In 1991, Ohio received funding from the National Science Foundation (NSF) for a Statewide Systemic Initiative called Discovery to reform science and mathematics education. Funding since that year has included a grant to identify barriers to science and mathematics education reform, particularly barriers such as community and school resources, teaching practices, and student attitudes, that may result in achievement differences among groups of students. State funding to improve the college education of all teachers of science and mathematics was also received. In 1995, four years into Ohio's systemic reform, a study to describe the landscape of science and mathematics education was begun. The findings, published annually in the Pocket Panorama, describe a changing landscape along with documenting accomplishments and continuing challenges. Because proficiency test scores are not accessible for individual students, Discovery developed valid and reliable tests to assess how the reform is meeting the challenges. This edition of the Panorama presents information on the location of reform programs, the number of participants (schools, principals, teachers, and students), and profiles how the student sample compares with all Ohio students. Teacher and student responses have been contrasted with the amount of professional development teachers have had as part of the reform. Educational aids in the home, professional development providers, and changes in classroom practices are also discussed. (PVD)
Bridging the Gap: Equity in Systemic Reform

A Pocket Panorama of the Landscape Study, 1997
Ohio’s Systemic Initiative

Disco ery

Bridging the Gap:
Equity in Systemic Reform

Research Directors
Jane Butler Kahle • Miami University
Steven R. Rogg • Miami University

Project Manager
Sharon S. Saylor • Miami University

Collaborating Researchers
Michael Battista • Kent State University
William Boone • Indiana University
Mark Brooks-Hedstrom • Oakwood City School District
Arta Damnjanovic • Miami University
Peter Hewson • University of Wisconsin–Madison
Jane Kaiser • Miami University
Mary Kay Kelly • Miami University
Kenneth Tobin • University of Pennsylvania
Sigrid Wagner • The Ohio State University

Suggested Citation:

This material is based upon research partially supported by the National Science Foundation under REC9602137 and the Ohio Board of Regents. Any opinions, findings, and conclusions or recommendations in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Ohio Board of Regents.

© 1998, Jane Butler Kahle, Steven R. Rogg, Miami University
Systemic Reform of Mathematics and Science Education

In 1991, Ohio was one of the first ten states to receive funding from the National Science Foundation (NSF) for a Statewide Systemic Initiative (Discovery) to reform science and mathematics education. Guided by the Ohio Board of Regents and the Ohio Department of Education and supported by the General Assembly, Discovery served as a catalyst to enhance learning of mathematics and science across Ohio, particularly in middle schools; to alter teaching methods; and to change public opinion.

In 1993, Ohio's three eligible cities (Cincinnati, Cleveland, and Columbus) received NSF funds for Urban Systemic Initiatives. When the Appalachian Rural Systemic Initiative was funded by NSF in 1994, the five eligible Ohio counties became part of it. The systemic initiatives collaborated with many institutions and agencies to change the landscape of science and mathematics education in Ohio. That landscape has been described in the Pocket Panoramas of 1995 and 1996.

In 1996, a three-year NSF grant, Bridging the Gap: Equity in Systemic Reform, was awarded to focus on identifying barriers to science and mathematics education reform, particularly barriers (community and school resources, teaching practices, student attitudes) that may result in achievement differences among groups of students.

In 1997, Ohio's General Assembly funded Ohio's Systemic Initiative—Discovery for two years with mandates to expand to elementary and high schools, to improve the college education of all teachers of science and mathematics, and to continue studying and reporting on the effectiveness of Ohio's reforms. Bridging the Gap and OSI-Discovery bring you the third Pocket Panorama that describes continuing changes in teaching practices, in student attitudes, and in student learning of mathematics and science.
The Story of Reform: The Landscape Study

In 1995, four years into Ohio’s systemic reform, a study to describe the landscape of science and mathematics education was begun. The findings, published annually in the Pocket Panorama, describe a changing landscape and document accomplishments as well as continuing challenges. One challenge is narrowing achievement gaps among groups of students while improving learning by all students. Because proficiency test scores are not accessible for individual students, Discovery developed valid and reliable tests to assess how the reform is meeting this challenge.

Past editions of the Pocket Panorama described the design of the study, the numbers of principals, teachers, and students involved in it, and how the profile of its random sample of schools matched the profile of all Ohio schools. This year some changes have been made; for instance, the profile of the student sample is compared to that of all Ohio students. Ohio’s reform of science and mathematics education involves a mix of systemic, state, and local initiatives. Therefore, this year teacher and student responses have been contrasted by the amount of professional development teachers have had as part of the reform. Also new is information about who provides professional development for practicing teachers and the efforts to improve science and mathematics education for prospective teachers through Project SUSTAIN.

Our ability to paint the landscape accurately and with increasing detail continues to be dependent upon the good will and cooperation of the many principals, teachers, and students who have allowed us to share the excitement and challenge of teaching and learning high quality mathematics and science. We thank each of them for their continued support!
Where is the Reform in Ohio?

Although OSI-Discovery teachers (Discovery and Cascade programs) are found across Ohio, they are clustered in areas of great need—its urban centers (left). State, urban, and rural systemic initiatives provide an impetus for reform (right).

Figure 1a: OSI-Discovery Teachers in Ohio

Figure 1b: Cities and Counties with Systemic Initiatives
Who Participates in the Landscape Study?

Annually, principals and teachers in over 100 randomly selected schools across Ohio respond to questionnaires. Science and mathematics classes are observed and student learning is assessed in rural and urban schools that serve many students living in poverty.

Figure 2: Landscape Study Participants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools</td>
<td>108</td>
<td>111</td>
<td>144</td>
</tr>
<tr>
<td>Principals</td>
<td>108</td>
<td>92</td>
<td>140</td>
</tr>
<tr>
<td>Parents</td>
<td>120</td>
<td>250</td>
<td>228</td>
</tr>
<tr>
<td>Teachers</td>
<td>1,024</td>
<td>834</td>
<td>1,350</td>
</tr>
<tr>
<td>Students</td>
<td>1,428</td>
<td>4,015</td>
<td>2,574</td>
</tr>
</tbody>
</table>
Which Students Are Involved in the Landscape Study?

Student learning is assessed in schools that enroll large numbers of economically disadvantaged students. Landscape’s sample contains high proportions of minority students.

Figure 3: Comparison of Student Demographics at Ohio and Landscape Schools

Note: Percentages may not add to 100 due to rounding.
How is Need Evident Among Landscape Students?

Compared to national averages, Landscape students have less access to basic educational resources in their homes.

Figure 4. Percent of Students Reporting Educational Aids in their Homes

- More than 100 Books
- Computer
- Study Desk or Table
- Dictionary

Percent of Students

Note: The Third International Mathematics and Science Study (TIMSS) is the source of the national data.
Who Provides Professional Development for Ohio's Teachers?

Teachers in the random sample participate in professional development activities provided by many groups and agencies. Analyses suggest that sustained activities, focused on increasing subject knowledge and teaching skills, change classroom practices (shown on the following pages).

Figure 5a: Average Time Spent Learning by Type of Provider in 1997

- State Systemic Initiative: 62
- College or University: 47
- Other Provider: 33
- Urban Systemic Initiative: 21
- District/School Office: 18
- Ohio RPDC: 15
- Curriculum/Text Publisher: 12
- Goals 2000: 6

Clock Hours per Teacher in Sample

Figure 5b: Percent of Total Teacher Professional Development Provided in 1997

- Curriculum/Text Publisher: 6%
- Ohio RPDC: 2%
- Other Provider: 12%
- Systemic Initiatives: 16%
- County, District, or School Office: 23%
- College or University: 41%
How are Classroom Practices Changing?

Comparison of responses of teachers, who have 40 or more hours of professional development in the last year with those of teachers with less than 40 hours, describes different practices. In both groups, teacher responses are supported by those of their students.

Figure 6: Students and Teachers Responding “Very Often” to Effective Classroom Practices in Science and Mathematics

- Students use information to support answers.
- Students talk with one another about how to solve problems.
- Students learn alternative explanations to science problems.
- Teachers require students to support claims.
- Teachers use open-ended questions.

(![Bar chart showing the percentage of students and teachers responding very often to effective classroom practices in science and mathematics based on the number of professional development hours.](chart.png))
How are Students Learning?

Teaching strategies that improve science and mathematics learning among economically disadvantage students are used more frequently by teachers with 40 or more hours of professional development.

Figure 7: Student Learning Activities

Experiences in Mathematics

- I write about how I solve problems.
- I solve problems in small groups.
- I use hands-on manipulatives or do labs.
- I memorize facts by doing worksheets.
- I do projects.

Experiences in Science

- Almost Never
- Very Often

Less than 40 Hours
Greater than 40 Hours
Has Mathematics Learning Increased?

Beginning in 1995 (baseline scores), achievement levels in economically disadvantaged urban and rural schools rose in mathematics.

Figure 8: Student Achievement in Mathematics

Note: Achievement data is shown only for students in schools that have participated every year.
Has Science Learning Increased?

In economically disadvantaged urban and rural schools, improvement in science achievement is greater for African-American students than for white students.

Figure 9: Student Achievement in Science

```
<table>
<thead>
<tr>
<th>Year</th>
<th>African-American Achievement</th>
<th>White Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>1997</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>
```

Note: Science and mathematics achievement cannot be compared directly because the difficulty levels of the two tests are not identical.
How Will Ohio’s Reform Be Sustained?

Through Project SUSTAIN, collaborations have been formed between Ohio’s largest school districts and institutions of higher education. The collaborations focus on improving undergraduate education in science and mathematics, particularly for prospective teachers.

Figure 10: Project SUSTAIN Collaborations

<table>
<thead>
<tr>
<th>City School District Partner</th>
<th>Higher Education Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbus & South-Western</td>
<td>The Ohio State University</td>
</tr>
<tr>
<td>Cleveland</td>
<td>Cleveland State University</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Toledo</td>
<td>University of Toledo</td>
</tr>
<tr>
<td>Akron</td>
<td>University of Akron</td>
</tr>
<tr>
<td>Dayton</td>
<td>Wright State University</td>
</tr>
<tr>
<td>Youngstown & Warren</td>
<td>Youngstown State University</td>
</tr>
<tr>
<td>Middletown</td>
<td>Miami University</td>
</tr>
</tbody>
</table>

Number of Urban District Teachers
Who is Guiding Ohio’s Reform of Science and Mathematics Education?

Representatives from the following institutions and agencies meet as OSI-Discovery’s Coordinating Council to guide and shape the reform:

- Cincinnati Federation of Teachers
- Cleveland Urban Systemic Initiative
- Columbus Urban Systemic Initiative
- Miami University
- Ohio Board of Regents
- Ohio Department of Education
- Ohio Education Association
- Ohio Mathematics & Science Coalition
- Ohio School Board Association
- The Ohio State University
- Sinclair Community College
- State University Education Deans
- University of Toledo, Community & Technical College
- Wright State University

For more information about Ohio’s systemic reform of science and mathematics education:

http://www.discovery.k12.oh.us
osi-discovery@muohio.edu
513•529•1686 (Evaluation)
937•775•2726 (K–12 Programs)
614•292•8765 (Higher Education Activities)

OSI-Discovery
Bridging the Gap
420 McGuffey Hall
Miami University
Oxford, OH 45056-1693
REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

Title: Bridging the Gap: Equity in Systemic Reform
Author(s): Jane Butcher-Kahle, Steven R. Ragg
Corporate Source: Miami University
Publication Date: 1998

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announce in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom of the page.

The sample check box shown below will be affixed to all Level 1 documents.

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Sample

Check here for Level 2A release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE AND/OR PAPER COPY EXCEPT AS SPECIFIED BELOW HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Sample

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Scoiety's code is for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to ERSR requests.

Sign here please

Jane Butcher-Kahle
420 McGuffey Hall
Miami University
Oxford, OH 45056

CONCIT PROFESSOR OF MATH SCIENCES
513/529/1466 513/529/2110
jbutcherkahle@Miami.edu

Page 03