-
ing quantities. Agents were observed: describing how a change in one quantity
affects another quantity, describing the rate of change of one quantity over time,
comparing two rates of change. Another important mathematical activity ob-
served during life sales conversations was estimating quantity and size. During
these conversations agents also often make estimates. suggest ballpark figures,
and describe benchmark figures. In the excerpt below., the agent uses the rule of
thumb “death benefit equals five times your present income’™ to estimate a rea-
sonable death benefit:




Table 1 Mathematical Activities in Life Insurance Sales Conversations:

Agents’ Talk

Mathematical Activity

Explaining one type of
policy (Term, Whole or
Universal)

Comparing 1wo
policies (Whole and
Term, Term and
Universal, Whole and
Universal)

Comparing a policy to
another financial
instrument (Whole to
an IRA, pension, or
annuity; a combination
of Term and an IRA
account to Whole).

» Explaining the rate of change of one quantity
(Examples: how term premium increases
quickly; how premium or protection for a whole
life policy changes over time)

» Explaining the relationship between two
quantities (Example: in a whole life policy as
cash value goes up, protection increment
decreases)

*» Explaining what dividends dv (Example: in a
whole life policy dividends can pay the premium
or accumulate as cash value or equity)

+ Explaining two kinds of mutually exclusive
quantities (Example: cash value or death benefit)

* Making estimates using rules of thumb and
ballpark figures (Example: how much death
benefit a client needs)

. Exp;laiﬁing thé relationst;ip l’)e’tAwréen. t»;/o
quantities (Example: the premium for a term
policy and the premium for a whole policy)

» Comparing two quantities that change (Example:
over time the premium for a term policy increases
and the premium for a whole policy remains
constant)

* Describing the change in one quantity
- Comparing two quantities

* Comparing the rate of change of two quantities




Agent: You should have at least five times your income. You know, so, if
you make fiftv grand, you should have about two hundred and fifty.
That at least gets vour wife, through about eight years.

Another rule of thumb might be that for a thirty year mortgage policy, in fifteen
years the policy will start accruing more cash value the client is paying in
premium.

Using Diagrams

While some agents give clients prepared printed materials describing poli-
cies, other agents also make and use sketches. These sketched diagrams are not
given to the client but rather used as tools in the conversation. The diagrams
serve as “story boards” for stages of the conversation. Instead of presenting the
client with a finished product, a diagram unrolls as the conversation unfolds.
This can have several advantages over using preprinted materials:

»  The agent takes the client along in the conversation by adding or chang-

ing pieces of the diagram.

The agent can refer to a piece of a diagram as if it were the policy,
making the policy a concrete object and aiding in gesturing.

Some of the technical terms involved in describing a policy are written
out and located in the sketch available to the client.

Some agents develop and use their favorite sketches. Figure 1 presents an
example of a sketch used in a life sales conversation to explain whole life poli-
cies.

The diagrams in this conversation served as common references for agent
and client. The different stages of the sketch were conversation pieces, some-
thing for the agent to refer to as he explained and compared policies. For ex-
ample, the agent referred to some aspects of the policy as being the picture:

Agent: They call this protection, this side right here, protection. (Writ-
ing the word in to the upper triangle of the rectangle.)

The diagrams also helped to structure the conversation. As the agent drew
each component of the diagram he presented a new piece of the explanation.
The diagrams also served to summarize the relationship between quantities
such as cash value and protection:

Agent: The equity will increase and exactlv the opposite in inverse

relationship, the protection increment decreases. (Drawing the diago-

nal)

Even though this diagram exists as printed material, developmg the sketch
within a conversation is different than showing the client a finished picture.
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First Stage of Diagram Last Stage of Diagram

Dividends

Protection

Figure 1 Sample sketch used in a life sales conversation to explain whole life
policies.

Drawn sketches support explanations in life sales conversations in ways that
are different than a completed diagram. A sketched diagram that is created
during a conversation develops meaning within that conversation; the meaning
of the different parts of the picture is developed with the conversation. As the
conversation goes along, these sketches become the dynamic part of the con-
versation.

Conclusions

By uncovering the mathematical aspects of insurance work this study adds
to the collection of accounts of mathematical cognition in everyday settings.
This study also shows that the mathematical activities involved in insurance
work, like mathematical practices in other commercial situations, involve com-
munication and the use of social and material resources. This study is relevant
to mathematics education because it shows that the mathematical practices in
insurance agents’ work do not focus on computation. Mathematics instructjon
aiming to be relevant to student’s future experiences in workplaces needs to
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address the importance of communicating and using representational resources
as central aspects of workplace mathematical competency.
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With the increasing recognition that connections are an important component in the
pedagogy of school mathematics (National Council of Teachers of Mathematics, 1989),
there is a need for a theoretical framework which addresses the ways in which real
experiences and cultural practices of students may be connected with mathematics class-
room pedagogy. In this paper, the objective is to construct such a theoretical frame-
work, drawing on literature from semiotics and cthnomath=matics. Examples and some
evidence which suggests the efficacy of this framework in connecting school math-
ematics and mathematical idcas constructed from cultural practice, are drawn from the
literature and from data collected in a research project in a multicultural high school
mathematics class.

Abstraction and generalization are fundamental components of academic
mathematics, defined as “the science of detachable relational insights” (Tho-
mas, 1996). At the same time, mathematics is a cultural product (Bishop, 1988),
and there is a growing literature suggesting that the potential for constructing
mathematical ideas is present in everyday practices in all cultures. In
multicultural classrooms, the cultural heritages of students may be viewed asa
rich resource for learning and for fostering a classroom climate which pro-
motes equity (Nieto, 1996). It is necessary, then, to reconcile the specificity of
cultural practice with the generaliry of academic mathematics, the concrete-
ness of many out-of-school activities with the abstraction of this mathematics,
if everyday practice is to be useful in mathematical classroom pedagogy. It is
argued in this paper that a semiotic framework (Whitson, 1994) provides con-
nections between these two aspects of the construction of mathematical ideas.
Symbolism and structure are key elements in the connecting of the domains of
everyday practice and academic mathematics, and a science which addresses
signs, their connections and meanings (i.c., semiotics). is eminently suitable
for the development of a connecting framework.

Modes of Inquiry

Firstly, two examples from ethnomathematics literature will be used to show
the capacity of a semiotic framework to connect cultural practices and formal
academic mathemetics. The first example is an extension of Marcia Ascher's
{1991) unalysis of the kinship relations of the Warlpiri of Australia as a dihe-
dral group of order 8. The second example is Paulus Gerdes® (1986) math-




ematical treatment of Angolan Tchokwe sand drawings, which will be discussed
in the presentation although lack of space precludes its inclusion here.

Secondly, evidence for the need for such a theoretical framework will be
drawn from data collected in an ethnomathematics research project with high
school students from diverse cultural backgrounds.

Theory Development and Evidence

In the Warlpiri system of kinship relations (Ascher, 1991), the popula-
tion is divided into eight sections, simply numbered 1-8 by Ascher. Persons in
section 1 may only marry spouses in section 5, those in 2 may marry those in 6,
3in 7, and 4 in 8, The iection of children from a marriage is determined by the
section of the mother, according to the rule
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This means that children of both sexes from a mother in section 1 will be in
section 4; those from a mother in section 4 will be in 2, and so on. In this way
the population is divided into two matrimoities or cycles, consisting of sections
{1,4,2, 3} and {5, 7, 6, 8}. There are four patricycles, i.e., {1, 7}, {2, 8}, {3,
6}, and {4, 5}. If a boy is in section I, his father is in section 7, and his grand-
father is again in section 1, and so on. This system, which seems complex, and
specific to the Warlpiri cultural practice, has a structure which is isomorphic to
five of the eight symmetries of the square, if each side of the square is linked to
a specific section of the matrimoity in order, clockwise. (This notation differs
from Ascher’s, in which the vertices symbolized the sections, although it gives
a characterization analogous to the torus suggested by Ascher & Ascher in Powell
& Frankenstein, 1997.) The symmetries used are as follows: starting from a
particular individual who is in, say, section 1, four counterclockwise rotations
are used for the relation “is the mother of’, and a flip about a horizontal axis for
the relation “is the spouse of”’. This symbolism takes all the relationships into
account. Ascher showed further that if a table is constructed linking each of the
eight sections through their relationships, a dihedral group of order eight is
formed. Note that the “mathematical ideas” implicit in the structure belong to
the Warlpiri and are intrinsic to their cultural practice. A “dihedral group of
order eight”, on the other hand, belongs to Ascher’s mathematics, as she is the
first to admit: ‘A Warlpiri, of course, does not go through this analysis. . . . A
variety of diagrams were used to describe the Warlpiri kin system. The system
is theirs but the diagrams were ours” (Ascher, 1991, p. 77). In this paper, a
further construct, the “chaining of signifiers” is introduced from semiotics. This
chain also belongs to a culture other than that of the Warlpiri; but this in no way
diminishes the recognition of the value of the Warlpiri structure or its complex-
ity. It merely serves a different purpose: in fact it could be characterized as




“wonderful” that constructs for different purposes in two very different cul-
tures may be connected in this way. The feeling evoked in me is awe at the
unity of humanity.

The increasingly abstract systems of symbolism in this example illustrate a
chaining of signifiers (Walkerdine, 1988) which may be derived from the
semiotic system of Jacques Lacan (Whitson, 1994; Presmeg, 1997). Unlike
Charles S. Peirce who constructed a triadic theory of semiotics in the USA,
Lacan’s system was developed from the diadic theory of Swiss linguist Ferdinand
Saussure, which addresses the relationships between signifiers and signifieds.
The following figure illustrates a chaining of signifiers in the Warlpiri example.

Dihedral group of order 8

Table of combinations of

possible relationships

Five of the eight symmetries

of a square

Warlpiri Kinship relations

signifier 1 signifier 2 signifier 3

signified 1 signified 2 signified 3

Figure 1 Chaining of signifiers in a progression of generalizations from the
Warlpiri kinship system to a dihedral group of order 8.

Now one might question, “Where does mathematics start in this chaining
of signifiers?” The answer to this question hinges on a culture’s definition of
mathematics. The Warlpiri, if questioned, would in all iikelihood not consider
their kinship system to be mathematics, even though some definitions of
ethnomathematics would include their practice as it is (Powell & Frankenstein,
1997). My position is that the Warlpiri are not “doing mathematics™ merely by
practicing their kinship system; but when they or others recogmze the structure
of their system as a structure, explain it to others for example by encoding it in
a diagram, or in some other semiotic form, then there is mathematics. The defi-
nition of ethnonathematics which [use ts stimply “the mathematics of cultural
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practice” (Presmeg, 1996), which includes what Ascher (1991) calls “math-
ematical ideas” used by the Warlpiri, as well as those of so-called academic
mathematics, which is arguably a culture of its own. Discussion of definitions
of ethnomathematics by writers such as Ascher, Pompeu, Borba, and others,
could constitute a paper in its own right. Some of these definitions may be
found in Powell and Frankenstein (1997). The definition of ethnomathematics
given by D’ Ambrosio (1985, also published as Chapter 1 in Powell & Franken-
stein, 1997) is “the mathematics which is practiced among identifiable cultural
groups, such as national-tribal societies, labor groups, children of a certain age
bracket, professional classes, and so on” (p. 45). D’ Ambrosio based his defini-
tion on a “ceaseless cycle” involving an individual in a model with three com-
ponents, reality, individual, action, going back to reality, and so on. The intel-
lectual action of the individual is an essential element, in a process which he
called reification, used by sociobiologists as “the mental activity in which haz-
ily perceived and relatively intangible phenomena, such as complex arrays of
objects or activities, are given a factitiously concrete form. simplified and la-
beled with words or other symbols” (D’ Ambrosio, 1985, p. 46). This character-
ization suggests the role of signification and symbolism, which can provide
connections between cultural practice and academic mathematics in a semiotic
framework, consonant with the theoretical position formulated in this paper.

In the use of the sides and symmetries of a physical square, say, made of
cardboard (signifier) to illustrate the structure of the Warlpiri system (signi-
fied), the symbolism may not yet be of a level of generality to satisfy soma
definitions of academic mathematics. In the next link of the chain, the concrete
square gives way to more abstract symbolism in a table. Finally, a generalized
structure called ‘a dihedral group of order 8" becomes the signifier for this
specific table, which is now no longer the signifier, but the signified, in an
academic mathematical structure. In this way, semiotic processes may be used
to illustrate cultural connections as symbol systems are constructed in a bridge
between cultures. In this way, symbolism provides possible connections be-
tween mathematical ideas “frozen” in practices (Gerdes, 1986), and academic
mathematics. Different symbolism would facilitate the construction of differ-
ent mathematical concepts.

A High School Research Project

The need for a theoretical model such as the one developed and illustrated
in this paper was strikingly highlighted in a research project to investigate pos-
sible ways of introducing ethnomathematics in a high school mathematics class-
room. The purpose of the project was to work with a group of students and their
teacher to develop viable ways of using the cultural and ethnic backgrounds of
the students as a resource for the leaming of mathematics. The seven students
involved in the project were from African American, Caucasian, Asian, and
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Hispanic cultural backgrounds. In video or audio recorded interviews, they
described rich activities based on four “h”s: their hobbies, hopes (career aspira-
tions), homes and cultural heritages. These activities were an integral part of
their lives. Other issues which were discussed were the nature of mathematics,
the work done by their parents (and whether mathematics was involved in this),
their achievement in and feelings towards school mathematics, and perceived
links between mathematics and other subj=cts in the school curriculum. These
students, and their mathematics teacher, with their current beliefs about the
nature of mathematics, could not readily develop mathematical ideas from these
practices. However, the research project {(more fuily reported in Presmeg, 1996)
did give strong evidence for the richness of the experiences and activities in the
lives and cultural heritages of the students. According to Nieto (1996}, and
strongly suggested in Bishop (1988). it should be possible for teachers to use
such experiences and activities to facilitate students’ construction of mathemati-
cal ideas, with a consequent affirming of cultural diversity. The present paper
begins to illustrate how symbol systems are a connecting bridge in this en-
deavor. A semiotic framework thus has the potential to provide a basis for cul-
turally relevant pedagogy in multicultural mathematics classrooms.
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EDUCATING NON-COLLEGE BOUND STUDENTS:
WHAT WE CAN LEARN FRCM
MANUFACTURING WORK

John P. Smith Il
Michigan State University
jsmith@pilot.msu.edu

This paper reports a survey of the mathematical demands of “blue-collar” work in
various workplaces involved in automobile manufacturing. It is oriented by current
concerns that U.S. high school graduates are often ill-prepared for high-skill, high-
wage work in a variety of industries. The study has examined what sort of mathemati-
cal knowledge and skills high school graduates need to perform competently in that
industry. Two main findings have cmerged: (1) the demands of high-volume assembly
work appear well within the current content of the K-12 curriculum, while (2) more
challenging and rewarding work, like CNC inachine tool operation, require extensive
spatial and geometric competence that the U.S. curriculum does not strongly support.
International comparisons of mathematics curriculum and teaching (the TIMMS study)
show that other leading manufacturing couniries devote more attention to space and
geometry in the middle grades than the United States.

In this short paper I take an instrumental perspective on mathematics edu-
cation: that students learn mathematics to prepare for meaningful and reward-
ing work. I believe there are other equally important goals for mathematics
education, but I adopt an instrumental view here because the rele of schools in
preparing students for work has been a central theme in recent educational
policy discussions in the United States. Increased economic competition, dra-
matic changes in workplace technology, and poor educational achievement have
focused critical attention on the performance of schools. Many American 18
ycar olds appear poorly prepared to m =et the demands of modern industrial
work, especially in mathematics, science, and technology (Mumane & Levy,
1996; U. S. Department of Labor, 1991). In contrast to other industrialized
countries, particularly those whose industries compete well against U.S. firms,
American curricula in mathematics and scrence appear shallow and unfocused
(Schmidt, McKnight, Raizen, 1996). Current curricular reforms address that
problem, but the pace and breadth of their impact on classroom practice is
uncertain.

To examine the mathematical demands of work in one important industrial
sector, the “Mathematics in Mi igan’s Industrial Workplaces™ project has sur-
veyed mathematics use in workplaces related to automobile manufacturing.!

U Thus far, twelve sites have participated. Twenty-lour site visits have been conducted
i I sites; 20site visits have been conducted in the one site under detailed study. More
sites are being added to expand the size, range, and adequacy of the workplace sample.
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We have examined jobs and work practices legitimately open to students with
high school diplomas, avoiding engineering, design, and management work
that typically requires college or more advanced education. Empirical surveys
of work practices can usefully complement policy analyses that report work
practices more selectively (U.S. Department of Labor, 1991) and case studies
of particular workplaces (Hall & Stevens, 1996). We began with observational
meihods: general tours of production floors followed by more focused observa-
tions and interviews of specific work areas (e.g.. quality laboratories) and jobs.
Where we found that work practices included mathematically interesting prob-
lems and processes, we returned to study them in successive cycles of analysis
and observation and interview. Two broad questions orient the project:

*  What mathematical competencies are required by production work in

this industry?

+ How has technological change effected these requirements?

This paper discusses results on the first question; analyses of the second ques-
tion are available elsewhere (Douglas & Smith, 1997; Smith, 1997).

Sites were selected from different levels in the automobile production hier-
archy: Final assembly, Tier I producers who supply parts and parts systems to
final assembly , Tier I producers who supply to Tier I, Tier [ producers. and
after-market producers (e.g. parts and “add-ons™). Products ranged from tin-
ished vehicles: to wheels, atr conditioner compressors, and anti-lock brake
valves: to molds for making headrests and dies for torming sheet metal body
panels. Work forees runged from thousands to 30 employees. The sophistica-
tion in the production technology varied dramatically from 1940°s ranual ma-
chine tools to state-of-the-art, fully automated production facilities that required
little manipulation by workers.

Two central assumptions have guided these investigations.  We have ac-
cepted a broad view of mathematics that is not bounded by the content of the
K-12 curriculum. It includes the classical domains of number and space as
well as logicat reasoning, analysis of causal systems, and spatial visualization.
In particular, we have found it important to attend to non-metric spatial and
geometric reasoning. We have also worked from the assumption (not yet
disconfirmed) that some mathematical reasoning is visible on the surface of
work activities.  Examples include use of counting, measuring with various
tools, adding data to 2-1> graphs, and computing averages. Mathematical op-
erations were both observed directly during tours and inferred from observed
practices. In many other cases, substantial understanding of the production
process was useful, if not necessary to identify the mathematical content in the
work practices.

Other studies of mathematical work in non-school settings have inspired
and guided the project. Sylvia Scribner’s (1984) study of dairy workers pro-




vided a dramatic example of how numerical tasks can become strongly spatial.
Her later work with colleagues provided background on the nature of CNC
machining (e.g., Martin & Scribner, 1990), though their analytic focus was
different. Analyses of mathematical work in streets (Saxe, 1991) and work-
places (Nunes, Schliemann, & Carraher, 1993) have shown that school taught
procedures often do not structure people’s mathematical thinking outside of
school. Generally, we share with the ethnomathematics program a concermn for
mathematics in use in the daily lives and practices of different groups and cul-
tures (d’ Ambrosio, 1985).

Current Results

High volume ussembly production is not highly mathematics-intensive. In
ten final assembly, Tier [, and Tier I sites where thousands of the same part or
system were produced, the main task was moving material through production
lines. In these workplaces, mathematics use was generally limited to reading
and recording numbers (e.g., from gauges to record sheets), counting, measur-
ing with hand-held, manual and digital tools, computing averages, plotting nu-
merical data on time graphs (e.g., in statistical process control [SPC] proce-
dures), and converting among fractions, decimals, and percents. Beyond qual-
ity analysis via SPC, the specific mathematical procedures observed varied with
the product type and kind of production technology on the floor. The sophisti-
cation of the technology was not related in any simple way to mathematical
demand; examples of both “upskilling™ and “downskilling” were observed (Dou-
glas & Smith, 1997; Smith, 1997).

Some production-related work in these sites—in quality labs, “quality-
circle” groups, and special expertise jobs—was more mathematically interest-
ing and intensive. This work was open to high school graduates, but only a
small number of workers were involved, most with substantial experience. In
quality labs, maintained by all high-volume producers, workers test parts against
their design specifications with manual or semi-automated Coordinate Mea-
suring Machines (CMMs). A solid working knowledge of 2-D geometry is
required to utilize measuring tools effectively, e.g., knowing that the center of a
circle can be located if the locations of three points on the circle are known.

In quality circle analyses observed at one site, small groups of workers
isolated segments of their production process, identified inefficiencies, and pro-
posed potential improveiments. Systems analysis and representation (“fishbone”
analyses) and logical and inferential reasoning were required skills. Quality
work at one other high-volume site required line workers to identify and cor-
rect variation in their parts. Analysis involved “reading in” a 2-D trace of the
part, imposing a 2-D coordinate system on that truce, and checking the values
of crucial angles and distances. With that numerical data, workers made manual
adjustments to their machine tools. That more mathematical work was in the
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hands of line workers at this site was due to this firm’s decision to retain and
rebuild “in-house™ older machine tools. rather then investing in more sophisti-
cated technology whose maintenance requires specific workers with special
expertise.

In contrast, at the two sites that produced small numbers (usually <5) of
highly engineered and machined products (e.g.. molds and dies for high-vol-
ume assembly), production work was much more demanding mathematically.
Workers operated computer-mediated (CNC) machine tools which required
strong spatial visualization skills, knowledge of basic Cartesian geometry in 2-
and 3-space, associated integer arithmetic, plane trigonometry, and ratio con-
versions between English and metrie dimensions, in addition to mastery of com-
puter operating systems, the CNC programming language, and manual ma-
chining (Martin & Scribner. 1990). Two interesting classes of non-school prob-
lems were observed: (1) “set-up.” where machinists manually focate and lock
down parts relative to their machines™ fixed three axes of motion,” and (2) “map-
ping,” where they trace 2-D and 3-D paths in advance of programming tool
movements and then determine the Cartesian coordinates of cach move and
turn. As with the quality work described above, the most salient mathematical
requirements of this work were spatial and geometrie, though workers and
managers alike associate "mathematices™ only with numerical computation.

Though this observational work has been productive, there are clear limits
to the approach. Inttial general tours can casily miss the mathematical aspects

of some practices, cither regularly oceurring or resulting from irregular prob-
lems or “breakdowns.” Tours are often shaped by the guide s view of what is
mathematics, which is often limited to numerical and symbolic computation.
Itis also difficult to gatn sufficient understanding of tasks and workers™ reason-
ing only through observations and informal questioning. Workers are not well
practiced in explaining the character of their work to visitors.

To gain more extensive and detailed understandings of the mathematics of
work , we are currently studying one mathematically-intensive workplace where
dies for pressing car and truck exterior body pancels are fabricated. Here we
have moved to a wider combination of methods—extensive observation, inter-
views, and videotaped segments of work. T have “apprenticed™ myself to a
skilled machinist and learned the nature and flow of work, the language of
machining., and machine tool itself. From this apprenticeship of observation
and conversation, the structure of the work and common mathematical skills
and problems have emerged. The next step involves documenting the machin-
ing of one die “job™ from entry to exit from the shop. This record will permit
more careful analyses of mathematical tasks and solutions than observation
alone.

ki . ~
= Numbers of axes of monon can exceed three on modern CNC machine tools,
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Discussion

The mathematical demands of the high-volume assembly work that we
observed are consistent with published analyses of workplace skills. For ex-
ample, Murnane & Levy (1996) include the ability to “do math” at a 9th grade
level or better in their list of “new basic skills.” But these “new” skills are not
beyond the reach of current U.S. K12 curricula, when taught seriously to all
students. More high-wage, high-skill work like CNC machining, as well as
quality work, turns on a stronger base of spatial and geometric abilities than
current U.S. curriculum appear to support (Schmidt, McKnight, & Raizen, 1996).
By contrast, Germany and Japan devote much more attention to space and ge-
ometry in the middle grades. If we are serious that schooling should prepare
young people for the cognitive demands of work, we should pay closer atten-
tion to which skills are fundamental to a broad array of high-wage jobs. Repre-
sentation, problem solving, and reasoning in 2- and 3-space is one such candi-
date competence.

Beyond matching curriculum with basic, valued workplace skills, more
studies of mathematical reasoning in workplace settings are needed. Despite
some celebrated exceptions, we know very little about reasoning and problem
solving in these contexts, relative to the substantial range of work and embed-
ded mathematics. Researchers must be prepared to find the mathematics in the
work practices and not rely on workers and managers judgments of what is
“math.”
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CHANGES OF PRESENTATION IN MIDDLE SCHOOL
MATHEMATICS TEXTBOOKS: THE CASE
OF INTEGER OPERATIONS

Yeping Li Jack Carter Beverly Ferrucci
University of Pittsburgh  California State University Keene State College
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Previous efforts to identify contributing factors for cross-national differences
in students’ mathematics achievement (e.g., McKnight, Crosswhite, Dossey,
Kifer, Swafford, Travers, & Cooney, 1987) have led to the contention that the
school mathematics textbook is a key factor, particularly in the cases of Japan
and the U.S., (Mayer, Sims, & Tajika, 1995). The results from Mayer et al.’s
study have indicated weaknesses within US mathematics textbooks in their
presentations relative to conceptual understanding and problem solving. Since
the textbooks analyzed in Mayer et al.’s study were published around the end
of 1980s, it is important to know how current texts may have changed their
presentations.

Lessons on addition and subtraction of signed whole numbers in six US text-
books were selected for analysis. The pertinent lessons were then coded inde-
pendently by raters using criteria and procedures described in Mayer et al.’s
study. The results indicated that the more recent US mathematics textbooks
have devoted more space to worked-out examples, explanations, relevant illus-
trations, and less space for exercises and irrelevant illustrations than had the
US texts in Mayer et al.’s study. These changes may be positive indicators of
reform efforts to develop students’ conceptual understanding and problem solv-
ing. However, the US textbooks still failed to present fully coordinated, mul-
tiple representations as part of their explanations of the integer operations, and
had scant evidence of using inductive approaches in developing general rules
for integer addition and subtraction.
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PROBABILITY INSTRUCTION INFORMED BY
CHILDREN’S THINKING
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-Responding to world wide recommendations that recognize the importance of having
younger students develop a greater understanding of probability, this study designed
and evaluated a third-grade instructional program in probability. The instructional pro-
gram was informed by a cognitive framework that describes students’ probabilistic
thinking and aiso adopted a socio-constructivist orientation. Two classes participated
in the instructional program, one in the fall (carly) and the other in the spring {(delayed).
Following instruction, both groups displayed significant growth in probabilistic think-
ing that was not simply due to maturation. There was also evidence, based on four
target students, that children’s readiness to list the outcomes of the sample space, their
ability to connect sample space and probability, and their predisposition to use valid
number representations in describing probabilities, were key factors in fostering learn-
ing.

The importance of having younger children develop an understanding of
probability is now widely advocated (e.g., National Council of Teachers of
Mathematics, 1989). This emphasis on probability in the school curriculum has
established the need for further, on-going research into the teaching and learn-
ing of probability (Shaughnessy, 1992).

While more is known about how students learn mathematics than how to
apply knowledge about learning to mathematics instruction (Romberg & Car-
penter, 1986), there is an increasing body of literature (Fennema, Franke, Car-
penter, & Carey, 1993; Mack, 1990) that advocates the use of research-based
knowledge of student’s thinking to inform instruction. With respect to prob-
ability, there has been considerable research into children’s thinking (Fischbein,
Nello, & Marino, 1991; Piaget & Inhelder, 1975; Shaughnessy, 1992), but none
has evaluated instructional programs that are guided by researchsbased knowl-
cdge of students’ probabilistic thinking.

This study addresses the development and evaluation of such an instruc-
tional program. In particular, it seeks to: (a) use a framework that'describes and
predicts children’s thinKing in probability to construct a third-grade instruc-
tional program; and (b) ievaluate the effect of two different sequences of the
instructional program on children’s thinking in probability.

heoretical Consid« v ations

The mstructional program developed and evaluated in this study is based
¢ two theoretical positions. The first, a cognitive framework that describes
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children’s probabilistic thinking (Jones, Langrall, Thornton, & Mogill, 1997),
was used to provide the research base for informing instruction. The second is
a pedagogical orientation that espouses learning within a socio-constructivist
environment (Cobb, Yackel, & Wood, 1993).

Framework for Children’s Probabilistic

Thinking and Pedagogical Orientation

The cognitive framework assumes that probability concepts are multifac-
eted and develop slowly over time. In order to capture the manifold nature of
probabilistic thinking, this framework (Jones et al., 1997) incorporates four
key constructs: sample space, probability of an event, probability comparisons,
and conditional probability, as they relate to one- and two-stage random experi-
ments. The framework provides a coherent picture of children's probabilistic
thinking by building on earlier probability research in sample space (Borovcenik
& Bentz, 1991), probability of an event ( Acredelo, O’ Connor, Banks, & Horobin,
1989: Fischbein, Nello, & Marino, 1991), probability comparisons (Falk, 1987),
and conditional probability (Borovenik & Bentz, 1991).

For each of the key constructs, four levels of thinking were established and
validated over a two-year period (Jones et al., 1997). Level 1 is associated with
subjective thinking, Level 2 is transitional between subjective and naive quan-
titative thinking, Level 3 involves the use of informal quantitative thinking, and
Level 4 incorporates numerical reasoning. These levels of thinking appear to be
consistent with neo-Piagetian theories that postulate the existence of levels of
thinking that recycle during developrnental stages (Biggs & Collis, 1991). This
framework provided the research base for informing the instructional program
and creating the assessment instruments.

A further tenet of this study was that the potential for effective mathemati-
cal learning is optimized when the instructional environment is consistent with
a constructivist view of learning, Such a view, grounded in the work of Piaget
(1970), and extended by other researchers (Cobb et al., 1993), holds that math-
ematics learning is a process in which children internally reorganize their think-
ing to resolve situations that are problematic for them. Moreover, we have
adopted the view that mathematical learning is an interactive as well as a con-
structive process (Cobb et al., 1993).

Methodology

Subjects

The sample for this study consisted of 37 grade 3 children from two intact
classes at a University laboratory school. Children from these two classes par-
ticipated in an instructional program in probability —one class in the fall
semester (Harly Instruction Group, n=18), the other class during the spring se-

168




|
(

D

mester (Delayed Instruction Group, n = 19). In addition, two children from
each of the two classrooms were randomly selected as target students.
Procedure

Each semester’s instructional program consisted of sixteen, 40-minute prob-
ability sessions over a period of eight weeks. Following the session opener, a
whole-class exploration, twelve teacher education student mentors worked with
pairs of children to solve probability problems. These mentors also acted as
participant observers, collecting and organizing data on the children’s thinking.
All children in the study were assessed using a researcher-designed interview
protocol at the beginning (September), middle {December), and end (April) of
the school year.
Instructional Program

The instructional program consisted of probability problem tasks (fones &
Thornton, 1992) generated from the key constructs of the framework. The tasks
were designed so that they would be accessible to children at different levels of
the framework. In accord with the pedagogical orientation of the program,
mentors were encouraged through weekly seminars to (a) use the framework to
assess and build on children’s understanding; (b) pose problems and questions
rather than model solutions; (c) guide children to construct their own solutions;
(d) maximize opportunities for pairs of children to engage in collaborative prob-
lem solving; and (e) challenge children to negotiate one or more solutions or
approaches to a problem.

Data Collection, Instrumentation, and Analysis

Interview and observational data were gathered from three sources: (a) as-
sessments conducted at the beginning, middle, and end of the school year; (b)
mentor evaluations of the four target students from each instructional session;
and (c) researcher narratives of observations on cach of the four target students
and their mentors.

The interview assessment based on the Probabilistic Thinking Framework
comprised 20 tasks: five for sample space, four for probability of an event,
seven for probability comparisons. and four for conditional probability. Two
different procedures were utilized to code the interview assessments. The first
procedure, used only with the four target students, involved double coding (Miles
& Huberman, 1994) to establish probabilistic thinking levels 'on each of the
four constriucts over the three assessment points, The second procedure, which
also involved double coding, was used to generate performance scores (maxi-
mun = 20)for all children in the study over the three assessment points. Each
item was scored | or O according to a two-point rubric: 1- children completely
solved and justified thetr solution to the problem: or ) - children were unable to
solve the problem or justify their solution. In order to test differences between
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instructional groups, a repeated measures ANOVA was also carried out using
performance data as the dependent variable.

Data on the four target students were collected on Mentor Summary Evalu-
ations (MSEys) of the children’s probabilistic thinking during cach session. Re-
searcher Narrative Summaries (RNS), based on field notes and video observa-
tions, were also gencrated to describe each target student’s thinking. Multiple
codes were assigned to the 16 MSEs and 16 RNSs based on the framework, and
a “within-case displays™ approach (Miles & Huberman, 1994) was used to docu-
ment changes in each target student’s probabilistic thinking.

Results

The Effect of the Intervention Program:
Analysis of Target Students

Target student analysis yielded four learning patterns: (1) growth in the
development of systematic strategies for listing sample space outcomes was
generally protracted for children who began the intervention at level 1:(2) growth
in probability thinking is inhibited when children do not make connections
between sample space and probability: (3) growth in probabilistic thinking was
more pronounced for children who analyzed probability situations using both
part-part and part-whole relationships; and (4) growth toward numerical proba-
bilistic thinking was enhanced when children were able to use conventional or
valid invented notation for recording probabilities.

With respect to the first two learming patterns, two of the target stu-
dents, Jana and Kerry, were typical of children whose thinking in sample space
restricted their growth in probabilistic thinking. In spite of instruction, both
children were unwilling to identify all of the outcomes in a sample space. or
unable to build a systematic strategy for listing outcomes. Even when Kerry’s
sample space thinking matured toward the end of the intervention, she was not
able to make connections between the sample space and the probabilities of
events within the sample space.

Corey and Deidra, whose thinking profiles were similar to those
Jana and Kcrr) prior to instructicn, illustrate the third and fourth leaming pdt-
terns. [n contrast to Jana and Kerry, these students showed strong and consis-
tent growth across most of the constructs. While Corey and Deidra’s rapid growth
in sample space thinking was an important factor, a more crucial factor wis
their predisposition to use part-part and  part-whole l‘LIdlI()n\hlp\ to analy/
probabilities from a quantitative or numerical perspective. In using these reld-
tionships to deseribe probabilities, Corey used invented notation like 2 out of
6.” whereas Deidra consistently used fractions or pereentages.




The Effect of the Intervention Program: Analysis
of the Two Instructional Groups

The probability performance of «!l children in both instructional groups
was analyzed at each of the three assessment points. (Figure 1) Relevant means
and standard deviations for the three assessment points for each group were,
respectively: Early Instruction—M = 12.44, 8D =2.56; M = 15.39,SD =2.70;
M = 15.00, SD = 2.47; Delayed Instruction—_M = 13.11, SD =277 M =
13.95, SD = 2.32; M = 16.63, SD = 1.54. A repeated measures analysis of
variance revealed significant differences for the three assessment points (E(2,70)
= 12.88, p < .001) and a groups by assessment points interaction (F(2,70) =
6.38, p<.01). Further analysis using the Tukey-HSD test, showed that the inter-
action was disordinal, being produced by significant but reversed differences in
the means of the two instructional groups at the middle and end assessment
points.

Discussion

Although there has been a call for the development and evaluation of in-
structional programs that are informed by research-based knowledge of
children’s thinking, virtually all of the studies responding to this call have fo-
cused on whole number operations and fractions (Fennema, et al., 1993, Mack,
1990). Significantly this study investigated an instructional program that was
informed by a framework describing children’s probabilistic thinking and was
based on a socio-constructivist orientation to learning (Cobb et al., 1993),

— Early instruction Group

= == Delayed Instruction Group

Performance Scores

] |
T 1
Middle tnd

Assessment Points

-

Figure I Performance at Pre, Middle, and Iind Assessiments
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A repeated measures ANOVA, used to evaluate the instructional program,
demonstrated that both the Early and Delayed Instruction groups showed sig-
nificant growth in performance following instruction. Moreover, because the
Delayed Instruction group essentially acted as a control group between the first
and middle assessment points, the significant difference in favor of the Early
Instruction group at the middle assessment point provides further evidence that
learning was not solely due to maturation. This quantitative analysis endorses
the work of Fennema, Franke, Carpenter, and Carey (1993) by demonstrating
that the probabilistic thinking framework can be used to design and implement
an effective instructional program.

Notwithstanding the overall effectiveness of the instructional program, the
size of the standard deviations for both groups at almost all stages of the study
predicate substantial variation in the probabilistic thinking of these students.
Some insights into these variations were revealed from the target student analy-
sis. The differential effects appeared to be linked to four discernible learning
patterns: children’s initial level of thinking in sample space; their willingness
to connect sample space and probability; their predisposition to use both part-
part and part-whole relationships: and their ability to use conventional or valid
invented notation to record probabilities.

Although this study was limited by the fact that instruction was carried out
by mentors rather than by a classroom teacher, a number of implications can be
drawn for probability instruction. Given the effectiveness of the framework in
informing instruction, probability programs could benefit from the develop-
ment of resources which incorporate a cadre of probability problems based on
the constructs and thinking levels of the framework. Further, based on the evi-
dence of mentors working with children in this study, teachers should find the
framework helpful in monitoring children’s probabilistic thinking. in identify-
ing misconceptions, and in fostering learning.

Future research is needed to evaluate the viability of the framework for
monitoring and fostering probability learning in regular classroom situations.
Such research would assess the ease with which clussroom teachers can use the
probabilistic thinking framework to inform instruction. There is also a need for
further rescarch to investigate the long term effects of delaying systematic in-
struction in probability. Given the impressive growth in probabilistic thinking
exhibited by children who had a predisposition to use numbers and invented
notations, there may be merit in delaying systematic instruction in probability
until children have greater “number power.”

References

Acredolo, C., O'Cornor, J., Banks, L., & Horobin, K. (1989). Student’s abil-
ity to make probability estimates: Skills revealed through application of

172




Anderson’s functional measurement methodology. Student Development,
60, 933-945.

Biggs, J. B. & Collis, K. F. (1991). Multimodal learning and the quality of
intelligent behavior. In H.A.H. Rowe (Ed.) Intelligence: Reconceptuali-
zation and measurement (pp. 57-76). Hillsdale, NJ: Erlbaum.

Borovcnik. M. G., & Bentz, H.J. (1991). Empirical research in understanding
probability. In R. Kapadia and M. Borovenik, (Eds.), Chance encounters:
Probability in education (pp. 73-105). Dordrecht, Netherlands: Kluwer.

Cobb, P, Yackel, E., & Wood, T. (1993). Leamning mathematics: Multiple
perspectives, theoretical orientation. In T. Wood, P. Cobb, E. Yackel, & D.
Dillon (Eds.), Rethinking elementary school mathematics: Insights and
issues. Journal for Research in Mathematics Education Monograph Se-
ries. Number 6 (pp. 21-32). Reston, VA: National Council of Teachers of
Mathematics.

Falk, R. (1987). Conditional probabilities: Insights and difficulties. In R.
Davidson and ]I Swift (Eds.), Proceedings of the Second International
Conjerence on Teaching Statistics (pp. 195-221). Victoria, BC: University
of Victoria.

Fennema, E., Franke, M. L. Carpenter, T. P, & Carey, D. A. (1993). Using
students’ mathematical knowledge in instruction. American Educational
Research Journal 30, 555-583.

Fischbein, E., Nello, M. S., & Marino. M. S. (1991). Factors affecting proba-
bilistic judgments in students and adolescents. Educational Studies in
Muathematics, 22, 523-549.

Jones. G. A, Langrall, C. W., Thomton, C. A., & Mogill, A. T. (1997). A
framework for assessing young students’ thinking in probability. Educa-
tional Studies in Mathematics, 32, 101-125.

Jones, G. A., & Thomton, C. A. (1992). Data, chance & probabiliry: Grades
1-3. Lincolnshire, [L: Leaming Resources.

Mack, N. K. (1990). Leaming fractions with understanding: Building on
informal knowledge. Journal for Research in Mathematics Education, 21,
16-32.

Miles M. B.. & Huberman, A. M. (1994). Qualitutive data analvsis. London:
Sage.

National Council of Teachers of Mathematics. (1989). Curriculun; and evalu-
ation standards for school mathematics. Reston, VA: The Council.

Piaget. J. (1970). Srructuralisin. New York: Basic Books.

Piaget, J.. & Inhelder, B. (1975). The origin of the idea of chance in students.
(L. Leake, Jr.. P. Burrell, & H. ). Fischbein, Trans.). New York: W. W,
Norton.

Romberg, T. A.. & Carpenter, T. P. (1986). Rescarch on teaching und learning

mathematics: Two disciplines of scientific inquiry. In M. C. Wittrock (Ed.),

173




Handbook of research on teaching (3rd ed., pp. 850-873). New York:
Macmillan.

Shaughnessy. J. M. (1992). Research in probability and statistics: Reflections
and directions. In D. A. Grouws, (Ed.), Handbook of research on math-
ematics teaching and learning (pp. 465-494). New York: Macmillan.




STUDENT UNDERSTANDING OF STATISTICS:
DEVELOPING THE CONCEPT

OF DISTRIBUTION
Melissa Mellissinos Janet E. Ford Douglas B. McLeod
San Diego State Cuyamaca College San Diego State
University jford@mail.gceed.ce.caus University
mmelliss@cmse.sdsu.edu dmcleod @sciences.sdsu.edu

In the past decade. various countries have produced national mathematics education
reform documents that recominend that students learn to produce, explore and interpret
distributions of data meaningfully. The purpose of this study is to expand on what has
been learned about student notions of the average as a representation of a distribution.
For this paper we report interview data with Jim, a middle school student. We followed
the investigation of Mokros and Russell (1995) and their framewor': for understanding
how children develop an understanding of the concept of mean. Jim did not seem to
fall clearly into any one of the strategy types identified by Mokros and Russell. His
problem solving strategies for finding the mean seem to vary, but at the same time he
maintains a consistent interest in making sense of the results of his computations. Jim
did not appear to make sense of the mean as a statistical measure of a distribution.

Statistics 1s receiving increased attention in school mathematics nationally
and internationally. In the past decade, countries such as Spain, Australia, Great
Britain and the United States have produced national mathematics education
reform documents in which statistics, or data handing, is a main component
(Shaughnessy, Garfield & Greer, 1996). These documents recommend that
students learn to produce, explore and interpret data in a meaningful way. Re-
cently developed statistics curriculum materials, such as textbooks and com-
puter software, appear to have been created in the spint of these recommenda-
tions (e.g., Used Numbers, Connected Mathematics, Advanced Placement Sta-
tistics, Tabletop software and Datascope software). However, because data analy-
sis has traditionally received so little attention in the school mathematics cur-
riculum, the teaching and leaming of statistics has received little attention, and
thus little research is available to support the recommendations.

Shaughnessy etal. (1996) summarize the guidelines in the various natjonal
documents that recommend that students learn to collect and analyze data.
Although it is not stated explicitly, it appears that a central goal of the re¢om-
mendations for school statistics is that students develop an understanding of
the concept of distribution. That is, they should leamn to ereate visual and graphi-
cal representations of datu so that they can “sce™ how the data are distributed;,
they should learn to compute and apply statistics, such as measures of central
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tendency (“center”) and variability (“spread”), as summaries of empirical dis-
tributions; and ultimately, they should learn to make inferences, decisions and
predictions based on distributions. This consensus suggests that a fundamental
aim is that students come to understand the concept of distribution by repre-
senting and summarizing distributions, and that they leamn to think about how
data are distributed in order to make judgments about data sets.

Although little research on student conceptions in statistics is available,
there is a small body of research on student understanding of the average con-
cept. Underlying this concept of center, however, is the more basic concept of
distribution, which enables meaningful interpretation of measures of center (and
other statistics) for a set of data. This is one reason that visual and graphical
displays of data are central to data analysis—such displays enable us to see
how the data are distributed. Research on student understanding of the concept
of distribution is in the early stages, but research on the average as a represen-
tative value of a data set is available.

The purpose of this study is to expand on what has been learned about
student notions of the average as a representative measure. We wanted to fur-
ther clarify what is known about student understanding of the mean concept
and to link our results to classroom practice.

Background

Researchers have studied student understanding of the average concept,
which includes mean, median and mode, from a variety of pe:spectives and
approaches. They have looked at weighted means (e.g., Pollatsek, Lima, &
Well), mathematical properties of the mean (e.g., Strauss & Bichler), balancing
and leveling models of the mean (e.g., Cai & Moyer, 1995; Pollatsek et al.,
1981), and representativeness of the average (Mokros & Russell, 1995; Strauss
& Bichler, 1988). Although these studies have identified important informa-
tion about student difficulties with the average concept, they have revealed little
about how students make sense of an average in the context of the distribution
that it represents or summarizes.

Mokros and Russell (1995) provide some insight into how students make
sense of an average in the context of real data. They studied how children
construct and interpret representativeness for a real data set, and how children
understand the mean and connect it with their informal understanding.

Mokros and Russell believe that “a well-developed notion of representa-
tiveness should include an understanding of the mean and how it works™ (p.22).
Their point of view draws on student understanding of other mathematical prop-
ertics of the mean (e.g., the mean is a number not necessarily in the data set)
and of the mean as a representation of a real data set. Mokros and Russell also
believe that an investigation of student understanding of average should in-
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clude an examination of how a child describes and constructs sets of data. Prior
research studies have not included such an examination.

Mokros and Russell asked children in grades 4, 6 and 8 to solve different
types of problems involving data, including two in which they had to construct
sets of data. One of the data construction tasks is the Potato Chip Problem: In
the first problem, the task was to put price stickers on pictures of nine bags of
potato chips so the “typical or usual or average” price of the chips would be
$1.38. The students were asked to make these price stickers without using
$1.38 (the average value itself) in the data set. (p. 23) In the remaining tasks,
they asked the children to interpret data and to solve at least one problem in-
volving weighted means. They used the words average, typical and usual inter-
changeably to find out which word had meaning for the child, and continued
with that word. The children were given graphs, pictures and other materials
appropriate for each the problem (e.g., price stickers for the Potato Chip Prob-
lem). Mokros and Russell then identified and classified student solution strat-
egies and usually found a preferred approach for each student. They arrived at
five predominant approaches: modal, algorithmic, reasonable, midpoint and
balance point. The modal and algorithmic approaches were characterized as
“approaches in which average is not viewed as representative.” The other three
approaches considered the average to be based on the idea of representative-
ness.

Jim’s Notion of Average

For this paper we report interview data with Jim, who attends a private
church affiliated middle school. He is currently taking a pre-algebra math-
ematics class using a textbook that appears to reflect the vision of the NCTM
Standards in probability and statistics for the middle grades (National Council
of Teachers of Mathematics, 1989). Jim had completed a chapter on basic con-
cepts from statistics, and was familiar with the arithmetic mean, graphing, and
numerous other topics, including stem-and-leaf plots and box-and-whisker plots.
He was also familiar with calculators, and had one available during the inter-
view.

In our study we followed the investigation of Mokros and Russell (1995)
and their framework for understanding how children develop an understanding
of the concept of mean. The interview began by asking Jim to read the Potato
Chip Problem. Jim’s first reaction after reading the problem was one of confu-
sion: he thought it was a “trick question” because he was not supposed to use
$1.38 as one of the prices. After several probes Jim finally understood the task,
and used a process of trial and error to solve the problem.

He confidently wrote down nine prices with the lowest $1.27 and the high-
est $1.50. He did not write the nine numbers in any particular order; he pro-
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ceeded quickly and confidently, and did not appear to have any specific method
for constructing the prices, except that they were all realistic, and all relatively
close to the target price ($1.38). He added the numbers on a calculator, divided
by 9, and asked if he could round up to $1.37. He appeared surprised that he
came so close on his first try. Jim revised his list by reducing one of the prices
of the bags by $0.01. Then he decided to add his new list without using the
calculator, even though the only change he had made was to reduce one of the
prices by a penny. When he completed his total “by hand” he got the wrong
answer, but with a little prompting, he recognized that the correct total would
have to be one cent less than his previous answer. At this point, his strategy
solidified, and Jim continued to add to his total, getting closer to the desired
sum, 9 x $1.38.

The interviewer reminded Jim that he had not yet solved the problem, since
he had not assigned prices to the potato chips. When it did become apparent to
him that he needed to price each bag of chips, he returned to his original list of
nine prices and changed one price from $1.31 to $1.39 because he needed to
add eight cents to his original total.

Jim did not seem to fall clearly into any one of the strategy types identified
by Mokros and Russell (1995). He used the “average as an algorithm” strategy
but clearly went beyond that level. When he listed his nine reasonable prices
for the bags of chips, Jim showed evidence of the “average as reasonabie” strat-
egy. He did not appear to use the “average as a midpoint” and & nce his
prices. He almost demonstrated using average as a “‘point of balance,” how-
ever, because he appeared to understand the quantitative relationship between
the total and the average; he was able to go back to his original list and accom-
plish his goal by changing the price on one bag by eight cents.

Among the additional tasks used in this interview was the Elevator Prob-
lem, adapted from Pollatsek et al. (1981). This task dealt with weighted means:
could 6 men averaging |80 pounds and 4 women averaging 125 pounds all ride
on an elevator with a weight limit of 1500 pounds. Jim was also asked to find
the average weight of the 10 people on the elevator. This task was a challenge
for Jim, although with some questioning from the interviewer he was able to
solve the Elevator Problem.

After Jim finished solving these two problems (plus two additional prob-
lems not discussed here) he was asked if he had done similar problems before.
He replied that he had done statistics in his mathematics class, but “‘not with
elevators,” just with “lots of apples, lots of furmers, and lots of fences.” He
thought the problems were “pretty easy.” but he said, “‘the one that really made
me think was the first one.” Jim'indicated that after thinking carefully about
the tirst one, he had a new understanding of the relationship of “the total amount
like in exercise one {the Potato Chip Problem]” and the mean. He was able to
use this new understanding in the other tasks that the interviewer presented to
him.




Although Jim's understanding of the mcan is not well developed, he has a
number of characteristics that make him an interesting subject. Jim knows the
algorithm for finding the mean. His problem solving strategies for finding the
mean seem to vary, but at the same time, he maintains a consistent interest in
making sense of the results of his computations. He shows some tendencies
toward thinking of the average as a point of balance, but it appears to be his
keen number sense that allows him to solve problems like those in this study.
Jim thus thinks about the mathematical properties of the mean, and probably
does not think about the mean in a statistical way, as a representation of a distri-
bution.

Discussion

This report focuses on the interview with Jim, but in other interviews (not
reported here), students in high scho2! and college were unable to solve the
Potato Chip Problem (e.g., Mellissinos, 1997) and the Elevator Problem
(Pollatsek et al., 1981). Like Jim, inany students who have shown difficulty
with these problems knew the algor thm for finding the mean. One reason for
the student difficulties may be that s:udents have not learned to think about the
mean as a representative measure of a distribution.

Mokros and Russell explain their notion of representativeness as follows:
“As soon as there is the need to describe a set of data in a more succinct way,
the notion of representativeness arises: What is typical of these data? How can
we capture their range and distribution?” (p. 20). Their notion of representa-
tiveness involves capturing z distribution of data, but they use the terms “distri-
bution” and “data set” interchangeably, so it is not clear exactly how they inter-
preted and established representativeness. These terms may be distinguished
as follows: A data set is a collection of measurements of one or more character-
istics (of objects or people). A distribution is an attribute of a data set that
communicates how measurements in a data set are distributed across its range
of values. This distinction is more than a matter of semantics. In a substantial
way, Mokros and Russell based their study of children’s concepts of the aver-
age as representative on the concept of distribution. Yet it is not clear how
Mokros and Russell think about the concept of distribution themselves. With-
out a clear idea about distribution, it is difficult to make inferences about stu-
dent notions of representativeness.

Without a clear idea about distribution, it is also difficult to make sense of
data and data descriptions, such as statistics (e.g., mean) and graphs (e.g., his-
tograms). Computer technology offers potential for students to come to under-
stand the notion of distribution because it allows students to visually explore
data. They can easily compute statistics and create graphs, rather than spend
time calculating statistics and drawing graphs with pencil and paper. The use
of computer technology, however, does not ensure that students will learn to
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make sense of data. Student exploration of data must be guided by appropriate
curriculum materials and instruction. If we better understand student notions
about distribution, curriculum developers and teachers may be better able to
facilitate student understanding of statistics.

References

Cai, ], & Moyer, J. C. (1995). Middle school understanding of average: A
problem-solving approach. In D. T. Owens, M. K. Reed, & G. M. Millsaps
(Eds.), Proceedings of the SeventeenthAnnual Meeting of the North Ameri-
can Chapter of the International Group for the Psychology of Mathematics
Education, (Vol. 1, pp. 359-364). Columbus, OH: The ERIC Clearing-
house for Science, Mathematics, and Environmental Education.

Mellissinos, M. (1997). Student difficulties in introductory statistics. In R. M.
Fossum, R. J. Daverman, S. J. Friedlander, W. A. Harris, & L. M. Sibner
(Eds.), Joint mathematics meetings, (Vol. 18, pp. 178-179). San Dicgo, CA:
American Mathematical Society.

Mokros, 1., & Russell, S. J. (1995). Children’s concepts of average and repre-
sentativeness. Journal for Research in Mathematics Education, 26(1), 20-
39.

National Council of Teachers of Mathematics. (1989). Curriculum and evalu-
ation standards for school mathematics. Reston, VA: Author.

Pollatsek, A., Lima, S., & Well. D. (1981). Concept or computation: Students’
understanding of the mean. Educational Studies in Mathematics, 12, 191 -
204.

Shaughnessy, J. M., Garfield, J., & Greer, B. (1996). Data handling. Tn A, J.
Bishop, K. Clements. C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), Inter-
national handbook of mathematics education (pp. 205-237). Dordrecht,
The Netherlands: Kluwer.

Strauss, S., & Bichler, E. (1988). The development of children’s concepts of
the arithmetic average. Journal for Research in Mathemaiics Education,
19(1), 64-80.




PRE-SERVICE SECONDARY SCHOOL MATHEMATICS
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In 1989 the NCTM Curriculum and Evaluation Standards for School Math-
ematics included a goal for secondary school students which stated, “The math-
ematics curriculum should include the continued study of data analysis and
statistics so that all students can . . . use curve fitting to predict from data.”
Many studies have found that students develop increased conceptual under-
standing when taught mathematics using technology (Lauten, Graham, &
Ferrini-Mundy, 1994; Marshall, 1996). But studies show that many students
still have difficulty with graphical interpretation in general and with the rela-
tionships between graphical and symbolic representations in particular
(Leinhardt, Zaslavsky, & Stein, 1990). .

One of the interesting phenomena that was observed during this study was
the difference in the treatment of numeric data presented in the problem and
subject generated data. Whereas all of the subjects used the calculator as a tool
to generate symbolic representations of the data presented in numeric form, not
one subject attempted to produce such a solution to the tasks that were pre-
sented in problem format despite the fact that all of them attempted to solve the
tasks by generating numeric data almost identical in form and format to the
numbers presented in the other problems. All of the subjects attempted to solve
the tasks numerically without attempting to graph or fit curves to any of the
data that they produced. Initial analysis of the data contained in this study
suggests that pre-service mathematics teachers have an incomplete understanding
of data analysis and curve fitting.
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The purpose of this paper is twofold: (a) to examine one teacher’s knowl-
edge of pictorial representations about conditional probability (CP), and (b) to
examine the difficulties that the teacher faced when constructing some of the
representations of this topic. The research reported here is part of a larger project
(Contreras, 1997). I asked the participant to create a pictorial representation for
three concepts related to CP using interviews and questionnaires. The inter-
views were audiotaped and transcribed. The three concepts examined were: (a)
The definition of CP as P(A | B) = Area (A«B)/Area (B), (b) the definition of

P(ANB
CPasP(AIB)= —-—(T(E)—) and (c) the conditional probability formula, P(A

« B) = P(B)P(A | B). The teacher was able to construct a correct pictorial
representation for each of the three concepts. Regarding difficulties, the par-
ticipant did not struggle to provide a correct pictorial representation for (a) nor
(c). Tasked the participant to construct a pictorial representation for (c) twice
because the first time he did not state explicitly why the pictorial representation
he first constructed illustrated P(A « B) = P(B)P(A | B). During the second
time some understanding of why the pictorial representation illustrated P(A M
B) = P(B)P(A | B) was explicit. The case (b) was more problematic because the
participant was not able to construct a pictorial representation during three oc-
casions. It was when the participant was working to provide a word problem
for (b) that he had an insight on its pictorial representation. He then constructed
the pictorial representation requested. The poster will display a sample of the
pictorial representations and an analysis of the participant’s thinking behind
the representations (o illustrate the complexity of his knowledge.

Reference

Contreras, J. N. (1997). Teachers' ways of knowing and reaching: A class-
room investigation of one experienced teacher’s use of his knowledge of
both mathematical and pedagogical representations about algebraic mul-
tiplication. Unpublished doctoral dissertation, The Ohio State University,
Columbus, OH.




FuNCTIONS AND GRAPHS




HI
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STUDENTS’ CONCEPT IMAGES OF FUNCTION
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This paper discusses the feasibility of using the function concept as a core idea in a
technology-rich, college developmental mathematics course. Written surveys, before
and after a “pilot” beginning algebra course, and task-based intervicws are used to
build a profile of developmental algebra students’ concept image of function. Some
quantitative results along with contrasting partial profiles of two siudents are discussed.
The data suggest that the target students can develop, minimally, a process-level under-
standing of function, though the profiles indicate how complex and uneven the result-
ing understanding often is. The research suggests that using function as a core concept
in developmental mathematics has potential, but particular attention must be paid to
specific problem areas, such as graphs and the connections between various represen-
tations.

Introduction

U.S. college mathematics faculty encounter a sizable percentage of stu-
dents who begin their college career in a non-credit mathematics course such
as arithmetic, geometry, beginning algebra, or intermediate algebra. It is likely
that many developmental algebra students have been severely debilitated by
their previous exposure to mathematics. Succeeding with this population may
require providing the students with a completely different educational experi-
ence, such as building a beginning algebra course around the function concept.

The theoretical framework for this research was initially described by
DeMarois and Tall (1996) who suggest a structure for analyzing mathematical
concepts along both breadth and depth dimensions. Schwingendorf etal. (1992)
contrast the vertical development of function in which the process aspect is
encapsulated as a function concept and the horizontal development relating
different representations. They refer to these as depth and breadth respectively
and investigate the way in which the student’s concept image (Tall & Vinner,
1981) of function can be described in terms of these two dimensions.

DeMarois and Tall (1996) use the term “layer” to refer to various levels of
the depth dimension in the development via cognitive process to mental object.
The depth dimension has been discussed extensively in the literature, including
Dubinsky’s APOS construction (Cottrill et al., 1996; Breidenbach et al., 1992;
Dubinsky & Harel, 1992), Sfard’s (1992) process acting on familiar objects
which is first interiorized, then condensed. and finally reified as an “object-like
entity,” and Gray and Tall’s procept theory (1994). Following Davis (1983),
Gray and Tall distinguish between a process that may be carried out by a vari-
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ety of different algorithms and a procedure that is a “specific algorithm for
implementing a process” (1994, p. 117). A procedure is therefore cognitively
more primitive than a process. In the framework for this research, pre-proce-
dure, procedure, process, concept, and procept are considered layers of increasing
depth in the understanding of a concept. The breadth dimension is conceived as
consisting of various representations, including geometric, numeric and sym-
bolic. DeMarois and Tall use the word “facet” to build up a description of the
breadth dimension. The facets of a mathematical entity refer to various ways of
thinking about it and communicating to others, including verbal (spoken), writ-
ten, kinesthetic (enactive), colloquial (informal or idiomatic), notational con-
ventions, numeric, symbolic, and geometric (visual) aspects.

This research focuses on the understanding of function that students ac-
quire as a result of completing a technology-rich, “reform” beginning algebra
curriculum (DeMarois, McGowen & Whitkanack, 1996) in which “function”
is the key concept and graphing calculators are required. Can adult students
who arrive at college having had debilitating prior experiences with algebra
develop a rich concept image of “function” through appropriate instructional
treatment? Analysis of written responses to pre- and post-course surveys sug-
gests statistically significant positive shifts in students’ ability to answer ques-
tions involving function machines, equations in two variables, two-column tables,
and graphs. Analysis of task-based interviews suggests that student understand-
ing of various facets is sometimes deep and mature and other times shallow and
misinformed.

Method

The study was conducted on students enrolled in “pilot” sections of begin-
ning algebra at 4 different community colleges. Ninety-two students completed
written function surveys at the beginning (first day) and at the end (last day) of
the course during the Fall Semester, 1996. Subsequently, three students at each
site participated in task-based interviews which were conducted one to two
weeks after the end of the course. The interviews were video- and audio-taped.
All questions on the pre-course survey were repeated on the post-course survey
and on the interviews. Additional questions on the post-course surveys were
also asked during the interviews.

The common questions on the pre- and post-course surveys were analyzed
quantitatively by measuring the significance of the changes in responses from
beginning to end of the instructional treatment. The data collected during the
interviews along with the written surveys were analyzed qualitatively to create
before and after snapshots of the depth of student understanding of function.
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Results

Due to space confines, partial quantitative and qualitative results on collo-
quial, symbolic, numeric, and geometric facets will be presented. Students were
asked the same question about each of these facets on all 3 instruments: Ques-
tion 1 involves a linear function expressed as a function machine; Question 2
involves a linear function expressed as an equation in two variables; Question 3
involves a quadratic function expressed as an input/output table; Question 4
involves a quadratic function expressed as a rectangular coordinate graph. Stu-
dents were asked to find the output given the input (part a) and the input given
the output {part b) thus assessing students’ ability to apply a procedure (proce-
dure layer) and reverse a procedure (process layer) for the colloquial (function
machine), symbolic (equation in two variables), numeric (table), and geomet-
ric (graph) facets. A comparison of students’ scores on pre- and post-course
surveys appears below.

Number correct Pre- vs. Post-course surveys (n = 92)

One point was awarded for a correct answer to part a and 2 points for a correct
answer to part b. The additional weighting for part b reflects the added difficulty
inherent in the “reversal” of the function. Since 3b and 4b had 2 answers, students
were given | point for each correct answer. Each question is broken into parts
a, b, and total score. Questions 3 and 4 are further subdivided depending on
whether the student gave one or both correct answers to part b. On all four
questions, a t-test for related cases indicates a significant positive change in
total score from pre- to post-course survey (Question 1: t =4.07; Question 2: t
=4.61; Question 3: t = 5.16; Question 4:  t = 7.56. For all questions, df = 91
and p < 0.0005).




CH and GK are students in the same class who participated in the inter-
view. CH is a female between 21 and 25 years of age who had 1.5 years of
algebra prior to coming to college. CH eamed an A in the beginning algebra
course. Throughout her interview, she appears happy and confident, constantly
smiling and anxious to attack each question. GK is a male between 30 and 35
years of age who had 1 year of algebra prior to coming to college. GK barely
earned a C in the course. His face during the interview expresses utter agony.
As a student of math he says he is very poor. He offers: “I don’t seem to grasp
it. It goes in one ear and out the other. It is very frustrating. I have one C in
school and that was in this class.”

CH’s and GK'’s scores on Questions 1-4 (1 point for part a, 2 points for part
b possible) appear in Table 1 along with their responses to the same questions
on the interview.
The data suggest that CH was at the process layer at the beginning of the course
on the colloquial (function machine) facet and possibly the numeric (table)

Table 1 Points Awarded Pre-Course , Post-Course, Interview CH and GK

_Question_1_ Question 2 . Question 3. . Question 4.
— —_...Pre Post Int___ Pre Post_Int___Pre Post _Int___. Pre Post Int .
CHa 1 ] 1 1 1 1 1 | 1 0 1 1
CHb 2 2 2 o 2 2 1 2 2 0o 2 2
GKa |1 1 ] 0 1 1 0 1 1 0 1 0
GKb 0 0 2 0 2 0 0 0 1 0 0 0

facet. By the end of the course, she had moved at least to the process layer on
all 4 facets and demonstrated retention of her knowledge from the post-course
survey to the interview. GK began the course at the procedure layer on the
colloquial facet only. By the end of the course, he appears to be at the process
layer on the symbolic facet though he couldn't demonstrate this during the
interview. GK moved to the procedure layer on the numeric facet, remained at
the procedure layer on the colloquial facet and at the pre-procedure layer on the
geometric facet. Furthermore, he was inconsistent on several responses between
the post-course survey and the interview,

A specific interview question investigated the boundaries that exist between
three facets. An cquation, a table, and a graph are displayed below for the same
function,
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Students were asked a series of questions involving finding outputs given inputs
and vice versa. Students were first asked to find the output if the input is —5.
Both CH and GK responded with 30 immediately and indicated they used the

table. Notice GK’s comment regarding his preference.
GK 30. I used the table. It’s a lot easier than messing around with
the graph or using trace or zoom in. I like the tables.

Next they are asked to find the output if the input is 4. Note that this input does

not appear in the table. CH responded correctly using the graph. GK’s response
is most interesting.

GKX It’s not showing on my table. If I had the calculator I'd scroll
up or down then I'd hafta ..—6.

Intvw Tell me what you are doing.

GK  Well the input is 4 so first I'd square it and then 3 times 4 is 12
subtract it and subtract 10 to get —6.

Intvw Okay-continue.

GK I plugged 4 in for x. In the equation.

Noteworthy is the fact that he avoided the graph, but was able to evaluate the
function at 4 quite easily. The interview then shifted to asking students for
outputs given inputs.

Intvw  What are the input(s) if the output is (?

CH (Looks in table) -2. (Switches to graph) And 5. First [ use the
table and then I looked at graph, saw the parabola, and saw
there was another answer.

GK Input is a -2. Table.

Intvw  Are there any others?

GK Not that I can-see from this table.

Intvw Okay. Any possibilitics from the other forms?
GK Probably but I just don’t know.
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While CH displayed a capability of using two facets simultaneously, GK was
unable to move to the graph never locating the second input. GK remained
firmly tied to his favorite facet: the table. CH’s ability when given the output of
0 to use the table and graph simultaneously without prompting suggests she
crosses this boundary easily. GK is much less flexible. He was unable to use the
graph at all and was only able to use the equation procedurally.

Discussion

Comparison of pre- and post-course surveys indicates that students were
able to demonstrate improved capabilities in interpreting a function defined:

1. by a function machine both from input to output and vice versa.
2. symbolically both from input to output and vice versa.

3. by atwo-column table both from input to output and vice versa.
4. by a graph both from input to output and vice versa.

The data suggest that function machine may serve as a good entry point to
function noting the high percentage of students capable of using that facet at
the beginning of the course. On the other hand, graphs prove particularly difficult
for students as indicated by the low success rate at the end of the course on this
facet.

The interviews indicate that the growth of the concept image of function in
students is complex and uneven. The cognitive links between facets is some-
times nonexistent, sometimes tenuous, and sometimes unidirectional. We see
that, by the end of the course, CH was equally comfortable with a function
machine. an equation, a table and a graph, but GK was really only comfortable
with the table and function machine though he did indicate some ability with
the equation. He virtually froze when any question arose relating to graphs.
Keep in mind that this problem with graphs persists in a technology-rich envi-
ronment in which students were required to buy and use graphing calculators
throughout the course.

The student population, including CH and GK, for this research is a high-
risk group who have had little prior success with mathematics. Using “func-
tion” as a focal point of their beginning algebra course, the authors hope to
provide students with a vehicle to build meaning into their work with algebra.
While some common misunderstandings about function appear in the data, the
in-depth analysis suggests that function is not beyond the conceptual grasp of
students at this level. Initial indications point to particular problems with graphs
indicating some change in the curriculum to address these areas. Crossing bound-
aries from one facet to another proves difficult with students exhibiting incon-
sistent definitions when looking across facets.
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PRESERVICE TEACHERS’ COGNITIVE
APPROACHES TO VARIABLES AND FUNCTIONS!

David B. Klanderman
Trinity Christian College
dave.klanderman @tmty.edu

This study identifies different cognitive approaches to the concepts of functions and
variables used by preservice teachers. In particular, the difficulties which arise with the
concepts of variables and functions are described. Twenty-five undergraduate clemen-
tary and secondary school preservice teachers completed the Chelsea Diagnostic Math-
ematics Test for Algebra and a researcher-developed instrument focusing on the func-
tion concept. After the written instruments were completed, one-to-one individual in-
terviews were conducted. Preservice teachers were assigned four levels of understand-
ing both variables and functions. Almost all of the preservice teachers successfully
worked with functions using sequential reasoning. but many struggled to produce equa-
tions for the general relationship. The findings indicate that a high-level of understand-
ing of functions is always accompanied by a high-level understanding of variables but
not necessarily vice versa.

Statement and Significance of the Froblem

Perceiving a need to help those who arc preparing to teach mathematics at
both the elementary and the secondary school levels, this study attempts to
describe undergraduate preservice teachers' levels of understanding and the
difficulties which arise with the concepts of functions and variables. Functions
and variables are central to the study of many areas of mathematics including
algebra and calculus. Furthermore, the Standards (NCTM, 1989, 1991) em-
phasize that preservice teachers must possess content knowledge of concepts
such as functi ns and variables with sufficient depth and breadth in order to
later help thei. students leamn and understand these concepts.

Theoretical Framework

This study 1s built on a research framework which includes the work of
many researchers on constructivism (e.g., Piaget et al., 1977; von Glasersfeld,
1991), the epistemology of the function concept (e.g.. Confrey, 1991 Even,
1990; Inhelder & Piaget, 1958: Piaget et al., 1977; Wilson, 1992), different
approaches to variables (e.g.. Collis. 1975: Kuchemann, 1978, 1981). and knowi-
edge acquisition under different modes of representation (e.g., Moschkovich et
al. 1993; Praget et al., 1977).

“The rescarch for this article is based upon the author's recently completed doctoral
dissertation. This dissertation was completed under the direction of Dr. Helen Khoury,
i the Department of Mathematical Sciences, at Northern Hlinois University.
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This study uses the four levels described by Piaget and his colleagues
(Inhelder & Piaget, 1958; Piaget et al., 1977) as a way to classify the preservice
teachers’ understanding of the function concept. These four levels include: a
failure to link the two variables in any systematic manner, an ability to com-
plete ordered pairs on a trial and error basis but without an ability to coordinate,
a sequential linking of the ordered pairs with a qualitative relationship, and a
generalized and quantitative relationship.

This study also addresses the different approaches to the concept of a
variable as described by Collis (1975) and applied by Kuchemann (1978, 1981).
These approaches to letters (variables) include: letter evaluated, letter ignored,
letter as object, letter as specific unknown, letter as generalized number, and
letter as variable.

Research Methodology
Students

Atotal of 19 elementary school preservice teachers and six secondary school
preservice teachers participated in this study. All 25 preservice teachers were
enrolled at a small private liberal arts college in the Midwest of the United
States. The six secondary preservice teachers, three males and three females,
had each completed three semesters of calculus and at least two advanced
courses. These students were enrolled in a course focusing on methods of
teaching mathematics in the secondary school. The 19 elementary preservice
teachers, one male and eighteen females, varied in their mathematical back-
grounds, ranging from one year of high school algebra to some experience with
calculus. These students were enrclled in the first course in a two semester
sequence of content mathematics courses for elementary education majors.

Data Collection and Analysis

After initial data was collected concerning these preservice teachers’ un-
derstanding of the variable concept using the Chelsea Diagnostic Mathematics
Test for Algebra (Brown et al., 1984), a second written instrument was com-
pleted which focused on the preservice teachers’ levels of understanding of the
function concept. The different functional situations on the written instrument
are set in a variety of different representational modes, including tabular, sym-
bolic, graphical, and real woild setting.

After the written instruments were completed, individual interviews were
held between the researcher and each preservice teacher. These interviews
each lasted approximately fifty minutes and focused on both the previously
completed written work and several additional problems concerning functional
relationships. The interviews were videotaped and later transcribed by the re-
searcher. The written instruments and videotaped interviews constitute the data
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used to document these preservice teachers’ levels of understanding variables
and functions.

Results and Discussion

All six of the secondary preservice teachers passed all four performance
levels and seemed to demonstrate an understanding of variables which could
be classified as both procedural and relational (Hiebert & Lefevre, 1986; Skemp,
1978). The results with the 19 elementary preservice teachers were more con-
sistent with the findings of Kuchemann (1981), which focused on secondary
school students. Forty-two percent (n = 8) of the elementary preservice teach-
ers were unable to pass the highest performance level. These students relied
almost exclusively on procedural understandings of the variable concept, typi-
cally applying the letter evaluated and letter as object approaches. Even among
the 11 elementary preservice teachers whoe passed all four performance levels,
few of these students demonstrated a relational understanding of the variable
concept, as they struggled to apply the letter as generalized nurmber or letter as
variable approaches.

Several different cognitive approaches to functions were demonstrated by
these preservice teachers. When problems were given in a tabular mode. a few
of the elementary preservice teachers seemed unable to coordinate or covary
the input and the output variables. In these instances, a pattern observed in the
output variable was extended without regard to changes in the input variable.
Their written responses did not demonstrate any knowledge of a generalized
relationship between the input and output variables.

Other preservice teachers seemed able to covary the input and output vari-
ables but these covariations were restricted to a sequential approach. Thus,
when the input variable skipped several integers, these students inserted the
missing input values, either implicitly or explicitly, and then continued the pat-
tern sequentially until the final output was found. These preservice teachers
were unable to provide a generalized equation or other description of the un-
derlying function. In several cases, the written explanations and interview tran-
scripts demonstrate that these preservice teachers recognized that a generalized
description did exist but that they could not find one. Among the six secondary
preservice teachers, two applied this approach for an exponential function placed
in a real-world setting and one applied this approach to both linear and expo-
nential functions placed in a tabular setting. These findings seem to indicate
that while these preservice teachers had prior experience with functions, they
might have benefited from a greater emphasis on the search for and description
of generalized patterns and relationships.

Finally, some of the preservice teachers were able to apply both sequential
and generalized approaches to functions. Among the 19 elementary preservice




teachers, the number demonstrating both approaches varied from only 16% (n
= 3) on both linear and exponential functions set in the tabular mode to 74% (n
=15) on a linear function set in the real-world mode. By contrast, the number
of secondary preservice teachers demonstrating both approaches ranged from
67% (n = 4) cn an exponential function set in the real-world mode to 100% (n
=6) on both linear and quadratic functions set in the real-world mode. Preservice
teachers demonstrating these cognitive approaches appear not only to have both
the necessary prior experience with functions but also to have constructed a
concept of function which can be generalized, especially when functions are
set in the real-world mode.

The results of this study seem to confirm Inhelder and Piaget's (1958) con-
jecture that there are different levels of understanding for the function concept.
Since this study was not longitudinal, it could not establish whether or not the
levels were hierarchical stages through which each student must pass. Rather,
this study represents a snapshot of the levels at which these preservice teachers
were operating at the time. The study found that the sequential approach to
functions, or Level 3. is most common among elementary preservice teachers
while the generalized approach to functions, or Level 4, is most common among
secondary preservice teachers.

In addition to confirming the existence of these Piagetian levels of under-
standing the function concept, this study extends this area of research by re-
porting a relationship between the preservice teachers’ level of understanding
variables and their levels of understanding functions. In particular, the results
suggest that a high level understanding of the function concept is associated
with an equally high or even higher level of understanding of the variable con-
cept. The study also found cases where a Level 4 understanding of variables
was not associated with a Level 4 understanding of functions but the opposite
phenomenon was not observed among the 25 preservice teachers in the study.

Specifically, out of the 25 preservice teachers, 68% (n = 17) demonstrated
a Level 4 understanding of the variable concept. Within this group of 17, only
6 demonstrated a generalized approach to functions in every problem setting, 9
showed a generalized approach in some of the problem settings, and 2 used
strictly sequential approaches for functions. Thus. for this group, a high level
understanding of the variable concept seems necessary but not always suffi-
cient for a high level understanding of the function concept. Among the re-
maining 32% (n = 8) of the preservice teachers, all elementary, their under-
standing of the variable concept ranged from Level 1 to Level 3, but none were
able to apply a general approach for functions on a consistent basis.

Implications

This study has several important implications. First, several individual
conclusions highlight several different ways that preservice teachers approach
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variables. The secondary preservice teachers were able to approach variables
in a generalized manner, whereas most of the elementary preservice teachers
used a more procedural or instrumental approach to variables. The differences
in mathematical backgrounds provide a possible reason for these differences.
Even among the elementary preservice teachers, those who demonstrated a
Level 4 understanding of variables usually had taken three or four years of high
schooi mathematics while some of those who did not pass Level 4 did not take
a second year of high school algebra. Thus, since a generalized understanding
of variables is essential to teachers at the middle school level, this study might
be used to argue in favor of requiring the equivalent of four years of high school
mathematics for all teachers whose certification includes the middle school
level.

Second, a similar and equally important impiication would apply to the
result on preservice teachers’ levels of understanding functions. Most of the
elementary preservice teachers used a sequential approach to functions and
experienced difficulty with exponential functions, while most of the secondary
preservice teachers used a generalized approach and demonstrated success with
linear, quadratic, and exponential functions. Once again, mathematical back-
ground appears to be one key factor, although cognitive development may also
play a role. Since patterns in general and functions and relations in particular
are being introduced in the middle school, the breadth and depth of the math-
ematical requirements for those teachers whose certification includes the middle
school level may need to be reexamined in light of this study.

Third, this study identifies a link between the concepts of variables and
functions. The finding that a majority of the elementary preservice teachers
passed all four performance levels for variables while only two elementary
preservice teachers demonstrated a Level 4 understanding of functions might
mean that these students need more learning experiences which require the
student to coordinate two variables.
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INVESTIGATING STUDENTS’ KNOWLEDGE AND
DEVELOPMENT OF FUNCTIONS IN A
TECHNOLOGY-ENHANCED PRECALCULUS
CLASS: A CONCEPTUAL FRAMEWORK

Armando M. Martinez-Cruz
Northern Arizona University
armando.martinez@nau.edu

Teaching and learning mathematical functions is an area that is being greatly
influenced by the use of graphing technology (graphing software and graphing
calculators) which allows users to have prompt access to multiple representa-
tions of functions including tables, equations and graphs. An increasing body
of research on learning functions with graphing calculators suggests that its use
can help students to integrate different representations of functions, which in
turn should help to provide foundations for a more formal conception of func-
tions. This session describes the conceptual framework that guided the data
collection and data analysis to investigate students’ knowledge and develop-
ment of functions in a high-school precalculus course enhanced with graphing
calculators over a period of nine months. The framework incorporated histori-
cal and psychological contributions (processes and objects) to the development
of functions; concept image and concept definition; and multiple representa-
tions. Concept images took into account the different ways of thinking about a
mathematical entity (geometric, symbolic and familiar examples among oth-
ers) and students’ experience (pedagogy and use of technology) with math-
ematical functions in this technology-enhanced class. At the end of the study,
we revised the framework to incorporate findings from this research. In par-
ticular, three models (graph, equation and unique correspondence) of students’
thinking about functions (Martinez-Cruz, 1995) are included in the revision.
The presentation will conclude with implications of the modified framework
for further research on learning functions in a technology environment.
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UNDERSTANDING OF THE ASYMPTOTIC BEHAVIOR
OF A FUNCTION
Antonio Arellano, Francisco Cordero & Asuman Oktag.

Centro de Investigacion y Estudios Avanzados del IPN. México
arellanosoun.red.cinvestav.mx

The study tries to explain the nature of the understanding of students of the
concepts that are in relationship to the asymptotic behavior of the function.
The explanation will be based upon the framework of the sequential mental
constructions that the student makes: actions, processes, objects and schemes.

Specifically, we are analyzing what the student can construct when she or
he attends a situation of asymptotic behavior. In this sense we are asking about
the following aspects:

Which are the main relationships between visual and analytic acts that the
student needs in a situation where, the asymptotic has vertical direction or hori-
zontal direction, the representation of the variable zero and variation zero play
an important role, comparison between graphs are stabled taking in to account
the behavior of the graphs, there are different kinds of asymptotic behavior in
relation with a accumulation point, convergence, and stay or stationary state?

The analysis of these aspects must provide elements that explain the dis-
equilibrium points of the students. So, the analysis will be based on the frame-
work of the menial constructions derived from the concept of reflection ab-
straction. In this sense, the mathematical knowledge and their acquisition is
described in terms of schemes of the concepts. A collection of processes and
objects could be organized in a structured way in order to form a scheme. [he
same schemes could be tried like objects and included in the organization of
schemes at a higher level.

We will apply a mechanism that starts from a theoretical perspective for-
mulating a episternological framework of the concepts. It will check the hy-
pothesis based the epistemological framework, and we will try to describe the
links between mental constructions and understanding and how these are actu-
alized by the student. The description of the links will be shown like a *struc-
ture of development”.

At present, we are designing situations and activities using graphics calcu-
lators.
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TEACHING FUNCTIONS IN THE ELEMENTARY
YEARS

. Mindy Kalchman
Ontario Institute for Studies in Education of the University of Toronto
mkalchman@oise.utoronto.ca

The concept of a function, traditionally introduced in grade nine. is ex-
tremely difficult for students of all ages to master. Research suggests two areas
of particular difficulty: 1) understanding simple quantitative relations (e.g.,
Dreyfus & Eisenberg, 1984), and 2) translating among equivalent representa-
tions of a function (e.g., Markovits, Eylon, & Bruckheimer, 1986). In the present
study a mini-curriculum was designed to improve grade six students’ (N = 20)
intuitive understanding in both these areas, thus laying the groundwork for more
formal study in later years.

(1) Quantitative relations. Quantitative relations were introduced using the
example of a Walkathon, in which money eamed (y) depended on the distance
walked (x). Students worked on and invented problems related to the Walkathon
scenario, in which different rules were used for relating two variables.

(2) Translating among representations. Students were introduced to a stan-
dard computer graphing program, namely LOTUS 1-2-3. This program was
configured to help students move among different representations, including
algebraic, numeric, graphical, and natural language. Exercises involved the
invention of new functions, and the exploration of the consequences of para-
metric variation using existing functions.

Pre and post test measures showed a strong and significant improvement in
both of the above areas. Children’s improved intuitions were also evident in
interviews that were conducted and in explanations that were requested for test
answers. The findings suggest implications for including an introductory func-
tions unit in elementary mathematics curricula.
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STUDENTS’ UNDERSTANDING OF FUNCTIONS

Lisa Clement
San Diego State University
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The questions under investigation were those of determining: 1) what ad-
vanced high school students understand regarding the concept of function; and
2) to what extent their skills knowledge of functions is an indicator of their
understanding of the underlying concepts. The subjects were 35 high school
students enrolled in a precalculus course at a high schoel known for its rigorous
academic programs. Two tests were administered to all subjects: one, a skills
test; the other a conceptually based test. Five students were then interviewed
individually. The skills test was used as a measure of students’ skills knowl-
edge. The concept test and interviews provided the data for measuring the stu-
dents’ conceptual understanding of function.

Scores on the Concept Test (M=44%) were much lower than the scores on
the skills test (M=64%). Results replicate, for the most part, those found in
previous research studies with undergraduates. The students tended to think of
functions as graphs that pass the vertical line test: and that functions had to be
continuous, involve numbers only, and have a single domain. Unlike the stud-
ies with undergraduates, the subjects also tended to reject some functions in
graphical form if they had not seen the functions so noted by a teacher or text-
book, even if the function passed the vertical line test. Some students appeared
to be more dependent on their teacher and textbook for assurance of functional-
ity than on personal experience. Linking families of functions with their differ-
ent representations proved much more difficult for students than linking func-
tions given explicitly. Across-time problems were also difficult for students to
solve. In addition, most had difficulty viewing a function as an object itself;
rather, they saw the graphical or analytical form of a function as the function
itself, not as a representation of it.

Some explanations of the findings may be that: the students’ teachers did
not know how to teach for conceptual understanding; tests tended to drive the
curriculum and these were, for the most part, skills oriented; or that the time
allocated to studying functions was predominantly spent learning procedures
and techniques rather than the concepts underlying the procedures.




ASSESSMENT OF STUDENTS’ ABILITY TO
REPRESENT A SCIENTIFIC EXPERIMENT
BY AN ALGEBRAIC MODEL

John Layman and Gilli Shama
University of Maryland
shama@ gwu.seas.edu

The Maryland collaborative for teacher preparation (MCTP) is a statewide
program for undergraduate students who will become specialist teachers of
mathematics and science in elementary or middle school. A fundamental fea-
ture of the MCTP are specially designed courses in mathematics and science
that aim to teach mathematical modeling, through constructivist approaches.
According to this aim, a tool for assessing students’ abilities to develop a model
was created. The tool was used, after a pilot-test, in two mathematics’ classes
and in two physics’ classes for pre-service elementary teachers, offered at the
University of Maryland.

The assessment is divided into two parts. In the first part, students working
by themselves are presented with a cup, half-filled with water, that is hung
from a spring. This scientific context is new to the students. Each student 1s
asked to individually design a procedure for carrying out an experiment in or-
der to find an equation that represents the relationship between the spring’s
length and the amount of water in the cup. They are not allowed to carry out the
experiment. In the second part, pairs of students worked together in groups
similar to those employed during the semester, and asked to choose the proce-
dure and actually carry out the experiment. In both parts the students are di-
rected to provide the details of their design, record all obtained or imaginary
information and write the obtained or possible equation.

The assessment revealed many difficulties of students in all the phases of
the modeling process, including planning and describing the experiment, through
using representations to record the information, to constructing the equation.
Most of these difficulties were in the individual work.
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THE DEVELOPMENT OF STUDENTS’ NOTIONS OF
PROOF IN HIGH SCHOOL CLASSES USING
DYNAMIC GEOMETRY SOFTWARE

Enrique Galindo
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This article reports prefiminary findings of a study that secks to describe the develop-
ment of students” notions of proof in high school geometry classes using the Geometer's
Sketchpad software. Data obtained from task-based interviews of a total of ten stu-
dents from five geometry classes was used to document the development of students’
notions of proof throughout the school year. The students’ proof schemes put forth by
Harel & Sowder (in press) were used to categorize students’ solutions of the geometry
tasks. A first analysis of interview transcripts of two students shows that the proof
schemes that the students exhibited carly in the year were of the external type, sym-
bolic or authoritarian. By the end of the academic year the students rarely resorted to
authoritarian proof schemes but used more often empirical inductive proof schemes.

Establishing the validity of ideas is critical to mathematics, both for math-
ematicians and students. In everyday life people establish truth or consider
something a proof if it is a convincing argument. Even mathematicians use
intuitive and empirical methods when searching for the validity of ideas. How-
ever, mathematics findings are recorded in a deductive format and most tradi-
tional mathematics instruction and textbooks follow this format. This type of
instruction has led students and teachers to believe that mathematicians make
use only of formal proof, that is, logical, deductive reasoning based on axioms
(Battista & Clements, 19935).

Historically, learning to write proofs has been an important objective of
geometry courses for college-bound students, however, the relative emphasis
that formal proof should have in high schooi geometry is debated among math-
ematics educators and mathematicians today. There is evidence showing that
secondary mathematics students have difficultics understanding the concept.
For example, formal deduction among students who have studied traditional
sccondary school geometry is nearly absent (Burger & Shaughnessy, 1986),
and only about 30 percent of the students in full-year gcometry courses that
teach proof reach appropriate mastery of proof (Senk, 1985: Usiskin, 1982). It
also is common to find that students’ proof activities do not help them under-
stand geometry coneepts, or that the geometric knowledge involved in the proofs
is compartmentalized and is not accessible to students for use in other proofs or
problem-solving situations (Schoenfeld, 1987; Usiskin, 1987). Rescarch on
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students’ learning of proof in traditional geometry courses also shows that most
attempts to improve students’ proof skills by teaching formal proof in novel
ways have been unsuccessful (Battista & Clements, 1995). Furthermore, an
orientation towards extreme formalism in proof does not reflect current math-
ematical practice or current philosophies of mathematics (Hanna, 1991).

In part because of these shortcomings of traditional approaches to geom-
etry, curriculum reform documents have proposed new goals for the geometry
class (NCTM, 1989). It is proposed that the meaningful justification of ideas
should be a major goal of the geometry curriculum. The curriculum should
require students to explain and justify their ideas. It should encourage students
to refine their thinking, gradually leading themn to understand the limitations of
visual and empirical justifications so that they discover and begin to use sorne
of the critical components of formal proof. Ideally, students should develop the
ability to see a proof as a logical necessity.

Recently, the availability of dynamic geometry software has opened the
possibility to approaches that may help move students toward meaningful jus-
tification of their ideas as an alternative to axiomatic approaches to learning
geometry (Battista & Clements, 1995; Clements & Battista, 1994). Computer
software such as The Geometer’s Sketchpad (Jackiw, 1991) allows students to
create simple geometric figures, explore the relationships in the geometric fig-
ures, make conjectures about their properties, and test their conjectures. For
example, let us say that students are studying some properties of geometric
shapes. Students could start explorations using manipulative materials such as
geoboards to work with different shapes constructed using rubber bands. After
some exploration students could make conjectures as to the mathematical rela-
tionships involved. Students could then test such conjectures and extend their
explorations in a computer based environment using the software with its built-
in measuring, table, and calculator tools. Students would then be encouraged
to build validating arguments for their findings that could be scrutinized by
others. When some of their findings are challenged by their classmates stu-
dents could move away from considering visual appearance, or measurements
of particular cases, as evidence for proof. Students could then start using some
components of formal proof as a way to justily ideas meaningfully.

Although research indicates that a classroom environment like the one de-
scribed above may be conducive to students understanding of proof (Fuys,
Geddes. & Tischler, 1988; Piaget, 1928), the development of students’ notions
of proof in such environments has not been studied. The present study seeks to
describe the development of students’ notions of proof in technologically en-
hanced geometry classes. The study will document the experience of students
enrolled in geometry courses that use the Geometer's Sketchpad at a local high
school. The findings of this research will help inform the ¢fforts of educators
and policy makers who are trying to implement the NCTM Standards (NCTM,




- 1989). This study will also contribute to the body of research on students’
understanding of mathematics, and it will help determine what are some fea-
tures of tasks of dynamic geometry software that foster the use of meaningful
justification in geometry class.

Procedures and Theoretical Framework

During the academic year of 1996-97 five geometry classes at a local high
school were taught with the support of the Geometer’s Sketchpad Software.
The teacher was teaching this class for the second year using this technology.
Data obtained from task-based interviews of a total of ten students from ail
classes was used to document the development of students’ notions of proof
throughout the school year. The goal of the questions and interview tasks was
to elicit the strategies and methods used by the students to establish the validity
of propositions in this computer-based environment, so that the development of
their notions of proof during the school year could be documented (See Table |
for a brief description of the tasks used during the interviews). Purposeful and
maximum variation sampling were used to select students to be interviewed.
Five students who by the end of the second month of the academic year had
been identified by the teacher as “strong in proof,” and five students who ac-
cording to the teacher were “not as strong in proof” were selected to follow
their development throughout the school year. This categorization was based
on the students’ work in homeworks, quizzes, and one test, however, the teacher
emphasized that it was very relative as all of the students in these geometry
classes were honors students. The students were interviewed by members of
the research team three different times during the school year (during the third,
fifth and eighth months of the academic year).

The students’ proof schemes put forth by Harel & Sowder (in press) were
used to categorize students’ solutions of the geometry tasks. The notion of
proof scheme put forth by Harel & Sowder is o psychological one. They use it
to refer to what convinces a person, and to what the person offers to convince
others. Their classes are the result of extensive work with ccllege mathematics
majors and include three major categories: external conviction proof schemes,
empirical proof schemes, and analytical proof schemes. Students’ justifica-
tions exhibit an external conviction proof scheme when they depend on an au-
thority such as a teacher or a book (the authoritarian proof scheme), on strictly
the appearance of the argument (the ritual proof scheme), or on symbol ma-
nipulations, with the symbols and/or the manipulations having no meaningful
basis in the comuext (the symbolic proof scheme). Empirical proof schemes, on
the other hand, rely on evidence from examples or direct measurements of quan-
tities (the inductive proof scheme), or perception (the perceptual proof scheme).
Finally, analytical proof schemes encompuss mathematical proof although the
emphasis is on the student’s thinking rather than on what he or she writes.
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Table 1 Abridged Description Of The Geometry Tusks Used In Interviews

Task 1, Session 1, Measure of the Exterior Angle of a Triangle.

Consider the triangle ABC where the side BC is extended to show the exterior
angle ACD. Can you show that the measure of the exterior angle ACD is equal
1o the sum of the measures of the interior angles CAB and ABC?

Task 2, Session 1, Intersection Point of Selected Lines of a Triangle.
Do the medians (heights, angle bisectors) always meet in one point?

Task 1, Session 2, Sum of Two Consecutive-Angles of a Parallelogram
Can you prove that the sum of any pair of consecutive angles in a parallelogram
is 180 degrees?

Task 2, Session 2, Intersection Point of Selected Lines of a Triangle.
Do the medians (heights, angle bisectors) always meet in one point?

Task 1, Session 3, Measure of Angle Inscribed in a Semicircle.

AB is the diameter of a circle. C is a point on the circle. Consider the triangle
CAB. What can you say about the angle ACB? What can you say about the
triangle ACB?

Task 2, Session 3, Locus of the Midpoints of All Chords Drawn From a
Fixed Point on a Circle.
Let A be a fixed point on a circle with center O. Consider the midpoints of all

the chords that can be drawn from point A. What can you say about the locus of
these midpoints?

Harel and Sowder emphasize that their taxonomy is not a hierarchical one,
and that a given person may exhibit various proof schemes during one short
time span. For the study reported here, we assigned numerical labels to the
main proof schemes in order to be able to easily refer to them during the analy-
sis of the interviews. Table 2 lists the labels used for our data analysis (these
labels are also used in the vertical axis of the chart in Figure 1).

In order to document the development of the students’ notions of proof,
their solutions to the tasks in each interview were classified as one of Harel and
Sowder’s proof schemes. The interview transcripts were analyzed to examine
what convinced the student about the truth of a statement and what the student
would use to convince others. The student response was then assigned a label
1-7, and the proof schemes used by the student throughout the academic year
were analyzed to search for patterns. The preliminary findings reported here
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Table 2 Labels Assigned To Harel and Sowder's Proof Schemes

Proof Scheme Label

External Ritual

External Authoritarian
External Symbolic
Empirical Perceptual
Empirical Inductive
Analytical Transformational
Analytical Axiomatic

NN s DN

are based on the analysis of the interview transcripts of two students; we will
refer to them as Kate and Alex (an analysis based on data from all students, and
an unabridged version of this paper will be available during the presentation).
They were identified by the teacher as “strong” and “not so strong” in proof,
respectively.

Findings

Figure | shows the proof schemes exhibited by Kate and Alex during six of
the geometry tasks. Early in the academic year the students seemed to prefer to-
approach geometry tasks working with paper and pencil and exhibited some
authoritarian proof schemes. For example, when Kate approached the task
about the measure of the exterior angle of a triangle, and the task about the
measure of two consecutive angles of a parallelogram, her first approach was to
work on paper and to use equations. Her first approaches were labeled as exter-
nal symbolic proof schemes because once she tried the same tasks using
Sketchpad it became apparent that she had not associated much meaning to her
initial justifications. When working on the computer she said “Now that I think
about it. .. it makes more sense to me than looking at all the numbers (referring
to the equations she used earlier) and going ‘oh, OK.” This just seems a lot
simpler.”

One advantage of dynamic software is the possibility to make construc-
tions that can be dragged around and still maintain the relationships among
their parts. By the second interview, half of the academic year, most students
were familiar with the notion of construction in this environment, and the use
of dragging of constructions to verify that some properties hold. This was seen
as progress in their notions of proof, as they were using the dynamic geometry
software to produce constructions that represent infinitely many examples. This
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Figure 1 Proof schemes used by two students when solvingsix geometry tasks.

type of solution was labeled as an empirical inductive proof scheme because
the students ascertained themselves and sought to persuade others by quantita-
tively evaluating their conjecture in one or more specific cases. A downside of
this use of the software is the reluctance of some students to prove statements
for which they have created a dynamic construction. The dynamic construc-
tion seems so powerful and convincing that it is difficult to engage the students
in geometrical thinking in theoretical terms. shows how by the third interview
both students were consistently exhibiting empirical inductive proof schemes
(label 5). It was also interesting to find that the student who had been identified
by the teacher as “strong in proof” seemed to abandon authoritarian proof
schemes earlier than the other student.

To summarize, we found evidence that suggests that appropriate use of
dynamic software helps move students toward meaningful justification of their
ideas. The students we interviewed abandoned authoritarian proof schemes
and used empirical inductive schemes often. Furthermore, when asked to think
of situations where they would have to convince others of the validity of their
explanations (their teacher, a mathematician), students usually displayed a good
understanding of mathematical proof and realized that their empirical justifica-
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tions would not suffice, élthough they not always exhibited an analytic proof
scheme.
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UNDERSTANDING ANGLE IDEAS BY CONNECTING
IN-SCHOOL AND OUT-OF-SCHOOL

MATHEMATICS PRACTICE
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jomasing@syr.edu . rmdesilv@syr.edu

In investigating a group of middle school students’ out-of-school activities, we found
that miniature golf was a familiar context for these students. We also found this context
to be potentially rich for engaging students in thinking mathematically. Based on this
data, we used this context for a four-week teaching experiment on geometry and mea-
surement ideas with three sixth grade classes in Spring 1997. Onc aspect of our study
is comparing students’ understanding of angle ideas for students who were in the teach-
ing experiment with students who experienced a more traditional gcometry and mea-
surement unit. We found that all the students progressed in their understanding of
angle ideas and that the students in the teaching experiment classes were better at pre-
serving the angle measurc when copying an angle.

Introduction

The “Connecting In-school and Out-of-school Mathematics Practice™
project is beginning its third year. During this project we are (a) investigating
how middle school students use mathematics concepts and processes in a vari-
ety of out-of-school situations, and (b) using ideas from the students’ out-of-
school activities to investigate whether students are connecting their in-school
and out-of-school mathematics learning and practice.

During the first year we collected data about six sixth grade students’ math-
ematics practice out of school through (a) activity sampling with electronic
pagers and logs, (b) field observations of each student in out-of-school activi-
ties, (c) interviews with students about logs and observations. (d) logs kept by
students and parents, and (e) interviews with students and parents about logs
and their activity.

In our second year, we worked with a sixth grade mathematics teacher and
her students to sce how the students think about things mathematically and
whether they make connections between doing mathematics in school and out
of school. Through analysis of our first-year data, we identified a context that
was familiar to all our respondents and with which we thought most students

' This project is funded by a National Science Foundation-sponsored grant (RED-
9550147) awarded to the first author under the Faculty Early CAREER Development
Program. The opinions expressed in this paper are the authors™ and not necessarily
those of the National Science Foundation.




would have some experience. This context—miniature golf—was used with
the students in the classroom to investigate geometry and measurement ideas
(as well as other mathematical ideas, such as ratio, that arose). For four weeks
in March and April 1997, the students in three sixth grade classes participated
in a teaching experiment where they investigated mathematical ideas, through
the context of miniature golf. The first author taught the four week unit with
the sixth grade teacher, while the second author observed and took field notes.

Perspectives and Guiding Frameworks

The work of Piaget, and Clements and Battista has been most influential in
our thinking about students’ understanding of angle ideas. Piaget, Inhelder and
Szeminska (1960) identified four stages in the development of understanding
that angular measure involves the principle of one-many correspondence, in
particular that two coordinated measures are needed to construct an angle. The
task they used had students reproduce an angle. In stage I (up to 4-5 years) and
substage IIA (up to about 6 years), children were found to copy an angle by
visual estimation with no attempt at measurement. In substage IIB, some mea-
surements of constructed segments were taken, but no attempt was made to
coordinate them. At level IIIA (7-8 years), all measurements of constructed
segments were taken, plus some effort was made to coordinate them, by at-
ternpting to preserve the “slope” of one leg. At level IIIB, measures were taken
of non-constructed objects (e.g., the distance between two unconnected points)
and coordinated to construct the angle. By stage IV (10-11 years), students
were constructing totally new measures, such as the perpendicular distance from
a point to a line.

Piaget and Inhelder’s (1959) study of how children come to understand the
equality of angles of incidence and reflection identified three stages. In stage I
(up to 7-8 years), they found that children are mainly concerned with practical
success or failure, and often even the role of rebounds, let alone angle ideas are
overlooked. Piaget and his colleagues identified this as the pre-concrete opera-
tions stage, where actions are never internalized as operations. Behavior is
goal-directed and reason for success is not investigated. In stage IIA, concrete
opcrations are identified. For example, actions are intemalized and integrated
with others to form general reversible systems with an awareness of techniques
and coordination of behavior. By stage IIB (9-13 years), increasing awareness
is seen in the relationship between the inclination of the cue and the path of
rebound. But despite isolating all elements needed to formulate the law of equal-
ity of angles of incidence and reflection, they do not look for the reasons be-
hind what-they have discovered. Further, they do not think in terms of seg-
menting the total angle. By stage IIIA (by 14 years), the subjects formulate
conditional one-way hypotheses and discover the equality. But the hypotheses
are still related to the concrete correspondence. In stage IIIB (14-16 years),
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they seek necessary reasons for what happens and this is the mark of formal
thinking. As aresult, their hypotheses are bi-directional. Further, they are able
to consider all possible combinations in each case, another hallmark of formal
thinking.

Clements and Battista have used L.ogo programming with students in el-
ementary school, particularly third- and fourth-grade students, to investigate
students’ understanding of geometry ideas. In one study (Clements & Battista,
1990), they investigated whether Logo programming experience facilitated
children’s: (a) development of geometric concepts such as angle, angle size,
and related arithmetic ideas, and (b) transition from the visual to the descrip-
tive/analytic level of geometric thinking (van Hiele, 1986). They interviewed
12 fourth graders three times, at the beginning, middle, and end of 40 sessions
of Logo graphics programming experience. The six Logo children, but not the
comparison children, progressed from their original intuitive notions to more
mathematically sophisticated and elaborate ideas of angle, angle size, and rota-
tion. In addition, more Logo children explicitly mentioned geometric proper-
ties of shapes, indicating that they were beginning to think of the shapes in
terms of their properties instead of as visual gestalts. Thus, there was support
for the hypothesis that Logo experiences, especially those enriched with appro-
priate activities and discussions, can help children become cognizant of their
mathematical intuitions and move to higher levels of geometric thinking.

In a more recent study (Clements, Battista, Sarama, & Swaminathan, 1996),
Clements, Battista and their colleagues investigated the development of turn
and turn measurement concepts within a computer-based instructional unit. They
collected data within two contexts, a pilot test of the unit with four third graders
and a field test in two third grade classrooms. The researchers conducted pa-
per-and-pencil assessments, interviews, and interpretive case studies. Turns
were less salient for children than “forward” and “back” motions. Students
evinced a progressive construction of imagery and concepts related to turns.
They gained experience with physical rotations, especially rotations of their
own bodies. In parallel, they gained limited knowledge of assigning numbers
to certain turns, initially by establishing benchmarks. A synthesis of these two
domains—turn-as-body-motion and turn-as-number—-constituted a critical junc-
ture in learning about turns for some students. Some common misconceptions,
such as conceptualizing angle measure as a linear distance between two rays,
were not in evidence. This supports the efficacy and usefulness of instructional
activities such as those employed.

Methods and Data Sources

The design of our study for this phase of the project has two aspects: (a)
we arc comparing the understanding of angles ideas for students who are inves-
tigating geometry and measurement ideas through the miniature golf context




with students who are having a more traditional geometry and measurement
unit during this time period, and (b) we are analyzing students’ understanding
of angle ideas and connection making for students in the classes using the min-
iature golf context. This paper will deal only with the comparison aspect of the
research.

For the comparison part of the study, we interviewed two to three students
from each of six classes in pre-interviews and post-interviews, which were ap-
proximately ten weeks apart. In each of the “regular” classes (meaning not
accelerated), we interviewed one student who has been labeled as needing help
from a resource teacher, and two other students (one female and one male).
Two teachers’ (T1, T2) classes (two regular classes, one accelerated class) did
their geometry and measurement unit for the year during the time period be-
tween the pre- and post-interviews and, in both cases, it was a fairly traditional
unit, drawing heavily upon the textbook. The third teacher’s (T3) classes (two
regular classes, one accelerated class) did their geometry and measurement
unit through the miniature golf context during this time period.

The chart below provides a concise look at the design for the comparison
of students. The teacher for each class recommended students for us to ask to
volunteer for the iriterview based on their ability to articulate and reflect, as
well as gender.

Teacher Content Type of Class  Data Collection

Tl trad. geom  regular 3students (1F. 1IM: 1 Resource); pre- and post-interviews
T2 trad. geom  regular 3students (1F. IM: 1 Resource); pre- and post-interviews
T2 trad. geom  accelerated 2 students (1F, IM); pre- and post-interviews
T3 golf geom  regular 3students (1E, 1M; I Resource); pre- and post-interviews
T3 golf geom  regular 3 students (1F, IM: | Resource); pre- and post-interviews
T3 golf geom  accelerated 2 students (1F, [M); pre- and post-interviews

The data were analyzed using inductive data analysis procedures.
Findings

At the school waere we conducted this study, all the sixth grade teachers
(T1. T2, T3) introduced angle ideas through the use of a pattern block and
hinged mirror activity (Burns & Humphreys, 1990). This activity involved
students in finding the angle measures of different pattern blocks by using the
hinged mirror to scc how many angles of a particular block were needed to
form 360°. For example, students found that six angles from the triangle were
necded. and thus cach of the angles was 60°. Near the end of this several-day
activity, students were introduced to the protractor and learned how to measire
and draw angles with a protractor. In the teaching experiment classes, this
activity took place approximately three months before the miniature golf-based




geometry and measurement unit. Throughout the geometry and measurement
units in the three classes, students were given opportunities to measure and
draw angles using a protractor.

In the post-interviews, we found that all of the students had progressed in
their understanding of angle ideas. For example, in the pre-interviews, many

Y
Figure 1 Figure 2

students thought that extending the rays of an angle made the angle bigger. A
number of students also indicated that while a point placed in the region be-
tween the rays was inside the angle (Figure 1 below), a point placed in the
region that would be brtween the rays if the rays were extended was outside the
angle (Figure 2 below).

However, in the post-interviews, all the students agreed that extending the
rays of the angle did not change the angle itself. Ali of the students also iden-
tified a point placed as in Figu:e 2 as being inside the angle.

Another task during the pre-interviews, and adaptation during the post-
interviews, was the task that Piaget and colleagues used of reproducing an angle.
In the pre-interview students were shown the drawing in Figure 3 below, given
a sheet of clean paper, a ruler, string, a compass, and an eraser and asked to
copy the figure as exactly as they could. The students were allowed to look at
the figure as much as they wanted, and take any measurements they wanted. in
between drawing it, but they were not allowed to ook at it while drawing.
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In the pre-interviews, many students (from both the teaching experiment
classes and the other classes) had difficulty coordinating all the measurements.
Common mistakes were (a) not locating D on segment AB, (b) not locating D
correctly, and (c) not preserving the measure of angle CDB.

R

P

Figure 4

In the post-interviews, we gave the students the drawing in Figure 4 below
and asked them to copy the figure as exactly as they could. During this task the
students could look at the figure. take measurements, and draw on it, if they
wanted, as they tried to copy the figure. They were not allowed to trace the
figure. The students were given a sheet of clean paper, a ruler, a protractor, and
an eraser.

In the post-interviews, we found that all of the students who had investi-
gated angle ideas through the miniature golf context preserved the measure of
the angle formed by segment PQ and the extension of RS, whereas s number of
the students who were not in the teaching experiment classes did not preserve
this measure. We speculate that this may be due to the fact that students in the
teaching experiment classes had experiences during the unit where they had to
coordinate a number of measurements. These studernts took measurements and
made sketches of actual miniature golf holes, which often included curved edges
and locating obstacles.

We will have a longer paper available at the research reporting session that
will provide more analysis and details about this study.
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DEFINING AN EXTERIOR ANGLE OF CERTAIN
CONCAVE QUADRILATERALS: THE ROLE OF
“SUPPOSED OTHERS” IN MAKING A
MATHEMATICAL DEFINITION

Yoshinori Shimizu
Tokyo Gakugei University, shimizu@u-gakugei.ac.jp
Indiana University, yoshimiz@indiana.edu

A teaching experiment was conducted with two pairs of tenth grade students to assess
their metacognitive behaviors in the process of making a mathematical definition and
to explore the extent to which these students could be taught to be more reflective of
their own mathematical activities. In the teaching experiment, a special attention was
given to the ro! of teacher as facilitator of students’ monitoring of their own activities
by the role of “supposed others”. In this paper a transcribed protocol was analyzed of a
session in which one pair of students were working on a iask that asked them to find the
sums of exterior angles of kite and “boomerang™ and that raised a new problem of
cxamining the definition of exterior angle to an obtuse angle. Students’ monitoring and
verifying of their own activities were often observed in the form of responding to ques-
tions and critiques supposed by themselves. Students could distance themselves from
the action of making a definition by attending to critiques from “supposed others™.

Introduction

In Japanese curriculum, the meaning and role of definitions in mathemati-
cal reasoning are introduced to the students in eighth grade. Although teachers
are expected to explain the meaning of definition by using a familiar concept
like “isosceles triangle,” it is one thing for students to learn a definition of
concept and it is quite another to appreciate the role of definition in mathemat-
ics and how it is made. One of the students’ difficulties related to definition is in
appreciating its important role in mathematical argument or proof. Students
have few opportunities for creating a definitior of mathematical concepts and
they are often unaware of both the constructive and tentative nature of defini-
tions in mathematical rcasoning and their important role in communicating with
others.

The purpose of this paper is to elucidate the role of “supposed others™ in
the process of making a mathematical definition. Specifically, the study had
two objectives: (1) to assess the metacognitive behay iors of tenth grade stu-
dents working in pairs making definitions of unfamiliar concepts in plane ge-
ometry, and (2) to explore the extent to which these students could be taught to
be more reflective of their own mathematical activities in terms of the role of
“supposed others™.

The study is based on the analysis of a course described in “The Nature of
Proof™ (Fawcett, 1938) that anmed to foster students’ “critical thinking,” in which




definitions and propositions were socially constructed by students and the
teacher. Fawcett's course had a flavor of “an experiment in metacognition,” as
described by Crosswhite (1987), and suggested the importance of “critical think-
ing” fostered through the students’ experiences of critiques from others. More
recently, Borasi (1994, 1996) conducted a teaching experiment in which stu-
dents experienced the need for monitoring and justifying their mathematical
work when they were engaged in “error activities” including defining the fa-
miliar notion like a circle, though teacher’s role is different from those in
Fawecett’s course. These studies suggest the importance of both the social con-
struction of a mathematical definition and students’ metacognitive activities in
appreciating its nature and role.

From a general perspective, on the other hand, thinking can be seen as
conversation with “generalized others” (Mead, 1934). Also Mason et ul. (1982)
discussed a significance of developing an “internal enemy"” for thinking math-
ematically, and Hirabayashi and Shigematsu (1986) referred to the “inner
teacher,” an internalization of teachers’ utterances into the students’ own think-
ing through classroom experiences.

Drawing upon these sources, the study explored the role of metacognition
in terms of critiques and suggestions by “supposed others” (Shimizu, 1993) in
the social process of making a mathematical definition. By “supposed others,”
the author means a mental model one has of others who often ask questions
and make critiques.

Methods
Subjects

A teaching experiment including sixtecn instructional experiences over four
months was conducted with two pairs of tenth grade students (8 experiences
with each pair.). The students were selected based on their responses to a pre-
liminary questionnaire survey with 35 tenth grade students for identifying the
their backgrounds, which had been conducted one month before the teaching
experiment. The items of questionnaire included broader questions to ask the
meaning of the term definition and theorem respectively (e.g., “Describe briefly
the meaning of definition.”) , as well as more specific questions about kite (e.g.,
*“Give the most concise name for the figure,” asking the name of kite). Four
students selected for the teaching experiment were those who had met with the
concept of kite before but could not differentiate the meaning of definition
from those of theorem.

Procedure

The teaching experiment was designed and taught by the author. A series
of tasks was given to the students that asked them in pairs to find some proper-
ties and definitions of various quadrilaterals including kite and “boomerang”.




Students” activities by themselves typically lasted about thirty to forty minutes,
followed by interview/instructional sessions of twenty to thirty minutes dura-
tion. The teacher’s roles in the interview/instructional sessions, which were
similar to those of “teacher as facilitator” (Lester et al., 1989), included: (1)
making the students’ solution process explicit by having them reflect on it, (2)
asking them to justify their solutions, and (3) facilitating their deeper under-
standing of the properties and definitions of quadrilaterals through a discussion
with them. In addition, the teacher made conscious efforts to ask “why ques-
tions” at certain points in each session.

Task Used in the Session Analyzed
In the session which is analyzed in this paper, one pair of students (S & U)

were working on the task of finding each sum of interior and exterior angles of
both kite and “boomerang”.

The Task

Find the sums of interior and exterior angles respectively of kite
(Figure 1) and boomerang (Figure 2). An exterior angle (1o the
<BAC) is shown in Figure 3.

v pas

Figure 1 Figure 2 Figure 3

The task was supposed to raise new problems for the students to think
about during their problem solving activity. Namely, the task was given to the
students with an intention of asking them to consider what definition might be
appropriate for the “extended” case, since the ordinary definition of an exterior
angle (Figure 3) does not scem to fit in with an exterior angle to the obtuse
angle in “boomerang” (Figure 2).

All the activities in the teaching experiment was videotaped. Transcribed
protocols were made and submitted to the analysis. The protocols were ana-
lyzed by focusing on “problem transformations” (Shimizu, 1992), namely, the
major turning points during students’ solution process in terms of problem
(re)formulating by them, to identify the major metacognitive behaviors of the
students. The questionnaires before the teaching experiment and students’ notes
during and after the sessions were also submitted to the analysis.

~ 33




Results

Students’ activities by themselves lasted about thirty eight minutes, fol-
lowed by the interview/instructional session of twenty one minutes duration.
Because of the space limitation, students’ activity on examining the deﬁnmon
of an exterior angle will be briefl: .ummarized here.

After having concluded that the sum of interior angles of both kite and
boomerang should be 2<R, they found that the sum of exterior angles of kite is
2<R by applymg the relationship between an exterior angle and its interior
opposite angles in a triangle. Then they started to discuss the case of boomer-
ang.

Dividing the obtuse angle into two parts, namely, “a” and “d” in Figure 4,
student U proposed that the exterior angle to the obtuse angle might be “2<R-
(a+d)". Responding to this idea, student S pointed out that this idea was incon-
sistent with the definition of an exterior angle so far, by showing another exte-
rior angle which seemed to be “too big” (Figure 5).

Figure 4 Figure 5

S (28:04) : why, however, . . . if the exterior angle . . . might be here, we
should do the same thing 10 other angles.

U (28:20) : exterior angles to other angles?

S (28:21): Yahh, . .. cause, it doesn’t fit in with the case of other angles so
far. Then, 360 minus this angle, about 30, makes 330. It's why
this guy is too big, isn’t it ?

They finally found that the sum of exterior angles of boomerang was 540,
when they applied the definition that student U had proposed, and that by
using the definition they would lose the “consistency” with the original one.

In the interview/instructional session, the teacher suggested the way of “go-
ing around” to confirm the sum of exterior angles of kite is 2<R (Figure 6) and
then asked students to examine the case of boomerang.




Figure 6

During the conversation between the students, student U proposed the idea
of “signed angles” to incorporate two cases. At this point of the session, they
were very flexible both in proposing and accepting new ideas concerning to an
extended definition of exterior angle.

In their problem solving process, the monitoring and verifying of their own
activities were often observed in the form of talking to “supposed teacher,”
though these behaviors were not sufficient for finding a new definition of an
exterior angle. When they got the sum of exterior angles of boomerang as 540,
for example, students S expressed her idea as “but we might be in trouble if we
were asked why?"” Students’ utterances like this seem to be made by supposing
possible questions an critiques by the teacher.

In contrast to the beginning of the teaching experiment, they showed
flexibilities both in proposing new ideas like “signed angles” and in accepting
“negative angles”. A comparison of students’ writings before and after the teach-
ing experiment suggests that students’ view on the nature and role of math-
ematical definition had been changed. Student U, for example, who had de-
scribed the meaning of a definition as “what is given to explain a thing” in the
questionnaire, mentioned to it in the interview session as “we can make a defi-
nition by ourselves, depending on the situation.” Student § who had described
a definition as “Since many people have gotten the same answer, it is viewed as
a rule”” before the experiment, mentioned that she “likes a definition as brief as
I can” in the interview session.

Discussion

Some characteristics of students’ thinking were observed in the session.
First, students often mentioned that they did not understand the definition of an
exterior angle exactly. Namely, they made comments at certain points in their
problem solving that indicated they were aware of their own understanding.
Second, they often asked questions by themselves about what they seemed to




have already known. These characteristics were clearly connected to the state-
ments and questions in which they mentioned to possible questions and cri-
tiques by the teacher. In this sense, by attending to critiques from “supposed
others,” it was found that students could distance themselves from the action of
making a definition and were led to verify the appropriateness of their activi-
ties.

When one is asked to define an exterior angle to an obtuse angle, there are
several possibilities to consider. To make a new definition by “‘extending” the
original one itself is one way and to hold the same definition in a broader con-
text with keeping certain consistencies is another. In the latter case, which is
often the case in mathematics and which was chosen by S & U, the consistency
between two definitions becomes of significance when they wanted to hold the
sum of exterior angle as 2<R. For students S & U to raaintain the consistency,
the need for monitoring and verifying their work seemed to increase.

As was mentioned earlier, it is one thing for students to know a definition
of a mathematical concept and it is quite another to appreciate the role of a
definition in mathematics. The students in this study could distance themselves
from the action of making a definition by attending to critiques from “supposed
others” and through such activities their view on the nature of definition seemed
to be changed. This observation suggests the importance of “supposed others”
in helping students to appreciate the nature and role of definitions in mathemat-
ics. The constructive and tentative nature of definitions in mathematical rea-
soning should be emphasized through the experiences in which definitions are
socially constructed with critiques from others.
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IDENTIFYING THE NATURE OF MATHEMATICAL
INTUITIONS
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Secure understanding of formal mathematical concepts can be best accom-
plished when a learner assimilates the concept into a concrete, intuitive schema
that the learner already possesses (Ginsburg, 1989). For example, the proposi-
tion that a plane (ax + by + cz + d = 0) in three dimensional space can be
uniquely determined by fixing three points on the plane may be understood in
‘reference to the fact that only three fingers (3 fixed points) are enough to carry
atray (a plane). Such intuitive models. based on our informal, physical experi-
ence, have enormous power in helping learners to understand abstract math-
ematical concepts (Kamii, 1978). However, the nature of the mathematical
intuitions that learners already possess has rarely been studied systematically.
In classrooms, math teachers have no clear basis for deciding what type of
intuitive models may or may not work for the students.

The question is: what is the nature of learners’ mathematical intuitions and
how do they develop? My hypothesis is that many significant mathematical
intuitions emerge in conjunction with physical, geometric schemas which de-
velop in everyday life as learners engage in spontaneous activities such as play
and the use of everyday objects. For instance, I have made systematic observa-
tions of a preschooler playing with wooden blocks. The child spontaneously
considered how to build a flat roof (a plane) on top of a house he was construct-
ing. After some trial and error, he completed the roof by placing long blocks in
straight lines across several pairs of supporting columns at 2 fixed points in a
parallel manner. This reflective scheme, originating in the child’s spontaneous
thinking concerning both physical and gcometric properties of the objects, could
serve as the foundation for the understanding of abstract mathematical con-
cepts and relations. Identifying and analyzing such latent mathematical schemes,
therefore, would help math educators make use of the power of learners’ math-
ematical intuitions to the fullest extent.
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WHEN DOES THE POINT EXIST IN THE PLANE?
SOME HIGH SCHOOL STUDENTS’ CONCEPTION
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In research with high school students about the spatial location of points in
the Cartesian plane, two faces of student performance appeared, first one when
given the coordinates and one must draw the point on the graph and the second
one when given the point on the graph and one must give the coordinates. These
are different in the cognitive demands necesary to respond.

In this work with 221 sixteen-year-old high school students, we found mis-
understanding when we asked these exercises:

S. ¢ Alguna de satas vactas
peasa por los pemtos ?

a) (-3,.3) Mg
b (2,2
e) {1/3, 2

4 (-1,1} a0

Right answers in location of (-3,-2), 56.1%.
Right answers in location of (-2,-4), 85.3%.

In an informal review one student said “I can’t say nothing because there is
not a mark on -3 ““. For the students the point does not exist because having not
been drawn, it has no physical existence.

But this exercise was proposed to 87 fifteen-year old students we ask them
to construct their own scales to solve some exercises and the scores changed to
85% . In appearence, the free construction of scales allows the assimilation of
the symbolic existence of the point in the absence of marks on the graph. How-
ever, the same students had misconceptions in the solving of the next exercise :

T. { Algune 68 sstar rectae
puss pov los pumtes ?

) (-1,-1)
» (3.
3] u.n%
4 12,3
fechs P 1y
rha,' la
C

e Ne




The note says, “If we can enlarge the lines the point pass on; else, it
does not.”

The 55.1% of right answers against against the average of 75.3% on the
other three exercises, 17.24% of the students failed only in the location of (-
2,3), despite their average of 89% on the rest of the items.

Again, these students believe that the point exists only if the mark on the
paper exists. This is not a symbolic existence although they can graph points
under instruction. Their conception says if you can see the point, then the point
exists. If you can’t see the point, it does not exist.
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PROBLEM-CENTERED LEARNING AND EARLY
CHILDHOOD MATHEMATICS
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This paper describes research on classroom praxis based on a problem-centered ap-
proach incorporating a constructivist epistemology and principles of Adlerian Positive
Discipline in a Grade Two classroom. The theoretical basis of the project is described
and implications for classroom instruction highlighted. The constitutive contextual rea-
sons which make mathematical engagement a meaningful experience arc discussed in
relation to a classroom which adheres to a child-centered approach to teaching and
learning.

Considerable research is currently being generated by the significance of
the relationship between the classroom culture and the individual child’s devel-
opment. Garofalo (1989) suggests, “The nature of the classroom environment
in which mathematics is done strongly influences how students view the sub-
ject of mathematics, the way they believe mathematics should be done, and
what they consider appropriate responses to mathematics questions™ (p. 451).
In short, the type of learning is influenced by the type of learning situation.
Franke & Carey (1997) propose that in order to improve the teaching and learn-
ing of mathematics, it is critical to understand what it means for children to
‘engage’ in mathematics. Such a proposition implores a deeper look at the con-
stitutive components of ‘engagement’ in mathematics education. Whereas *‘so-
ciocultural theorists contend that the individual dimensions of experience are
subsidiary to the social and cultural dimensions”, and emergent theorists argue
that “individuals jointly create interactional routines and patterns as they adapt
to each other’s activity” (Cobb, Jaworski, & Presmeg, 1996, p. 15), both theo-
retical stances focus upon the context of the leamer, as a member of a class-
room community, and in doing so establish grounds for considering ‘engage-
ment’ (in the sense of mathematical-sense-making) as a contextual classroom
artifact, dependent and resuitant upon the nature of the classroom environment/
learning situation. Hiebert et al. (1996) portrayed learning mathematics as be-
ing more effective when children engage in a culture in which they know they
have the freedom and responsibility to develop their own solution methods.
Geoghegan (1996) suggests that it is the synergistic coalescence of children’s
intentionality, creative endeavor and emotional security that act as unifying
complementaritics in establishing effective engagement in the learning of math-
ematics.




The present study was conducted in a classroom which focused upon learn-
ing wherein the construction of knowledge harmonized in a reflexive relation-
ship between individual sense making and group (social) interaction. For stu-
dents to begin to make sense of their learning they must not only feel some
degree of willingness (intentionality) to resolve perturbations but also a confi-
dence to go about searching for resolution in order to establish a new sense of
constructed meaning. Thus students’ making-of-sense is educed from their ac-
tive forays into and explorations of new conceptualizations but, and most im-
portantly, underpinned by a confidence in already assimilated (qua ‘sensible’)
starting points. The teacher’s job then is to consolidate and expand upon these
points of reference by providing students with an environment and experiences
that will encourage new meaning to emerge. The building of confidence and
meaning go hand in hand and it is in the milieu of social dynamics that the
stage is set for such forays to be enacted.

Method

The present study tcok place in a Grade 2 classroom with an experienced
teacher who volunteered to participate after conversations on constructivism
and imaging with one of the researchers and after involvement in a Positive
Discipline program based on the philosophy of Adler and Dreikurs. A math-
ematics program grounded in a problem-centered leaming approach (Wheatley,

1991) and constructivist epistemology was implemented. As part of atotal class-
room regimen aimed at creating a more self/other-respecting and autonomously-
focused learmning environment, a Positive Discipline program (Nelsen. Lott, &
Glenn, 1993) was also implemented. Dai'y mathematics lessons lasted one hour,
the initial ten to fifteen minutes being teacher-directed, whole-class imaging
activities involving number and shape in which children were provided with a
particular spatial and/or number challenge (Wheatley & Peynolds, 1991) and
then asked to interpret and discuss “what they saw.” Du.ing the remaining tirne
children collaborated in pairs to solve assigned mathematics tasks and then
presented their solutions in a whole class sharing time. Any additional time
was spent in self-selected mathematics games and/or puzzles. The social dia-
logic interaction provided opportunities for children to cross-reference ideas,
justify and rationalize different points of view and consider, through shared
negotiation and reflection, personal and other’s mathematical meaning.
Underpinning the classroom ethos of what it means to share and negotiate
as problem solvers was the Positive Discipline program adhering to ethical and
constructivist views of learning. Positive Discipline principles sought not to
have the learner’s progress externally controlled by the teacher; the teacher’s
creed was to follow children’s thinking instead of leading it. Children’s au-
tonomy, respect for others, scnse of interdependence, and willingness to take
risks as creative problem-solvers were nurtured in an harmonious caring and




compassionate environment. Children were responsible for determining what
was appropriate classroom (social) behavior in all situations, during all les-
sons, and were encouraged to discuss their concems, insights, and resolutions
throughout the day. This was achieved through class meetings and various open
discussions which included the mathematics lessons.

Field notes and children’s work samples were collected all year. For three
days a week written observations and audiotape recordings were made during
the hour-long mathematics lessons and then, immediately following, the teacher
and the researchers spent one hour analyzing outcomes. More extended times
during the semester were also used for further analysis and planning. Video
recordings were made of interviews with six children selected to be a rcpresen-
tative cross-section of classroom abilities.

Discussion

Some teachers as mathematics educators characterize learning in terms of
individual children’s development whilst others characterize learning as a pro-
cess of acculturation. Some advocate that learning mathematics cannot be dis-
cussed separately from teaching mathematics-— more so, that ‘Leamning’ and
*Teaching’ cannot be discussed separately (Lerman, 1996; Geoghegan, 1996).
Classroom settings, social dynamics, goals, needs, emotions, and aspirations
are all integral to cognitive development. From this world view it became evi-
dent that facilitating mathematical development in the classroom of the present
study was constitutive of mary significant contextual dimensions. The setting
in which the mathematical experiences were enacted and concepts formulated
was not a ‘math lesson’ determined in the traditional sense by such components
as lesson plan, manipulatives, textbook, content, etc. but more akin to a herme-
neutic dialectic ecology characterized by a child-centered philosophy and es-
tablished upon sociocultural (including sociomathematical) norms. The chil-
dren created the essential guide-lines for their daily experiences and, as proac-
tive stakeholders in the formulation of their own experiences, became more
engaged in the learning process. In making sense of each other’s point of view
the children were facilitating the teaching and learning process simultaneously
with the teacher. The teacher’s authority as the end point of knowledge deter-
mination increasingly subsided.

Early in the study the children were seemingly respectful of each other
(quietly and patiently waiting for their own tum to present their ideas) but ap-
peared to be, by and large, disengaged from their peer’s attempts to verbalize
conceptualizations during the sharing sessions. Maybe as a result of years of
enculturation aimed at producing ‘passive young children who are polite’ many
of the children did not respond beyond being quiet. Their initial manifestations
of “listening with respect” were characterized by maximum patience and mini-
mum attentiveness. The following example highlights the level at which the
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children were “prepared” to function. In pairs, they had been asked to record
their solution to a subtraction problem on an overhead transparency in order to
present it to the rest of the class. The children did this with zeal, even decorat-
ing the border of the transparency with artistic embellishments such as flowers,
hearts and faces, etc., in some cases almost obliterating the mathematical sym-
bols. During the presentations, when the teacher asked the class to respond to
or comment upon the solutions presented by different pairs of students, typical
responses included: “That’s a nice heart in the comer.” “That's pretty.” and *]
like your drawing.” Minimum engagement adhered to the mathematical think-
ing that had been involved despite the fact that several alternate solutions had
been presented.

In order to develop collaborative participation daily moming whole-class
meetings were held. These ineetings sought to have opinions voiced, differ-
ences resolved, and classroom norms clarified—this was where the community
was built. Through continuous interactive discourse generated by class meet-
ings and daily forays into a wide range of problem-solving experiences chil-
dren developed considerable capacities to remain attentively focused as they
shared, challenged, negotiated, refuted and substantiated points of view, in-
cluding their own unique mathematical thinking. Their respect for each other
appeared to flourish as they began to appreciate the diversity of thinking fea-
tured in their class. Children changed markedly from being inactive to proac-
tive participants in the teaching/leaming process. The culture of the classroom,
in nurturing empathy towards cach person’s point(s) of view, continually rein-
forced the value of sense-making through willing and confident participation-—
the hermeneutic nature of the dialectic educed connections and interpretations
through comparison and contrast of divergent views. All experiences in the
classroom e.g., author’s chair, show-and-tell, spelling, social studies, science,
etc. bore evidence of the students’ engagement in peer interaction as they sought
to make meaning of their experience; a stark contrast to their earlier modus
operandi as passive listeners. They became increasingly focused on solving
and resolving problems as active collaborators, and more and more compelled
to justify meaning (qua shared knowledge) as they sought to explicate their
perturbations.  The following example from whole class sharing time in the
mathematics period (April 21) exemplifies this change in focus: Elvis had
written the following on the chalk board:

19+5="4

25-5=19
Taylor interjected: *You said nineteen plus five is twenty-four; then you said
that twenty-five minus five is nineteen. That doesn’t make sense.” Notice that
Taylor did not simply contradict Elvis by indicating that 25 — 5 = 20 (which
Taylor knew to be the case). Instead he attempted to challenge Elvis® thinking
by using Elvis’" own argument.
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Though findings from this study suggest that the children have developed
mathematically, the question remains: “What constitutes mathematical devel-
opment?” The children in this class have demonstrated the following character-
istics of mathematical thinking: (a) they readily and openly debate and justify
their mathematical reasoning with confidence and enthusiasm; (b) they are ex-
cited about their matheratical experiences: (c¢) they work collaboratively to
negotiate differences of opinion about a broad range of mathematical ideas; (d)
they have devised their own successful ways to operate with numbers rather
than the teacher’s; (e) they have expressed a variety of ways of conceiving
patterns in number and spatial relationships including notions of fractions, nega-
tive numbers, symmetry, equality, commutativity and multiplicativity; (f) and
they work imaginatively and willingly towards solving problems. “The tone of
this class is one of respect and freedom—no repression or coercion—it re-
volves around trust” (project field notes). Children constructed mathematical
concepts whilst constructing different ideas of what it means to learn, and these
two developing dimensions of education coalesced to establish what it meant
to do mathematics.

Conclusion

Friere (1985) has argued that decontextualized knowledge, thought with-
out action, mystifies learning and knowledge and leads to oppression rather
than empowerment. When children have the opportunity to openly and confi-
dently present their thinking in a public forum without fear of recrimination or
rebuttal, even though they know their ideas are open to cross-examination from
their peers, they demonstrate their creatively diverse ways of thinking. Such an
opportunity positions them as co-leamers and co-teachers. Young children are
constantly constructing ideas of what it means to engage in mathematics. As
coliaborators in the solving of problems, disposed towards a willingness to
share, reflect, and trust in a collective attempt to respect personal and unique
mathematical thinking, young children engage in the interactive constitution of
mathematical meaning. Should children in every classroom demonstrate such a
proactive disposition—then what? Bauersfeld (1996) suggests “consequently,
we shall have to engage much more in interactions than in arranging for a set of
tasks to be solved by the single child in competitive isolation . . . as teachers we
will have to act much more carefully in all classroom interactions taking into
account that our children actually learn along more fundamental paths, and
actually learn deeper lessons than those that we think we are teaching them”
(p. 6).
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SIMILARITIES AND DIFFERENCES OF
EXPERIENCED AND NOVICE K-6
TEACHERS AFTER AN INTERVENTION:
THE USE OF STUDENTS’ THINKING IN
THE TEACHING OF MATHEMATICS’

Cheryl A. Lubinski, Albert D. Otto, Beverly S. Rich, & Rosanna Siongco
Illinois State University, cal@math.ilstu.edu
Thomas Fox, Ball State University

This study examined relationships among experienced and novice teachers’ pedagogi-
cal content beliefs, pedagogical content knowledge, and instructional decisions after a
one-year intervention. Results indicate that the instructional decisions made by expe-
ricnced and novice teachers who believe that students’ thinking is important were simi-
lar as were the instructional decisions of experienced and novice teachers who believe
less that students’ thinking is important.

Research aligned with current mathematics reform recommendations sug-
gests that to teach mathematics effectively means to teach with a reflective
consideration of students’ thinking (Carpenter & Fennema, 1988; Cohen, 1990;
NCTM, 1989; Shulman, 1987); thus, the process of fcarning to teach effec-
tively becomes an ongoing pedagogical-problem-solving endeavor. During this
endeavor, teachers develop beliefs about what it means to teach and to learn
that have a myriad of influences which include, but are not limited to, their own
knowledge base and experiences with learning (Borko & Putnam, 1996).

Researchers believe that if teachers are to teach in new ways, focusing on
understanding, then their own understanding and conceptions of mathematics
are of utmost importance (Ball & Mosenthal, 1990). Even though knowledge
of content may be necessary in order to teach effectively, it is not sufficient. In
a reform-based learning environment, many studies have focused on the influ-
ence of both beliefs and pedagogical content knowledge which Shulman (1986)
describes as “the ways of representing and formulating the subject that make it
comprehensible to others™ (p. 9).

Novice teachers believe mathematics is a set of rules and procedures (Ball
1990) and their methodology typically models a “show and tell” approach, re-
flecting how they were taught. Pedagogical reasoning (Shulman, 1987) is rela-
tively undeveloped in these teachers: that is, their ability is limited in respect to
identifying and selecting strategies to represent critical ideas of a lesson and to
adjusting instructional strategies to the thinking of their students. Several stud-
ies document their lack of understanding of the mathematics they teach (Ball.
1990). Morcover, preservice teachers are highly influenced by their cooperat-
ing teachers, and there is “a tendency for [them] to develop attitudes and be-
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haviors that are dominant in the existing culture of the schools” (Brown &
Borko, 1992, p. 223). Evidence Jloes exist that novice teachers can leamn to use
pedagogical content knowledge about students’ thinking during teaching (Philip,
Armstrong, & Bezuk, 1993), but more studies are needed that can help us to
understand how extensive and lasting this influence is.

In order to better understand the leamning to teach process, our research
focuses on novice teachers. We try to understand the learning to teach process
in terms of what we know and have learned about experienced teachers. We try
to shed some light on the concerns of the Mathematical Sciences Education
Board (MSEB) (1996) when they noted that, “There are several well-known
inservice efforts which are based on leamning through mathematics teaching
practice. What is the potential of such efforts for preservice teachers? What
kinds of adaptations are necessary? How can preservice teachers best learn
about how children learn mathematics?” (p. 8).

Intervention

As part of a five-year NSF grant that was developed to enhance the learn-
ing to teach process, we conducted an intervention to address issues raised in
the literature. In order that preservice teachers could practice teach in learning
environments consistent with the research-based university methods class we
developed, we spent one year working with clusters of experienced teachers in

a few schools. For the intervention, articles from research on children’s learn-
ing in a variety of topic areas in mathematics provided the basis for the read-
ings we used. Tasks were carefully developed to assist teachers to focus on
their own understandings and conceptualizations of mathematics. To challenge
teachers’ beliefs about how students learn mathematics, videotapes of students
solving problems were shown and discussed: teachers also interviewed stu-
dents. Journal writing occurred daily. We continually focused on how to de-
velop students’ understanding and the ways to represent mathematics to make
it comprehensible to students. One year after the experienced teachers had
begun the project, preservice teachers joined them for a two-week summer ses-
sion. During the following school year, preservice teachers were paired with
the experienced teachers for both a clinical experience (six hours per week for
one semester) and a student teaching experience (15 weeks for the next semes-
ter). This format allowed us to carefully choose teaching placements to ensure
that the knowledge, beliefs, and attitudes present in a cooperating teacher’s
classroom were more consistent with the goals of our teacher education pro-
gram reflecting recommendations from research (Borko & Putnam, 1996).

A mathematics methods course provided the preservice teachers with the
research-based information and tasks that the experienced teachers had during
their first year with the project. This course forused on developing pedagogi-
cal reasoning and content knowledge. There were many experiences in which
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these preservice teachers were engaged that reflected the experiences we would
like them to create in their own classrooms.

Biweekly meetings on content and pedagogy were conducted with all teach-
ers during each school year in which they participated. two years for the expe-
rienced teachers and one year for the preservice teachers. These sessions were
designed to help teachers acquire new knowledge and beliefs (Borko & Putnam,
1996), to develop pedagogical reasoning (Shulman, 1987), and to encourage a
support structure of colleagues in order to integrate teachers’ new pedagogical
content knowledge and beliefs into their teaching practices (Borko & Putnam,
1996).

Theoretical Framework and Methodology

We embraced the perspective that pedagogical content knowledge is a critical
component in developing an understanding about teaching and that it is impor-
tant to be able to describe the degree to which knowledge of students’ thinking
plays arole in the instructional decision-making process of teaching. Thus, we
compared the beliefs, knowledge base, and instructional decisions of experi-
enced and novice teachers in order to determine how a similar one-year inter-
vention affected each group.

Both experienced (N = 27) and novice (N = 21) teachers self-selected to
participate in the intervention. All teachers completed a questionnaire on their
beliefs about instruction, students’ learning, and mathematics content relating
to whole number operations. They completed a written survey that posed peda-
gogical problems related to classroom teaching and learning experiences and
were asked to indicate their solutions for each. Videotapes of teachers’ instruc-
tional sessions and follow-up interviews were made in order to provide more
insight into their pedagogical-decision-making process.

Results

Data were analyzed after one year of intervention and thus are from two
different years because the experienced teachers had begun one year prior to
the preservice teachers. This comparison was made at comparable times in the
intervention because an analysis of the data from the belief questionnaire indi-
cated no significant difference between experienced and novice teachers” be-
liefs after the intervention. That is, the reported beliefs about teaching and learn-
ing of each group ranged similarly from a greater consideration of students’
thinking (GST) to a lesser consideration of stuc ats” thinking (LST).

Comparisons between experienced and novice teachers were made with
respect to knowledge and teaching practices because we believed this inforima-
tion would provide insights into more effective teacher education. particularly
at the preservice level. Comparisons were made: 1) between all experienced
and all novice teachers, 2) between 3 experienced and 3 novice teachers at the

244

SR
[




upper end of the continuum in respect to their reported beliefs, 3) between 3
experienced and 3 novice teachers at the lower end of the continuum in respect
to their reported beliefs, and 4) between the six teachers at the upper end and
the six teachers at the lower end. This allowed us to determine if pedagogical
content knowledge, pedagogical reasoning, and content knowledge were the
same or different between experienced and novice teachers who had compa-
rable reported beliefs after similar one-year interventions. Comparisons were
done in three topic areas: whole number operations and place value; early alge-
braic reasoning; and geometry and measurement.

Whole Number Operations and Place Value

Teachers were given a situation in which students incorrectly computed a
two digit subtraction algorithm involving regrouping with a zero in the minu-
end. The questions posed to the teachers were: “What would you do?” and
“Why is this an appropriate action to take?" Forty percent of the novice teach-
ers stated that their first step would be to ask the students to explain their think-
ing. Only one of the experienced teachers stated she would first ask students to
explain their thinking. A majority of the experienced teachers’ decisions in-
volved asking students to resolve the computational error using a manipulative
and almost half of these teachers specified which manipulative the students
were to use, such as base ten blocks. Only a few of the novice teachers said
they would suggest 4« manipulative. When manipulatives were suggested, more
of the experienced teachers specified how the students were to use the
manipulatives than did the novice teachers.

When comparing the six teachers at the upper end of the belief continuum
to the six at the lower end. all considered having the students explain their
reasoning. However, only the GST experienced teachers stated that this com-
putation was not appropriate to give to students since their representations did
not reflect an understanding, indicating an assessment decision. GST novice
teachers did not assess the situation to the degree that the GST experienced
teaches did. All six GST teachers indicated that this was an appropriate prob-
lem for a kindergarten or first grade class compared to the LST teachers who
thought this more appropriate at the second grade level. All six GST teachers
mentioned providing manipulatives for the students to explain their answers,
but giving students a choice of manipulative to use was mentioned more often
by the GST teachers than the LST teachers.

The LST novice teachers focused on the students correcting their mistakes
and practicing procedures: “Students who did answer correctly can explain why
we need to regroup . . . then a couple times a week give such a problem as warm
up ... ‘this’ will reinforce the idea of borrowing with continued extra practice™;
while the LST experienced teachers focused on connecting the use of
manipulatives to the algorithm. Five of the GST teachers clearly used students’
thinking: one novice teacher wrote, “We would discuss what the numbers re-




ally represent and if their answer would make sense in relation to the numbers.
. . might even refer them back to using their invented strategies for solving the
problem and explaining how they got that answer . . . because my main focus is
that they understand the problem by using whatever process they choose.”” GST
teachers also considered more options than the LST teachers who focused on
procedures.

When examining teaching practices from videotapes and stimulated recall
interviews of two experienced (one GST and one L.ST) and two novice teachers
(one GST and one LST), we noted similar patterns. GST teachers have imbed-
ded within their lessons problem-solving tasks based on students’ interests and
on a reflective assessment of their students’ mathematical thinking and needs
while the LST teachers focused on tasks that are disconnected from students’
thinking. LST teachers” lessons have several examples of students explaining
their computational processes with connections among strategies not being
made. The GST teachers focused on having students describe their strategies
and noted that different strategies exist. During interviews that followed the
videotaping of their lessons, both GST teachers indicated knowledge about
individual students’ thinking, unlike LST teachers.

Since much of cur intervention time was spent on the whole number opera-
tions and place value topic, we wanted to determnine if pedagogical reasoning
and beliefs about students’ thinking would carry over to other topics: thus, we
gathered data in the areas of early algebraic reasoning and geometry and mea-
surement.

Early Algebraic Reasoning

A question was designed to invest:gate how teachers thought students would
respond to a situation that involved counting the number of equal-length sticks
needed to build a ladder. When asked how students would respond to deter-
mining the number of sticks needed to make a ladder with four and five steps. at
least two-thirds of each group indicated that they expected students to suggest
more than one possible strategy. Two strategies that were nearly always men-
tioned were a direct modeling or counting strategy and a recognition of a num-
ber pattern generated by adding additional steps to the ladder. When asked
about the grade level for introducing this problem. over half of the novice teachers
said third grade or higher whereas almost all of the experienced teachers said
second grade or lower.

When we focused on GST teachers and LST teachers. we found no differ-
ences between groups of experienced teachers and novice teachers at either end
of the continuum. The only difference we noted was that novice GST teachers
stated they would usc algebra problems at a lower grade level than novice LST
teachers: thus novice GST teachers' responses appeared more like experienced
teachers as a group.




Geometry and Measurement

We compared experienced teachers’ to novice teachers’ responses on a ques-
tion that dealt with a situation involving a misconception about the relationship
between area and perimeter. The experienced and novice teachers all approached
the pedagogical problem in very similar ways. The majority of both groups
focused on having the students explore the problem more fully. Most of the
novice teachers indicated that they were interested in students communicating
an understanding of the problem. Although the experienced teachers suggested
many of the same strategies as the novice teachers (drawing, exploring, and
discussing), their comments more often centered on having the children “see”
what was happening as the dimensions of a shape varied. These teachers sug-
gested having the students use a manipulative such as popsicle sticks or paper
clips, thus limiting the shape to a polygon.

When analysis focused on the groups of teachers at the upper end and lower
end of the belief continuum of students’ thinking, we noticed that the novice
teachers (five out of six) clearly stated the misconception while only one (the
lowest on the continuum) experienced teacher did. One of the novice teachers
wrote: “They are focusing on the length around [the shape] not the amount of
space inside . . . I would ask them to accurately draw the different measure-
ments and compare the amount of space. . . on the inside. . .that gives [the
students] a chance to develop their understanding of area and perimeter and
their relationships.” One novice teacher suggested giving the students string to
explore the relationship between perimeter and area. These responses indi-
cated a willingness to accept all shapes, unlike the experienced teachers who
appeared to limit the shapes to rectangles.

We also analyzed one question in regard to curricular knowledge. Results
suggest that both experienced and novice teachers at the upper end of the belief
continuum would more often introduce a variety of geometry concepts at kin-
dergarten, than those teachers from either group at the lower end.

In a measurement situation, all teachers considered asking students to ex-
plain their thinking and reasoning to each other in order to resolve a difference
of opinion as to the perimeter of a rectangle. Half of the novice teachers noted
that it was important that students be aware of what units were being used;
whereas none of the experienced teachers did. Experienced tcachers at the
upper end of the continuum went beyond just having the students explain; they
also wanted students to discover their own errors, suggesting that these teach-
ers were more likely to go in-depth with their consideration of students’ think-
ing than the novice teachers at the upper end. The novice teachers believed it
was important for students to communicate measuring strategies in order to
verify their answers, but none of the experienced teachers did. As one novice
teacher wrote, "I would have the two students show each together how they
measure things to moke sure they both measure the same way. . . . They would




also want to see what form [units] of measurement they are each using. .. .
would make them double check themselves.”

Conclusions and Discussion

In regard to whole number operations, we concluded that novice teachers’
decisions compare more closely to experienced teachers’ decisions whose be-
liefs are similar to theirs, than to the novice teachers whose beliefs reflect a
different consideration of students’ thinking. GST teachers look more alike in
their practices, as do LST teachers. Number of years teaching did not appear to
affect decision making as much as beliefs about the role of students’ thinking.

In general, our findings suggest that the experienced and novice teachers
whose reported beliefs are similar share similarities in their pedagogical deci-
sion making and teaching practices. Our findings raise questions in regard to
the experiences necessary for novice mathematics teachers. To what extent is
the learning to teach with experience process expedited when beliefs on using
students’ thinking are emphasized in conjunction with an in-depth understand-
ing of a variety of mathematics content? Preliminary analyses of teaching prac-
tices raise the question of how the two groups use manipulatives. Novice teach-
ers appeared more influenced by research findings on manipulatives, not speci-
fying as to what or how manipulatives should be incorporated into the learning
process as much as the experienced teachers. To what extent does this play out
in practice? Novice LST teachers tend not to incorporate manipulatives as
much as experienced LST teachers who more often selected the manipulative
students were to use.

Most teachers had little knowledge of students’ thinking in both early alge-
braic reasoning and in geometry and measurement. Pedagogical decisions in
these topics were vague or general. This has implications for methods courses.
If an in-depth understanding of students’ thinking is developed in one area and
the need to focus on students’ thinking does not carry to topics not addressed in
university courses, how do instructors balance the need to develop in-depth
understanding with the apparent need to address a variety of topic areas? This
raises questlons in regard to the carry over of pcdagoglcal reasoning among
topic areas in mathematics.
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Through a process of analyzing different algorithms, problem situations,
and instructional models, we have identified five fraction division interpreta-
tions. The interpretations represent different problem situations that elicit dis-
tinctive solution strategies. )

The most common interpretation used in instruction is measurement divi-
sion. Division of fractions by whole numbers can be interpreted as partitive
divisions. Related to partitive division interpretations is the determination of a
unit rate (Ott, Snook, & Gibson, 1991).  Fraction division can also be inter-
preted as the inverse operation of an operator multiplication. Examination of a
concrete model (Carlisle, 1980) for fraction division yielded our final interpre-
tation. This interpretation is the inverse of Cartesian products. Probability
provides problem situations for this interpretation.

[n summary, rational number divisions can be measurement divisions, par-
titive divisions, the determination of a unit rate, the inverse of an operator mul-
tiplication, or the inverse of Cartesian products. A model for fraction divi-
sion based on these distinct interpretations will provide a framework for inves-
tigating the teaching and learning of rational number division.
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TEACHERS’ USE OF MATHEMATICS
CURRICULUM GUIDES

Janine T. Remillard
University of Pennsylvania

This paper reports findings from a study examining how 21 elementary
through high school teachers described their use of curriculum guides in their
mathematics teaching. Given their prominence in mathematics instruction,
curriculum materials are seen as a potential source of guidance for teachers in
their efforts to change their teaching. Exactly what this guidance should look
like is not clear because we have limited knowledge of how teachers interact
with and use curriculum materials. The aim of this study was to contribute to
our understanding of teachers’ uses of curriculum resources in order to con-
sider ways that curriculum materials might support change in mathematics teach-
ing. Examination of the teachers’ written responses to questions regarding their
mathematics instruction revealed patterns in their ideas about curriculum mate-
rials.

While most of the teachers were inclined to draw problems or tasks for
students from their texts, few looked to it to guide their enactment of these
tasks. In fact, many teachers claimed that they rarely read the teaching sugges-
tions. Most teachers claimed that informal assessments of students had the
greatest influence on their decisions during teaching. Nevertheless, none of the
teachers indicated that their text supported or contributed to these assessments
of students.

Even though all but two teachers claimed to consistently use a textbook in
one way or another, most were ambivalent about the role the text played in their
teaching. They believed that “following a textbook” too closely was a sign of
bad teaching. At the same time, they appeared to appreciate having a textbook
as a recourse or curriculum guide. Some even mentioned feeling guilty for
relying on their texts as much as they did.

While not necessarily representative of all teachers, these findings raise
questions about how revised curriculum materials might support teachers in
changing their mathematics teaching. In particular, the teachers’ concerns about
over reliance on curriculum guides together with their tendencies to rely on
their own assessments of students in their decision making suggest that materi-
als need to support teachers’ decision making processes, rather than supersede
them.
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In the past decade of mathematics reform, professional development pro-
grams to retrain teachers have illuminated a need for school-based opportuni-
ties for reflective assessment of new instructional methods (Jones et al., 1994).
As teachers examine methods within the context of their classroom and delib-
erate among old and new views in light of their own students’ learning, they
begin to restructure their pedagogical knowledge and beliefs (Crawford, in press).

This project describes a ten month professional development program to
strengthen the mathematics instruction in middle schools within three school
districts. Twenty-two teachers from nine middle schools participated in a seven
day instructional phase in June designed to develop pedagogy with the use of
manipulatives, graphics calculators, and investigative teaching. This was fol-
lowed by three days of instruction in August focusing primarily on technology
to ignite teachers for the coming year.

A strong implementation phase was designed to assist teachers with analy-
sis and reflection of their new methods impact on student learning. During the
instructional phase, each team of two teachers formulated a research question
to investigate during the next year. They then designed an action research project
in which they would collect data on their students’ leaming. Teachers were
also given a reflective journal to write each week about a class in which they
implemented a new strategy and the effects on student lcarming. For further
project evaluation, teachers submitted one video tape and an audio tape of classes.

Teachers attended half-day follow-up sessions in October and January which
involved teacher reflection, discussion and feedback. In March for the final
follow-up, a Celcbration of Learning was held with each teacher team present-
ing a portfolio display of the results of their implementation and action re-
search projects.

Key elements of the project included: 1) flexibility in implementation as
euch team self-selected their action rescarch project based upon their own indi-
vidual readiness level: 2) support for different levels of implementation and
change based upon each teacher team: 3) encouragement of tcacher autonomy
with teachers as self-directed leamers; and 4) continuous reflection to foster
construction of new beliefs and practices. Project evaluation data will be shared.
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PROBLEMS
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This paper presents a review of the reciprocal teaching method, designed
by Palinscar and Brown, which involves the instruction of strategies designed
to foster reading comprehension in adequate decoders, but poor comprehenders.
The four basic strategies that they developed were: summarizing, questioning,
clarifying, and predicting. The unique feature of reciprocal teaching is the fact
that soon the students are leading the group. Robust positive findings have
been reported by Palinscar and Brown, and by others, who have adopted this
teaching strategy.

A student’s sense of academic learning is composed of both cognitive and
motivational components. Intervention attempts work best when they are de-
signed to improve the student’s feeling of competence in academic matters, as
well as in the specific cognitive activities. Metacognitive training has been
shown to be especially worthwhile in students with learning problems. When
students are trained in the processes of planning, checking, and monitoring
their work, they should also be informed of what they are actually being asked
to do, and why they are doing these activities. The aspects of reciprocal teach-
ing and their reflections on cognitive and metacognitive activities, as well as on
competency and motivation, are reviewed.

In most mathematics teaching, students are taught by a method of direct
instruction. In an interactive learning environment all this changes: they are
told why they are performing certain procedures. and are encouraged to under-
stand the metacognitive issues at hand. By using the reciprocal teaching method
of mathernatics instruction, the teacher provides modeling, scaffolding, and
coaching. Campione, Brown, and Connell devised a reciprocal teaching method
for mathematics which incorporates the use of three boards: the planning board,
the representation board, and the doing board. Results showed that students
improved on the targeted word problems, as well as on several other problems
which suggested that transfer had worked for them.

Another schema is being suggested by this writer for solving mathematics
word problems. Jt consists of: 1) Statement of the word problem; 2) Question:
What am I looking for? 3) Clarification: What information has been given to
help assess the question? 4) Prediction: What interval should contain the an-
swer? 5) Solution: How to solve the problem; und 6) Evaluation: Going back
to check if this answer really fits the problem. Iniudl studies with this model
showed an increase in student comprehension, less fear of word problems, and
an increased interest in doing mathematics.
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COOPERATIVE LEARNING IN MATHEMATICS:
THE EFFECT OF PRIOR EXPERIENCE

Rapti de Silva
Syracuse University
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This study examines some of the factors that influence the effectiveness of
cooperative learning of mathematics in small groups. Four preservice elemen-
tary teachers taking a sequence of two mathematics courses designed specifi-
cally for such students participated in the study. The course covered founda-
tional mathematics through problem solving in cooperative groups. The par-
ticipants were observed as they worked together in a small group during the
first half of the second course. These observations were both in- and out-of-
class as the group worked together on different aspects of the course. Most in-
class observations were audio and video taped for more detailed analysis of
group processes. At the end of the course, the participants were individually
interviewed. They were asked to reflect a) on their prior experience in learning
mathematics, of working with others in academic and non-academic activities,
and of learning from and with others in such settings and b) on their year-long
experience of learning mathematics within different cooperative groups. They
were also asked the extent to which they would use cooperative learmning meth-
ods whey they taught mathematics as well as how they envisioned cooperative
groups as influencing their work and continued development as teachers.

Analysis of both observation and interview data suggest that while prior
experience has a strong and on-going influence on the kind of cooperative leamn-
ing that occurred within the group, the nature of the task often determined
whether there was cooperative leamning of mathematics or simply cooperation
to successfully accomplish the task. The distinction is important. Further, the
interviews indicate the preservice teachers’ changing conceptions of the nature
of mathematics and of who can do mathematics, as a result of their year’s expe-
rience of learning within cooperative groups, and their growing awareness of
the complex factors that determine the effectiveness of this method of teaching
and learning.
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LEARNING AND TEACHING GRADE 5§ MATHEMATICS
IN NEW YORK CITY, USA, AND ST. PETERSBURG,
RUSSIA: A DESCRIPTIVE STUDY

Frances R. Curcio Natalia L. Stefanova
New York University Russian State Pedagogical
curcio@is2.nyu.edu University

metod @ivtrgpu.spb.su

During the 1994-95 academic year, one grade 5 mathematics class in New York City
and onc in St. Petersburg were selected to examine the intended and implemented cur-
riculum, the level of mathematical preparation of teachers, students® progress, and stu-
dents® and parents’ attitudes. Only the curriculum, teacher preparation. and students’
progress will be discussed in this paper. Syilabi and textbooks were reviewed to docu-
ment the intended curriculum. Research assistants in cach classroom recorded instruc-
tional episodes to document the implemented curriculum. One American teacher and
one Russian teacher provided biographical information about their teaching creden-
tials and philosophy. Complete scets of data were collected from 29 American children
and 20 Russian children. The Russian curriculum is more structured and grounded in
theory than the American curriculum. Content differences include a pronounced treat-
ment of basic facts and the inclusion of probability and statistics in the American cur-
riculum. Students’ mathematical growth was documented for both groups.

Educational reform in the United States and Russia is having an impact on
the teaching and leaming of mathematics. Current reform in the American edu-
cational system is characterized by the need for more and better mathematics
for all, emphasizing inquiry-based instruction and student-centered activities
(NCTM, 1989, 1991). Current reform in the Russian system is focusing on
providing an appropriate mathematics curriculum for all students emphasizing
free inquiry and critical thinking (Dorofeyev et al., 1993), features traditionally
emphasized by mathematics teachers of gifted and talented students in the former
Soviet Union (Toom, 1993). How mathematics curriculum and instruction are
reflecting these changes was the subject of this study.

The Research Questions

What are the differences and similarities between the content of the
intended and curriculum in grade 5 classes in both cities?

What are the differences and similaritics between the level of prepara-
tion of mathematics of the grade 5 mathematics teachers?

How do students progress in their development of muthematics con-
cepts during the academic year in both cities?
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The Method

Although on a very small scale in comparison to depth and breadth, this
study attempted to model the work of Stevenson et al. (1990) who analyzed the
mathematics achievement of first and fifth graders in Taiwan, Japan, and the
United States. The first research question was addressed by reviewing and ex-
amining curriculum materials and reviewing protocols of teachers’ lessons.
The second question was addressed by interviewing the teachers and having
them describe their preservice preparation. The third question was addressed
by designing a mathematics inventory that reflected the intended grade 5 cur-
riculum and administering it at the beginning and at the end of the school year.
Operational definitions and a description of the participants follow.
Operational Definitions

The intended curriculum is the grade-level-specific curriculum mandated
by boards and ministries of education. The intended curriculum is communi-
cated to teachers and administrators in the form of recommended syllabi and
commercial textbooks selected and purchased by the school system to support
the recommended syllabi. For this study, the intended mathematics curriculum
for grade 5 in New York City (NYC) was operationally defined by syllabi (NYC,
1987; NYS. 1980), and a commercial textbook available in the target class-
room (Scott Foresman, 1985). The intended curriculum for grade 5 in St. Pe-
tersburg was defined as a Ministry-approved textbook (Nupk & Telgmaa, 1990).

The implemented curriculum, that is, the curriculum as it is interpreted by
teachers and delivered to students during formal instruction, was defined by
what mathematics content was actually presented by the grade 5 teachers This
was documented by American and Russian research assistants who spent sev-
eral days each week recording the events of their respective classrooms.

Level of teacher preparation is defined as the formal mathematics studied
in preservice and in-service experiences. Teachers were interviewed to obtained
this information.

The development of mathematics concepts 1s defined as 4 comparison be-
tween results of pre- and post-test measures of a researcher-designed inventory.
The “"Mathematics Inventory” contained nine items: reading a nine-digit nu-
meral; comparing fractions; solving a multi-step rate problem; calculating a
complex whole number expression; rounding: calculating area. perimeter, and
volume; and, solving one-variable equations.

The Participants

St. Petersburg, an urban center in Russia, cited as a hub of recent innova-
tive work in mathematics education (Curcio, Evans, & Plotkin, 1997), was se-
lected as one of the study sites, NYC, an urban center, recognized as the most
multi-ethnic community in America (Sontag, 1992), was another site. Grade 5
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was selected as the target grade because it is the beginning of the critical, highly
formative middle school years, during which students develop an appreciation
of self and others, critical reasoning skills, and build a firm foundation for ado-
lescence and adult life (Carmnegie Council, 1989). Complete sets of pre- and
post- “mathematics concepts” data were collected from 29 American and 20
Russian grade S children.

The American teacher was selected because she is an exemplary, self-con-
tained classroom teacher who subscribes to the reform in mathematics educa-
tion, taking an investigative, student-centered approach. The Russian teacher
was selected because she is exemplary, belicving in student-centered instruc-
tion, and differentiating tasks to meet the diverse needs of the learners.

Results

The Intended and Implemented Curriculum

An examination of the intended Russian and American grade S mathemat-
ics curriculum reveal that for the most part, the content is the same, including
the four fundamental operations with whole numbers, and common and deci-
mal fractions; geometry and measurement. The American curriculum also in-
cludes probability and statistics. American curriculum recommendations for
grade 5 are saturated with low level basic facts, computation, and place value
review (NYC, 1987; Scott Foresman, 1985). These low level skills do not ap-
pear in the Russian text because students are expected to have mastered all of
these by the end of grade 4. Major differences appear in the depth of the content
and in the way it is structured and organized. For example, throughout the Rus-
sian currictlum relationships and rules are explicitly generalized.

During the academic year, research assistants documented the mathemat-
ics activities and tasks in the target classrooms. In the American classroom, the
observations supported an investigative, inquiry-based, student-centered ap-
proach, employing the use of cooperative learning, learning centers, and calcu-
lators. The level of mathematics went beyond the recommendations of NYC
and NYS guidelines. In the Russian classroom, the observations supported a
structured, rigorous, in-depth analysis of the underlying mathematics being dis-
cussed. Throughout the year, students were actively involved in writing their
solutions on the chalkboard and explaining their work.

Teacher Preparation and Philosophy

The American grade S teacher is representative of NYC public school teach-
ers in that she was prepared to teach all the required content of the elementary
school curriculum (i.e., reading, social studies, science, and mathematics). She
earned bachelor’s and master's degrees in elementary education, and had been
teaching for nine years at the time of the study. She described herself as having
a “hands-on™ teaching style, employing investigative techniques in student-cen-
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tered activities. She uses cooperative learning and learning centers. Calcula-
tors are available for students whenever they need or wish to use them. She also
uses an overhead projector and video when she feels they are appropriate. Her
students record problem-solving strategies and thoughts about the problems
they solve in journals. Using the textbook only to supplement problems for
homework, she goes beyond the intended curriculum by providing students
with nonroutine, nontraditional problems that build algebraic thinking (Curcio,
Nimerofsky, Perez, & Yaloz, 1997). The problems are assigned and discussed
as a regular part of her curriculum. She stays professionally active by attending
conferences and workshops, sometimes conducting sessions at conferences.
The Russian teacher is typical of Russian teachers in that beginning in grade
5.teachers must have a degree in mathematics to teach it. She earned a degree
in mathematics and physics from a pedagogical institute, now called a univer-
sity. At the time of the study she had been teaching for fourteen years. It was
her first year in the school where the study was conducted. During the study,
she taught 23 mathematics lessons per week: 18 lessons for three groups of
grade 5; S lessons for grade 10. Typically her lesson begins with a warm-up to
build students’ mental readiness. Then, she explains new material, giving time
for understanding. She has children solving problems by themselves, then check-
ing the solutions at the chalkboard together. She does not use electronic equip-
ment because there is none in the school. She emphasizes correct mathemati-
cal language and symbols. She follows the content of the textbook but she uses
her own logic for lesson development and explanations. She refers to supple-
mental resources for problems. She differentiates instruction based on students’
ability. Homework assignments have obligatory tasks for everyone and non-
obligatory tasks for advanced students. Periodically, she attends professional
meetings and workshops. As is typically done in Russia, this teacher will teach
mathematics to the children in this .udy until they complete grade 11.

Development of Mathematics Concepts

The development of mathematics concepts was measured by a researcher-
designed pre- and post-assessment. As expected, pre- and post-tests results for
American and Russian children yielded a significant improveiment (1 = 8.86, p
<0.001; 1=292.5, p<0.001; respectively). Means and standard deviations
are reported in Table 1.

For the pretest, the problem that was the casiest both for the American and
Russian children was being able to read a nine-digit numeral (i.e.. 47% and
97% answered correctly, respectively). The most difficult items for the Ameri-
can and Russian children were solving one-variable equations, and the multi-
step rate word problem. American children also had difficulty with comparing
fractions,

For the posttedt. American students improved in their ability in comparing
fractions (i.c., 34% answered correctly, and 38% got the item partially correct),
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Table 1 Means and Standard Deviations of Mathematics
Inventory for Complet> Data Sets, Pre- and Post-Test Adminis-
trations. New York Cirv and St. Petersburg

Mean  Standard Deviation

New York City (n = 29)

Pretest 4.3 .
Posttest 10.5 57
St. Petersburg (n= 20)

Pretest 1.5
Posttest 13.3

6
3

N.B. Pretests were administered during the first part of September
1994 for both groups.

Posttests were administered at the end of the school year which
was in May 1995, in St. Petersburg, and June 1995, in New York
City.

and in solving one-variable equations (i.e.. 7% answered correctly, and 69%
got the item partially correct). American students, who used calculators regu-
larly, did poorly on the complex whole-number calculation item (i.e., none an-
swered correctly), and on the multi-step rate word problem (i.e.. only one child
got the item correct).

For the posttest. Russian students improved in their ability to solve one-
variable equations (i.e.. 45% answered correctly, and 39% got the item par-
tially correct); and to solve the multi-step rate word problem (i.e., 39% an-
swered correctly, and 13% got it partially correct). Russian students did poorly
on comparing fractions (i.e.. nonc answered correctly, but 97% got it partially
correct).

Concluding Comments

When we planned this study, our goal was not to make statements about
who is “better” or who is “right” (Davis et al., 1979). "Better” and “right” can
only be judged in the context of culture and environment. However, although
our cultures and environments are different, we can learn from altemative
conceptualizations of curriculum and instruction. and perhaps, “move on to
new and improved conceptualizations”™ (Davis et al., 1979, p. 2). Keeping this
in mind, we would like to highlight what we have learned. .

A strength of the Russians” approach to mathematics curriculum is attrib-
uted to the active involvement of such well known mathematicians as
Kolmogorov and Pontrigin, whose influence is still evident in Russian schools
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(Sossinsky. 1993). A characteristic of Russian mathematics curriculum is that
it evolves, preserving the strengths and addressing the problems without radi-
cally discarding major components of the curriculum (Prof. Izaak Wirszup,
University of Chicago, personal communication, 19 May 1995) and relies “on
contributions of continuous and original psychological research” (Keitel, 1982,
p- 110). The structure, organization, ard theoretical foundation of the grade 5
curriculum exemplifies these characteristics. Furthermore, expecting students
to master basic computational facts prior to grade 5 sets the stage for more
*“serious”” mathematics in grade 5 and beyond.

Statistics and probability are tools for decision making. It is never too early
to prepare children for being critical consumers of data. Matkematics programs
inthe U. S. include these areas. But, being exposed to a lot of concepts that may
appear to be discrete, unrelated topics has eamned many American mathematics
curricula the reputation of being **a mile wide and an inch deep™ (Shanker,
1996, p. E7).

The American teacher in this study is atypical—although she did not major
in it, she admits to “loving” mathematics and she conveys this to her students.
She did exceed the expectations of the NYC and NYS recommended course of
study, but for the most part the “curriculum’ was presented as a set of activities.

This is a “snapshot” of learning and teaching mathematics in only two grade
5 classes. with a limited focus. The mathematics curriculum and expectations
of students in the previous and subsequent grades were not examined in this
small-scale. exploratory study. but our work has provided us with ideas for
developing a more extensive, comprehensive, longitudinal study.
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The report deals with the realization of an international comparison project on pupils’
mathematical beliefs. Today, the project is still in the first stage of the pilot study, i.c.
the preliminary data has been gathered with a questionnaire from eight countries (Es-
tonia, Finland, Germany, Hungary, Italy, Russia. Sweden, the USA), with N = 200 13-
year-old pupils in each. The number of the differences between the countries is big.
Only in 415 items of the 32, the differences are not statistically significant (on the 95
Ye =vel). The chart of similarities between the countries shows that the European
countries form a cluster, whereas the US is situated totally alone.

Introduction

Although beliefs are popular as a topic of study, the theoretical concept of
“belief” has not yet been dealt with thoroughly. The main difficulty has been
the inability to distinguish beliefs from knowledge, and the question is still
unclarified (e.g., Abelson, 1979; Thompson, 1992).

Here, we understand beliefs as one’s stable subjective knowledge (which
also includes his feelings) of a certain object or concemn to which tenable grounds
may not always be found in objective considerations. The reasons why a
belief is adopted are defined by the individual self—usually unconsciously.
The adoption of a belief may be based on some generally known facts (and
beliefs) and on logical conclusions made from them. But each time, the indi-
vidual makes his own choice of the facts (and beliefs) to be used as reasons,
and his own evaluation on the acceptability of the belief in question. Thus, a
belief, in addition to knowledge, also always contains an affective dimension.
This dimension influences the role and meaning of each belief in the individual’s
belief structure. (For more on the concept belief see e.g.. Pehkonen, 1995 or
Pehkonen & Tomer, 1996.)

In one’s belief system, beliefs are usually held with a different degree of
conviction (Abelson, 1979). For example, Kaplan (1991) refers to the con-
cepts “deep belief™ and “surface beliet™ which could be understood as uncon-
scious beliefs and conscious beliefs. One interpretation here could be that
unconscious beliefs are primitive (basic) beliefs, and conscious beliefs are
conceptions. As a matter of fact, we explain here conceptions  as conscious
beliefs, i.e., we understand conceptions as a subset of beliefs. Thus for us,
conceptions are higher order beliefs which are based on such reasoning pro-
cesses for which the premises are conscious. Therefore, there scems to be an

267

o -
‘-l"'




argument basis for conceptions, at least they are justified and accepted by the
person himself.

One variation of conceptions are views. They are very near conceptions,
but they are more spontaneous, and the affective component is more empha-
sized in them. Conceptions are more considered than views, and the cognitive
component will be more stressed in them.

The Focus of the Research Project

The purpose of the research project “International comparison of pupils’
mathematical beliefs” (Pehkonen, 1995) is to clarify pupils’ views of mathema-
tics. But the focus lies in the comparison of pupils’ mathematical views: Are
there essential differences and/or similarities in pupils’ views of mathematics
in different countries? And in the pilot study results of which we are presenting
here, we try to provide answers to the research probiem with the aid of the
questionnaire data.

The Realization of the Pilot Study

In the pilot study of the research project “Intemational comparison of pu-
pils’ mathematical beliefs”, data was gathered with the help of a questionnaire.
The questionnaire used was developed for another research project, “Open
Tasks in Mathematics™ (Pehkonen & Zimmermann, 1990). The purpose of the
questionnaire was to clarify pupils’ views of mathematics teaching. In the
questionnaire, there are 32 structured statements about mathematics teaching
for which pupils were asked to rate their views on a S-step scale (1 = fully
agree, . . ., 5 = fully disagree). and three unstructured questions inquiring
pupils’ experiences and wishes.

Countries in Question

The first part of the pilot study consisted of collecting data from about 200
seventh-graders in each country. The questionnaire has been administered in
the following eight countries (the name of the local coordinator and the number
of pupils’ questionnaire answers in cach country are given in brackets): Esto-
nia (Dr. Lea Lepmann, University of Tartu; N = 257), Finland (Dr. Erkki
Pehkonen, University of Helsinki; N = 260), Germany (Nordrhein-Westphalen:
Prof. Giinter Graumann, University of Bielefeld: N = 258), Hungarv (Dr. Klara
Tompa. Institute of Public Education, Budapest; N = 196), ltaly (Prof. Fulvia
Furinghetti, University of Genova; N = 246), Russia (Prof. [ldar Safuanov, Uni-
versity of Tatarstan: N = 206), Sweden (Ame Engstrom, University of Lund: N
= 196), and the USA (Georgia: Prof, Tom Cooney, University of Georgia: N =
203).




Y

Administration of the Questionnaire

This stage of the pilot study was running in 1989-94. The original ques-
tionnaire was translated from German into English by the author, and the trans-
lation was check by the USA coordinator. The versions in other languages are
translated and checked by the local coordinators.

Each national representative has organized the data gathering in their own
country. Usually, there are about 100 pupils from the capital city and the same
amount from a smaller town in the neighborhood of the capital. The question-
naire was filled in during a mathematics lesson, and conducted by the math-
ematics teacher,

In large countries, the data collection has happened only in one state, e.g.,
in Georgia, USA, in order to be comparable to smaller countries. And in the
countries with parallel school system, such as Germany, the data has been gath-
ered from all school forms.

Research Results on International Comparison

The question of the international comparison of pupils’ mathematical be-
liefs still seems to be an almost unexplored field. The main question here is:
“Are there essential differences in conceptions of mathematics teaching in dif-
ferent countries?” We know that mathematics can be understood as a universal
discipline. So, the question arises whether pupils’ conceptions on mathematics
and on mathematics teaching and learning are also universal, or whether they
are, perhaps, culture-bound.

About six years ago, an international project on comparison of pupils’ math-
ematical beliefs was started (Pehkonen, 1995). Before the project “Interna-
tional comparison of pupils’ mathematical beliefs” from which some prelimi-
nary results are published (Graumann & Pehkonen, 1993; Pehkonen, 1993,
1994; Lepmann, 1994; Pehkonen & Tompa, 1994; Pehkonen, 1995a; Pehkonen
& Safuanov, 1996a, 1996b) and many others are under elaboration, there was
almost no research into variations between pupils’ beliefs on an international
scale. Only in the Second International Mathematics Study (Kifer & Robi-
taille, 1989) were pupils’ responses to some questions on the affective domain
dealt with in a background questionnaire. The study indicates that there are
large differences between countries on measures of mathematical beliefs and
attitudes.

The Concept of Consensus Level

People differ in expressing their position regarding a statement: Some like
to take an extreme position, whercas others tend to respond carefully. But
usually their attitude (positive or negative) is clear. Therefore, for further analysis
of the responses, we reduced the original response scale (1-2-3-4-5) by com-

269

.«

NN




bining the two response values at the extreme ends of the scale, which yields a
three-step scale of agree (1 or 2}, neutral (3), e nd disagree (4 or 5). This might
diminish some of the tendencies in the data, but on the other hand it offers us a
solid base to begin with.

In the analysis and interpretation of the responses, the terminology for the
consensus level was used as follows: We say that the responses to a statement
are in complete consensus, if at least 95% of the test subjects’ views were on
the same extreme end of the scale; consensus, if at least 85% but less than 95%
of the test subjects’ views were on the same extreme end of the scale; almost
consensus, if at least 75% but less than 85% of the test subjects’ views were on
the same extreme end of the scale; lack of consensus, if less than 75% of the test
subjects’ views were on the either extreme end of the scale.

Comparing Results from the Questionnaire

Here, we are looking for similarities and differences between countries in
question concerning all items. Consensus levels (Table 1) give a good measure
for agreement within a country. Since there are so many statistically signifi-
cant differences between countries. we will focus on similarities, i.e. items with
no significant differences (Table 2).

[n the following, we will use the following abbreviations: EST = Estonia,
FIN = Finland, GER = Germany, HUN = Hungary. [TA = [taly, RUS = Russia,

SWE = Sweden, and USA = the United States.
Consensus Levels of Responses

Here, we consider agreement percentages of the responses in each coun-
try separately, and check, whether they have reached any of the consensus 1v-
els. In Table 1, each item is given with its consensus level.

20: only ... talented pupils can solve (disagreement percentages)

In three items (1. 19, 24), consensus levels were reached by seven coun-
tries, and in three further items (11,15, 31). six countries resulted consensus.
Furthermore, there was a lack of consensus in each country in six items (2, 7,
12,17,21.23).

Similarities in Pupils’ Views

When checking the differences between the country means with the Mann-
Whitney U test, we found that there were more items with statistically signifi-
cant differences than those without such a difference. Hence, we decided to
concentrate on similarities. Table 2 shows the amount of similaritics between
the countries, t.¢. the amount of items where the Mann-Whitney U test was not
showing a statistically significant difference (on the 95 % level).

The number of the similarities, i.c. items without a statistically significant
difference, varies between 4,15, The biggest number of similarities (15) is
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Table 1 The Level of Consensus on Pupils’Responses to the Quest

Statements fcec = complere CONSensus, ¢ = CONSensus, dc = almost consensus,

and 3 = the number of
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iems in consensus

[ - 0P 0} " RyM A[10RXD T S[[  dayara) 7y
9 - ae a® o® oe - a® 5 sdno1d {[ews ur Fuppom are sjidnd @ ¢
¢ o - h] - o - 3 o PO0ISIAPUN 3G im " |j& 10§
¢ ax - R - - - o - d1qtssod se vanoerd yanw se 147
| - e - - - - - - §193[40 21010u00 *** Jo BUNONNSUOD ‘g7
] . - Rl - . . . . Apuapuadapur *+* sysey oajos spdnd ;7
b - - b) - e e e - Anoexa a8e1s 1942 sutedxa 1ayoea) 97
£ o - - b ae - - - sowes Junuea) ;g7
L - o o 5 ae o oe 2 Aeam 2uo ueyl S10W " ST IO 4T
- - - - - - - - - 110J}2 YONUI SPUBWIP 11 1¢7
b - b1 - - - an e o SOWN{OA PUR AEDIE JO SUONE|ND|ED (77
- - - - - - - - . unj aq skemje jou pinoa 1 ¢
£ - - (ov) (av) - - - (ov) (sofmudaiod Judwnardestp)
aajos ued spidnd pajuager = Ljuo :(7
L h) o - o ” o e B 1jouaq [eanoeid aaey “** Syse) ig|
] o - - - - - - - aqissod se yonw se uonnadal g
- - - - - - - - - Areaedos w3ner - sordoy watagp o |
t k) ae - - R) - oe - Apoexa pauoseal -+ Buiifioad 9|
9 o - e an b w - oe SANNIYNP “** udym - sdjoy 1ayaes) (G|
z - - - oe » - - - s101e[nojed 19yo00d (|
S . 3 - x oe - h) e suonsanb umo 11ay1 premiof ind - spdnd (¢
- - - - - - - - - ueay Aq pawed) i |
g ae - 2 - 2 32 kY sepueisiopun spdnd e o
7 - - - - oe - o - MO[j0J A[192X3 01 " 21npadoad 1313yl Q)
G aw 3 e - - - ae o swajqoid piom ¢
7 - - - - R - - h) surpdiasip 1aus @8
- - - - - - - - - A1yomb - somsue wdu
¢ e oe . - - - h] . san3y duimelp :g
I 3 - - - - - - - Apoexa - passordxa - Fuiikioas :g
¢ i - . . an - - ae 13puod pue ssand - jidnd :p
7 - - b) - - - - i SUOTIR|NDR) [EDIURYIIW ¢
- - - - - - - - Aem 243 uey wenodwi alow  1amsue ySu o7
L oe Rl or - 3 2 B R SUOTIBND[ED [BJUDW ;|
< SNd VLI 43D VSN ISI AMS NNH NIA SWay

271




Table 2 The Number of Similar ltems Between the Countries

FIN HUN SWE EST USA GER ITA
HUN 9
SWE 15 10
EST 9 7 10
USA 8 7 7
GER 2 10 10
ITA 14 14 :
RUS 6 8 8 10

between Finland and Sweden which is not surprising, since these two countries
have long time been developing their systems according to similar ideals. In-
stead of that, the big numbecrs of similarities (14) between Italy and Hungary as
well as between Italy and Sweden are cumbersome. If we consider only the
biggest numbers of similarities (2 10), we may construct Chart 3.

The chart shows that the European countries form a cluster, whereas the
US is situated totally alone. In addition, we see that Sweden has the most of the
similarities with other countries. Will this show that Sweden has taken (and
amalgamated) many ideas from other countries? Finland had a lot of similari-
ties with Sweden, but also with Germany, and these could be explained with

Table 3 The numbers of the biggest similarities (2 10) between the countries.




common history and culture. Instead of that, a surprising point is that Russia,
Hungary and Estonia do not have many similarities, although they had a long
period of common politics, also in education. It is worthwhile noting that if we
change in Table 3 the limit of acceptance (number of similanties 2 10), the
chart will change drastically.

Some questions which arise automatically are: In which items of the ques-
tionnaire are the similarities? Are there some items in which there are more
similarities than in others? When answering these questions, we might try to
sketch a common view of mathematics teaching for pupils from these eight
countries: During mathematics lessons, there should be also small group work-
ing. and the teacher should help when there are difficulties. In doing math-
ematics, the right answer is not more important than the way of solving. Tasks
in school mathematics are not only for talented pupils. and doing mathematics
could not always be fun.

Endnote

The number of the differences between the countries is big. Only in 4-15 items of the
32, are the differences not statistically significant (on the 95 % level). When checking,
in comparison, the differences between boys and girls in these countries, there are, as a
rule, only about the same number of items with a statistically-significant difference.
Thus, the differences between countries are much bigger than within a country (e.g.,
between boys and girls).

References

Abelson, R. (1979). Differences between belief systems and knowledge sys-
tems. Cognitive Science, 3, 355-366.

Graumann, G., & Pehkonen, E. (1993). Schiilerauffassungen iiber Mathe-
matikunterricht in Finland und Deutschland im Vergleich. In K. P. Miiller
(Hrsg.), Beitriige zum Mathematikunterricht 1993 (pp. 144—147). Hildes-
heim: Verlag Franzbecker.

Kaplan. R. G. (1991). Teacher beliefs and practices: A square peg in a square
hole. In R. G. Underhill (Ed.), Proceedings of the thirteenth annual meet-
ing of the north american chapter of the international group for the psy-
chology of mathematics education (Vol. 2, pp. 119-125). Blacksburg, V}I\I
Virginia Tech.

Kifer, E.. & Robitaille, D. F. (1989). Attitudes. preferences and opinions. In
D. F. Robitaille & R. A. Garden (Eds.), The 1EA Study of Mathematics If:
Conteats and outcomes of school mathematics (pp. 178-208). Oxford:
Pergamon Press. ]

Lepmann, L. (1994). Suomen ja Viron oppilaiden Kiisitys matematiikan opetuk-
sesta [Pupils' conceptions on mathematices teaching in Finland and Esto-
nia] In H. Silfverberg & Ko Scinelit (Eds.). Ainedidaktitkan teorian ja

273




kaytdannon kohtaaminen (pp. 67-78). University of Tampere. Reports from
the Department of Teacher Education in Tampere A18/1994 [in Finnish].

Pehkonen, E. (1993). Auffassungen von Schiilern iiber den Mathematik-
unterricht in vier europdischen Landern. In H. Schumann (Hrsg.), Beitrige
zum Mathematikunterricht 1992 (pp. 343-346). Hildesheim: Verlag
Franzbecker.

Pehkonen, E. (1994). On differences in pupils’ conceptions about mathematics
teaching. The Mathematics Educator, 5(1), 3-10.

Pehkonen, E. (1995). Pupils’view of mathematics: Initial report for an inter-
national comparison project (Research Report 152). Helsinki: University
of Helsinki, Department of Teacher Education.

Pehkonen, E., & Safuanov, . (1996a). Pupils’ views on mathematics teaching
in Finland and Tatarstan. Nordic Studies in Mathematics Education. 4(4),
31-59. ,

Pehkonen, E., & Safuanov, I. (1996b). Some observations concemning pupils’
views on mathematics teaching in Finland and Tatarstan (Russia). In E.
Pehkonen (Ed.), Proceedings of the MAVI-3 workshop in Helsinki 23-
26.8.1996 (Research Report 170, pp. 69-77). Helsinki: University of
Helsinki, Department of Teacher Education.

Pehkonen, E., & Tompa, K. (1994). Pupils’ conceptions about mathematics
teaching in Finland and Hungary. International Journal of Maihematical
Education in Science and Technology, 25(2), 229-238.

Pehkonen, E.. & Tomer, G. (1996b). Mathematical beliefs and different as-
pects of their meaning. International Reviews on Mathematical Education
(= ZDM), 28(4), 101-108.

Pehkonen, E., & Zimmermann, B. (1990). Probleemakentiit matematiikan
opetuksessa ja niiden yhteys opetuksen ja oppilaiden motivaation
kehittimiseen. Osal: Teoreettinen tausta ja tutkimusasetelma [Problem
fields in mathematics teaching and their connection to the development of
instruction and pupils’ motivation. Part 1: Theoretical background and re-
search designj. Helsingin yliopiston opettajankoulutuslaitos. Tutkimuksia
86.

Thompson, A.G. (1992). Teachers beliefs and conceptions: A synthesis of
the research. In D. A. Grouws (Ed.). Handbook of research on mathemat-
ics learning and teaching (pp. 127-146). New York: Macmillan.




VIEWS OF GERMAN MATHEMATICS TEACHERS ON
MATHEMATICS

Giinter Tomer
Gerhard-Mercator-University of Duisburg (Germany)
toerner@math.uni-duisburg.de

In a questionnaire with 77 items, more than 300 matheriatics teachers of secondary
schools in Germany were asked for details on their views on mathematics. Thus, we
were questioning their mathematical beliefs by which we understand the teachers” atti-
tudes towards mathematics. We were particularly interested in whether their views
could be recognized as a structure. The aspects of “formalism,” “scheme,” “process™
and “application,” which are known from former research, were central dimensions of
attitudes in the teachers” answers. These four global dimensions formed a global part
structure which we derived as a graph through the significant partial correlations. Thus,
the purpose of the talk is two-fold: first of all, to present the results of such an investi-
gation for which only scattered results arc available in Germany: and secondly, to pro-
vide a more precise insight into the structure of beliefs and to reveal their interrelation-
ships using the multivariate methods.

The Relevance of the Investigation

The central role of beliefs for the successful teaching and leaming of math-

ematics has been pointed out again and again by numerous educational re-
searchers. Pehkonen/ Tomer (1996) mentioned four aspects, in particular, which
justified a close investigation of beliefs and belief systems: (i) mathematical
beliefs as a regulating system. (i1} mathematical beliefs as an indicator, (iii)
mathematical beliefs as an inertia force and (iv) mathematical beliefs as a prog-
nostic tool. With thi- in mind, the teachers” beliefs play a key role in the teach-
ing and leamning process so that priority is given to this in research.

Theoretical Framework

In the German language there does not exist an adeguate translation for the
widely-used word beliefs, because each translation is inhibited with limited
associations. On the other hand, many publications avoid laying a clear, under-
standable foundation. We will identify beliefs in the following with attitudes,
whereby we understand attitudes as being conceptional constructions which
we assume ¢ priori to contain a certain consistency among cognitive, emo-
tional and behavioral components.

Mathematics as a world of experience and action can be assumed to be an
extremely complex field. This also applies to the corresponding attitudes. On
the cognitive level we can assume that the subjective knowledge of mathemat-
ics and teaching mathematics contains ideas in several different categories: (a)
beliefs about mathematics, (b) beliefs about learning mathematics, (c¢) beliefs
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about teaching mathematics and (d) beliefs about ourselves as practitioners of
mathematics. At the same time, category (a), “beliefs about mathematics,” com-
prises a wide spectrum of beliefs which, at least, contains the following com-
ponents: (al) beliefs about the nature of mathematics as such, (a2) the subject
of mathematics (as taught in school or at the university), (a3) beliefs on the
nature of mathematical tasks and problems, (a4) beliefs on the origin of math-
ematical knowledge and (a$5) beliefs on the relationship between mathematics
and empiricism (particularly on the applicability and utility of mathematics)
and so on. It is obvious that there are easily understood affections as well as
behavioral dispositions and intentions associated with each component (a) to
(d) and its subcategories.

It is therefore evident that there cannot exist an absolute smallest attitude
unit which cannot be broken down and analyzed further, just as an atom may
not broken down into its respective sub-particles. In this context there will al-
ways exist a smaller particle. In most of the cases it was impossible to differen-
tiate between beliefs and “belief systems.” With this in mind, we define a belief
system as a hypothetical attitude construction which. concerning particular at-
titudes towards mathematics, is yet to be proven and is, therefore, of no empiri-
cal, but rather of heuristic value. In the German language the expression belief
system is often replaced by a term occasionally used in analogy by Schoenfeld
and referred to as a “mathematical world view.” With this in mind, the expres-
sion, “mathematical world view” will be understood as a synonym for a “belief
system” with respect to mathematics.

Thus, information gained from two levels is significant to a definite ex-
pression of a ‘mathematical world view’ or belief system respectively: on the
one hand, expressions of single beliefs; on the other hand, the relationships
between different beliefs within the ‘world view.” The relationships between
single beliefs form a structure which is probably more important to the repre-
sentation of a ‘mathematical world view’ and its relevance to action than to all
the beliefs it contains.

The following question then arises: Which structural parameters do math-
ematical world views possess? It may be that these structures offer better ex-
planations and predictions of certain ways of acting rather than single be-
liefs. Furthermore, changing a belief system requires a detailed knowledge of
the interfering parameters as well as the number and strength of the connec-
tions which are intricately woven into a net.

Research literature on this subject offers some approaches to a possible
structuring of belief systems. For example, Rokeach (1960) organized beliefs
along a dimension of centrality to the individual. The beliefs most centralized
were those on which ithere was a complete consensus; beliefs about which there
were some disagreement would be less central. In contrast to this idea, Green
(1971) discusses three dimensions of belief systems: quasi-logicalness, psy-
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chological centrality, and cluster structure, which will be considered here more
closely (see also Pehkonen 1994). We prefer a multivariate method in order to
visualize belief systems, which will be described later. This approach is a cen-
tral theme of the in-depth examination of more than 1,600 students in Grigutsch’s
dissertation (1996). '

The Investigation

Approximately 400 teachers participating in the German Annual Mathemat-
ics Education Conference in Duisburg were asked to fill out a questionnaire
containing 77 items * total of 310 questionnaires were filled out and returned.
By conducting this investigation, Grigutsch, Raatz & Térmer (1995) tried to
explore teachers’ beliefs concerning mathematics. This spot check cannot, how-
ever, be classified as fundamentally representative of mathematics teachers at
the secondary level, because participation in this continued teacher training
conference was voluntary. It can be assumed that the returned questionnaires
were filled out more or less by innovative teachers.

Methodology

The ‘attitude’ concept is, among other things, signified by a consistency in
reactions. Thus, the existence of an attitude may only be inferred and empiri-
cally recorded if a class of similar stimuli reacts to similar situations.

In relation to our survey, this means (even if the situation of the survey isno
real situation of action) at least the following: it is not enough to try to infer an
attitude from a certain reaction to an single item during one observation. A
group of statements of similar content must be answered in a similar way. Only
in this case can the existence of a characteristic (i.e. the object of an attitude) be
assumed in mathematics, producing a necessary but not sufficient prerequisite.

We decided upon a method of designing a questionnaire which reflected
more of an antagonistical idea of mathematics, on the one hand, as a static
product and mathematics as a dynamic process on the other. Our presumptions
were based on investigating mathematical world views of mathematics stu-
dents (Torner, Grigutsch 1994). In the teachers” questionnaires we grouped the
questions under three headings: (i) my experiences with the normal, classroom,
teaching situation in the school; (ii) mathematics as a field. according to my
perspective; (iii) the origin of mathematics: and (iv) mathematics and reality.

First of all, we did a factor analysis to form groups of statements which
were part of the questionnaire. The items were scaled as follows: § = totally
agree, 4 = agree for the most part, 3 = undecided, 2 = partly agree, | = do not
agree. Furthermore, we used listwise deletion provided a person did not have a
positive value in one of the items. Thus, 207 persons were left for the statistical
procedures through the factor analysis.




Each factor analysis consisted of 75 items. Items | to 77 were included
except for items 22 and 23. As for items 22 and 23, the large number of refusals
to answer them resulted in too many observations (subjects) being excluded
from the factor analysis. Furthermore, it was questionable in principle whether
itemns to which many subjects refused to respond could be taken into consider-
ation during the evaluation of the questionnaire.

The data was analyzed through factor analysis. First of all, an analysis of
the principal components was calculated in order to determine the eigenvalues
and to carry out the Scree-test. There were 25 eigenvalues which exceeded 1.
When taking data from the scree-plot, an analysis based on four factors seemed
to be recommended. In performing principal component analysis, the four fac-
tors were assumed, and then the varimax-rotation as a transtformation method
was applied (using StatView Software 4.5). As to the orthogonal solution, each
factor was determined by items whose loadings exceeded .39.

We were able to prove that the components represented different aspects or
views on mathematics, namely the tool or schematic orientation aspect (S)
resp.. the aspect of formalism (F), the aspect of process (P) and the aspect of
application (A). According to statistical analysis, these aspects were indepen-
dent dimensions of attitudes toward school mathematics.

Each of these four aspects is operationalized through 8 to 13 items: the
methodological and statistical approach demanded this.

Results

In the mathematical world views of teachers, these four global dimensions
formed a global partial structure. Using the matrix of partial correlations (n =
253) in Table 1 we obtained the following diagram (Figure 2).

The partial correlations resulted in a partial structure of the ‘mathematical world
view’ or the belief system, respectively, which corresponded to our theoretic
assumption of antagonistic ideals. The formalism and scheme (= tool aspect)
scale represents both aspects of the static view of mathematics as system and
intercorrelate highly. Both parts of the static paradigm correlate with the process
scale in a significantly negative way. This confirmed our original hypothesis

Table 1 The Intercorrelation Matrix of the Four Fuctors: Tool
aspect (S). Formalism (F), Process (P), and Application (A)

Formalism (F) Application (A) Process (P)
Application (A) 042
Process (P) - 127* A27*
Tool aspect (S) 364*** ,087 - 146*




application

Figure 2. Structure of teachers’ belief system defined by the significant
partial correlations (Grigutsch, Raatz & Tormer 1995)

formalism

that both views are in direct opposition of one another (at least if a paradigmatic
analysis is carried out). The application aspect of mathematics correlated only
significantly with the process aspect of mathematics. This corresponded to ocur
pre-theoretic assumptions in that scheme and formalism express a static property,
which does not include, however, that solving problems of reality is not a primary
aim, From a formalist point of view, mathematics largely refers to itself, a precise
conceptualization, a purely formal-logical verification of statements and to its
logical-systematic structure. From a schematic point of view, mathematics is a
collection of calculation techniques and algorithms which (the non-connection
witti the application scale has to be interpreted this way) are considered suitable
for mathematics-related routine rather than for concrete applications and
solutions to problems of reality. On the other hand, the process aspect aims at
developing knowledge through a problem-related cognitive process, emphasizing
the irnportance of seeing connections of ideas and of intuition. This dynamic
concept of mathematics is more likely to be suitable for application, and this is
expressed by the teachers’ attitudes. On account of the sample-related findings,
the ‘mathematical world view’ is not uniformly, but differently marked. As to
all four belief objects, the frequency distribution covers certain values. For this
reason, there are individually different ways in which teachers look at
mathematics, ranging from rejection to agreement. Furthermore, those
differences are supported or stabilized by the structure formed by these attitude
objects. While they are negatively connected to the process aspect, the attitudes
toward the scheme aspect and the formatism aspect show mutual support.
Looking at mathematics as being dominated by schemes corresponds with this
attitude, expressing the idea that formalism is of great importance whereas a
process; a like view of mathematics is less significant.

zach attitude of a certain dimension. therefore, supports other attitudes
belonging to other dimensions. As for these four dimensions, the “mathemati-
cal world view,” in the very least, is highly consistent and stable. But, then, this
only scarcely implies that any changes of the ‘mathematical world view' con-
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cerning these dimensions come about. Thus, every attempt must manipulate
effects on all four dimensions simultaneously. For this very reason, a change of
beliefs will be carried out most effectively if it imparts experiences to all four
dimensions which may cause a change.

Further Observations — Comparison of the Means

We shall briefly mention some more evaluations on the basis of our data.
Scale values referring to each of the four dimensions were set for each person
involved. These dimensions were operationally defined by 8 to 13 items, re-
spectively. The score concerning the statements of each dimension was added
up for each teacher involved. A transformation and stretching of the scale re-
sulted in each teacher having a scale value in each dimension ranging from O to
50; 0 to 10 represent utter rejection; 40 to 50 in full agreement.

There was no unique view of mathematics in the sample. Teachers had
different individual attitudes towards each of the four dimensions, ranging from
rejection to approval. The attitudes were ‘normally distributed’. Because tlie
distributions in each scale were “normal,” there was no preference of a specific
value except for the mean which the distribution optimally characterizes. Be-
cause the variances are principally the same. we cannot neglect them when
comparing their characteristics or underlying features. The overall attitudes of
the teachers were (with respect to formalism. schema. process and application
) represcnted by their mean and marked as single points on the scale. The aver-
age attitude of the teacher in each dimension was optimally identified by its
mean. Due to the fact that the means were different, their were also varying
attitudes, which contrasted to the four attitude objects. In the eyes of the math-
ematics teacher, these four factors were not of equal importance. As aresult, in
an accented mathematical view there exists much more in that some elements
were found to display more emphasis while others, less. According to the aver-
age view of the teacher on mathematics, the aspect of scheme was estimated
rather low and, in a way, somewhat refused, with formalism ranking in the
upper middle sector of a scale. In contrast. the aspects of application and pro-
cess were valued relatively high. The views relating to the application and pro-
cess aspects were considered as being quite meaningful and were not distin-
guishable by their average estimations.
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This paper reports how a sixth grade middle school mathematics teacher has {earned to
use discourse in her instruction. The first year of data shows the teacher as central in
the development of classroom discussions even though much of her intention was to
use students’ participation as a means for mathematical learning. An intervention was
constructed during the summer between the two years of research to examine the
teacher’s perceptions of her classroom discourse. The intervention, grounded in the
teacher’s classroom data, precipitated a change in instruction during the following year.
Results suggest that the teacher is no longer the central figure in the mathematical
discuss on. Instead. students are working to construct their own understandings. This
new practice, while honoring the students” understanding, has subtracted the teacher's
mathematical knowledge from the classroom discussion. The teacher is a facibtator of
the social structure of the discourse without adequately scaffolding the substantive
mathematical structure.

Introduction

Many researchers define discourse as the core of mathematics instruction.
Understanding the nature of discourse and how teachers construct mathemati-
cal communication in practice is the focus of this paper. As teachers attempt to
enact the Standards and construct practices in mathematics education that em-
brace mathematical reform many find the journey an arduous process. This
study focuses on a middle school mathematics teacher’s facilitation of a dis-
course community of sixth grade mathematics students. We report on this
teacher’s understanding as it has evolved over the last two years in the practice
of her classroom and through discussions with the research team.

Over the past ten years the mathematics education community has seer an
increasing awareness of the importance of communication in mathematics ¢l s-
rooms (NCTM, 1989, 1991, 1995: Hicbert, 1992: Ball, 1993: Elliott & Keni |,
1996 Williams & Baxter, 1996). This increased attention points to the salient
issues of mathematical communication and the role the teacher plays in estab-
lishing substantive discourse. According to the IMofessional Standards for Teach-
ing Mathematics we see mathematical discourse as “the ways of representing,
thinking. talking. agreeing, und disagreeing™ (p. 34). Furthermore, mathe mati-
cal discourse 1s an integral part of doing mathematics-—agreeing on assump-
tions, making assertions about reluationships, and checking if the assertions are



reasonable (Hiebert, 1992). The teachers’ role is to orchestrate such discourse
by “posing questions, engaging and challenging student’ thinking, listening to
students, and deciding when to provide information, when to clarify an issue,
when to model, when to lead, and when to let a student struggle with a diffi-
culty” (NCTM, 1991, p. 35). When teachers undertake a facilitative role in
classroom discourse, students not only express their mathematical thinking but
also conceptualize situations in a variety of ways (Yackel, Cobb, Wood, &
Merkel, 1990).

It is through the work of Williams and Baxter (1996) we begin to examine
the nature of this theory and rhetoric on discourse in practice. They propose an
examination of discourse oriented teaching which deconstructs mathematical
communication into two component parts, each necessary to scaffold discus-
sion. Furthermore, the scaffolding of mathematical discour:.c must include a
social component—norms for social behavior and expectations-—and an ana-
lytic component—the scaffolding of students’ mathematical ideas, and support
of mathematical content. These two forms of scaffolding come into tension as
teachers perceive of their role in instruction as “inculcat[ing] knowiedge while
apparently eliciting it” (p. 24).

Our research further explores the complexity of the balance between the
social and analytic scaffolding of mathematical discourse in classroom. The
following questions framed the first year of our research: Who was participat-
ing in the classroom discussions? How did the teacher make decisions about
classroom activity? How was the curriculum was chose? Base-line data were
gathered in order to typify the teacher’s practice and provide substantive infor-
mation for the teacher/ researcher summer meetings. Data from the first aca-
demic year revealed that the teacher developed mathematical understanding
through small group. whole class, and individual activitizcs. Each of these forms
of instruction would culminate in whole class discustions of the mathematics
where the teacher was the central vehicle for construct'ng mathematical under-
standing.

During the summer meetings the teacher and re<earchers reviewed video
from the classroom. Typical classroom activity was discussed in order to un-
derstand the teacher’s decision making while in action, as well as her reflec-
tions on her actions. After a number of class activities were reviewed, the
teacher undertook a series of investigations to determine the terrain of the math-
ematical discourse. Classroom conversations were analyzed to determine who
spoke. in what order. and what patterns developed in the discourse. Based on
the continuing analysis of this discourse, video models of other teachers were
also examined. During this examination and in further reflection, the teacher
determined that she was consistently central in the conversation, students where
addressing her in discussion and 1ot other students, and the mathematical un-
derstanding that was developed in discourse was consistently her own and not




the students. To address these findings the teacher and researchers investigated
and designed a beginning of the year curricula to shift the focus of discourse
from the teacher’s understanding to the students. Tasks were examined, the
classroom was reorganized, and the teacher informally role played activities
with the researchers sharing possible questions, structure, and follow-up activi-
ties.

Year Two

The second year of the study the teacher implemented these changes. While
large changes occurred in the nature of who was speaking, to whom the discus-
sion/questions were addressed, and the authorship of the mathematical under-
standing—students were now the central figures of the mathematical discourse—
the mathematical content of the discussions remained solely focused on the
students’ nascent understandings. Whereas during the first year the teacher
was the central interpreter of the mathematics, during the second year the
teacher’s expertise was noticeably absent from the discussion.

Methodology

The data collected from the first and second year consisted of video taping
the class one to two times a week and informal discussions which were audio
taped. The focus of the video taping was on the speaker in the class during
whole class instruction and selected small groups during group activities. In-
formal interviews investicated the teacher’s decision making and issues which
arose in class. A sampling process was used for this research in which the first
author identified various forms of discourse used in class, selected tapes equally
distributed across the various forms, and reviewed at least one tape from each
month of data collection. Extensive notes were taken on each of these video
tapes and selected excerpts were transcribed. The second year's data is in pre-
liminary stages of analysis and will inform a second set of summer meetings
with the teacher and researchers.

Findings

The following is a typical dialogue sequence in which the teacher, Ann,
facilitates the discussion of a task. Ann’s questions were designed to foster the
development of a conceptual understanding of decimal multiplication through
a comparison of place value. Furthermore, her questions provide the students
with an overview of what Ann knows to be typically confusing mathematics for
her students. “[1 am] presenting them with something that I know they have
seen before, but they never explored. They've just accepted as God given (6/
96)." The known-answer questions that Ann poses lead her into an explanation
of decimal multiplication.
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Year One

Ann begins her math class with a warm-up, places a problem on the over-
head, and walks around looking at students’ papers.

The problem:

A tentis on sale at 30% off. What is the sale price 7 Choose a decimal
or fractional method to solve.

Ann adds orally, “When you finish try the other method.”

After looking at a number of papers. Ann moves to the overhead to begin
her lesson. Her discussion of the problem is led by her questioning the stu-
dents and eliciting as many different solutions methods as she has noticed on
students” papers. She wants students to see more efficient approaches and also
recognize that other methods provide the same solution.

Ann:

C:
Ann:

Student Chorus:

Ann:

Student Chorus:

Ann:
Ann:

M:

Ann:

The tent is $150 and at 30% off.

Who chose a decimal method? “C™, What did it look hke”
150 times .3 ... multiplied by .30.

Okay, Did anyone set it up differently, still using a decimal
method?

Did anyone do this? Just asking. right. {She writes 150 x 3]
Did anybody do this? [waits about 3 sec.] Could you have
done that?

Yeah.

Is this solution going to be the same as that solution? [Points
to the first and then the second problem]

Yeah.

Right. Why?... Why" (1/96)

[ want to talk about these {two problems|. How did you
know it was 457 [waits] M?

Cause you count to the right of the decimal. And if it was 30
there are two places to the right so you count two over,

Oh yeah? How many people heard that before? Why does
that work? [waits] [t's a great trick, don’t get me wrong. |
don’t want to discourage you from using this trick. But you
need to know why tricks work mathematically. Because you
know what can happen . . .



Ann socially scaffolds the discourse by calling on students. She estab-
lishes the norms of response that students provide by leading the content of the
discussion. The “known-answer” questioning format limits students’ responses
thus directing them toward Ann'’s instructional goal of recognizing multiple
solution methods. The analytic scaffolding of the discourse is subsumed by
Ann’'s instructional goal for students to see the connection between the two
solution methods. While the understanding Ann wants to ensure for her stu-
dents is important, the locus of meaning resides with her. Furthermore, the
students’ construction of the mathematics is not part of the analytic scaffolding
Ann provides. Williams and Baxter (1996) suggest this construction of dis-
course is understandable in that teachers “are still under the obligation to have
students embrace a more or less fixed body of knowledge, and students still see
their job as getting through class. An attempt to have students participate in the
social negotiation of meaning may or may not be meaningful for them” (p. 36).

During the second year of the study, the students’ participation became the
center of instruction, yet the meaningful nature of the discourse remained in
question. Class typically started with a problem, similar to the first year, in
which students would work either individually or in groups. The difference in
instruction arose when the whole class discussion took place. The students’
mathematics was now the focus of the discourse. Students would present their
solutions to the whole class. Typically, Ann would sit at her desk in the back of
class, unlike the previous year in which she sat at the overhead. She often
would provide reminders for the structure of classroom interactions. “Don’t
look at me, you are in charge of this. Remember, you have to call on someone
after you have presented your solution.” The structure of the discussion was
facilitated by Ann’s instructions for students to always re-word questions, re-
spond to them, and then provide their own position. Students would do so by
saying, “l agree with or disagree with student # 1's solution. 1did...” Discus-
sions would continue in this way until time was called or another activity was
assigned. Ann’s intention was for students to begin understanding other posi-
tions in hopes that they would deepen their own understanding. The math-
ematical content was driven by the students’ presentations of solutions.

Ann socially scaffolds discussions by asking, “What do think? Does any-
one else have another way to explain this?” The established norm, which re-
quired students to first comment on the last speaker’s solutions and then argue
their own position, was intended to support the students in connecting the dif-
ferent solution methods., However, what was noticeably absent was Ann’s in-
terpretation of the mathematics, and as a result, the students were left to con-
struct the substantive mathematical connections. Her role in providing closure
or evaluative explanation to the discussion was left to the students® individual
interpretations. Ann’s role had shifted from the interpreter of the mathematics
to the coach in the discussion. Students’ construction of meaning was the fo-
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cus, yet there remained an imbalance in the analytic and social scaffolding of
discourse. Ann socially scaffolded the discourse through the established par-
ticipation structure, but during the second year, the students were primarily
responsible for the analytic scaffolding. In this case, the analytic scaffolding
was limited by the strongest students’ understanding of mathematics.

Implications

We have scen Ann promote very different forms of mathematical discourse
over the last two years, each situating the locus of mathematical understanding
with different participants. This work suggests that the social and the analyti-
cal aspects of discourse may serve as a lens by which to view instructional
discourse and examine the nature of the students’ and teacher’s roles in that
discourse. Further, this study highlights the importance of balancing the social
and analytic scaffolding of discourse. This balance is cructal for establishing
patterns of intcraction which lead to substantive mathematical discussion.

References

Ball, D. L. (1993). With an ¢ye on the mathematical horizon: Dilemmas of
teaching elementary school mathematics. The Elementary School Journal,
93 (4), 373-397.

Elliott, P. C., & Kenney, M. J. (1996). Communication in mathematics K-12
and bevond. Reston. VA: National Council of Mathematics.

Hiebert, J. (1992). Reflection and communication: Cognitive considerations
in school mathematics reform. In H. J. Walberg, B. P. M. Creemers, B. J.
Feraser & T. N. Postlethwaite (Eds.), International Journal of Educational
Research, 17, 439-456.

National Council of Teachers of Mathematics. (1989). Curriculum and evalu-
ation standards for school mathematics. Reston, VA: The Council.

National Council of Teachers of Mathematics. (1991). Professional standards
Sor teaching mathematics. Reston, VA: The Council.

National Council of Teachers of Mathematics. (1996). Curriculum and evalu-
ation standards for school mathematics: Addenda series grades 5-8. Reston,
VA: The Council.

Williams, S. R., & Baxter, J. A. (1996). Dilemmas of discourse-oriented teach-
ing in one middle school classroom. The Elementary School Journal, 97
(1. 21-38.

Yackel, E., Cobb, P., Wood, T.. & Merkel. G. (1990). The importance of social
interaction in children’s construction of mathematical knowledge. InT. J.
Cooney & C. R. Hirsch (Eds.), Teaching and learning mathematics in the
1900°s (pp. 12-21). Reston, VA: National Council of Teachers of Math-
ematics.




GROUP CASE STUDIES OF SECOND GRADERS
INVENTING MULTIDIGIT SUBTRACTION
METHODS

Karen C. Fuson Birch Burghardt
Northwestem University Northwestem University
fuson@nwu.edu burghardt@mcs.net

Four groups of second graders explored the subtraction of horizontally presented 4-
digit subtraction problems using base-ten blocks. The blocks afforded children’s in-
ventions of several variants of separate-multiunit methods involving trading or putting
-onc multiunit in the next-right adjacent position to make ten of that multiunit. When
dominant-group members had good mathematical knowledge and wers. good rather
than bossy leaders, the groups made better mathematical progress. Language describ-
ing subtraction is complex because different phrases reverse the direction of subtrac-
tion. Trading is also complex because some children focus only on one part of the
trade. Descriptions of block and numeric operations were often too general to follow,
but children could explain more clearly when asked. Important functions of a teacher
are to increase such specific full descriptions using quantitative language, to facilitate
linking of numerical and block (or other referent) operations. to help overcome im-
passes, and to create a simpler problem or use another method to focus children on
available mathematical meanings.

This research was undertaken to increase our understanding of how indi-
vidual conceptual and social competences affect individual learning within so-
cial learning settings. This was addressed by studying children’s invention of
multidigit subtraction methods within a small-group setting. Brief case studies
of four groups of second graders overview interactions of individual personali-
ties and varying mathematical understandings of group members that created
different pattemns of group interaction and different group and individual learn-
ing paths.

Perspectives and Theoretical Framework

The authors of this paper take a constructivist view of leamning as indi-
vidual meaning making by cach participant and a Vygotskiian view of teaching
as assisting the performance of learners by adapting to the perspective of the
learner while helping the learner move toward more culturally adapted concep-
tions. This study was designed to allow teaching to arise mainly from the group
interaclions of the children, though the adult group supervisors did some scaf-
folding. The analysis of Fuson (1990), Fuson and Kwon (1992), and of Fuson,
Smith, and Lo Cicero (in press) concerning coneeptual structures children use
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in multidigit situations is used to analyze children’s multidigit thinking. The
base-ten blocks used by the groups afforded primarily separate-multiunit con-
ceptions of subtraction as requiring trading from the adjacent-left position to
get more of a given multiunit. The two conceptions identified by Fuson and
Kwon (1992) in Korean children’s subtraction thinking were the conceptions
used in most verbalizations of children’s thinking in this study. The multiunit
quantities conception used block words or multiunit quantity words (e.g., *'I
put this Big Mac [or thousand] here to make ten plates {or hundreds]”). The
regular one/ten trades ~onception was used for all places: it described the ac-
tion above as I took this one and made ten here.” The resulting teen number
was viewed as consisting of one ten and some ones and not just as concatenated
single digits (e.g., 13 as a1 one and a three). As in the Fuson and Kwon (1992)
study, some children in this study also integrated these two views for a full
conception that could use the multiunit values along with the tens/ones nu-
meral view of each column.

Methods and Data Sources

Four groups of four or five children were asked to subtract horizontally
presented 3- and 4-digit numbers using base-ten blocks and to make numeral
recordings of their block methods. The children were frem the highest-achiev-

ing of three second-grade classes. These subtraction sessions followed a 2- to
3-day introductory period with the blocks. and a S- to 8-day period solving 4-
digit addition problems (Fuson & Burghardt, 1993). Groups spent between
three and eight days on subtraction. The subtraction time was not sufficient,
but was limited by the total time the school was willing for the groups to par-
ticipate in the study.

Each group session was videotaped. Each group had an adult who oversaw
the videotaping and took live notes. Each videotape was transcribed and then
checked by a second transcriber. Mathematical and group interaction verbal-
izations were transcribed verbatim. Mathematical and social/emotional actions
were described in the transeript. A third person made separate drawings of all
operations with blocks and all writing of problems in numerals either on the
group writing pad or on individual papers; these records were related to tran-
script ling numbers.

Results

Group A

The group did not discuss or have difficulties with the direction of subtrac-
tion or of words describing subtraction. U immediately saw and verbalized the
difficulty: “We have a problem, though, We can't take 2 away from 6. Take 6




away from two.” (this was the required hundreds subtraction). He correctly
inferred directionality from the horizontal problem. T repeatedly suggested
“borrowing” and even described a ten/ones borrow with the blocks more than
once. But her English was not very good, and she never used the blocks to
explain or justify her suggestion. She was not an assertive group member, so
this suggestion was ignored repeatedly. The children did not resolve their posed
problem (how to take 6 from 2) on that day. On the second day T again sug-
gested borrowing and finally put in 10 teeth [ones] and took out 1 licorice [1
ten]. Da objected that she was adding (focusing just on the adding in of ten
teeth). U used a 2-digit tens and ones conception to describe a thousand/hun-
dreds trade, “Take one ten away from this (5 in the thousands column).” This
trading attempt was cut short by Da’s insistence that you have to go from right
to left in math. T showed the licorice/teeth [tens/ones] trade again, but never
explained it. Da again objected that “it is adding.” Finally T said that she was
not adding but taking away “because I have to take ten of these here (pointing
to tens)” (focusing Da on the taking-away part of the trade but not discussing
the whole trade). Da said. “That’s a good idea. Let’s do the same with the
pancakes (immediately generalizing the trading method to the hundreds).” N
finally articulated the whole trade in block words, “She took one licorice away,
and she put on ten teeth.” This seemed to reduce objections, and the three girls
(Da, T, and N) made trades with the blocks linked to numeric recordings.

The group then showed their acceptance of the norm to explain actions in
order for everyone to understand by a long period of repeated explanation by
the girls to the boys. However, these lacked clarity because of the lack of full
multiunit or bloc! words (lots of “here” and “there™) and no explicit justifica-
tion of the fairness of the trade. Also, U throughout wanted to subtract from
left to right, and all of the others insisted on subtracting from right to left. This
group for addition had worked in either direction, and even started in the middle,
in their method of adding everything and then fixing the answer (Fuson &
Burghardt, 1993). They might have invented a “fix everything first and then
subtract” inverse of this procedure if some of them had not heard the “math
rule” to work from the right in subtraction.

On the next day U again tried to begin from the left and do a thousand/
hundreds trade; he was stopped by T. He never got a chunce to try out a whole
problem from left to right. This difference in approach, combined with lack of
clear language, continued to plague the group’s discussions and eventually led
to some withdrawal by U. Most of the time the trades were not fully articu-
lated. But in the final two days Dh did explain both aspects of a trading action,
* She took one of these (pointing to the three remaining licorices [tens]) away
and put ten tecth [ones]” and Da explained about T that “She is putting the
same thing out but in different places.”
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Group B

This group had with addition developed block and digit-card methods in
which the blocks and digit cards for each column were removed and replaced
by answer blocks or digit cards (index cards each with a number used to show
the numeric problem). The adding was usually done mentally or with fingers.
Children did show trades with blocks (e.g.. removing ten tinies [ones] and add-
ing in another rectangle [ten]), but they never evolved a method for showing
this trade with numerals: Three of the four children added in the trade mentally
and did not write it. This group developed similar methods for subtraction.
They placed blocks and digit cards vertically and then moved from right to left
subtracting mentally or by counting up. Problem blocks and digit cards were
removed, and answer blocks and digit cards were put into that column. Until
the third and last day when the adult suggested that they relate their block and
digit-card trades, children predominantly used a method of making mental teens
in order to subtract and did not really focus much on the blocks.

They began by adding the first problem, and then M did smaller from larger
with the blocks. N said that the smaller from larger (e.g., 2 - 8) columns should
all be 0. Three of the children then did smaller from larger on their paper, but N
subtracted to give zeroes. The adult then focused them to look just at the
rightmost two columns, which showed 62 - 38. D said, "Maybe you can take a
ten from the 6 column and put it with two. You get twelve minus eight.” The
adult asked D if she could do that with the blocks: D put a long from the 6 longs
with the 2 tinies. No one was paying any attention, so the adult asked D to do
everything again. Then each child solved the problem again numerically on
individual sheets. D and X showed the thousand/hundreds trade and the tens/
ones trade, i.e., they immediately generalized the trading. M wrote no trades
but did them mentally: she forgot to reduce the thousands by 1. N probably just
copied the answer from M. but he might have done part of the problem himself.

D was absent the next day. M worked hard all day and did try to explain
issues to both boys. A couple of times M took out one of the next-left top
blocks when removing all blocks of one kind in order to put in the answer
blocks (e.g.. took out one rectangle and all of the tinies before putting back the
answer in tinies). But she never said what she was doing (taking out the top 16
and bottom 9) or explained, so this subtle version of putting a larger multiunit
with the next smaller columnn was not noticed or understood by the boys. All
three children did help correct each other on various columns about both parts
of the group’s strategy: They each initiated the statement of the correct sub-
traction in a column requiring more (e.g., said 3 - 6 as thirteen minus six), and
they each initiated or corrected the subtraction in a column from which putting
had occurred. Therefore. the boys each showed understanding at some points.
Children evolved two different methods for subtracting a traded-from column.
M usually first subtracted the numbers and then took away one if a teen had
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been made to the right. N added one to the bottom number and then subtracted.
The children never used multiunit words and hardly ever used block words;
their brief and rare descriptions or discussions used 2-digit tens and ones or
concatenated single-digit language. They were all focused on the written nu-
meral problem and worked orally and mentally from this. Each frequently
understood their mental “make a teens” method, but each also sometimes made
an error (usually not decreasing the traded from column by the one traded).

Group C

The group set up blocks and numbers vertically. N said, “You have to
borrow because you can’t take 2 away from 8. I mean take § away from 2.”
When asked what to do with the blocks to show borrowing, she said, “Ask Mr.
Ten if you could borrow a pretzel [a ten] and then you would take it - one of
them - and you would take ten sugar cubes [ones] and put them down.” This
was one of the fullest descriptions of the next four days spent on subtraction;
block words were rarely used after this. Other children did pick up the theme
of “Ask Mr. X" and the language “take one.” Block trades were done for all
columns. The language describing the trades usually used the word “take” or
“take away™ for both the one taken and the new 10 blocks put in (“Now take ten
of these.”). but occasionally the word “put™ was used for the 10 blocks put in.
The equivalence of these block actions was never discussed. Some children
clearly indicated by various comments that they understood this equivalence,
while others did not indicate so clearly. Children occasionally said the subtrac-
tion words backwards, but everyone understood the direction of subtraction
{the bottom number was being subtracted from the top number). J once said,
2 take away 6 is minus 4, negative 4. but this was never pursued.

T dominated the block trading over the first three days, either doing it or
telling other people what to do before they could think it out for themselves. N
continued to show her understanding throughout. B initiated block trades and
numeric recordings for various columns, but she was slow and T often told her
what to do. K did initiate some block moves and numeric recordings, but he
had difficulty explaining what he had done. He finally did so at the adult’s
insistence. On the next-to-final day. they all wrote on individual papers as the
problems were done with blocks. Everyone wrote both problems correctly,
often before the block trading. Everyone by the end could do accurately and
could record numerical borrowing, but K and J were not so consistently clear
about the block actions for borrowing. J at onc point argued that he should add
one pretzel [one ten] to the tens rather than ten pretzels from the | bread [hun-
dred] taken away; this seemed to reflect thinking (at least at that moment) that
they were always trading a ten to a given column. The group’s tens and ones
language suggested this, and their failure to use block words or multiunit names
facilitated this view. T, at that time in response to J, said the only clear multi-
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unit description of trading, “You need to borrow one hundred; and hundred's
are ten tens.”

N kept wanting to subtract from the left, and the others from the right. This
was the one group that did addition problems from both directions and had
discussed relative advantages of each. They had decided that going from the
right was faster because they did not to cross out their first answer in a column.
T used this in arguing that they should subtract from the right, “Remember. it is
faster.” On the final problem on the final day, at the suggestion of the adult.
they did all of the trades first (from the right as usual) and then subtracted from
each direction. They sa'v that they got the same answer.

Group D

This group especially at the beginninz had great difficulty with, and long
controversies about, correct language to express the direction of subtraction.
The work of this group was heavily led by one girl C. who knew the standard
U.S. subtraction algorithm and a standard Chinese algorithm. Her blocks sub-
traction methods looked like these algorithms, with a block put into the next
column to the right when trading was necessary. C did little explaining, though
her occasional comments indicated that she was using both multiunit values
and a 2-digit tens and ones conception. The two boys E and N had only partial
understanding of her method, initially doing a smaller-from-larger method on
some columns when they wrote their own problem. L several times throughout
the subtraction proposed that the difference of a column be a “minus 6™ or
“negative 6.” but this idea was never pursued by the group. C also introduced
her Chinese subtraction method, which was to put a dot above a column from
which a multiunit was borrowed. Usually, nothing else was written. Butin the
first use of this method. she recorded each aspect: A dot was put above a col-
umn. a 10 was written to the right of the dot (i.e., it was then 10 of the next-right
multiunit), and the top number was reduced by one.

On the last three days problems with zeroes on the top were introduced. C
and N were absent for two days. E and C struggled with how to get more ones.
coming up with several unsatisfactory ideas (e.g.. putting a thousand block in
the ones. putting a thousand block in each column). and E was his usual un-
pleasant and aggressive self. On the second day the experimenter asked them
where the thousand block usually was traded. This was all the two needed. and
E worked productively and collaboratively for the rest of the day, even saying.
“This is fun.” when they had solved all of the top trades. Their block method
was to make all of the usual trades (put a thousand above the hundreds, a hun-
dred block above the tens. and a tens block above the ones) and then to com-
pensate for the trades from the hundreds and the tens (the thousands block in
the hundreds was changed to 9 hundred blocks and the hundreds block in the
tens was changed to 9 tens blocks). Then all of the subtraction was done right
to left. This method was done with the numerals and the blocks.
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On the final day a regular problemn without zeroes was done because the
other two children returned. N did with the digit cards a fix-everything-first
version in which he crossed out the top digit cards with carrots, but he did not
put new digit cards to show the changes. The changes were said in multiunit
values (e.g., “We have thirteen hundreds.”). and the subtraction was then done
right to left. All children then individually wrote that problem on their papers.
The boys did the traditional algorithm correctly. C did the Chinese method
writing only dots. L invented a new dots method in which she wrote ten dots
above each of the traded to columns and also made dots for the top number.
This method conceptually shows a 2-digit tens and ones conception underlying
her method.

This group would have been much more productive if E had been both
encouraged and constrained, and if appropriate support had been given to elicit
full explanations. These children could probably have articulated a fully inte-
grated multiunit and 2-digit tens and ones conceptually-based subtraction
method, even for zeroes in the top number. Furthermore, adult support of L's
negative-number idea might have led to a negative-number method (get posi-
tive and negative multiunit differences, then fix the answer). The group lacked
a strong leader. Neither girl was strong enough to stand up to E's negative
behavior, precipitating frequent boy-against-girl battles. N would have been a
gcod collaborator in a group without E’s negative influence.

Conclusions

Personality factors combined with the mathematical strength of individual
children to create different group learning paths and different subtraction meth-
ods with the blocks and the written numerals. Official leader and checker roles
rotated daily among children in a group. Most children were adequate leaders,
but “natural” leaders also emerged in all groups. When dominant members had
good mathematical knowledge and were good rather than bossy leaders, the
groups made better mathematical progress. These groups exemplify groups at
the beginning of learning to work together or groups whose teacher has not
worked to establish powerful social norms or group interaction competence.
They indicate that good mathematical ideas (e.g., negative number approaches)
can get lost in group processes if the ideas do not come from dominant chil-
dren.

Directionality in the language of subtraction was a difficulty for some groups
but not for others. Ditferent English ways to describe subtraction are opposite
to cach other: for example. 2 take away 8. take 8 from 2, 2 minus 8. 8 from 2,
2 subtract 8. Children frequently said such subtraction phrases backwards (e.g.,
8 take uway 14). Sometimes everyone seemed to know what was actually meant,
and sometimes such reversals confused discussion or operations.
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Several groups did not adopt very well the social norm to assist all group
members to understand or were not very good at such assistance. There were
in some groups sustained efforts to help everyone understand, and there were
isolated incidents of effective explanation in other groups. However, overall
the spontaneous explanations were quite limited. Most explanations did not use
multiunit quantity language (“thirteen hundreds minus six hundreds is seven
hundreds™) or block language. Many explanations did not even use numbers
(“We took away these from those.”). This lack of verbal clarity made it difficult
to follow what a child was saying.

Children’s objections and misunderstandings of trading illustrate its com-
plexity. Children need to be able to see both parts of the trade: the taking from
one place—and the subsequent reduction of those multiunits by one—and the
adding to the adjacent-right place—and the subsequent increase of those
multiunits by ten. Explanations and demonstrations that focus on both these
parts—and the numerical consequences of each—are necessary. Given the
paucity of full verbal explanations in most groups, and the too brief learning
period, it perhaps is surprising that most children came to understand trading
and to use some numerical method of recording such a trade.

Several vital functions of a teacher are clear from the above case studies:
Supporting children to describe their mathematical actions using quantity lan-
suage, to link numeric and block (or other referent) operations, to explore deeper
aspects of an operation, to focus on meaning (e.g., in looking at 62-38), and to
overcome an impasse. It is also important for teachers to help the voices of
non-dominant children be heard because they may contain productive math-
ematical ideas. '
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TEACHING MATHEMATICAL PROCEDURES
MINDFULLY: EXPLGRING THE CONDITIONAL
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MATHEMATICS
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The present study explored the effects of conditional instruction on the learning of an
invented mathematical procedure called “pairwise.” 53 female undergraduates were
randomly assigned to either a conditional, absolute, or no-instruction group. Follow-
ing instruction, pariicipants’ performancc on pairwise problems was assessed for accu-
racy, procedural workability, and understanding. Also, their ability to creatively adapt
their pairwise procedure and their potential for procedural misapplication was assessed.
In contrast to previous research findings, analysis revealed that simply modifying the
language of instruction alone is insufficient to produce conditional instruction in
mathematics. However, when the conditionality was salient, the conditional group
outperformed the absolute group in all areas as hypothesized. The no-instruction group’s
procedural workability was comparable to that of the conditional group while their
understanding and avoidance of mindless misapplication was superior to other groups.
The implications of these findings for further developing conditional instruction and
mindfulness in mathematics arc discussed.

Through the presentation of information in an open-ended manner, condi-
tional instruction acknowledges the uncertain and shifting nature of knowledge
and information—thus, encouraging personal meaning making and mindful-
ness. In this way, conditional instruction supports constructivist teaching.
However, the unique conditions of conditional instruction’s application to math-
ematics have yet to be fully investigated. Is conditional instruction effective in
learning new mathematical procedures? As a domain, what unique demands
and constraints does math place on conditional instruction? The present ex-
perimental study seeks to investigate these questions.

Theoretical Framework

Mindfulness theory (Langer, 1989) seeks to explain the creation of open
and creative states of consciousness (mindfulness) and the pov-er of such states
to influence human behavior, affect, and health. According to theory, mindful-
ness results from drawing novel distinctions, exploring new perspectives, iand
being s “usitive to context while mindlessness is fostered through the premature
formation of fixed mindsets, overgencralizations, automaticity and acting from
a single perspective. Mindfulness is a facilitative state, promoting increased
creativity, flexibility, memory, and spontancous use of information while mind-
lessness may lead to loss of control, narrow thinking, and a loss of opportunity.
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Mindfulness theory is broadly applicable to issues of education, challenging
traditional assumptions concerning the focusing of attention, memory, the na-
ture of intelligence, and the assumption of absolute truths (Langer, 1997).
Research on “conditional” instruction represents an application of mind-
fulness theory particularly applicable to issues of instructional design. Draw-
ing on research on the formation of mindsets (Duncker, 1945; Lucians, 1942),
this line of inquiry has focused on the form and context in which new informa-
tion is presented. Conditional instruction presents information in an open-ended,
opportunistic, and inconstant manner that encourages a sense of possibility and
introduces a degree of uncertainty. Conditional instruction is in direct contrast
to absolute instruction in which information is presented as fixed, absolute truths
lacking in ambiguity. In its simplest form, conditional instruction may entail

. stating that something “‘could be” rather than that it “is"—a pencil, case of

injustice, example of impressionism, etc. Research has shown that, in contrast
to more traditional absolute instruction, conditional instruction is more effec-
tive in producing mindfulness by encouraging a sense of possibility and inhibit-
ing the formation of fixed mindsets (Eck, 1994; Langer & Piper. 1986: Mueller
& Langer, 1995; Salomon & Globerson, 1987 ). What conditional learning
offers is an explicitly-focused design principal for adapting conventional di-
dactic instruction. Furthermore, mindfulness theory and conditional learning
research provide an explanatory mechanism for why traditional didactic in-
struction can be inhibiting and lead to mindlessness.

Methods

Overview. To investigate the effects of conditional instruction in learning
mathematical procedures, a mathematical “operation” called “pairwise” was
invented. The puirwise concept was introduced to all participants through the
following written instruction:

When you Puinwvise a number, you figure out how many pairs can be
made from that number of objects and how many singles are left re-
maining. For example. to pairwise the number 6, you would ask your-
self how many pairs can be made fiom 6 objects? The answer would
be 3. You then ask yourself how many singles are remaining? The
answer would be 0. You would write your answer to Pairwise 6 as 3/0.
P/S 6 = 3/0.

As an invented operation, pairwise represented new content for all partici-
pants and made it possible for us to assess the effects of different forms of
instruction rather than prior knowledge'.

IWhile an nvented operation may not capture the contextual nature of “real”
mathematics. the many ways the pairwise operation and instructional sequence used is
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Subsequent instruction focused on leaming a procedural algorithm for ap-
plying the pairwise procedure to two 2-digit numbers. Four instructional con-
ditions were devised: absolute instruction, no instruction, and two different forms
of conditional instruction. Having two types of conditional instructional al-
lowed us to explore the most effective aspects of conditional instruction in
mathematics. It was hypothesized that participants receiving conditional in-
struction would demonstrate the greatest mindfulness as evidenced by facility
and flexibility with the procedure.

Participants. Fifty-three, female undergraduates from a small private col-
lege in the Northeast participated in the experiment as part of their mathemat-
ics classes. Three classes, taught by the same instructor, were used. Two thirds
of the participants were enrolled in a basic math course focusing on numera-
tion, graphing, and logic. The remaining students were enrolled in a general
geometry course. The content of both courses was comparable to pre-algebra
and sought to provide a basic level of mathematical proficiency for math pho-
bic students majoring in the social sciences.

Procedure. Participants were told they were participating in a study of the
effects of different types of instruction in mathematics. [n each class, partici-
pants were randomly assigned to one of four conditions: no instruction (n=14),
absolute instruction (n=13), 1-example conditional (n=13), and 2-example con-
ditional instruction (n=13). All instruction was provided in written form, and
the instructional packets were collected prior to giving participants four prob-
lems to solve.

All participants received the same introduction to the pairwise concept
(stated above). Participants in the no-instruction condition received no further
instruction. In the absolute-instruction condition, participants were provided
with a four step procedure and accompanying example for applying the pairwise
operation to two 2-digit numbers. The algorithm involved: 1) arranging the
two numbers vertically, 2) multiplying the sum of the ten’s column by 5 to
determine “the number of pairs so far,” 3) adding the one’s column and “figur-
ing out” the number of pairs and singles in this sum, and 4) adding the pairs and
singles from steps two and three. This algorithm was introduced in absolute
terms with the statement: ** Mathematicians have invented a method to allow
them to quickly find the answer to these pairwise problems. This method con-
tains four steps.”

representative of mathematics and mathematics instruction should be considered. In
mathematics instruction learners frequently encounter “invented”™ procedures in the
form of formulas or functions that they must seek to understand and master.
Like these procedures, the pairwise operation builds on previously learned
mathematics and can be contextualized, allowing participants to draw on their
prior mathematical knowledge in learning or devising a pairwise algorithm.
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In the l-example conditional group, participants were provided with the
exact same four-step algorithm and example as in the absolute condition but
with a conditional introduction: “Mathematicians have invented several ways
to quickly find the answer to these pairwise problems. One possible method
contains four steps.”” In the 2-example conditional group, participants were
provided with the four-step algorithm introduced with conditional language as
well as a second five-step procedure. The presentation of more than one model
is conditional because it breaks the set of a single correct method, solution, or
answer.

Measures. Following instruction, participants were given four problems to
solve. The first two were 2-digit pairwise problems similar to the instructional
example. Participants were asked to solve the problems, describe their solution
method, and provide an explanation for why their method works. Participants’
solutions were evaluated for accuracy, their procedures were judged on work-
ability, and understanding of the method employed was evaluated. The third
problem was designed to measure the creative use of instruction. In this prob-
lem, participants were asked to solve another 2-digit pairwise problem using a
method different from any they had been shown.

Participants’ potential for the mindless misapplication of the pairwise pro-
cedure was assessed in the fourth problem. This problem involved a descrip-
tion of an optometrist who sold single and pairs of contact lenses and informa-

tion on two shipments of contact lenses. This problem looked like it might
have involved application of the pairwise procedure, but the actual question
only asked how many contact lenses were available. Participants’ solutions
were evaluated for accuracy.

Analysis and Results

Initial analysis led us to question whether our l-example group actually
represented a form of conditional instruction. While previous research had
shown the effectiveness of written conditional language (Langer et al, 1989),
we speculated that in mathematics learners may have a tendency to absolutize
instruction. A follow-up study was designed to test this hypothesis. Ten stu-
dents, enrolled in another of the same instructor’s sections, were asked to read
and then paraphrase the 1-example conditional-instruction information. Only
2 of the ten used conditional language—"there are a number of ways” and “math-
ematicians have invented methods”. The remaining students stated they did not
read the introductory statement or that it introduced a single method, procedure,
or formula. Therefore, the [-example conditional group received essentially
the same instruction as the absolute group. In our subsequent analysis, we
combined the 1-example and absolute groups into a single absolute-instruction
group to obtain more statistical power.
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Accuracy. The first two pairwise problems were scored together. Accurate
solutions (=2) provided the correct number of pairs and singles for both prob-
lems. Partially accurate solutions (=1) either solved only one of the two prob-
lems correctly or provided the number of pairs and singles for each number as
opposed to a single, combined total (i.e. P/S 18 and 12 =9/0 and 6/0 rather than
15/0). Inaccurate solutions to both problems were scored as O.

The conditional-instruction group demonstrated greater accuracy than ei-
ther the absolute (M, =1.53, M =.96; z =1.72, p<.05) or the no- -1nstruction
group (M__=1.53, M =.64;z = ) 57, p<.01)%. One hypothesis for this finding
is that the second procedure provided to the conditional group was easier to
understand and use, providing them with an advantage. However, analysis of
the methods used revealed that only 2 out of 13 participants used the second
method.

Procedural Workability. Participants’ solution methods were evaluated as
either workable (=1) or unworkable/limited workability (=0). Workable meth-
ods were those that had the potential for yielding a correct solution. Methods
of limited workability worked in this particular instance but lacked
generalizability. For example, in the problem P/S 25 and 36, some participants
said to add the ten’s column and square it. Unworkable solutions were those
that could not possibly yield a correct answer. For example, for P/S 18 and 12
a participant wrote, ** Take 18 and divide it by 12. [then] put it [6] over 12."
Only 65% (17/26) of the absolute group produced workable solutions com-
pared to 85% (11/13) of the conditional group (M =85 M  =.65;1=1.40,
p<.10) and 86% (12/14) of the no-instruction group(M =.86, M =65;1=1.50,
p<.10)%.

Understanding. Participants’ explanations of the method they employed to
solve the pairwise problems was assessed to determine their level of under-
standing. Explanations were rated as acceptable (=2), weak (=1), or no under-
standing (=0). Acceptable explanations provided a mathematical rationale for
some aspect of a workable procedure. For example, “this works because di-
viding a number by two will ‘pair’ any number.” Weak explanations often
reiterated the method in new language without actually justifying it. Explana-
tions for procedures that were unworkable or stated that I followed the steps™
were rated as no understanding.

The no-instruction group showed understanding superior to both the con-
ditional group (M =1.29, M =.31;2=-2.67, p<.0l) and the absolute group

) , . .

~Unless otherwise noted, the Wilcoxon Rank Sum test, was used to compare group
means. All p-values are for onc-tailed tests. Only 7 scores that approach at feast the
A0 Tevel of statistical significance are reported.

AAn arc sine transformation was performed on these data to permit the use of a more
powerful t-test.
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(M_=129,M, =19:z=3.38],p<.000l). Since the no-instruction group had
to invent their own procedure, they were unlikely to invent something that they
didn’t understand or could not explain. Thus, it makes sense for this group to
demonstrate a higher level of understanding.

Creative Use of Instruction. The ability of participants to go beyond the
instruction given to creatively produce a novel and workable procedure for solv-
ing pairwise problems was assessed in the third problem. Participants’ solu-
tions methods were coded as either novel and workable (=1) or the same and/or
unworkable (=0). 82% (9/11) of the conditional group and 64% (9/14)of the
no-instruction group produced novel solutions compared to only 46% (11/24)
of the absolute group (M, =82, M =.46; z =1.95, p<.05). Even though
showing the conditional group a second example eliminated one possible re-
sponse from their potential repertoire of responses, the instruction appears to
have had the effect of increasing flexibility and creative thinking.

Mindless Misapplication. The tendency to misapply the pairwise proce-
dure based on surface features of a situation was assessed in the fourth prob-
lem. Participants’ solutions were judged as either providing a correct answer
(=1) or providing only an incorrect answer (=0). Many of the participants pro-
vided both the requested solution and a pairwise answer. These were judged as
being correct solutions. 73% (16/22) of the absolute group mindlessly misap-
plied the pairwise procedure compared to 55% (6/11) of the conditional group
M, =45 M, =27.t=171, p<.05) and 38% (5/13) of the no-instruction
group (M_ =62, M =27z =195, p<.03).

Discussion

The greater facility, creativity, and decreased mindlessness of the condi-
tional-instruction group in this study supports previous findings about the power
of conditional learning to promote mindfulness. Thus, conditional instruction
may be useful in reframing traditional didactic, including textbook. instruction
in mathematics. However, our research found that the use of conditional lan-
guage alone was insufficient to produce effects in the mathematics learning of
this population, leading us to conclude that individuals’ past experiences in
mathematics may lead them to absolutize their instruction. Therefore, to be
effective conditional instruction must be made more salient to the learner in
mathematics. 1n addition. the performance of the no-instruction group indi-
cates that building on the learners” intuitive understanding and encouraging
personal agency also support mindfulness—a premise emphasized in
constructivism. Additional rescarch is needed to further investigate what com-

4An arc sine transformation was pertormed on these data to permit the use of 4 more
powerful t-test.
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binations of features of conditional learning are most effective in producing
mindfuiness in mathematics. Furthermore, this research needs to be extended
to various other populations and mathematical contexts.
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THOSE WHO TALK, THOSE WHO LISTEN, EVER THE
TWAIN SHALL MEET: FURTHER EXAMINING THE
ROLE OF DISCOURSE IN THE PROFESSIONAL
DEVELOPMENT OF MATHEMATICS TEACHERS

Dominic D. Peressini and Eric J. Knuth
University of Colorado at Boulder
dominic.peressini@colorado.edu

Mathematics education reform efforts in the United States are setting am-
bitious goals for schools, teachers, and students. Central to many of these ini-
tiatives in the reform of school mathematics are linkages between mathemati-
cal rcasoning and communication. Accordingly, discourse plays a vital role in
mathematics teachers’ efforts to increase their content and pedagogical knowl-
edge. In this article, we use a conceptual framework built around the “func-
tional dualism” of discourse (Lotman, 1988; Wertsch & Toma, 1993) to closely
analyze the discourse in a university mathematics education classroom and a
high school mathematics classroom. In particular, we examine the discourse
and reflection central to one teacher’s (Jim) invoivement in a year long profes-
sional development project for secondary mathematics teachers—a project that
has as its goal the integration of discrete mathematics content into secondary
school curricula.

As we focused on the nature of the discourse in Jim's classroom it became
apparent that, for the most part, Jim was the locus of mathematicai authority in
the classroom setting. Yet at the same time we were impressed with Jim's flex-
ibility as a teacher and how he strived to lisien to the students, in a dialogic
fashion, and make sense of what they were saying and the thinking that grounded
their mathematical discourse. However, the students in Jim’s classroom did not
appear to listen to Jim in the same fashion. Instead, they heard Jim in a univo-
cal nature as they relied on him to correct their thinking and convey to them a
proper understanding of mathematics. As we look to the professional develop-
ment activity where Jim acquired his new found knowledge of discrete math-
ematics—th: DMP—we see similarities and differences, with respect to dis-
course, between Jim's classroom and the DMP classroom. We conclude by
exploring possible fuctors that influence the nature of the discourse in each
setting.
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THE BENEFITS OF TUTORING PROGRAMS FOR
UNDERACHIEVING STUDENTS

Yolanda De La Cruz
Arizona State University West
ydelacruz@asu.edu

Background of the Study

This study involves one hundred Latino families who attended a family
math tutoring program consisting of three, two-hour sessions. The tutoring
materials are a component of the Children Math World’s curriculum developed
at Northwestern University. This study draws from data in the family question-
naires and follow-up interviews with families. This paper will focus on how
and why these families benefited from the family math tutoring program. In
particular, we explore the role that tutoring provides for these families.

Why Families Attended

Families felt unprepared to help their children with mathematics home-
work in grades K-3. They attended the tutoring sessions because of the limited
resources within their community that prepare them to work with their children
in mathematics. Schools very seldom offer instruction that can benefit the stu-
dents by working with the whole family. These Latino parents all had children
who were getting below average grades in mathematics. Parents needed tutor-
ing on how to be more effective math helpers. They viewed the math classes as
an investment of time and effort in shared activities with their children.

How These Families Benefited

Families reported that they no longer focused on just getting the correct
answer. They looked at errors as a way of helping them understand where
children had gaps in understanding. Parents came to understand the problem
solving strategies they had learned in other countries, Families found that even
with limited math understanding, they could be better tutors or math helpers for
their children. They were provided with many practice math activities that
reinforced what was being learned in the classroom using quality language.
Parents who were too busy to provide help every day saw the importance of
having a home math helper to make sure the practice activities were being done
at home. Math cventually was viewed as a subject that could be learned with
practice and guidance.

Conclusions

The role of tutoring programs can be very helpful to families as well as
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individual students. By training families as tutors for their children. gaps in
understanding can be filled and higher levels of math can attained.

The research reported in this paper was supported by the National Science
Foundation under Grant No. RED 935373. The opinions expressed in this
paper are those of the author and do not necessarily reflect the views of NSF.




TEACHING MATHEMATICAL PROBLEM SOLVING
TO LANGUAGE MINORITY STUDENTS

Rochelle G. Kaplan
William Paterson University

Among its position statements, the National Council of Teachers of Math-
ematics has indicated its commitment to equity in mathematics education for
all students including language minority students. However, research on the
achievement of language minority students tells us that although it takes only
two years to achieve conversational competence in a second lariguage, it takes
up to seven years to attain sufficient second language proficiency to achieve in
academic areas at the level of native speakers. The result is that language mi-
nority students fall increasingly behind native speaking peers in mathematics
achievemnent. Logic dictates that to take the NCTM’s recommendation for math-
ematics for everyone seriously, we need some specific adaptations in instruc-
tional methods in American school systems. In general, adaptations might come
from the fields of English as a second language or bilingual education and be
blended with current practices in mathematics education that focus on commu-
nication and problem solving. The purpose of this study was to develop and
assess the effectiveness of adapting methods normally employed by educators
for promoting second language proficiency to the context of teaching math-
ematical problem solving to sixth grade students with limited English profi-
ciency.

The research methodology began with an observation of techniques regu-
larly utilized by a bilingual teacher in teaching mathematics to his 30 sixth
grade Spnish/English bilingual students. Fourteen of these students were se-
lected as target subjects because they were close to being mainstreamed and
performed at an intermediate level in English language skills. After several
weeks of observation, an English-only instructional model with five central
components emerged and was utilized during an 8-week instructional period
that included English and Spanish pretest and posttest assessments of target
students’ problem solving performance. The instructional model included: 1)
providing a content-based linguistic warm-up to problems, 2) breaking down
problems into natural grammatical phrases, 3) having students work out prob-
lems in pairs, 4) having students present their own solutions to the group, and
5) having students crcate problems with similar structures which were subse-
quently shared and solved by the rest of the class.

Performance on pretests and posttests was compared for accuracy and for
quality of explanations, each on a 4-point scale. Utilizing t-tests for related
samples, comparisons were made between scores within each language and
across the languages. Results indicated that students significantly increased
the'ir accuracy scores in both English and Spanish from pretest to posttest times.
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However, they did not significantly increase their explanation scores in either
language, although there was a trend toward increased scores in both. No sig-
nificant differences were found between performance in English and Spanish
on any measure, but students consistently tended to be somewhat stronger in
Spanish. :

The results of this study suggest the potential effectiveness of utilizing ESL/
bilingual teaching techniques for teaching students with limited English profi-
" ciency to become more successful mathematical problem solvers. It is expected
that these techniques could provide monolingual teachers with an improved
method for communicating with language minority students and may have value
in mathematics education with native speakers who have limited literacy skilis.
Further investigation using modifications the study’s methods is recommended
to develop procedures for increasing students’ abilities to reflect and report on
their own mathematical thinking.




STUDENT INTERACTIONS AND MATHEMATICS
DISCOURSE: A STUDY OF THE DEVELOPMENT OF
DISCUSSIONS IN A FIFTH GRADE CLASSROOM

Sharon M. Soucy McCrone
Nllinois State University
smccrone @ math.ilstu.edu

The current trends in the reform of mathematics education suggest a shift
toward interactive, discussion-based classrooms (National Counci! of Teachers
of Mathematics, 1989, 1991). This calls for the mathematics teacher and stu-
dents to work together to establish a community for investigating and sharing
mathematical ideas and concepts.

This research project looked specifically at the development of mathemati-
cal discourse in a fifth grade classroom. Through extended observations, docu-
mentation, and collaboration with the classroom teacher, various aspects of the
classroom, the mathematics, and the participants interactions were investigated
to determine those characteristics that played a part in the development of the
mathematics discourse. A social constructivist perspective of lraming (Cobb,
Yackel, & Wood, 1993) guided the research and analysis, as did theories of
discourse and communication (Cazden, 1988).

Visible changes in the discourse and interactions over the course of the
school year were shown to be at least partially linked to the teacher’s role and
the nature of the tasks she chose. In fact, the teacher’s role was the most impor-
tant factor in the development of the mathematics discourse. Even so, the stu-
dents’ contributions to discussions and their roles in establishing the . lassroom
environment were also important factors in the development of the mathemat-
ics discourse. The research results suggest many implications for teacher edu-
cation and for continued research in the area of mathematics discourse.
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LATINO URBAN STUDENTS AND THE MEANING OF
REFORM IN MATHEMATICS EDUCATION

Erick Smith and Michelle Parker
University of Illinois at Chicago
erick@ttic.edu

Erin Roche
Telpochcalli Elementary School, Chicago Public Schools

The reform movement in mathematics education is slowly gaining mo-
mentum and reports of successful student learning are commonly presented at
educational conferences. It seems clear that the introduction of legitimate prob-
lems which are investigated collaboratively has appeal to many students and
does have the potential to involve students who have previously rejected school
mathematics. In a 7-8th grade class taught by one of the authors, changes in
teaching in line with the NCTM Standards had changed the atmosphere in the
classroom and broadened the participation of members of the class in math-
ematical activities. However, despite its broader appeal, we saw a significant
proportion of the class who showed no interest and had poor achievement. Rather
than seeing these students as having a deficit, we began to ask ourselves why,
from the perspective of students outside the dominant culture and socio-eco-
nomic classes, this ‘new’ mathematics would have appcal or seem relevant.

Analysis of NCTM and other reform documents indicated that a dominant
justification for achievement in mathematics is future economic success. Al-
though it is easy to see how such a justification could appeal to mainstream
students, it was less clear to us how it would be interpreted by low SES, ESL,
first generation immigrant students who had little personal connection with the
kinds of success being promised. With this in mind, we interviewed students
from this classroom in January and again in June about their attitudes towards
mathematics, school and their own future expectations. Results indicate math-
ematics was not directly connected to the achicvement of future goals as envi-
sioned by many of these students. In addition, for students who did articulate
such a connection, the emphasis on future benefits often supported a focus on
rote learning. In our analysis, we discuss the relevance of current educaticnal
goals and propose alternatives. One implication is that more emphasis needs to
be placed on intrinsic values of learning mathematics.




COLLABORATIVE PROBLEM-SOLVING IN MIXED-
LANGUAGE GROUPS

Laurie D. Edwards
University of California at Santa Cruz
edwards@cats.ucsc.edu

The research reported here was carried out as part of a teacher-researcher
collaboration aimed at investigating effective strategies for mathematics instruc-
tion in classrooms including native speakers of both English and Spanish. The
central instructional strategy selected for the research was the use of small,
collaborative groups, with materials specifically designed for cooperative prob-
lem-solving in mathematics (Erickson. 1989). From a theoretical perspective,
students in such groups would be expected to provide peer support and comple-
mentary perspectives in the problem-solving process (Cohen, 1986; Forman,
1992). The composition of the groups was heterogeneous in terms of math-
. ematics and also in terms of English language proficiency, in order to investi-
gate cross-language mathematical communication.

The subjects were 140 students in Sth and 6th grades (ages 10-12), most of
whom spoke Spanish as a first language. The groups engaged in 20 minutes of
collaborative problem-solving four days a week for four weeks, with clues pre-
vided in both English and Spanish. The students were given written pre- and
post-tests on mathematical problem-solving, English language skills, and writ-
ten mathematical communication (an individual write-up of a group solution).
In addition, videotapes were collected during 12 sessions in one 6th grade class.
The poster will present the results of the pre- and post-tests, and will focus on
an analysis of selected problem-solving episodes from the videotapes. Issues
to be discussed include the nature of peer support and expertise within the groups;
cross-language mathematical communication; barriers to participation in prob-
lem-solving: and the construc:ion of joint representations for solutions.
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MATHEMATICS ATTRIBUTION DIFFERENCES BY
ETHNICITY AND SOCIO-ECONOMIC STATUS

Edward Mooney
Illinois State University
mooney @math.ilstu.edu

The differences in attributions for success and failure in mathematics be-
tween African-American and Caucasian students and between students from
low and higher socio-economic status (SES) were examined. 529 seventh grade
students from 26 classrooms in a mid-size urban school district were surveyed
to analyze attribution differences. A stratified purposeful sample of 12 focus
students, representing different ethnicity and socio-economic combinations, were
selected for follow-up interviews. Initial results indicated that students from all
groups provided similar ratings on five attributes related to mathematics suc-
cess—with effort and ability rated higher than luck and rapport with teacher.
Caucasians attributed success significantly more to ability than did African-
Americans. Similarly, low SES students attributed success significantly more
to ability than did higher SES students. Failure in mathematics was most com-
monly attributed to a lack of effort and ability. African-American students men-

tioned these two attributes significantly more often than did their Caucasian
counterparts.




BUILD YOUR DREAM HOME: AN ETHNO-
MATHEMATICAL APPROACH TO MOTIVATE THE
LEARNING OF MATHEMATICS

Jose D. Fonseca
University of Arizona
jfonseca@ccit.arizona.edu

In recent years a variety of researchers have investigated informal math-
ematics which is learned in the Social Cultural context and how to design In-
structional Treatments utilizing said math backgrounds as a pedagogical re-
source in the process of teaching and leaming of mathematics.

The purpose of this work is to share the experience of designing and imple-
menting a prograim for teaching mathematics using previous skills and knowl-
edge. Our framework uses the theory “Funds of Knowledge” (Moll. 1992;
Gonzalez et al, 1995.) and attends the ideas of Social Constructivism of Vygotsky
concerning learning as a result of social interaction. Our project, Build your
Dream Home: A Strategy to Motiv::te the Leamning of Mathematics, was initi-
ated by a previous study, conducted at a bilingual middle school. This study
showed that 60% of the students invoived had prior skills in construction through
the process of assisting an adult family member on home projects and/or con-
struction sites. This finding led to the design of an instructional treatment in
which students developed model houses (designing, drawing and constructing
model houses) as a method for learning mathematics in context. Along with
this process, the school math curriculum was included. This work presents the
methodology used to implement classroom activities involved and an analysis
of how the students experiences were connected to the learning of academic
mathematics.
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APPLYING SOCIO-CULTURAL THEORIES TO
RESEARCH IN MATHEMATICS EDUCATION

Yolanda de la Cruz Karen Fuson Lena Licon-Khisty -
Northwestemn Northwestern University of Illinois—
University University Chicago

Joanna Masingila Judit Moschkovich Betsy Brenner

Syracuse University Institute for Research University of
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The focus of this discussion group will be the connection between socio-
cultural theories and research in mathematics education. Although socio-cul-
_tural theories have recently received attention in the literature on mathematics
education many important questions remain regarding how to apply these theo-
ries to research design, data analysis, and teacher professional development.
Since this theoretical perspective encompasses several theorists, starting with
Vygotsky and continuing with Leontiev, Luria, and Bakhtin, it is not always
clear which specific aspects or versions of socio-cultural theory are being in-
voked. Also, some aspects of this theoretical perspective may be more useful
than others for framing research in mathematics education,

This discussion group will server as a forum where participants can discuss
these issues in detail, learn about several projects in mathematics education
using a socio-cultural perspective, reflect on selected readings representing a
spectrum of socio-cultural theories, and discuss how this perspective might
inform their own research projects.

Plan for the Discussion Sessions

The discussion group will meet for two sessions. During the first session
several researchers will present brief (5-10 minutes each) overviews or examples
of how they have used socio-cultural theory in their research work. The central
purpose for these short presentations is to provide concrete examples of how
mathematics education research has used socio-cultural theory and show sev-
eral different perspectives in a structured way. After the presentations, partici-
pants will begin discussions in small groups which will be continued in the
second session. The discussion in small groups will focus on the following
questions:

1. What aspects of socio-cultural theory have been used for math educa-

tion rescarch?




What areas might socio-cultural theory be useful for studying that have
not yet been linked to this theory?

What are some of the basic characteristics of a study conducted from a
socio-cultural perspective?

Participant Reflection Activities

After the first session participants will be asked to read and reflect on a
short (3-5 pages) excerpt taken from the writings of Vygotsky, Leontiev, Bakhtin,
or Luria. During the first hour of the second session, participants will continue
the small group discussions. The last hour of session two will be used to gen-
erate a collective summary and synthesis of the small group discussions. Par-
ticipants will use their reflections on the texts, presentations, and small group
discussions to generate some of the following:

I.

A collective list of basic characteristics of studies conducted from a
socio-cultural perspective.

Plans for research projects applying socio-cultural theory.

An outline of how these theoretical issues function in the classroom.
Suggestions for how we can study these issues in the classroom.

Suggestions for how socio-cultural theory might inform teacher pro-
fessional development.




LANGUAGE AND CULTURAL ISSUES IN THE
MATHEMATICS CLASSROOM:
A DISCUSSION GROUP

Yolanda De La Cruz Lena Lic6n Khisty Ana Lo Cicero
Arizona State Northwestern University of Illinois
University West University Chicago

ydelacruz@asu.edu lIkhisty @uic.edu r-steeby @nwu.edu

The purpose of this discussion group is to further a deeper and better un-
derstanding of the psychological aspects of teaching and learning mathematics
among linguistic and ethnic minority students within the United States. The
underachievement among these students has been clearly documented. How-
ever, recent reforrm documents in mathematics education have addressed this
concemn only peripherally, stating in general terms a commitment to improving
mathematics learning for all students but making almost no specific recom-
mendations in multilingual and multicultural contexts. Teachers do not see
their own students’ needs reflected in current reform movements, even though
the population of linguistic and ethnic minority students is more than two mil-
lion nationwide and one in four teachers has limited English proficient students
in his or her classroom.

Researchers have recently begun to fill this gap in mathematics education
literature, but there is clearly a need for more research that investigates the day-
to day reality of teachers and students in diverse classrooms. Constraints that
prevent mathematics learning must first be addressed before improvements to
present practices can be made.

Discussion leaders will share their research studies that report methods and
strategies that have proven to be successful among underachievers.

The first topic, Teaching Mathematics in the Spanish Speaking Classroom,
will be led by discussion leader, Ana Lo Cicero, Northwestern University.

The second topic, Teaching Mathematics in English Speaking Classrooms,
I will be led by discussion leader, Lena Licén Khisty, University of Illinois at

Chicago.
' The third topic, After-School and Community Programs that Make a Dif-
ference, will be led by discussion leader, Yolanda De La Cruz, Arizona State
University West.

References

De La Cruz, Y. (in press). A model of tutoring that helps students gain access
to mathematical concepts. In L. Ortiz-Franco, N. Hernandez, & Y. De La




Cruz (Eds.), Changing the faces of mathematics: Perspectives on Latinos.
Reston, VA: National Council of Teachers of Mathematics.

Khisty, L., McLeod, D., & Bertilson, K. (1990). Speaking mathematically in
bilingual classrooms: An exploratory study of teacher discourse. In G.
Booker, P. Cobb, & T. Mendicutti (Eds.), Proceedings of the Fourteenth
International Conference for the Psychology of Mathematics Education
(Vol. 3, pp. 105-112). Mexico City: CONACYT.

Lo Cicero, A. (in press). Mathematizing children’s stories. InL. Ortiz-Franco,
N. Hemandez, & Y. De La Cruz (Eds.), Changing the faces of mathemat-

ics: Perspectives on Latinos. Reston, VA: National Council of Teachers of
Mathematics.

The research reported in this paper was supported by the National Science
Foundation under Grant No. RED 935373. The opinions expressed in this
paper are those of the author and do not necessarily reflect the views of NSF.




PROBLEM SOLVING




GENERATING MULTIPLE SOLUTIONS TO
MATHEMATICAL PROBLEMS BY
PROSPECTIVE SECONDARY TEACHERS
Jinfa Cai

University of Delaware
jcai@math.udel.edu

This study analyzed multiple solutions and explored the precess of generating multiple
solutions to each of the five routine and nonroutine high school algebraic problems by
eight prospective secondary teachers. The results of this study showed that prospective
teachers were able to gencrate multiple solutions to cach of the problems and repre-
senting relationships from different perspectives was one of the mechanisms that they
used to gencrate multiple solutions. This study suggests the value and feasibility of
further research about teaching school students to generate multiple solutions and teach-
ing mathematics via gencrating multiple solutions to problems.

Problem solving is a process which provides students with an opportunity
to experience the power of mathematics in the world around them. It is also an
instructional approach which provides a context for students to learn and apply
mathematics. Recently, the National Council of Teachers of Mathematics
[NCTM] (1989, 1991) suggested that students should be encouraged to gener-
ate multiple solutions to a mathematical problem. Generating multiple solu-
tions to a problem is onc of the regular features in Chinese and Japanese class-
rooms (Cai, 1995; Stigler & Perry, 1988). Asian teachers have experienced
success with such teaching strategy in the classroom. It is also consistent with
current constructivist view of learning mathematics. Generating and experi-
encing multiple solutions to a problem can provide students with the opportu-
nity to actively construct their own mathematical knowledge. Students will
also learn to value the process of solving problems as much as they value the
solutions (Cai, Moyer. & Laughlin, in press).

During the past several decades. great progress has been made in under-
standing affective, cognitive. and raetacognitive aspects of complex mathemati-
cal problem solving (e.g., Lester 1994; McLeod. & Adams. 1989 Schoenfeld,
1992; Silver, 1985). Researchers have extensively analyzed many aspects of
the solution to mathematical problems which normally require solvers to pro-
vide only one solution to cach of the problems. Despite the extensive educa-
tional interest in the activity of generating multiple solutions to mathematical
problems, little or no research has been conducted to examine how subjects
generate multiple solutions to a problem. Although a few researchers have
incorporated generating-multiple-solutions approach to examine creativity (e.g.,
Jausovee, 1993), mathematical ability (e.g.. Krutetskii, 1976), and U.S. and
Japanese students” problem solving behaviors (Becker, 1992) and these research-
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ers have successfully used such an approach and studied related phenomenon,
their focus was not on the understanding of the mechanism in which subjects
generate multiple solutions to a mathematical problem.

The purpose of this study was to analyze multiple solutions generated by
eight prospective secondary mathematics teachers to a series of eight problems
and to explore the process in which these prospective teachers generated these
multiple solutions. In particular, this study was an attempt to examine products
of multiple solutions and understand processes of generating multiple solu-
tions to mathematical problems. In order to implement the activity of generat-
ing multiple solutions into the classroom, teachers themselves should have per-
sonal capability of generating multiple solutions to a mathematical problem.
The decision of using prospective secondary mathematics teachers as subjects
in this study was based on this consideration.

Method
Subjects

Subjects were eight prospective secondary mathematics teachers who were
in their junior or senior years. They were chosen on a volunteer basis. They
had completed most of their required math and math education courses by the
time this study was conducted.

Tasks and Administration

Each subject was asked to solve eight problems, which were adopted or
modified from various sources (e.g., Heid, 1995; Krulik, 1980). Five of them
were high school algebraic problems, shown in Figure 1. and the other three
were geometric problems. However, the resuits for the geometric tasks were
not reported here. For each of the problems, the subjects were asked to “list all
possible different solutions that he/she thinks a secondary school student might
provide to the problem. In each of the solutions, full justification or explana-
tion should be included.” Each of the tasks was administered to subjects indi-
vidually. At the end of each interview session, each subject was asked to ex-
plain why the solutions to a problem were different. After each subject had
completed all eight tasks, he or she was asked to comment on the educational
value of providing students with opportunitics to generate multiple solutions to
mathematical problems.

Coding of Solutions

Each solution was coded as using an algebraic, arithmetic, graphical, or
tabular approach or strategy. For example, six different solutions to Task 1
were identificd and described in Figure 2. In this case, solutions 1 and 2 were
coded as using an arithmetic approach, while solutions 3 and 4 were coded as
using an algebraic approach. Solution S was coded as using a graphical ap-
proach, and solution 6 was coded as using a tabular approach.
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. Given the two job offers below, determine the better-paying summer
job. Justify your answer.

Offer 1: At Timmy’s Tacos you will eam $4.50 an hour. However, you
will be required to purchase a uniform for $45.00. You will be
expected to work 20 hours each week.

Offer 2: At Kelly’s Car Wash you will earn $3.50 an hour. No special
attire is required. You must agree to work 20 hours each week.

. Yolanda has $1.35 in nickels and dimes. She has a total of 15 coins.
How many of each kind of coin are there?

. A 'man is placing rabbits into cages. He notices that if he places 4 rabbits
in each cage. he has 2 rabbits left over, and if he places 6 in each cage,
he has 3 cages left over. How many cages and how many rabbits does
the man have?

. Two candles are 10 fect high. but are made of different material. One of
the candles will burn up in 4 hours, and the other in 5 hours. How long

will they have to burn before one candle is three times the length of the
other?

o

‘»

N

5. An office manager must decide between two options to fill the copying
needs of his department. He wants to find the more economical op-
tion. Help the manager to make his decision.

AAA copiers. the first company contacted, offers to lease a copy ma-

chine for a fixed fee of $50.00 and an additional charge of 2.1¢ for
each copy.

For the same machine and comparable service, a second company,
Speedy Print, offers a fixed charge of $180.00 a week with an addi-
tional charge of 5¢ for each copy.

Figure 1 Five Algebraic Tusks

Results

Table | shows the Kind of solutions that were generated by each subject for
cach of the five algebraic tasks. Solutions in each cell of Table | were pre-
sented in the order each subject generated. Overall, subjects were able to gen-
crate multiple solutions to most of the problems. Six (Subjects 1, 2.4,5.6, and
&) of the subjects were able to generate multiple solutions to all of the prob-
lems. Subject 3 was able to gencrate more than one solution to all problems
except for problem 3. Subject 7 generated multiple solutions to two of the
problems. but only one solution to the remaining three. Three of the subjects




SOLUTION I: In a 20 hr. week, Offer 1 will pay $4.50 5 20 =$90.00. Offer 2
will pay $3.50 5 20 = $70.00. Since the difference is $20 per
week and the uniform for Offer 1 costs $45.00, it will take
($45.00 + $20/week =) 2.25 weeks to pay for the uniform and
break even. If you keep the job for three weeks or more, you
should take offer 1.

SOLUTION 2: At Timmy's you make $1.00 more for each hour of work. After
45 hours of work, you’d make $45 more at Timmy’s than
Kelly’s. This extra money would pay for the uniform. From
that point on, you'd make $1 more an hour at Timmy's than
Kelly’s. 45 hrs + 20 hrs/week = 2.25 weeks.

SOLUTION 3: Let x be the number of weeks you intend to work. The total
amount for Offer 1 =4.5 520 x - 45 and the total amount for
Offer 2 =3.5520 x. If (90x - 45) < 70x, then x <2.25. So if
vou work less than 3 weeks, you should take Offer 2, other-
wise take Offer 1.

SOLUTION 4: Let x be the number of weeks you intend to work. The total
amount for Offer | = 90x - 45 and the total amount for Offer 2
= 70x. 1£ 90x - 45 = 70x, then x = 2.25. So if you work less
than 3 weeks, you should take Offer 2, otherwise take Offer 1.

SOLUTION 5: Let x be the number of weeks you intend to work, y, be the tcial
amount for Offer 1 after working x weeks, and y, be the total
amount for Offer 2 after working x weeks. Therefore, y, =90x
-45 and y, =70x. Using a graphing calculator to graph them,
you will see they intersect at (2.25. 157.5). From the graph,
you will see that If you have the job for three weeks or more,
you take Offer 1.

SOLUTION 6: Construct a table to show the amount of income for Offers |
and 2 for one week, two weeks, and three weeks..., and then

compare the information from the table to determine which
offer you will take.

Figure 2 Sample Solutions to Task I

generated four solutions to at least one of the problems. Algebraic and tabular
approaches were most frequently used strategies in solving these problems. In
fact, algebraic approaches were used 38 times and tabular approaches were
used 36 times. Graphical approaches were used 20 times. On a few occasions,
students used an arithmetic approach.




Table 1 Number and Type of Solutions by Subject by Task

Task 1 Task 2 Task 3 Task 4 Task 5

Subject 1 Ta.Gr Ag.Ta Ag.Ta, Ar Ag,Gr,Ta GrAgTa
Subject 2 Ta.Ag,GrAr Ag,Ta,GrAr AgArTa TaAgGr AgGrTa
Subject 3  Ag.Gr.Ta,Ar Ta,Ag.Gr Ta Ag.Ta Ag,Gr
Subject 4 Ta,Ag.Gr  TaAg Ta,Ag Ta,Ag.Gr, Ta,Ag,GrAg
Subject 5 Gr.Ta,Ag Ta,Ag Ag, Ta Ta. Ag Ag,Gr.Ta
Subject €  Ar.Gr,Ta Ta,Ag.Ta Ag.Ta Ag.Ta Gr,Ag.Ta
Subject 7 Ag Ag Ag Ag. Ta Ag,Gr,Ta
Subject 8 Ta.Gr,Ag Ta,Ag Ag.Ta Ta.Ag Ag.Gr,Ta

Note. Gr = Graphical approach, Ag = Algebraic approach. Ta = Tabular
approach, and Ar = Arithmetic approach

After a subject generated a solution to a problem, they often transformed
one representation to another for an alternative solution. In solving Problem 1,
for example, Subject 2 started to represent the information using a table. Then
she commented that ** the problem is rcally about figuring out which job is
better in terms of # of weeks working there.” So, she let x be number of weeks
when offer | would exceed offer 2 and set up an inequality to solve the prob-
lem: 90x - 45 > 70x. She set up this inequality instead of 90x - 45 < 70x
because she already knew Offer 1 is better if you work three or more than three
weeks. After the second solution. her third solution became very natural. She
said: “Offer 1 gets (90x - 45) dollars und Offer 2 gets 70x dollars after working
x weeks. If I graph them I will sce the break-even point.” She, then, graphed
two functions (y = 90x - 45 and y = 70x) using TI-82. From graphs, she ob-
served that “Offer | increases faster than Offer 2, but Offer | starts from -45
because of the uniform.” With such a constructive observation, she provided
her fourth solution to the problem: At Timimy's you make $1.00 more for each
hour of work. After 45 hours of work, vou'd make 345 more at Timmy's than
Kelly's. This extra money would pav for the uniform.  From that point on,
vout'd make 31 maore an howr at Timmy s than Kelly's. 45 hrs + (20 hrshwveek) =
2.25 wecks.

Prospective teachers’ subsequent solutions were influenced by their previ-
ous solutions. Therefore, their first solution seems to be eritical. Twenty out of
40 times subjects used an algebraic approach as their first strategy. 16 out of 40
times subjects selected a tabular approach as their first strategy. Occasionally,
subjects used an arithmetic or a graphical approach to solve these problems as
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their first choice. Although subjects were more likely to use an algebraic or a
tabular approach in their very first solution, it is not clear why a subject chose
one over another. Six of eight subjects did not show consistency in their first
solution across five tasks. Only two of the subjects consistently used the same
approach in their first solution, with Subject 4 using a tabular approach and
Subject 7 using an algebraic approach.

Subject 4 chose a tabular approach as her first strategy for solving all five
problems. For her, she “likes to have something concrete,” so that she “can
grab it”” The tabular approach enabled her to see relationships directly and
make sense of them. However, she commented that a tabular approach “is not
always the most effective or simple method it can work.” She approached all
five problems in the same way in her first attempt. She was trying to find a
*“variable™ which she can based on to organizing and presenting information.
For example, in solving Problem 1, she organized information based on “the
number of weeks you work,” and then compared the earnings at Timmy’’s Tacos
and Kelly's Car Wash. In solving Problem 2, she organized information based
on “the number of nickels”, and determined the number of dimes. Then, she
checked if the total amount of money is $1.35. In contrast, Subject 7 seemed to
be in favor of using an algebraic approach as his first attempt. After Subject 7
was presented a problem, he immediately tried to set up equations to solve it. It
is almost effortless for him to attempt these problems algebraically. However,
he made tremendous effort tryi 'g to provide an alternative solution and failed
to provide more than one solution to each of the first three tasks.

Discussion

Each of the eight prospective secondary teachers was asked to generate
multiple solutions to each of the five routine and nonroutine high school alge-
braic problems. The results of this study suggest that prospective teachers were
able to generate multiple solutions to these problems. In fact, the majority of
them generated multiple solutions to each of the problems and all of them gen-
erated three or more solutions to at least one of the problems. These results
suggest that prospective secondary teachers are capable of solving a mathemati-
cal problem in multiple ways. Tasks used in this study all contain linear rela-
tionships between variables. For each of the tasks, subjects generated multiple
solutions through representing these linear relationships arithmetically, alge-
braically, graphically, and tabularily. After they generated their first solution.
they tried to generate alternatives through transforming one representation to
the other. Thus, the findings of this study suggest that representing relation-
ships from different perspectives is one of the mechanisms that subjects used to
generate multiple solutions. However, generalization of these findings is lim-
ited because the findings were based on the analysis of multiple solutions to
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one type of algebraic problem. Nevertheless, these findings suggest the value
and feasibility of further studies to investigate processes of generating multiple
solutions using various mathematical tasks.

As we all know, all too often students hold the misconception that there is
only one “right” way to approach a problem. The misconception might be
largely due to their lack of experience of using multiple ways to approach a
problem. The findings of this exploratory study suggest that teachers should
feel comfortable in guiding their students to engage in activities that generate
multiple solutions to problems, since they have the personal capability o gen-
erate ' multiple solutions. Tasks used in this study are from existing resources
with a minor modification and some of the tasks are pretty standard. There-
fore, teachers are not lacking in resources to locate problems which allow for
multiple solutions. On the other hand, creating a classroom environment that
emphasize the generation of multiple solutions to a single problem is a chal-
lenging, but important goal for classroom teachers. More research is needed to
examine the role of teachers when they are trying to engage students in activi-
tics of generating multiple solutions to problems.

Solving an algebraic problem arithmetically, algebraically, graphically, and
tabularily provides students with a great opportunity to experience how math-
ematical relationships can be represented from various perspectives. Experi-
encing multiple solutions to a problem may not only provide students with the
opportunity to actively construct their own mathematical knowledge and see
how mathematical concepts and representations are connected, but may also
change students’ attitudes toward mathematics (Cai, Magone, Wang, & Lane,
1996; Cai et al., in press). The results from national and international assess-
ments show that many students view mathematics as a set of rules and proce-
dures that they must memorize in order to follow the single correct way rapidly
to obtain the single correct answer. After exposure to multiple solutions, stu-
dents may realize that doing mathematics can be fun, creative, and intellectu-
ally engaging. However, experimental studies are needed to examine instruc-
tional impacts on students” attitude toward matheinatics, knowledge acquisi-
tion, and thinking and reasoning through engaging students in activities of gen-
crating multiple solutions to mathematical problems.
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This paper describes a problem-solving session by contrasting some characteristics we
predicted it might have with those we observed. The session was part of a study of two
preservice mathematics teachers. They had previously been interviewed about their
responses 1o a list of similes for learning mathematics and for being a mathematics
teacher. We wanted to find out how well their responses to the similes predicted their
participation in contexts other than an interview (in this case, a problem-solving con-
text). In this paper we discuss how the choices we made in our a priori analysis allowed
us to plan a session in which certain solution strategies would emerge. Although the a
priori specification of characteristics was not enough to ensure the achievement of
optimal solutions to the problems, the lack of specification shaped the situation so as to
promote the participants’ reflection on their views on mathematics, its learning, and its
teaching,

Background and Purpose

This paper reports part of a study with two preservice teachers’ responses
to similes® for learning mathematics and for being a mathematics teacher. The
participants—Jack and Jill*— were interviewed separately and asked to com-
ment on how learning mathematics is like . . . (working on an assembly line,
watching a movie, cooking with a recipe, picking fruit from a tree, working a
jigsaw puzzle, conducting an experiment, building a house, creating a clay sculp-
ture) and how a mathematics teacher is like . . . (news broadcaster, entertainer,
doctor, orchestra conductor, gardener, coach, missionary, social worker). The
questions had originally been designed “‘to gather information on beliefs about
mathematics and its teaching” (Cooney, Shealy, & Arvold, in press).

The participants had different reactions to the similes. Jill had said that
learning mathematics is like working a jigsaw puzzle, because “you have to
play with them to try to figure them out™ and also, I kinda like conducting an
experiment because you don’t always know what's going to happen.”™ Juck com-

'We thank Jeremy Kilpatrick for his valuable comments on a previous draft.
“These similes were adapted from asurvey trom the RADIATL: project (DU 92544785),
University of Georgia. |

Jack and Jill were preservice secondary teachers in their junior year and were major-
ing in mathematies education,
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pared learning mathematics to building a house as “’you start at the bottom with
something simple and build up: you need a concrete understanding before mov-
ing up,” and to watching a movie as sometimes “when we start off . . . it [is)
hard to see where’s he going with this [but} by the end of the movie, you fig-
ured out why that was important”

We devised and used a problem-solving context as one way to address the
question of how the participants’ responses to the similes would predict what
they do when facing an actual mathematical context. The problem-solving ses-
sion also providec elements for a second discussion of the similes in which the
participants were asked to discuss how the experience related to their ideas
about tea hing. The purpose of this paper is to present a contrast between a
priori and a posteriori analyses of the problem-solving session.*

A Priori Description of the Problem Session

Brousseau (1988) has developed the notion of milieu (of a situation) as
“the system antagonistic to the player . . . und a model of the universe of refer-
ence for the knowledge that is at stake and for the interactions that this knowl-
edge determines.” (p. 320).} The didactic contract is the system of conditions
and constraints that regulates each participant's cognitive obligations and choices
in a given milieu. Those notions were instrumental for us in designing the prob-
lem session and in organizing our analysis of what could be expected from the
participants’ engagement in it. The participants were to solve two problems
that could be perceived as representing the current opposition, in pedagogical
discourse between routine and nonroutine problems, although they were not to
be represcnted that way to the participants. We chose calculus problems so as
to evoke recent learning experiences from these participants. :

For Problem 1. we wanted a “traditional calculus probiem” whose formu-
lation was as close as possible to the usual formulations of the exercises that
the participants had been exposed to at school or college. The problem would
not explicitly demand the application of a routine algorithm, but in any case it
should evoke a standard school eaperience for which they were used to provid-
ing a right or wrong answer by a correct or incorrect procedure. For Problem
2, we wanted a problem that would resemble an invitation to use “alternative
methods of solution,” one that would hint at several possible explorations, even
outside the usual practice in college caleulus and that would not have a clearly
foresecable right or wrong answer. We set up the room so that the participants
would work together and provided them with graphing calculators, a calculus
book., paper. rulers, and pencils. We used what we knew from the participants

YA complete report of this study by Herbst, Mesa, and Gober is forthcoming. Other
aspects are discussed in Gober (i press) and Herbst (in pressy,
‘Qur transtation Here, knowledge s our choice to translate the French connaissance.
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in specifying the characteristics of the problems so that we could anticipate
how they would act when taced with these problems.

Problem 1 was: Determine the maximum and minimum values of the func-
tion flx) =" - 8x7 + 16 on the interval [-3. 3]. In principle, at least two strategies
could have been used for solving this problem: an analytic approach (solving
J'(x) =0 for x and analyzing the solutions) and a graphic approach (graphing
the function and estimating extreme values using a mix of algebraic and visual
procedures). The task was formulated, however, so that it evoked the use of the
analytic approach. Moreover. the derivative of the function was easy to obtain,
and the equation f'(x) = 0 was easy to solve (making the exercise straightfor-
ward and seemingly ruling out any need for alternative methods). Still, the
function was defined on a closed interval sufficiently large to include all local
extremes and to have its maximum values at the endpoints. While an interval of
the form [-a. b] would likely demand participants’ attention to the endpoints.
the chosen form [-a, ¢} was intended to mask that issue. For the same reason,
we chose small integers in defining the interval. We selected ¢ = 3 because that
was the first integer for which the necessary condition did not solve the prob-
lem.

We anticipated that both participants would recall how to begin to use the
analytic approach, but that Jill might prefer to graph the function on the graph-
ing calculator as a first option. Jack would work individually and would use the
calculator to verify the decision but not as a tool for obtaining the solution. He
would assign relatively minor status to the informat o from the graphing cal-
culator in comparison with the application of derivatives, although he might
not be able to Justify why the derivative approws h was better.

These predictions were suggested by the interview data. Jill had imentioned
it was important for her to figure things out and, when commenting on the
experiment simile, had said "vou know what busic steps to take . . . but some-
times it's going to be something tatally opposite of what vou thought” When
Jack was asked to comment on the cooking-with-a-recipe simile. he had said
that “there’s just certain steps you have to take to get the final product. . . | If
you just follow that path. you will always get the right answer” Jack did not
like this simile in general. but he associated it with some specific school prie-
tices: Problem 1 would likely evoke such a recipe for him.,

We designed Problem 2 (see Figure 1) so that it would allow for alternative
solution methods but would still be seen as a calculus problem. Items A and B
were stated so as to leave the activity open for radically different strategies. To
ask for pairwise comparisons of particular arcas did not rule out a modeling
strategy (obtaining the equations and integrating), but it also invited other ap-
proaches. The functions whose graphs were involved were not given algebra-
wcally, but some of them were familiar. Morcover, we placed the graphs on
cqually scaled coordinate systerns and provided some indexical references® (such
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“Page 2
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A. Decide which of the two shaded | B. Decide which of the two shaded
areas is the largest. areas 1s the largest.

Graph | Graph 3
; |
s "~- ! i
i
e | . |
| |
Graph 2 Graph 4

C. How would you sort the four
graphs shown according to the size
of their shaded areas?

L e U, ———

Figure 1 Text for problem 2.

as the interval on the xv-axis where the shaded area was based, with all of the
references chosen to be integers). These characteristics supported the legiti-
macy of a modeling strategy within that milieu. However, other variables were
set up to suggest that the modeling strategy might be ineffective: Indexical

* By indexical references we mean those indications that may accompany a figure so as
to indicate what it stands for (i.c., the presence of these referencees usually determines
whether a figure s to be taken at face value or as a representation of something clse).

334

p
2 )
D




references were not enough to allow one to obtain the correct equations and the
algebraic expressions of Graphs 2 and 3 did not have integer coefficients.

We anticipated possible comparison strategizs that would not necessarily
involve algebraic modeling. Graphs were given on separate coordinate sys-
tems so as to discourage a solution based on visual estimation. Still. it was
possible to approach the problem by cutting the pages and superimposing the
graphs or even by cutting out one shaded area and rearranging the pieces on top
of the other. The graphs were given on plain paper rather than graph paper so as
to conceal the alternative of counting squares. but we had confidence in the
emergence of a grid strategy (draw a grid. count whole blocks contained in the
target area. and compensate for the remaining parts). ltems A and B. asking
simply for a comparison, allowed for a variety of strategies to provide a legiti-
mate and effective solution. But Item C required the solver to bring into ques-
tion the partial results from A and B and likely the methods by which those
results had been obtained. The arcas were chosen so that for each set of two
areas deciding which one was bigger would not be difticuit, but across the sets
the areas of Graphs 2 and 4 would require either the complete process of mod-
eling (taking some visual risks) and integrating, a refinement of the grid (as the
whole unit blocks inside the areas would be few), or a significant use of com-
pensating practices.

We expected Jack to attempt a modeling strategy. He had strongly advo-
cated for the building-the-house simile ("Mathematics is like nothing else™),
which entailed that it starts at the bottom with something that’s simple. you
take that idea and make something else. It keeps building up.” Also. when con-
fronted with the nussionary simile, he had said, “They go and teach something

people have never heard of. . . . Until 1 got into algebra. I didn’t know what it
was. . . . You're showing theni. how to help them figure it out.” It seemed to us

that when facing a variety of strategies, Jack would lean toward one that would
look most like what he had learned in school.

As for Jill, we expected her to be open to a variety of possibilities and even
to look forward to being creative. When reacting against the watching-a-movie
simile, she said. “[In] mathematics, you're always ... active ... in learning. . .
["'m always playing around with different stuft to see what I can come up with
...onmy own.” Also, she spoke against the teacher as amissionary: “They try
to help people, but . . . iU's always trying to impose their beliefs. ... Mathemat-
ics teachers shouldn’t throw something at you just because that's what they
believe {to be] right {but instead they should be] saving you come up with
whatever ... ideas you think works.™ It seemed to us that she would try to use
alternative methods if only to be consistent wath what she had advocated.
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The Session and Some Observations About Its Implementation

The participants were invited to work together on the problems. One of us
administered the problems and conducted a short joint interview immediately
after they finished the problems. Later, they were interviewed separately about
the similes and the problem-solving session. The session was videotaped and
then transcribed. Additional data consisted of field notes from three observers,
the participants’ written work, and transcriptions of the pre- and post-session
interviews.

For Problem 1, the two participants quickly identified the problemn as de-
manding an analytic approach and worked out the first steps together—Jack
taking the lead and Jill helping him. Once they solved f'(x) = 0. they evaluated
the solutions in the original polynomial and announced that there was a maxi-
mum at 0 and minimum values at -2 and 2. While Jack started graphing the
function with the graphing calculator, Jill began to make a table of the integer
values of the variable. After evaluating fi3), Jill said “This is not right. . . .
You're right” suggesting an error in her evaluation. At that point Jack could see
the whole graph of the function in the calculator and was able to use her com-
ment as a prompt to re-elaborate the solution. He mentioned that he had been
confronted by those tricky problems before and showed her that both her com-
putation of f{3) and their previous algorithm were right and that the function
indeed had its maximum values at the endpoints.

In the interview afterwards, Jill explained that her idea had been to plug
integers into the equation so as to make a table and then to graph the function
by hand. Her finding that f{3) was greater than f{0) was not related to the need
to check the endpoints of the interval so as to challenge the analytic solution
but to the usual school practice associated with making a table.

After providing an agreed-upon solution for Problem 1, Jack and Jill started
looking independently at Problem 2. Jill began to draw a grid for each graph of
[tem A. although qualifying her work as “just playing.” After restlessly watch-
ing what Jill was doing for a while, Jack grabbed a graphing calculator and
began to look for a function to model Graph 1. He identified the corresponding
function as a cubic and was successful in obtaining an algebraic expression.
Although his success with Graph 1 encouraged him to look at Graph 2 in a
simitlar way, he was not successful in getting Jill’s collaboration to work on his
strategy. On the contrary, hus failure to find quickly an adequate expression for
Graph 2 and HIl's success in answering Item A with her grids were enough to
draw his attention to her strategy. They used it to respond to Item B. but faced
an ambiguity when attempting Item C. Instead of refining the grid, Jack used
that ambrguity as an opportunity to draw Jill's attention to the modeling strat-
egy. They were not able to model Graph 3, and when time ran out they resorted




to Jill's grids and gave a final answer (which happened to be correct) based on
a new visual compensation of the squares.”

The characteristics of their work on Problem 2 seem to agree with what we
would expect from their answers to the similes. For Jill, the problem was an
occasion to play, and it was never as important to get an elegant or general
solution as it was to just solve the problem: it was like working on a jigsaw
puzzle. For Jack, solving the problem was a matter of carrying out a long-term
project, like building a house.

Discussion

The intent of the session was that both participants would work together
and produce an agreed-upon solution. Problem 1 established an initial unbal-
anced division of labor in which Jack was the architect and Jill the worker. The
fact that Jack delayed starting to work Problem 2 encouraged Jill to hold on to
her strategy (even when Jack had started work and had tried to involve her in
his modeling strategy) as a way to balance the distribution of power. However,
instead of breaking the working agreement, they engaged in a negotiation of
what their agreed-upon strategy would be.

The number and size of areas that were to be compared was effective in
incorporating a perturbation into the strategy. but it was not enough to warrant
a qualitative refinement of the tool. Jill did not change her visual compensation
of incomplete blocks into a refinement of the grid. The difficulty in finding
correct expressions for the functions depicted was not enough to induce Jack to
participate in the use of the grid strategy, although it led him to accept Jill's as
providing the solution to the problem. In order to preserve the work agreement,
Jack did not risk arguing against Jill's strategy. Also, in the interview after-
wards, Jack implied that he had been deccived by the difficulty of getting the
equation for Graph 2. Although Jill defended the fact that “[her] way [had]
worked,” she also understood her dependency on the grid strategy as an indica-
tion that she had to “revise [her] math” and recognized their solution as a com-
promise.

The specifications of the milicu we had made on the basis of the partici-
pants’ responses to the similes were not enough to warrant the achievement of
an optimal solution. This lack of specification allowed for the emergence and
development of diametrically opposed strategies. The situation was, therefore,
one in which social and mathematical working conditions were developed so
as to maintain an initial social agreement. However, for our purposes the milieu
seemed adequately specified. We were able to observe some confirmation of

For a detaited account of the norms that regulated the emergence of a group strategy.
see Herbst (in press).




the participants’ stated approaches to learning mathematics and to provide a
controversial topic for a discussion about teaching in the succeeding interview.
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AN EXPERT’S APPROACH TO MATHEMATICAL
PROBLEM-SOLVING INSTRUCTION

Manue! Santos-Trigo
Center for Research and Advanced Studies (Cinvestav, Mexico)
Lsantos@mvax | .red.cinvestav.mx

What learning activities play an important role during the implementation of math-
ematical problem-solving instruction”? This is a fundamental question that needs to he
analyzed in terms of what rescarch in the arca has shown lately. The use of the term
problem-solving itself has produced different forms of interpretation and implementa-
tion in mathematical instruction. In this context, this study documents some instruc-
tional activities that have shown to be successful in a mathematical problem solving
course taught at university level. A conception of mathematics that resembles aspects
of the practice of doing mathematics appears as a framework to discuss and solve se-
rics of problems. The problems are used by the students as platforms to discuss their
ideas and search for other forms of solutions or connections.  All the students’ ap-
proaches are supported by mathematical arguments and the students themselves value
the potential of their solutions.

Introduction

Recent proposals in mathematical problem solving instruction have sug-
gested that students in their learning experiences should be engaged in activi-

ties that are related to the practice of doing mathematics. As Schoenfeld (1988)
pointed out “doing mathematics is fundamentally an act of sense-making, an
act of taking things apart (mathematically) and seeing what makes them tick”
(p. 87). Thus, learning mathematics goes beyond studying rules, procedures,
or algorithms; it involves the use of both heuristics and metacognitive strate-
gies to solve problems, the use of various representations to make sense of
information, and the scarch for mathematical connections or applications in
different contexts. Here, it becomes important that students develop a math-
ematical disposition, and a set of belicfs and attitudes consistent with the prac-
tice of doing mathematics. What type of learning activities tend to promote
mathematical values during the implementation of problem solving instruc-
tion? What kind of tasks help students to engage in mathematical discussion in
the classroom? What type of evaluation could be used to assess students progress
in mathematical problem solving? These are issues that need to be addressed in
order to evaluate the potential use of mathematical problem solving instruc-
tion.

An important stage in the rescarch on problem solving has been to docu- -
ment what students do while working on mathematical tasks. For example,
Schoenfeld (1992) found that the process of doing mathematics includes the
use of resources or basic mathematical knowledge (facts, procedures, algo-
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rithms), the use of heuristic strategies. the presence of metacognitive activities
(monitoring and control), and an understanding of the nature of the mathemati-
cal practice.(conception of the discipline). As a consequence, it is necessary to
investigate to what extent the students’ problem solving behaviors could be
improved when the instruction they receive takes into account learning activi-
ties related to those dimensions.

The purpose of this paper is to discuss aspects related to the implementa-
tion of problem solving activities in the classroom. The discussion will be
based on the analysis of segments from a mathematical problem solving course
taught at the university level." This course has been part of aresearch program
in problem solviny: for about 20 years. The results have shown that students
who take the course make significant progress in the development of their prob-
lem solving abilities (Schoenfeld. 1985, 1992, 1994). Thus, in this paper there
is interest in discussing specific components of the course that illustrate what
and how some instructional activitics are implemented. There will be special
attention given to the identification of mathematical messages or morals asso-
ciated with the problems used during the course.

Approaches to Mathematical Problem Solving Instruction

The idea that a problem solving course may focus on various aspects of
mathematical practice (heuristics, resources, metacognition, ctc.) during the
implementation period, makes it important to identify some important features
related to several approaches. For example, in the early 80's several of the
problem solving approaches relied on the Polya's four phases model as the
main structure of the class. Later, there was more attention to the role of
nonroutine problems and the presence of metacognitive strategies as an impor-
tant component of instruction. Here, an important line of research was to study
fundamental differences between mathematicians and students while working
on mathematical problems (expert, novice studies’. Recently there has been
interest in considering the role of social factors during the learning of math-
ematics. “Learning occurs as people engage in activities and the meaning and
significance of objects and information derive from their roles in the activities
that people are engaged in” (Greeno, Smith, & Moore, 1993, p.100). Indeed,
one important feature of Schoenfeld’s problem-solving approach is that the
students act as a mathematical community while working on mathematical tasks.
However, few studies have analyzed the effects of the implementation of these
types of instruction {Lester. 1994).

Schoenfeld, who has been teaching a mathematical problem solving course
for many years, does not address a content oriented course directly: but through-

'"The author observed the development of the course during one semester.
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out the development of the course, his students deal with several examples in
which specific content is discussed. For example, the basic concepts of geom-
etry (constructions), number theory, combinatory, and calculus are topics that
frequently appear as a context in the problem solving class. It may be that the
course helps students to reconceptualize their ideas about mathematics and deal
with problems without focusing on specific content. However, that fact that
basic mathematical ideas are addressed consistently during the course seems to
suggest a new vision for the organization of mathematical curriculum. That is,
rather than addressing a specific sequence of content, it is important to deal
with fundamental ideas of mathematics (including heuristics) that students could
use to deal with problems from different areas and contexts. This idea is con-
sistent with some curriculum proposals in which emphasis is given to the study
of the essential or key mathematical concepts (Steen, 1990).

Schoenfeld teaches the course at the university level. Perhaps, this course
1s among the few courses that have been attached to a research program in
mathematical problem solving. The fact that Schoenfeld himself teaches the
course might offer some advantages during the implementation, however, the
analysis and discussion of what happens during instruction could help other
instructors to transter or apply some of the activities related to the implementa-
tion of this approach. It is important to mention that the features or aspects of
the problem solving course addressed in this paper were identified by watching
videotapes of the class development and observing the class directly.

Attention to the Solution Process

What makes the type of problems that are part of Schoenfeld's problem
solving class interesting is not only the variety of mathematical ideas involved
in the solution process, but also that the majority of the problems are accessible
to the students. In fact, many of the problems might be familiar to the students,
nevertheless. the careful discussion of different methods of solution, connec-
tions to other situations, and extensions to more general cases are aspects in
which students are exposed to new challenges. Tt seems that a basic property of
the problems chosen for the course is that they offer the opportunity for the
students to become engaged in mathematical discussions.,

Another important aspect that appears consistently during the implementa-
tion of problem solving activities is that students should pay attention to the
process involved in reaching the solution(s) of the problem. This challenges
the idea that the main goal for students while working on a problem is to find
the solution. Paying attention to the process gives students the opportunity to
analyze and compare diverse qualities of methods of solutions, and to look foi
applications and extension of the problem. Some features of the course in
which the students examine the solution process of the problem include actions
in which the students are aware that: (i) The solution of a problem is an initial
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point to launch new mathematical ideas. Thus, students are encouraged to
work on different types of problems and to search for connections and exten-
sions of the original problem. An important part of the students’ approaches is
to conceptualize that finding a solution of a problem is just the beginning of a
process in which they have the opportuuity to think of other methods of solu-
tion, to pose more questions or related problems, to extend the problem by
changing the original conditions, and evaluate new relations among other con-
texts. Thus, other problems emerge and students spend time discussing the
qualities of different approaches used to solve those problems. This approach
challenges the idea that students normally work on problems that are given to
them by their instructors and rarely have the opportunity to go beyond a spe-
cific solution. In this context, the students could also explore ways in which -
the statement of the problem is changed. That is, they may analyze what hap-
pens if one or more parts of the original statement are contradicted. Brown and
Walter (1983) called this activity the “what-if-not” strategy and have used it
extensively in their courses.

(i1) The analysis of the quality of different approaches offer the students to
compare and value aspects in which it is important to think of what methods
are more efficient than others. This activity is present throughout the develop-
ment of the course. It is common that students show approaches that include
the use of particular and general methods. For instance, when the students
were dealing with the problem “prove BBCl(tan(x) + cot(x)) 2 2", a first ap-
proach waus to use trigonometric identities to transform the right side in a man-
ageable terms to show that it the inequality was true. That is, expressing the
right side as BBCI(f(sinx, cosx) + f(cosx. sinx)) =

BBCI(f(1, cosxsinx)) = BBCIf(2, sin2x)) which is always greater or equal
than 2. In addition, another more general approach to the problem was shown.
That is, representing the right side as

BBCi(tan(x) + f(1 tan{x))) 2 2 or BBCl(z + f(1.z)) 2 2 . Then, the inequal-
ity could be represented as

2+ 1 22zor(z- 1) 20. This approach appeals more to an abstract form
to represent the original expression rather than the specific content of the prob-
lem. This general approach is what Polya calls “inventor’s paradox™ in which
a more general problem may on occasion be casier to solve than the given
problem.

Develu ping a Scnse of Confidence in Students’ Behavior

The development of mathematical disposition seems to be an important
aspect of the problem solving course. During the class development, students
are encouraged to present their ideas to the class. They are aware that a clear
mathematical arguraent is what counts in their presentation. In the discussion
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of their ideas, they expect criticism and other challenges from other students.
These activities are part of the process of dealing with any mathematical tasks.
“Becoming a good thinker in any domain -may be as much a matter of acquir-
ing the habits and dispositions of interpretation and sense-making as of acquir-
ing any particular set of skills, strategies. or knowledge (Resnick, 1988, p.58).

A class environment in which students are constantly asked to explain and

communicate their ideas to other students is an important feature of the class. - §

For example, students work in small groups of three or four students during a
significant portion of the class. The small groups are formed randomly and
during the session, Schoenfeld makes sure that the students’ interactions in-
volve all the participants. Questions that help to frame the students’ interac-
tions include: What are you doing? Why are you doing that? and Where will
that lead you? which are similar in spirit to those that Halmos (1994) asks when
teaching: What is true? What do the examples we can look at suggest? and
How can it be done? The discussion of these questions éncourages students to
elaborate on what they are thinking, organize their ideas, and provide convine-
ing arguments to defend their conjectures. Thus. students’ ideas are normally
challenged during the students’ interaction based on examining other ways to
solve atask, analyzing connections, or refuting a counterexample. In addition,
there is a set of expressions that become part of the classroom culture. For
example, are we done?; do you know a related problem?; can you think of a
special case?: can this be solve geometrically? etc., are questions that appear
while working on any task.

If you understand how things fit together in mathematics, there is very
little to memorize. That is. the important thing in mathematics is to sce
connections and see what makes things tick and how they fit together.
Doing the mathematics is putting together the connections and making
sense of the structure. Writing down the results -the formal statement
that codify your understanding—is the end product, rather than the start-
ing place. (Schoenfeld. 1991, p 328)

Students are exposed to the challenge of expiaining why their ideas might
work while dealing with the tasks. Comments and feedback that Schoenfeld .
provides to the students often involve examples in which the students have to
rely on their own mathematical arguments to support their work. That is, the
students should not expect the instructor to give the final word about the cor-
rectness of specific results: rather, the students have to construct and present
their arguments to the rest of the cluss for discussion and judgement. A typical
Schoenfeld’s response when o student asks for his approval to a mathematical
work 15




Don’t fook to me for approval, because I'm not going to provide it.
I’m sure the class knows more than enough to say whether what's on
the board is right. So (turning to class) what do you folks think?
(Schoenfeld, 1994, p.62).

It is clear that an important value in the learning of mathematics is that
students have to provide a mathematical support to their work. The idea that
students are always asked to look for more than one way of solution or to ex- .

plore other connections of the problems help them see the importance of this
activity.

Conclusions

There isn’t a recipe that will always produce good instructional results in
mathematical problem solving. However, there are various ingredients that
could be identified as essential during a problem solving approach. For ex-
ample, an important instructional goal that could be used as a framework is that
students need to develop their mathematical disposition to the study of math-
ematics. This include that students share a set of values that are consistent with
the practice of doing mathematics. Here, the type of problems used during the
class discussion, the type of student participation, and the evaluation of the
students’ work are aspects that play an important role in achieving that goal.
Thus, learning activities should include tasks in which the students are encour-
aged to present different ways of solution and search for new extensions or
connections of the original problems. In addition, the students should discuss
their ideas with other students and use mathematical arguments to support their
approaches to the problem.
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RELEVANCE JUDGEMENTS IN MATHEMATICAL
PROBLEM SOLVING

Graeme Shirley and Martin Cooper
University of New South Wales, Sydney
m.cooper@unsw.edu.au

Two groups of Grade 4 students were given word problems containing a numerical
statement unrelated to the solution of the problem: one group was directed to underline
the irrelevant statement and solve the problem the way they had been shown in class,
the attention of the second was not drawn to the presence of any irrelevant statement in
the problem. A third, control group received the same problems without the irrelevant
numerical statement. Students experiencing irrelevant numerical statements performed
better than those not experiencing them. Exploratory analysis indicated that students
aware of the presence of irrelevant numerical statements perform hetter than those not
experiencing such statements. Performance on two-step, transfer problems showed the
same results, except that in this case, students receiving irrelevant numerical state-
ments tended to perform better than those not experiencing such statements.

Background

The comprehension of mathematical word problems can be considered as
different from that of the reading and comprehension of a regular text passage
in that the word problem reading task is domain specific. Kintsch and Greeno
{1985) cite three factors as evidence for this. The first involves presuppositions
relating to problem integrity.  Consider the following story: Matthew had
three marbles. Then Chris gave him five more marbles. How many marbles
does Matthew have now? The solver assumes that Matthew didn’t lose any of
the original marbles and that “three marbles” means exactly three because it is
not defined by a modifier such as “least” or “most”.

The second factor is a reference to sets.  The terms glass marbles and five
marbles may be linguistically similar, but a competent problem solver would
treat them differently, classing the latter term as a finite set. Thirdly, a direct
consequence of the second factor is the reader’s concern with mathematical
sets, their quantities and the relations between them.  Unlike the reading of a
text passage, the reader is not interested in why Chris gave Matthew five marbles,
only that he now has five more.

If the reading of mathematical word problems is domain specific, an im-
portant implication is that language ability per s¢ cannot be a reliable determi-
nant of success at solving word problems. Much experimental evidence, eg.,
Silver (1981), Paul, Nibbelink and Hoover (1986), supports this notion. More
recently, Hembree (1992a). in a review of research into mathematical word-
rroblem solving, found (p. 259) that at all grade levels the presence of “extra-
rieous data™ (not elaborated on in the review) resulted in lower problem-solv-
ing performance. This finding is related to one important coneern of this study,
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the problem-solver’s focusing on those aspects of the problem relevant to its
solution.

For any given word problem, certain material can be considered relevant to
the problem’s solution, and other material irrelevant. To consider our original
simple problem: it doesn’t matter whether the problem reads, John had three
marbles. Then Bill gave him five more marbles. How many marbles does John
have now? The name changes are irrelevant to the problem’s solution. We can
also introduce irrelevant numerical data: John had three marbles. Then Bill,
who was twelve years old, gave him five more marbles. How many marbles
does John have now?

Krutetskii (1976), Hayes, Waterman and Robinson (1977) and Robinson
and Hayes (1978) have all noted the importance of schemata for making rel-
evance judgements in solving familiar problems (for example, problems regu-
larly encountered in a school mathematics program). A schema is a cognitive
structure which specifies both the category to which the problem belongs (cg.,
addition, single-step) and the most appropriate solution steps for that category.
It aids the solver in directing his or her attention to important problem ele-
ments, making relevance judgements and, where necessary, retrieving infor-
mation conceming relevant equations.

So effective are these schemata, that Krutetskii (1976), working in the So-
viet Union with capable grade six and seven students, observed that they were
not impeded by the presence of irrelevant numerical data in standard problems.
Instead, they “singled out the complex of interrelated quantities that consti-
tuted the backbone of the problem” (p. 228). This observation had important
implications for the present study, the purpose of which was to investigate two
seemingly contradictory findings which have arisen in the review of the litera-
ture relating to mathematical word-problem solving. On the one hand, for more
familiar problems, problem solvers possess schemata which reflect the under-
lying mathematical structure of the problem and are thus enabled to direct their
attention to the relevant material in the problem (Krutetskii, 1976; Hinsley,
Hayes and Simon, 1977; Rot.uson and Hayes, 1978). Conversely, the pres-
ence of extraneous data in word problems results in lower problem-solving
performance at all grade levels (Hembree, 1992a).

It was expected that emphasizing the process cf selecting relevant material
would be beneficial to problem-solving performance, this emphasis being
achieved by the inclusion of irrelevant numerical material in a set of training
problems and drawing the students’ attention to this as part of the solution pro-
cess.  To what extent this needs to be a conscious process was investigated by
the inclusion of an experimental group who were unaware of the presence of
the irrelevant material.  To test the efficacy of the schemata in reducing work-
ing-memory load, transfer test-problems mvolving two operations were included.
The administration of a second set of test problems containing irrelevant items
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allowed a comparison within the groups of the effects of standard problems and
“extraneous item” problems.

Procedure

Twenty-six grade 4 students from a Sydney primary school, judged to be
competent problem solvers on the basts of their half-yearly exam results, were
randomly allocated to one of three groups: Aware (treatment group 1), Un-
aware (treatment group 2) and Control.

A pre-treatment test consisting of six problems (one addition, two subtrac-
tion, two multiplication and one division) was administered to the students.
Subjects were then given five training sessions, each requiring the solution,
without time restraint, of four problems (one for each of the four arithmetic
operations, in order to give equal exposure). The main degree of difficulty was
imposed by setting a conversion-of-metric-units question (Loftus and Suppes,
1972) for each of the operations over the various sessions.

The problems given to the Aware Group contained a numerical statement
unrelated to the solution of the problem, for example, There were 20 children
at a party. They were seated at 4 tables. They were each given 5 balloons to
blow up. How many balloons were there? The students were directed to
underline the irrelevant statement and solve the problem the way they had been
shown in class. The Unaware Group was given the same problems as the
Aware group. but their attention was not drawn to the presence of any irrelevant
statement in the problem. They were simply directed to solve the problem the
way they had been shown in class.  The Control Group received the same
problems without the irrelevant numerical statement, for example, There were
20 children at a party. They were each given 5 halloons to blow up. How many
halloons were there? They were instructed to solve the problems the way they
had been shown in class.

Every student in cach group received twenty training problems.  Pupil
feedback sessions, in which the teacher went over problem solutions while the
children marked their work, occurred at regular intervals, The Aware group
was told which was the irrelevant statement in each of the problems.  No
mention of the irrelevant statement was made to the Unaware group.

Following the training sessions and associated feedback sessions, a set of
six post-treatment problems was administered.  In this set of problems, the
degree of difficulty was again imposed using a conversion-of-metric-units prob-
lem.  In addition, two 2-step problems were included (division-subtraction;
addition-multiplication). These had been shown previously (Loftus and Suppes,
1972y to be difficuit for this age group.  The scecond pairing involved the
calculation of a perimeter, thus imposing a further degree of difficulty.  The
students had not previously encoun-tered problems of this sort, and they could
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thus be considered as transter problems. A second set of six post-treatment
problems, involving similar operations but containing irrelevant material, was
i given to all subjects the following day.

; The four one-step problems were scored in the same way as those in
i the pre-test. The two-step transfer problems, however, were scored out of four
marks, allowing for the extra step involved.

Results

The means and standard deviations for the pre-trecatment test are shown
below.

Group Mean " Standard Deviation
Aware 15.875 2.800
Unaware 15.750 2.659
Control 15.100 3.035

A one-way analysis of variance indicated no significant differences among
the pre-treatment means:
SS ndf MS

Treatments 3.187 2 1.593 F2,23)=0.196
Error 87.275 23 8.142

After treatments, the means and standard deviations were as follows:

Group Mean Standard Deviation
Aware 16.250 (Hp) 3.059
Unaware 15.500 (uyp) 3.338
Control [1.300 (ne) 4.347

The following planned contrasts were tested using a priori Schetté tests.
with the following results:

Contrast
Contrast Estimate F
O.5(Up+ HYy) - U 4.575 9.42%

The mean tor the combined treatment groups was significantly greater than
that of the control group, but no difference between the treatment group means



was apparent.  Students experiencing irrelevant numerical statements there-
fore performed better than those not experiencing such statements.

An overall test and exploratory post hoc  Scheffé tests were also con-
ducted. As shown below, the hypothesis of homogeneity of means was re-
jected at the 0.05 level:

SS ndf MS

Treatments 131.054 2 65.527 F(2.23)=4.806*
Error 13.600 23 13.635

and the post hoc analyses gave the following results:

Contrast Estimate F

HA - HC 4.950 8.01*

Thus, students aware of the presence of irrelevant numerical statements
performed better than those not experiencing such statements. While students
unaware of the presence of irrelevant numerical statements did not perform
significantly better than those not experiencing such statements, the difference
was in the expected direction.

Our second concern was to examine the students’ performance on the transfer
problems in isolation. The maximum possible marks for these problems was
eight, the respective means and standard deviations being

Group Mean Standard Deviation

Aware 5.375 2.200
Unaware 5.375 1.923
Contro} 2.300 2983

Again,an a priori Scheffé test was conducted, with the following result:
Contrast
Contrast stimate F
0.5(})/\4— }lu) - He 3.0758 ) .58*

indicating that, as for the non-transfer items, students experiencing irrelevant
numerical statements therefore performed better than those not experiencing
such statements.
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SS ndf MS

Treatment  58.188 2 29.094 F(2,23)=4.785
Error 139.850 23 6.080

Again, post hoc Scheffé tests were conducted. with the following results:

Contrast
Contrast Estimate F

Ha - He 3.075 6.91*
By - M 3.075 6.91*

indicating that students experiencing each type of irrelevant numerical statements
performed better than those not experiencing such statements.

Finally, the completion by students of a set of post-test problems which
contained material which were irrelevant to the problem’s solution allowed a
comparison of means for the two post-tests, within the groups. The means and
standard deviations are shown below.

Post-Test 1 Post-Test 2
Group Mean SD Mean SD
Aware 16.250 . 15.500 .82

Unaware 15.500 . 13.750 .70
Control 11.300 4. 11.200  4.895

No significant differences exist between post-test means, within groups.
Conclusions

Generally, students experiencing irrelevant numerical statements performed
better than those not experiencing such statements, indicating that training in
having to select relevant material is beneficial to probiem-solving performance,
but the effect is more evident for students who are aware of the presence of
irrelevant numerical statements than for those who are unaware of them.
Performance on two-step transfer problems showed the same results, except
that in this case all students receiving irrelevant numerical statements tend to
perform better than those not experiencing such statements.  No within-group
difference in mean performance on a second set of non-transfer post-treatment
problems which contained material which was irrelevant to the problem’s solu-
tion and the first set, which did not, indicating that differences are engendered
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at the training stage and are not a function of the type of test problems used.

The results support the hypothesis that students with some background in
word-problem solving possess schemata for the various problem types. These
enable the student to make judgements about the appropriateness of various
parts of the text for the problem’s solution. The grade 4 students in this study
had been exposed to a range of problems involving the four operations throughout
the year. For them, word problem schemata would be in a state of formation,
particularly for those problems involving multiplication and division.

On the basis of these findings, it seems that the presence of the irrelevant
statement has acted to clarify the relations within a problem form and in turn
for the problem schemata based on that form. Referring to the modification of
the model proposed by Hayes, Waterman and Robinson (1977), an effective
schema, when triggered, directs the solver’s attention toward the relevant sets,
key words and the underlying relations between these problem elements.  This
serves to reduce the load on working memory.
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ASPECTS OF WORD-PROBLEM CONTEXT THAT
INFLUENCE CHILDREN’S PROBLEM-SOLVING
PERFORMANCE

Lynda R. Wiest
University of Nevada, Reno
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In this study, 127 fourth graders and 146 sixth graders solved word prob-
lems constructed to have parallel mathematical structure but different problem
contexts (the nonmathematical, verbal aspect of the problem, such as the story
line). Preferences for solving problems and problem-solving performance var-
ied across problems. Students provided written and oral comments that af-
forded insight into which aspects of word-problem context influenced their
problem solving.

Word-problem context elements that appeared to impact students’ problem
solving include readability, verbal structure, story concepts, and personal fac-
tors. Readability refers to comprehensibility of problem context and relates to
such elements as vocabulary and wording. Verbal structure includes physical
proximity of numbers to each other, number shape (e.g., visual similarity or
dissimilarity of different numbers), physical proximity of set names (e.g.,
“miles”) to each other and to related information, number position in relation
to its set name (i.e.. preceding or following it). and whether or not set names
that are the same are repeated for each set or are merely implied. Story con-
cepts involve activity level of story line, imagery fostered by story elements,
number and complexity of concepts, degree of distinctiveness between and
among sets (c.g., those bearing relevant versus extraneous information), whether
or not subsets of a set bear the same name as each other, whether or not subset
and superset names are the same, strength of association of a set of unknown
quantity with other pertinent information (e.g., its superset), and number size.
Personal factors include interest, personalization (e.g.. using a child’s name),
and familiarity. Individual response to problem context might vary according
to a problem solver’s gender, age, community type and geographical location,
family background (including values, preferred activities, race/ethnicity, so-
cioeconomic status, and religion), individual personality (which includes inter-
ests), and academic ability, in addition to random and coincidental factors.

Problem-context variables are many and interact in highly complex ways,
so that no individual factor can account in itself for differential responses to
various problems.




