Three aspects of the usual approach to assessing local item dependency, Yen's "Q" (H. Huynh, H. Michaels, and S. Ferrara, 1995), deserve further investigation. Pearson correlation coefficients do not distribute normally when the coefficients are large, and thus cannot quantify the dependency well. In the second place, the accuracy of item response theory person ability estimates is always relative to the standard error of the estimation, and in the third place, Yen's approach does not have a criterion to determine the significance level of the index of dependency between a pair of items (Q3). This paper addresses these concerns by proposing Fisher's "Z" as the index for item dependency. It compares the statistical properties of Fisher's Z with Yen's Q and weights the observed residuals by the standard error of person ability. Items for the study were from the second administration of part of a national medical licensing examination in 1995 taken by 361 first-time test takers. Fisher's Z accurately estimated the zero mean dependency for stand-alone items and successfully differentiated stand-alone items from clustered items based on the degree of dependency. This suggests that Fisher's Z is a valid, reliable, and sensitive index for quantifying item dependency. Two appendixes provide a sample of stand-alone items and a sample of item cluster. (Contains four figures and three references.) (SLD)
Quantifying Item Dependency by Fisher's Z

Linjun Shen

National Board of Osteopathic Medical Examiners

Paper presented to the Annual Meeting of the American Educational Research Association
Chicago, March 1997
Quantifying Item Dependency by Fisher’s Z

One of the commonly used methods to assess local item dependency is Yen's Q_3 (Huynh, Michaels, & Ferrara, 1995). This approach computes residuals between examinee's observed score and IRT-derived person ability score on each item for all persons. Q_3, the index of dependency between a pair of items, is the Pearson correlation coefficient between the residual scores on that pair of items. For item clusters, the mean of all possible inter-item Q_3 within a cluster is considered as the index of the dependency for that cluster (Yen, 1984, 1993). Three aspects of this approach need further investigation. First, Pearson correlation coefficients do not distribute normally especially when the coefficients are large. Therefore, Pearson coefficient cannot quantify the dependency well. Second, the accuracy of IRT person ability estimates is always relative to the standard error of the estimation. The Q_3, relying on raw residual scores between observed score and person ability, failed to take into account the accuracy of person measure. Third, Yen's approach does not have a criterion to determine the significance level of Q_3 for clustered items. Determination of item dependency remains arbitrary.

The purpose of this paper was to address the above three concerns by proposing Fisher's Z as the index for item dependency and to compare the statistical properties of Fisher's Z with Yen's Q_3. Fisher's Z normalized Pearson correlation coefficients, therefore provided a better-scaled index. To acknowledge the effect of error, this study weighted the observed residuals by the standard error of person ability. This paper established a criterion to determine the significance of Fisher's Z by using the level of dependency among stand-alone items as the reference. A Fisher's Z for a pair of clustered items would be considered significant if it was at least two standard deviations above the mean of Fisher's Z among stand-alone items in the same exam. The rationale was: the distribution of Fisher's Z among all stand-alone items must have a mean of zero. If a Fisher's Z was larger than two standard deviations of the Fisher's Z for stand-alone items, either it was due to the random effect or the two items were not independent stand-alone items.

Methods

Subjects and instruments

Items in this study were selected from the second administration of the third part of a national medical licensing examinations in 1995. This four-book exam had 770 multiple-choice items. The KR-20 reliability coefficient was .94. 414 items were stand-alone one-best-answer items as illustrated in Appendix 1, the other 356 items were clustered into 130 item sets with number of items per set varying between 2-8. As Appendix 2 shows, items in a cluster shared a common clinical presentation, therefore, they tended to be dependent with each other.

416 medical students with at least six months of postgraduate medical education took the exam. For reliable results, this study only used 361 first-time takers.
Item selection

All 356 items in clusters were analyzed. Within-cluster Fisher's Z matrix were computed for each of 130 clusters. The total number of unique Fisher's Z for clustered items was 378.

To obtain a criterion distribution of Fisher's Z, five groups of stand-alone one-best-answer items were randomly selected from the exam. Each group had 12 items and consequently yielded a correlation matrix with 66 unique Fisher's Z. Five 12 x 12 matrices gave 330 Fisher's Z which constructed the Fisher's Z distribution for stand-alone items.

Computation of Fisher's Z

Rasch Model was the foundation of this paper. All items and persons were analyzed by this Model. The computation of Fisher's Z took three steps:

1) Obtain the Rasch Model-based standardized residuals for each observation of person \(n \) on item \(i \):

\[
d_{ni} = \frac{\text{Observed}_{ni} - \text{Expected}_{ni}}{SE_{ni}}
\]

2) Correlate the standardized residuals \(d_{ij} \) for all pairs of items \(i_j \) across all \(N \) persons

3) Compute Fisher's Z to normalize Pearson correlation \(r_{ij} \) from the step 2:

\[
Z_{ij} = \frac{1}{2} \log \left(\frac{1 + r_{ij}}{1 - r_{ij}} \right)
\]

with error of \(r_{ij}/2(N-1) \).

Results

Distributions of Fisher's Z

As the histogram in Figure 1 shows, the distribution of 330 unique Fisher's Z for stand-alone items was normal. The mean of the distribution was -.004 with a standard deviation of .06. This distribution suggested that the probability of having a Fisher's Z of .12 (two standard deviations above the mean) between any of two stand-alone items was only .05 or less. So, .12 was considered as the critical value of significant Fisher's Z for clustered items.

In contrast, the distribution of Fisher's Z for clustered items in Figure 2 was skewed with a
mean of .20 and a standard deviation of 0.32. 164 (43%) of Fisher's Z for clustered items were significant. 68 out of 130 clusters (52%) had a mean Fisher's Z greater than .12. On the other hand, 45 cases (35%) did not have any pair of items significantly dependent.

Comparison between Fisher's Z and Q₃

To evaluate the effect of standardization of residuals by the standard error of person ability, Fisher's Z based on observed residuals was plotted against corresponding Fisher's Z based on standardized residuals. The plot almost fell into an identity line and the correlation was .98.

The effects of the normalization by Fisher's Z for the Q₃ was demonstrated by a scatter plot of Fisher's Z against the corresponding Q₃. As Figure 3 illustrates, the plot did not fall into an identity line and the relationship was not linear. The Figure 3 indicated that when the Q₃ was relatively small, the plot followed a straight line. However, if the Q₃ was above .60, an equal increment in the Q₃ would correspond to an increasingly larger increment in Fisher's Z. This relation pattern indicates that the Q₃ has the tendency to reduce the degree of dependency when the Q₃ is large. Transformation from Q₃ into Fisher's Z avoided this problem.

Discussion

Fisher's Z accurately estimated the zero mean dependency for stand-alone items and successfully differentiated stand-alone items from clustered items based on the degree of dependency. This suggests that Fisher's Z is a valid, reliable, and sensitive index for quantifying item dependency.

Compared with Yen's Q₃, Fisher's Z has better statistical properties due to its standardization of residuals, normalization of Q₃, and a practical criterion of significance. Although the comparison of the standardized residuals with the observed residuals in this study did not show practically meaningful differences, the necessity and advantage of standardization by measurement error is still conceptually obvious. The exam analyzed in this study was a well-established standardized written test, contained a large amount of well-written multiple-choice items, therefore, the person ability was estimated with a good and consistent precision. This explains why the discrepancy between the observed and standardized residuals was trivial. However, if the items are open to examinees' free expression, subject to relatively subjective scoring, and the number of items in an exam is smaller, as in many performance tests, person ability would be estimated with a large standard error. Moreover, the variation of the errors among examinees would be larger. In such situations, standardization of the residuals would have noticeable impact on the size of Fisher's Z. Simulation studies are needed to further investigate this aspect.

Practical significance level of Fisher's Z is a helpful reference in diagnosing item clusters.
The criterion of significant Fisher's Z established by this study was reasonably severe. According to this standard, 57% pairs of clustered items were identified as not significantly dependent. Out of 130 clusters, 45 clusters did not have any pair of items dependent with each other. If .12 is the absolute standard of significant dependency for any written item clusters in medical licensing exams or if the standard of significant Fisher's Z is exam-specific needs further investigation.

The method developed in this study was based on a paper-pencil exam, however, it is applicable to performance tests or computer adaptive tests also, where problems caused by clustered items are more challenging. The advantages of this approach will be more noticeable where exams are short, items do not have a standard format and require free response, and subjective judging are involved.

Reference

Appendix 1

A sample of stand-alone item

Appendix 2

A sample of item cluster
Figure 1
Fisher's Z for Stand-alone Items
Figure 2
Fisher's Z for Clustered Items

Std. Dev = .32
Mean = .20
N = 378.00
Figure 3
Fisher’s Z Transformation
for Clustered Items

Yen’s Q3

Fisher’s Z

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Figure 3
Fisher's Z Transformation for Clustered Items
I. DOCUMENT IDENTIFICATION:

Title: Quantifying Item Dependency by Fisher's Z

Author(s): Linjun Shen

Corporate Source: National Board of Osteopathic Medical Examiners

Publication Date: March 1997

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RlE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce the identified document, please CHECK ONE of the following options and sign the release below.

Select either:

- Level 1

- Level 2

Sample sticker to be affixed to document

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Sample sticker to be affixed to document

"PERMISSION TO REPRODUCE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Sign Here, Please

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

"I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries."

Signature: Linjun Shen

Printed Name: Linjun Shen

Position: Director of Testing

Organization: National Board of Osteopathic Medical Examiners

Address: 2700 River Rd., #407

Des Plaines, IL 60018

Telephone Number: (847) 635-9951

Date: March 31, 1997

OVER
February 21, 1997

Dear AERA Presenter,

Congratulations on being a presenter at AERA. The ERIC Clearinghouse on Assessment and Evaluation invites you to contribute to the ERIC database by providing us with a printed copy of your presentation.

Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced to over 5,000 organizations. The inclusion of your work makes it readily available to other researchers, provides a permanent archive, and enhances the quality of RIE. Abstracts of your contribution will be accessible through the printed and electronic versions of RIE. The paper will be available through the microfiche collections that are housed at libraries around the world and through the ERIC Document Reproduction Service.

We are gathering all the papers from the AERA Conference. We will route your paper to the appropriate clearinghouse. You will be notified if your paper meets ERIC’s criteria for inclusion in RIE: contribution to education, timeliness, relevance, methodology, effectiveness of presentation, and reproduction quality. You can track our processing of your paper at http://ericae2.educ.cua.edu.

Please sign the Reproduction Release Form on the back of this letter and include it with two copies of your paper. The Release Form gives ERIC permission to make and distribute copies of your paper. It does not preclude you from publishing your work. You can drop off the copies of your paper and Reproduction Release Form at the ERIC booth (523) or mail to our attention at the address below. Please feel free to copy the form for future or additional submissions.

Mail to: AERA 1997/ERIC Acquisitions
The Catholic University of America
O’Boyle Hall, Room 210
Washington, DC 20064

This year ERIC/AE is making a Searchable Conference Program available on the AERA web page (http://aera.net). Check it out!

Sincerely,

Lawrence M. Rudner, Ph.D.
Director, ERIC/AE

If you are an AERA chair or discussant, please save this form for future use.