This monograph presents descriptions of various exercises and athletic activities with a kinesiological and biomechanical analysis of the muscle systems involved. It is intended as examples of laboratory activities and projects in a college course in kinesiology. A listing of the required laboratory exercises precedes the examples. Specific activities analyzed include: seated row exercise, right-handed baseball bat swings, instep shoelace soccer kick, right-legged soccer kick. Additionally, a strength training, conditioning, and testing program for team handball is detailed including skill tests and a training schedule for both off-season and in-season phases. An example of required student assignments involving videofilm four specific skills from four different sports with a review of the literature and kinesiological and biomechanical analysis of each is also provided. The sports skills analyzed are: (1) the long snap (football), (2) the roundhouse kick (karate), (3) the vertical jump (basketball, volleyball, track and field), and (4) rope jumping (general conditioning). (Contains 182 references.)
Lab #1  Write a kinesiological analysis of a weight strengthening exercise. There is an example in your lab book (seated row).

Lab #2  Write a kinesiological analysis of a sport skill where the foot is being used. There is an example in your lab book (soccer kick).

Lab #3  Write a kinesiological analysis of any sport skill you choose. Examples are in your lab book.

Lab #4  Design a strength training and testing program for any sport. The use of both biomechanical and kinesiological principles should be evident in your program. There is an example in your lab book (team handball).

Project  Each student is required to film four specific sport skills and each skill must be from a different sport. Once each of the four sport skills have been recorded the student is required to write a kinesiological and biomechanical analysis of each skill (similar to the one's completed in lab), describe how an athlete would train to increase the performance of the sport skill (from a kinesiological/biomechanical standpoint), and describe what biomechanical testing procedures could be used to determine if performance has increased as a result of training. The video must be turned in with the paper. Be sure to follow the APA five chapter format. An example is in your lab book.
ANALYSIS OF SEATED ROW EXERCISE

DESCRIPTION:

The subject straddles the bench with chest positioned against padded vertical support. Chin should be above the padded support to align spine in neutral position. Feet should be flat on the floor or the step provided. Subject should outstretch arms and grasp the vertical hand grips or handles with palms facing and arms fully extended. Exhale as you pull your elbows in line with the sides of your body. Your elbows will end up slightly beyond your torso. As you near the end range, pull the shoulders and elbows to the rear as far as possible. Inhale as you return the bar to the initial position. This movement should be smooth and under control while still maintaining proper spine position.

ANALYSIS:

The seated row is divided into three phases and helps to develop almost all the muscles in the back region. The first phase of the seated row is the initial pulling of the weight to the body. The second phase is the exaggerated retraction of the shoulders, peak-contraction, and the final phase is the returning of the weight to starting position.

INITIAL PULLING OF THE WEIGHT TO THE BODY:

SHOULDER (POSTERIOR SURFACE)

Shoulder joint extension:
  - assisted by Deltoid
  - Latissimus Dorsi
  - Teres Major
  - Teres Minor
  - Infraspinatus

Shoulder girdle adduction and depression:
  - Lower Trapezius
  - Rhomboids
  - Pectoralis Minor

HAND AND WRIST

flexion:
  - flexors of the hand and wrist

BACK

Retraction:
  - Latissimus Dorsi
- Teres Major
- Rhomboids

**ELBOW**

Flexion:
- Biceps Brachii
- Brachialis
- Brachioradialis

**CHEST**

Retraction:
- Lower Pectoralis Major

**ABDOMINAL**

Stabilization:
- External Oblique
- Internal Oblique
- Rectus Abdominal

**EXAGGERATED PEAK-CONTRACTION**

**BACK**

Downward rotation and adduction of scapula:
- Upper Latissimus Dorsi
- Rhomboids
- Middle Trapezius
- Teres Major

**ABDOMINAL**

Isometric contraction:
- Rectus Abdominal
- External Oblique
- Internal Oblique
RETURNING TO INITIAL STARTING POSITION

SHOULDER

Shoulder joint flexion:
  - deltoid
Shoulder girdle abduction and elevation:
  - Serratus Anterior
  - Trapezius

HAND AND WRIST

Eccentric flexion:
  - flexors of the hand and wrist

BACK

Protraction:
  - Latissimus Dorsi
  - Teres Major
  - Rhomboids
  - Trapezius

ARMS

Flexion:
  - Triceps

ABDOMINAL

Stabilization:
  - Rectus Abdominal
  - External Oblique
  - Internal Oblique
ANALYSIS OF THE RIGHT HANDED BASEBALL BAT SWING #1

Design and analysis:

The baseball swing can be divided into four main phases. The first phase is the stance. The right
handed batter stands perpendicular to the pitcher with legs slightly flexed and feet shoulder width
apart. The batter holds the up making sure both elbows are near a horizontal position. The weight
of the batter is slightly off center towards the right side. The bat is held with the arms flexed and
abducted. The stride phase is characterized by the shifting of the majority of the batters weight from
the left side to the right side. During the swing phase, the batter shifts his weight from right to left
and swings the bat in a horizontal plane. The final phase, the follow through, begins after the ball is
hit. The batter rotates the forarms and begins to decelerate the bat.

Stance Phase

The ankle
Slight Dorsiflexion (eccentric to isometric contraction)
  Gastrocnemius
  Soleus
  Tibialis posterior
  Peroneus longus
  Peroneus brevis

The knee
Slight Flexion (eccentric to isometric contraction)
  Vastus lateralis
  Vastus mediali
  Rectus femoris
  Vastus intermediis

The hip
Slight flexion ( eccentric to isometric contraction)
  Gluteus maximus
  Biceps femoris
  Semitendinosus
  Semimembranosus

The trunk
Slight flexion (eccentric to isometric contraction)
  Erector spinae

The right glenohumeral joint
Abduction (concentric to isometric)
  Deltoid
Supraspinatus

The right shoulder girdle
- Stabilized
  - middle and lower trapexzius
  - Romboideus

The right elbow joint
- Flexion (concentric to isometric contraction)
  - Brachialis
  - Brachioradialis
  - Biceps brachii
  - Pronator teres

The right radial ulnar joint
- neutral position (concentric to isometric contraction)
  - Brachioradialis

The hands and wrist joints
- flexion (concentric contraction)
  - Flexor carpi radialis
  - Flexor carpi ulnaris
  - Palmaris longus

The left shoulder girdle
- Abduction (concentric to isometric)
  - Serratus anterior
  - Pectoralis minor

The left glenohumeral joint
- Horizontal adduction (concentric to isometric)
  - Pectoralis major
  - Anterior deltoid

The left wrist
- Slight pronation (concentric to isometric)
  - Pronator teres
  - Pronator quadratus

The neck
- Left rotation
  - Sternocleidomastoid
  - Erector spinae
  - Suboccipital

7
The Stride Phase

The right ankle
Dorsiflexion (isometric)
Gastrocnemius
Soleus
Tibialis posterior
Peroneus longus
Peroneus brevis

The right hip
Adduction (concentric)
Adductor magnus
Adductor brevis
Adductor longus

The right knee
Slight Flexion (isometric)
Vastus lateralis
Vastus medialis
Rectus femoris
Vastus intermedius

The left ankle
Plantar flexion and foot inversion (concentric)
Gastrocnemius
Soleus
Peroneus brevis
Peroneus longus
Tibialis posterior
Tibialis anterior (inversion)
Flexor digitorum (inversion)

The left hip
Abduction and flexion (concentric)
Gluteus medius
Gluteus minimus
Tensor fasciae latae
Sartorius (flexion)
rectus femoris (flexion)
pectineus (flexion)
Iliopsoas (flexion)
The left knee
Flexion (concentric)
Semitendinosus
Semimembranosus
Biceps femoris
Popliteus
Sartorius
Gracilis

The upper body and trunk remain the same as found in the stance phase.

The Swing Phase

The right ankle and foot
Plantar flexion and eversion (concentric)
Gastrocnemius
Soleus
Tibialis posterior
Peronius longus
Peronius brevis
Peronius tertius

The right knee joint
Extension (concentric)
Vastus lateralis
Vastus medialis
Vastus intermedius
Rectus femoris

The right hip
Internal rotation (concentric)
Pectineus
Gracilis
Semitendinosus
Semimembranosus
Gluteus minimus
Gluteus medius

The left ankle and foot
Dorsiflexion to neutral (eccentric)
Gastrocnemius
Soleus
Peroneus longus
Peroneus brevis
The left knee
   Extension (concentric)
     Vastus lateralis
     Vastus medialis
     Vastus intermedis
     Rectus femoris

The left hip
   Extension and external rotation (concentric)
     Iliopsoas
     Gluteus maximus
     Six deep rotators
     Biceps femoris
     Semimembranosus
     Semitendinosus

The right glenohumeral joint
   Horizontal adduction (concentric)
     Pectoralis major
     Anterior deltoïd
     Coracobrachialis

The right shoulder girdle
   Protraction
     Pectoralis minor
     Serratus anterior

The right and left fingers
   Flexion
     Flexor carpi ulnaris
     Flexor carpi radialis
     Palmaris longus

The right and left wrist
   Adduction
     Flexor carpi ulnaris
     Flexor carpi radialis

The left and right elbows
   Extension
     Triceps
     Anconeus
The left glenohumeral joint
   Horizontal abduction
   Infraspinatus
   Teres minor
   Deltoid
   Posterior deltoid
   Subscapularis

The left shoulder girdle
   Retraction
   Trapezius
   Rhomboids

The trunk
   Left lateral rotation
   Right external obliques
   Left internal obliques

**The Follow Through Phase**

The right foot
   Plantar flexion and eversion
   Gastrocnemius
   Soleus
   Tibialis posterior
   Peroneus longus

   Peroneus brevis
   Peroneus tertius

The right knee
   Slight flexion
   Semitendinosus
   Semimembranosus
   Biceps femoris
   Sartorius
   Gracilis
   Popliteus

The right hip
   Internal rotation
   Gluteus minimus
   Gluteus medius
   Pectineus
Semitendinosus
Semimembranosus
Gracilis
Tendo fascia latae

The left foot
neutral position

The left knee
Slight flexion
Semitendinosus
Semimembranosus
Biceps femoris
Sartorius
Gracilis
Popliteus

The left hip
External rotation
Iliopsoas
Biceps femoris
Six deep rotators
Gluteus maximus

The right glenohumeral joint
Horizontal adduction
Pectoralis major
Anterior deltoid
Coracobrachialis

The right shoulder girdle
Abduction (protraction)
Pectoralis minor
Serratus anterior

The right radial ulnar joint
Pronation
Pronator teres
Pronator quadratus

The right wrist
Adducts
Flexor carpi ulnaris
The right and left fingers
  Flexion
  Flexor carpi radialis
  Flexor carpi ulnaris
  Palmaris longus

The right and left elbow joints
  Flexion
  Brachialis
  Brachioradialis
  Biceps brachii
  Pronator teres

The left glenohumeral joint
  Horizontal Abduction
  Subscapularis
  Posterior deltoid
  Teres minor
  Infraspinatus

The left shoulder girdle
  Adduction
  Rhomboids
  Trapezius

The left forearm
  Supination
  Supinator
  Biceps brachii

The left wrist
  Flexion
  Flexor carpi radialis
  Flexor carpi ulnaris
  Palmaris longus
ANALYSIS OF THE RIGHT HANDED BASEBALL SWING #2

DESCRIPTION:

The baseball swing is a very complex and precise activity to master. It is sometimes considered the most difficult task to perform in the game of baseball. The first portion of the movement is to properly grip the baseball bat. The hands should be gripped around the bat comfortably. The bat should be held in the fingers, not the palms. During the stance the subject must maintain good balance be positioned in a comfortable and relaxed flexed knee position. The right arm must be cocked back and held horizontally to the ground. The left arm must be horizontally adducted across the body. The bat should still be kept comfortably gripped between the fingers. The head should stay in the same position throughout the stance, stride, and swing phase of the hit. During the stride phase, the batter keeps hands and weight back. It is important to stay in this position and wait for the ball. The subjects shoulders and hips should also be back about 2 inches and more of the body weight should transfer to the back leg. The hands should be cocked back, not up or down. The move of the left leg in this phase should be low, light, and short. The inside of the big toe should land plantar flexed first. The swing phase is the explosion of the hands towards the ball. This is the most powerful movement in the complete action. Leverage is a important aspect for good control of the bat and gaining bat speed. At the start of the swing your head should be down, eyes on the ball, chin tucked and on your front shoulder. The front arm straightens (extends) with the rear elbow remaining bent and close to your body. Your body weight transfers from the rear leg to the front leg as your hips explode open. The rearfoot pivots on its ball to allow the hips to open. As the bat drives through, the weight transfers further over your braced front leg, while your rearfoot continues to pivot. The arms should extend and your eyes should continue to look down. After the ball is hit, your wrists roll over and allows the bat to complete its swing and end up over the front shoulder. The hips and shoulders have rotated explosively around the axis of the body and the rearfoot is fully pivoted up on the ball of the foot. The rearfoot should remain in the same position throughout the swing.

ANALYSIS:

The baseball hit is broken down into five different phases: 1) the grip (gripping the bat in the hands with arms outstretched in front of the body), 2) the stance, 3) the stride, 4) the swing, and 5) the follow through. These parts must be perfected as a whole movement to achieve quality control and power during the baseball swing.
GRIP

Hand and Wrist
Flexion of fingers and thumb:
- flexor digitorum superficialis
- flexor digitorum profundus
- flexor pollicis longus

Flexion of wrist:
- flexor carpi radialis
- flexor carpi ulnaris
- palmaris longus

Arms
Isometric contraction:
- brachioradialis

STANCE

Hand and Wrist
Right wrist extension:
- extensor carpi ulnaris
- extensor carpi radialis longus
- extensor carpi radialis brevis
- extensor digitorum

Left wrist flexion:
- flexor carpi radialis
- flexor carpi ulnaris
- palmaris longus

Elbow
Flexion:
- bicep brachii
- brachioradialis
- brachialis

Shoulder
Left shoulder horizontal adduction:
- deltid
- coracohumeralis
- pectoralis major

Right shoulder abduction:
- deltoid
- pectoralis major
- supraspinatus

**Trunk**

Stabilization:
- rectus abdominis
- external oblique
- internal oblique

**Back**

Stabilization:
- erector spinae
- latissimus dorsi
- trapezius
- rhomboids
- teres major

**Hips**

Stabilization:
- gluteus maximus
- gluteus medius

Flexion:
- iliopsoas
- sartorius
- rectus femoris
- tensor fascia latae
- pectineus

**Knees**

Flexion:
- bicep femoris
- sartorius
- semitendinosus
- semimembranosus
- gracilis
- popliteus
- gastrocnemius
**STRIDE**

**Feet**
- Left foot plantar flexion:
  - gastrocnemius
  - soleus
  - tibialis posterior
  - flexor digitorum longus
  - flexor hallucis longus
  - peroneus longus
  - peroneus brevis
- Plantar flexion of big toe:
  - flexor hallucis longus
- Left foot inversion:
  - tibialis posterior
  - flexor digitorum longus
  - flexor hallucis longus

**Knees**
- Flexion:
  - bicep femoris
  - sartorius
  - semitendinosus
  - semimembranosus
  - gracilis
  - popliteus
  - gastrocnemius

**Hip**
- Flexion:
  - iliopsoas
  - sartorius
  - rectus femoris
  - tensor fascia latae
  - pectineus
- Right adduction:
  - pectineus
  - adductor brevis
  - adductor longus
  - adductor magnus
- gracilis

Left Abduction:
- gluteus medius
- gluteus minimus
- tensor fascia latae

Lumbar spine
Right lateral flexion:
- internal oblique
- external oblique

Trunk
Stabilization:
- rectus abdominis
- external oblique
- internal oblique

SWING

Hand and Wrist
Left wrist extension:
- extensor carpi radialis brevis
- extensor carpi radialis longus
- extensor carpi ulnaris

Elbow
Extension:
- tricep
- anconeus

Shoulder
Right arm horizontal adduction:
- deltoid
- coracobraehialis
- pectoralis major

Scapular protraction:
- pectoralis minor
- seratus anterior

Trunk
Rotation:
- external oblique
- internal oblique

Stabilization:
- rectus abdominis

Hip

Internal rotation of right hip:
- semitendinosus
- semimembranosus
- pectineus
- gracilis
- gluteus medius

External rotation of left hip:
- iliopsoas
- gluteus medius
- gluteus maximus
- piriformis
- bicep femoris

Knee

Left knee extension:
- rectus femoris
- vastus lateralis
- vastus intermedius
- vastus medialis

Foot

Right foot plantar flexion:
- gastrocnemius
- soleus
- tibialis posterior
- flexor digitorum longus
- flexor hallucis longus
- peroneus longus
- peroneus brevis

Plantar flexion of big toe:
- flexor hallucis longus

Right foot inversion:
- tibialis posterior
- flexor digitorum longus
- flexor hallucis longus

**FOLLOW THROUGH**

**Hand and Wrist**
Right wrist pronation:
- pronator teres
- pronator quadratus

Left wrist extension:
- extensor carpi radialis brevis
- extensor carpi radialis longus
- extensor carpi ulnaris

Left wrist supination:
- supinator

Left forearm supination:
- bicep brachii

**Shoulder**
Right shoulder horizontal adduction:
- deltoid
- coracobrachialis
- pectoralis major

**Elbow**
Flexion:
- bicep brachii
- brachialis
- brachioradialis

**Trunk**
rotation:
- internal oblique
- external oblique

**Hips**
Extension of right hip:
- gluteus maximus
- bicep femoris
- semitendinosis
- semimembranosis
Flexion of left hip:
- iliopsoas
- sartorius
- rectus femoris
- tensor fascia latae
- pectineus

Ankle and Foot
Plantar flexion:
- gastrocnemius
- soleus
- tibialis posterior
- flexor digitorum longus
- flexor hallucis longus
- peroneus longus
- peroneus brevis
THE INSTEP SHOELACE SOCCER KICK

Design and Analysis:

The kicker is in a position to the kick. The kick is made with the right foot while the left foot is planted. The kick is broken down into three phases. These phases are the approach, the contact, and the follow through. Each phase is analyzed kinesiologically.

The Approach Phase

Right ankle and foot
   Plantar flexion
   Gastrocnemius
   Soleus
   Tibialis posterior
   Flexor Hallucis longus
   Flexor digitorum longus
   Peroneus longus
   Peroneus brevis
   Peroneus tertius

Right knee
   Flexion and slight external rotation
   Semitendinosus
   Semimembranosus
   Biceps femoris
   Popliteus
   Sartorius
   Gracilius
   Iliopsoas (external rotation)

Right hip
   Extension and external rotation
   Semimembranosus
   Semitendinosus
   Biceps femoris
   Gluteus maximus
   Gracilius
   Sartorius
   Pectineus
   Iliopsoas
   Adductor brevis
   Adductor longus
   Six deep rotators
Left ankle and foot
neutral could be slightly plantar flexed

Left knee
Slight knee flexion (eccentric to isometric contraction)
  Vastus lateralis
  Vastus medialis
  Vastus intermedi
nen Rectus femoris

Left hip
Stabilizing (isometric)
  hip extensors
  hip flexors

Right shoulder girdle and glenohumeral joint
Stabilized with arm at the side

Left glenohumeral joint
Horizontal adduction
  Pectoralis major
  Anterior deltid
  Coracobrachialis
  Biceps brachii (hold shoulder flexed)

The Contact Phase

Right ankle
Plantar flexion
  Gastrocnemius
  Soleus
  Peroneus longus
  Peroneus brevis
  Flexor hallucis longus
  Flexor digitorum longus
  Tibialis posterior

Right knee
Extension and internal rotation
  Vastus lateralis
  Vastus medialis
  Vastus intermedi
  Rectus femoris
Gluteus medius  
Gluteus minimus

Right hip  
Flexion  
  Rectus femoris  
  Iliopsoas  
  Pectineus  
  Sartorius  
  Tensor fasciae latae

Trunk  
Stabilization  
  Rectus abdominis  
  External obliques  
  Internal obliques  
  Erector spinae

Left glenohumeral joint  
Horizontal abduction  
  Teres minor  
  Posterior deltoid  
  Infraspinatus

Left shoulder girdle  
Adduction  
  Trapezius  
  Rhomboids

The Follow Through Phase

Right knee  
Extension  
  Rectus femoris  
  Vastus lateralis  
  Vastus medialis  
  Vastus intermedius

Right hip  
Flexion  
  Iliopsoas  
  Sartorius  
  Rectus femoris  
  Tensor fasciae latae
Left knee
Extension
Rectus femoris
Vastus lateralis
Vastus medialis
Vastus intermedius

Left ankle
Plantar flexion
Gastrocnemius
Soleus
Peroneus longus
Peroneus Brevis
Flexor digitorum longus
Flexor hallucis longus

Left hip
Extension
Semimembranosis
Semitendinosis
Biceps femoris

Left glenohumeral joint
Horizontal abduction
Posterior deltoid
Infraspinatus
Teres minor

Right glenohumeral joint
Extension
Latissimus dorsi
Teres major
Teres minor
Infraspinatus
Subscapularis
RIGHT-LEGGED SOCCER KICK

DESCRIPTION

The soccer kick that we were analyzing was called the instep pass. This pass is used primarily for kicking the ball 25 yards or more. To execute the instep pass, approach the ball from a slight angle. Plant your nonkicking foot (left foot in this case) beside the ball with slight flexion at the knee. This leg is primarily used for balance. This foot should be pointed in the direction of the target, either another person, or the goal. The subjects shoulders should also be squared to the target. The kicking leg (right leg in this case) is drawn back to prepare for execution. Knee of kicking leg is positioned over the ball. The kicking foot should be extended down and firmly positioned as the ball is contacted. To assist in balance, the arms should be slightly abducted. Keep the head down and focused on the ball throughout the entire movement. When you get ready to contact the ball transfer body weight forward and increase forward motion of kicking leg. Contact the center of the ball while maintaining firm position of kicking foot. Momentum should be carried through the ball. The weight is now centered over the ball of the balance foot (left foot). A complete follow-through motion should bring the kicking leg to waist level or higher.

ANALYSIS

The soccer kick, or pass is initiated about 80% of the time in soccer. This shows the importance of proper execution and technique. The soccer kick is broken down into three phases. The first phase is the approach towards the ball. The second phase is the contact, and the final phase is the follow-through.

APPROACH

Torso

Left trunk rotation:
- external oblique
- internal oblique

Stabilization:
- rectus abdominis
- external oblique
- internal oblique
Hip
Left hip flexion:
- iliopsoas
- pectineus
- rectus femoris
- sartorius
- tensor fascia latae

Right hip extension:
- gluteus maximus
- bicep femoris
- semitendinosus
- semimembranosus

Knee
Left knee flexion:
- gastrocnemius
- sartorius
- bicep femoris
- semitendinosus
- semimembranosus
- gracilis

Head
Flexion:
- sternocleidomastoid

Shoulder
Extension of left shoulder:
- pectoralis major
- anterior deltoid

Horizontal abduction of left shoulder:
- infraspinatus
- teres minor
- middle deltoid
- posterior deltoid

Elbow
Flexion of left elbow:
- bicep brachii
- brachialis
- brachioradialis
Ankle and Foot
    Plantar flexion of right foot:
    - soleus
    - gastrocnemius
    - peroneus longus
    - tibialis posterior
    - flexor hallucis longus
    - flexor digitorum longus
    - peroneus brevis

CONTACT

Torso
    Right trunk rotation:
    - external oblique
    - internal oblique

    Stabilization:
    - rectus abdominis
    - internal oblique
    - external oblique

Shoulder
    Horizontal abduction of left shoulder:
    - infraspinatus
    - teres minor
    - middle deltoid
    - posterior deltoid

Hip
    Flexion of right hip:
    - iliopsoas
    - pectineus
    - rectus femoris
    - sartorius
    - tensor fascia latae

Ankle and Foot
    Plantar flexion of right foot:
    - soleus
    - gastrocnemius
- peroneus longus
- tibialis posterior
- flexor hallucis longus
- flexor digitorum longus
- peroneus brevis

Stabilization of left leg:
- gluteus maximus
- rectus femoris
- vastus lateralis
- vastus medialis

Inversion of right ankle:
- tibialis anterior
- tibialis posterior
- flexor digitorum longus
- flexor hallucis longus

Extension of toes on right foot:
- extensor digitorum longus
- extensor hallucis longus

**Knee**

Extension of right knee:
- rectus femoris
- vastus lateralis
- vastus medialis
- vastus intermedius

**FOLLOW-THROUGH**

**Knee**

Extension of right knee (eccentric flexion due to deceleration):
- biceps femoris
- semitendinosus
- semimembranosus

Flexion of left knee:
- rectus femoris
- vastus lateralis
- vastus medialis
- vastus intermedius
Flexion of right hip (eccentric extension due to deceleration):
- gluteus maximus
- bicep femoris
- semitendinosus
- semimembranosus

Inward rotation of right hip:
- gluteus minimus
- gluteus medius
- tensor fascia latae

Extension of left hip:
- posterior adductor magnus
- bicep femoris
- gluteus maximus
- semitendinosus
- semimembranosus

Ankle and Foot
Plantar flexion of left foot:
- soleus
- gastrocnemius
- peroneus longus
- tibialis posterior
- flexor hallucis longus
- flexor digitorum longus
- peroneus brevis

Shoulder
Horizontal adduction of left shoulder:
- subscapularis
- pectoralis major
- deltoid
- bicep brachii
- coracobrachialis

Extension of right shoulder:
- deltoid
- infraspinatus
- teres minor
- long head of triceps
Elbow

Flexion of left elbow:
- biceps brachii
- brachialis
- brachioradialis
TEAM HANDBALL CONDITIONING AND TESTING PROGRAM

Team handball is a relatively uncomplicated team game with twelve players to a side where six court players and a goalie of one team oppose the same number from another team. The remaining five players may be substituted in from the side lines at center court at any time. The object of the game is to throw the ball into the opponent's goal and defend ones own. Although the basic rules are similar to those of soccer, the ball is moved with the hands and the game is played on an area more similar to that of basketball. At either end of the playing area (40m by 20m) is a set of miniature soccer goals (2m by 3m). There is also a goal crease 6 meters in front of and around each goal which is the exclusive territory of the goalkeeper who may use any means he can to defend his goal.

Skill Tests

Most skill tests are drills where a score of some sort can be obtained on an individual as a measure of his ability in that task. The score of the tests may not be beneficial to the athlete, but it allows the athlete to practice the important skills to be successful in team handball.

Speed Pass

The purpose of the speed pass is to measure the speed with which a player can continue to pass and catch a handball. The athlete stands 20 ft. away from a wall and throws the ball overhand against the wall, catches the rebound, and continues to throw the ball for a specified amount of time. This will build both speed and hand-eye coordination.

Speed and Accuracy Throw

The purpose of this skill is to measure the speed and accuracy with which a player can make throws at a target. As with the speed pass drill, the athlete throws the ball against the wall. This time though, three circles are drawn, each one bigger than the other, as in the form of a bulls-eye. The smaller the circle hit, the more points allotted an so on. Also, the athlete would benefit from a ball that is thrown at a higher velocity.

Agility Dribble

The purpose of the agility dribble is to measure the speed with which a player can dribble a handball around obstacles. The athlete dribbles a handball around a designated number of obstacles while being timed. This test is performed a number of times to evaluate the athlete's improvement over a specified amount of time.
Interval Running

The purpose of interval running is to measure endurance in speed. The athlete sprints 20 yds. and then walks back to the starting line. After 30 sec. the athlete sprints and walks back again. This is repeated a specified number of times. After engaging in the strength and conditioning program the athlete can then be evaluated to see how credible the program is.

Strength and Conditioning Program

Physical conditioning is an important aspect of a high level of handball play. It allows a player to make faster gains in comparison to other aspects of training. Handball is a game where running speed and endurance while moving forward, sideward and backward are essential. It requires leg and arm strength for jumping and harder shots on goal. Other important physical attributes are power, finesse, and control.

The strength and conditioning program has three phases: 1) Off-season, 2) Pre-season, and 3) In-season.

Off-season Phase

The Off-season phase of the conditioning program begins one month after the season and ends eight weeks before it begins. The athlete's specific weaknesses are concentrated on at this time along with increasing overall strength.

Free weights may be used during this phase for strength gains. Medicine balls, rope climbing, and push-ups are also used during this phase. Also, there is an emphasis on manual resistive exercise.

An example of an Off-season program may be:

CHEST: Bench Press 3x10  
Flyes 3x10  
Push-ups 3x25

BACK: Pull-ups 3x10  
Rope Climbing  
-3 sets within a certain time limit  
Bent Over Row 3x10

LEGS: Squats 3x10  
Leg Press 3x10  
Leg Extensions 3x15  
Leg Curls 3x15  
Calf Raises 3x25

SHOULDERS: Military Press 3x10  
Lateral Raise 3x10  
Dumbbell Press 3x10  
Shoulder Shrugs 3x10
ARMS: Barbell Curls 3x10  
Dumbbell Curls 3x10  
Lying Extensions 3x10  
Tricep Pushdowns 3x10

The objective of this program is to prepare the athlete for the Pre-season phase. Sets and repetitions are kept around 3x10 because the athlete is trying to build endurance not bulk. Medicine ball exercises can be inserted into the program to work the athlete's trunk mobility. The skill tests can be performed during this phase and then again during the pre-season phase to access how effective the conditioning program is.

Pre-season Phase

The pre-season phase of the conditioning program is geared towards agility, speed and power. Sport specific skills are used to during this phase to enhance the cardiovascular and endurance levels of the athlete. A general conditioning program is used during this phase.

Push-ups  
Sprints  
Jumping rope  
Medicine ball  

Sport Specific:  
Passing drills  
Speed Pass  
Speed and Accuracy Throw  
Agility dribble  
Interval Running

In-season Phase

During the In-season phase, the sport specific activities are mainly concentrated on, especially the skill tests. The object is that the athlete stays in shape during the season by not being overworked. The condition that the athlete is in during the season indicates how effective the overall strength and conditioning program is and also determines what the athlete needs to concentrate on during the off season.

Sport Specific:  
Passing drills  
Speed Pass  
Speed and Accuracy Throw  
Agility Dribble  
Interval Running
CHAPTER I
INTRODUCTION

The importance of research involving kinesiological and biomechanical analysis of sports skills is beyond description. Without advancements in these areas sports performances would not have progressed at such incredible rates as have been seen in recent years. Using proper biomechanics in the performance of sports skills have allowed many athletes to increase their performances as well as decrease the chances of injury which may result from improper mechanics. Research seems to be lacking in some specific areas within certain sports.

The purpose of the present study is to provide a thorough kinesiological analysis as well as a partial biomechanical analysis of four specific sport skills in order to provide support and possibly opposition to present research. The skills which will be analyzed are: the football long snap, rope jumping, the karate roundhouse kick, and the vertical jump. Biomechanics is the science concerned with the internal and external forces acting on the human body and the effects of these forces (Hay, 1993).

The purpose of this study is not to provide an all inclusive biomechanical analysis. Only a few of the many important biomechanical concepts will be analyzed as they relate to these specific sport skills.

Statement of the problem

Research is limited on the kinesiological and biomechanical analysis of some specific sports skills. Sports such as karate and jump roping are not analyzed in research quite as often as football or vertical jumping.

Significance of the problem

As mentioned earlier, research in biomechanics is partly responsible for the advancement of performances in sporting events. A lack of research in an area of sports limits the advancement of that sport. More research in specific sports will enable athletes to become more efficient in their movements which may translate to enhanced performance.

Limitations

One possible limitation to this study may be the angle in which the skill was filmed. The angle used was one in which the majority of the bodies joints could be seen.
Research Hypothesis

The brief kinesiological and biomechanical analysis of the football long snap, the karate roundhouse kick, the vertical jump, and jump roping will reinforce existing research as well as introduce new findings.
CHAPTER II

REVIEW OF LITERATURE

Long Snap

The "star" quarterback, the "talented" running back, the "hard hitting" linebacker—the most noticeable players on the football field. However, two of the most important players on a football team who can dictate a shift in the team's momentum are the punter and the long snapper. If the snap from the center to the punter is not fast and accurate, the punter will have a difficult time punting the ball, or worse yet, the punt may end up being blocked or even fumbled. On the other hand, a perfect snap and punt can help the team's defensive unit by putting the opposing team in terrible field position.

Ohton (1988) conducted a study on proper kinesiological and biomechanical aspects of a successful long snap. He described that an accurate and fast snap depends on the sequence of movements from the snapper in deep punt formation. It is the coach's responsibility to analyze the proper form of the snap while the player needs to have an understanding of what he is learning. By working together and practicing the proper technique, the chance for error is greatly diminished.

Roundhouse Kick

The roundhouse kick is one of the most exciting movements in karate. It is used in competitions and for self-defense. It requires speed, skill, and flexibility of the entire body. It is a kick that generates a tremendous amount of power and it significantly decreases the distance between yourself and your opponent. Every muscle of the body is used throughout the entire movement, therefore requiring a sound training program that works entire body. Hobusch & McClellan (1990) described the application of the roundhouse kick to the opponent's head using the rear leg, with the attacker decreasing the distance and contact being made with the instep of the foot.

They provided a biomechanical and kinesiological analysis by explaining the five phases of the roundhouse kick: preparation for the attack, closing the gap between the kicker and attacker, the balanced position, the kick and the pull back. It is necessary that when learning how to perform the kick correctly, each of the five phases should be performed in a smooth continuous manner with the proper sequence, distance, timing and control, while gradually increasing speed as the athlete becomes more familiar with the movement.

Vertical Jump

The vertical jump is a vital movement in all sports, especially basketball, volleyball, and track and field. Being able to jump quicker and higher than your opponent gives you the advantage in pulling-down that important rebound, spiking the ball to win the final point in volleyball game or reaching new records in the high jump. It is an often overlooked movement in sports and one that is not difficult to train.
The entire body is worked throughout the jump with an emphasis on the leg muscles. The height of the jump will be determined is determined by the vertical velocity of the body's center of gravity (Appendix C) at the moment of takeoff (Semenick & Adams, 1987). The jumper's aim then is to attain the greatest takeoff velocity. Semenick & Adams (1987) add that the taller jumper whose center of gravity is higher at the moment of takeoff will have a clear advantage since he or she will be able to project the center of gravity higher from the floor even when force generated is no greater than that attained by shorter players.

Rope Jumping

Over the past decade rope jumping has developed from a recreational exercise into a conditional tool (Pirteli & O'Shea, 1986). Brancazio (1984) described rope jumping as being a valuable method in developing upper and lower coordination as well as gross body equilibrium or balance, agility, rhythm, limb speed, and relative muscular endurance. Other benefits of rope jumping are the improvements of the three energy systems: ATP-PC, Lactic Acid, Oxygen (Pitreli & O'Shea, 1986). Depending on where it is included in the workout, rope jumping as a conditioning tool will enhance aerobic capacity and power, as well as anaerobic capacity.

Rope jumping can be used in any sport that demonstrates one of the following characteristics provided by Pitreli & O'Shea (1986):

1) Involves sudden omnidirectional changes during the course of movement.
2) Involves a brief period when contact is broken with a supportive surface either repetitively as in running or explosively as in jumping.
3) Involves eye-hand-foot coordination, or upper and lower extremity synchrony of the variety commonly found in sports where positioning and timing is critical.
4) Involves a ballistic "catapult or slingshot action" of the upper extremities, encountered in throwing events.
5) Involves the grasping of relatively light implements for long periods of time, under isometric or static conditions of a submaximal nature.
6) Involves postural or static and dynamic stabilization of both the upper and lower extremities, to defer fatigue and deter traumatic injury.
7) Involves the constant shifting of body weight, in a manner conducive to the maintenance of balance.
8) Involves the use of light implement under the conditions and/or criteria where the volume of strokes is high, such as that which occurs in racquet sports.

By following these guidelines, athletes can develop both a cardiovascular and muscually-fit body to help them become more competitive in their chosen sport.
CHAPTER III

METHODS

Subjects

The two authors (male) of this paper served as subjects for this study (n = 2). The mean age was 24 years and both subjects had some experience, prior to the study, with the sports skills which were demonstrated. Each subject was assigned the skill in which he had the most experience in order to obtain the most accurate performance of that skill.

Instrumentation

A Panasonic VHS Palmcorder IQ x12 with x20 digital zoom and digital EIS stabilization was used to film the subjects performing the techniques. The skill was filmed from approximately a 45 degree angle from the line of intent in which the skill is designed and on the same horizontal plane. However, the horizontal angle from which the vertical jump was filmed was altered (approx. 20 degrees) in order to properly analyze the technique. A jump rope and football were also used when performing the appropriate skills.

Procedures

Each subject performed two of the four techniques (football long snap, rope jumping, karate roundhouse kick, and vertical jump) in compliance with previous knowledge of that skill. No stipulations were placed on the subjects concerning adjustments, or modifications in the performance of the techniques.

Design and Analysis

The subjects filmed at optimal angles which allowed for a complete and detailed kinesiological analysis. The biomechanical analysis concentrated only on specific portions of each technique. A complete biomechanical analysis is above and beyond the scope of this study.
CHAPTER IV
RESULTS
KINESIOLOGICAL ANALYSIS

Roundhouse Kick

Description:

The subject stands in a sparring stance with the left foot in front and the right foot in back. The hips are at a 45 degree angle to the right side of the facing target. The torso is also at a 45 degree angle to the right side of the target. The arms are slightly flexed at the shoulder joint and more so at the elbow joint. The subject’s head is rotated slightly left from the body which is facing the target. The subject then pushes off with the right leg and foot which starts the body rotating on the left foot. The right knee is lifted up and completely flexed as the body starts to turn. At this point the right foot is plantar flexed. The right hip turns toward the target and the right knee is simultaneously extended. The torso remains as upright as possible throughout the motion. The instep of the right foot makes contact with the target.

Analysis:

This kick will be broken down into five separate steps for proper kinesiological analysis. The first phase is the preparation phase which consists of the stance of the subject before movement occurs. The next phase will be the push off. The next phase is the chamber which is when the knee is flexed to prepare for the extension. The fourth phase is the kick which is a forceful extension of the knee. The final phase will be the pull back which is immediate flexion of the knee after the foot makes contact with the target.

Preparation Phase

ANKLE
Dorsi Flexion
Contraction of plantar flexors of the ankle (isometric contraction).

KNEE
Flexion
Contraction of extensors of the knee (isometric contraction).
HIP
Flexion
Contraction of extensors of the hip (isometric contraction).

TORSO
Neutral
Extensors, flexors, lateral flexors (isometric contraction).

SHOULDER JOINT
Flexion
Contraction of flexors of shoulder joint (isometric contraction).

ELBOW
Flexion
Contraction of elbow flexors (isometric contraction).

WRIST
Neutral
Contraction of flexors and extensors (isometric contraction).

PHALANGES
Flexion
Contraction of flexors (isometric contraction).

Push Off Phase

ANKLE (RIGHT)
Plantar Flexion
Gastrocnemius (Conc. contr.)
Soleus (Conc. contr.)
Peroneus Longus (Conc. contr.)
Peroneus Brevis (Conc. contr.)

KNEE (RIGHT)
Extension
Rectus Femoris (Conc.)
Vastus Lateralis (Conc.)
Vastus Medialis (Conc.)
Vastus Intermedius (Conc.)
HIP (RIGHT)
Extension
Gluteus Maximus (Conc.)
Biceps Femoris (Conc.)
Semimembranosus (Conc.)
Semitendinosus (Conc.)

HIP (LEFT)
Medial Rotation
Gluteus Minimus (Conc.)
Gluteus Medius (Conc.)
Tensor Fasciae Latae (Conc.)

Chamber Phase

ANKLE (RIGHT)
Plantar Flexion
Plantar Flexors (isometric contraction)

KNEE (RIGHT)
Flexion
Biceps Femoris (conc.)
Semimembranosus (conc.)
Semitendinosus (conc.)
Sartorius (conc.)
Gracilis (conc.)
Popliteus (conc.)
Gastrocnemius (conc.)

HIP (RIGHT)
Flexion
Psoas Major (conc.)
Iliacus (conc.)
Pectineus (conc.)
Rectus Femoris (conc.)
Tensor Fasciae Latae (conc.)
Sartorius (conc.)
Gracilis (conc.)
Gluteus Minimus (conc.)
Gluteus Medius (conc.)
TORSO
Lateral Flexion (right)
External Oblique (right conc.)
Internal Oblique (right conc.)

SHOULDER JOINT (RIGHT)
External Rotation
Infraspinatus (conc.)
Teres Minor (conc.)

SHOULDER JOINT (LEFT)
Internal Rotation
Latissimus Dorsi (conc.)
Teres Major (conc.)
Pectoralis Major (conc.)
Subscapularis (conc.)

Neck
Rotation (right)
Sternocleidomastoid (right)

Kick Phase

KNEE (RIGHT)
Extension
Extensors (forceful conc.)

HIP (RIGHT)
Flexion
Flexors (conc.)
TORSO
Rotation (right)
External Oblique (left conc.)
Internal Oblique (right conc.)

NECK
Rotation (right)
Sternocleidomastoid (right conc.)
Lateral Flexion (right)
Sternocleidomastoid (conc.)
Erector Spinae (conc.)
Three Scaleni (conc.)
Splenius Capitis (conc.)
Splenius Cervicis (conc.)

**Pull Back Phase**

**KNEE (RIGHT)**

**Flexion**

Flexors (conc.)

Vertical Jumping

**Description:**

The subject begins the vertical jump in a relaxed standing position. The subject will then lower the center of gravity by flexing the knees. The shoulder joints are simultaneously hyperextended. The subject will then forcefully extend the knees and plantar flex the ankles to propel the center of gravity upward. The shoulder joints are simultaneously flexed to assist in achieving upward momentum. The subject will then fully flex the right shoulder and elbow joint and reach as high as possible. As the athlete lands he will absorb the impact by eccentrically flexing the knees and ankles.

**analysis:**

The vertical jump will be divided into four phase in order to properly evaluate its kinesiological aspects. The first phase is the preparatory phase which is characterized by a lowering of the center of gravity. The second phase will be the take off which is a forceful contraction of the knees and ankle joints. The next phase is the reach which occurs when the athlete is at the peak of the jump. The last phase is the landing which consist of eccentric contractions mainly of the knees and ankles.

**Preparatory Phase**

**ANKLES**

**Dorsi Flexion**

Gastrocnemius (eccen.)

Soleus (eccen.)

Peroneus Longus (eccen.)

Peroneus Brevis (eccen.)

Tibialis Posterior (eccen.)

Flexor Digitorum Longus (eccen.)

Flexor Hallucis Longus (eccen.)

**KNEES**

**Flexion**

Rectus Femoris (eccen.)

Vastus Lateralis (eccen.)
Vastus Medialis (eccen.)
Vastus Intermedius (eccen.)

**HIPS**

**Flexion**
Gluteus Maximus (eccen.)
Biceps Femoris (eccen.)
Semimembranosus (eccen.)
Semitendinosus (eccen.)

**TORSO**

**Extension**
Erector Spinae (isometric)

**SHOULDER JOINTS**

**Hyperextension**
Deltoid (posterior conc.)
Triceps Brachii (long head conc.)

**CERVICAL SPINE**

**Extension**
Erector Spinae (isometric)

**Take Off Phase**

**ANKLES**

**Plantar Flexion**
Plantar Flexors (see ankle for prep phase)(conc.)

**KNEES**

**Extension**
Extensors of knee (see knee for prep phase) (conc.)

**HIPS**

**Extension**
Extensors of hip (see hip for prep phase) (conc.)

**SHOULDER JOINTS**

**Flexion**
Deltoid (anterior conc.)
Pectoralis Major (upper fibers conc.)
Coracobrachialis (conc.)
Biceps Brachii (short head conc.)
Reach Phase

**SHOULDER JOINT (RIGHT)**

**Flexion**
Flexors of shoulder joint (see take off phase) (conc.)

**SHOULDER GIRDLE (RIGHT)**

**Elevation**
Levator Scapulae (conc.)
Trapezius (upper fibers conc.)
Rhomboid (conc.)

**Upward Rotation**
Trapezius (all fibers conc.)
Serratus Anterior (conc.)

**SHOULDER GIRDLE (LEFT)**

**Depression**
Trapezius (lower fibers conc.)
Pectoralis Minor (conc.)

**Downward Rotation**
Rhomboid (conc.)
Pectoralis Minor (conc.)

Landing Phase

**ANKLES**
Same as prep phase.

**KNEES**
Same as prep phase.

**TORSO**
Same as prep phase.

**SHOULDER JOINTS**

**Extension**
Flexors of shoulder (eccen.)
Rope Jumping

Description:

The subject will hold the ends of a rope at about waist level and begin turning. As the rope travels over the head and nears the feet the subject will jump about four inches above the ground and allow the rope to swing under the feet. The elbows, shoulders, knees, ankles, and hips will only move slightly.

Analysis:

This motion will be divided into three phases for proper kinesiological analysis. Phase one will be the load phase which begins at the point where the rope lies just over head and is on its downward path, and terminates at the point where the hip and knee joints extend. Phase two is the flight phase which begins at push off and continues through the brief period of non support. The third phase is the landing phase which begins just as the feet touch down and ends as the rope nears the top of the head which is where the load phase begins over again.

Load Phase

ANKLES
Dorsiflexion
Gastrocnemius (isometric)
Soleus (isometric)
Peroneus Longus (isometric)
Peroneus Brevis (isometric)
Tibialis Posterior (isometric)
Flexor Digitorum Longus (isometric)
Flexor Hallucis Longus (isometric)

KNEES
Flexion
Rectus Femoris (isometric)
Vastus Lateralis (isometric)
Vastus Medialis (isometric)
Vastus Intermedius (isometric)

HIPS
Flexion
Gluteus Maximus (isometric)
Biceps Femoris (isometric)
Semimembranosus (isometric)
Semitendinosus (isometric)

**TORSO**
**Flexion**
Erector Spinae (isometric)

**SHOULDER JOINT**
**Extension**
Deltoid (posterior conc.)
Triceps Brachii (long head conc.)
**Outward Rotation**
Infraspinatus (conc.)
Teres Minor (conc.)

**ELBOW**
**Flexion**
Biceps Brachii (conc.)
Brachialis (conc.)
Brachioradialis (conc.)

**WRIST**
**Extension**
Extensor Carpi Ulnaris (conc.)
Extensor Digiti Minimi (conc.)
Extensor Digitorum (conc.)
Extensor Indicis (conc.)
Extensor Pollicis Longus (conc.)
Extensor Carpi Radialis Brevis (conc.)
Extensor Carpi Radialis Longus (conc.)

**Radial Flexion**
Flexor Carpi Radialis (conc.)
Extensor Carpi Radialis Longus (conc.)
Extensor Carpi Radialis Brevis (conc.)
Extensor Pollicis Longus (conc.)
Abductor Pollicis Longus (conc.)

**FOREARM**
**Supination**
Supinator (conc.)
Biceps Brachii (conc.)
Brachioradialis (conc.)
PHALANGES
Flexion
Flexor Digitorum Profudus (conc.)
Flexor Digitorum Superficialis (conc.)
Flexor Pollicis Longus (conc.)

Flight Phase

ANKLES
Plantar Flexion
Same as load phase but conc.

Knees
Extension
Same as load phase but conc.

HIPS
Extension
Same as load phase but conc.

ELBOWS
Extension
Triceps Brachii (all three heads conc.)

WRISTS
Radial Flexion
Same as load phase
Extension
Same as load phase

Landing phase

ANKLES
Same as load phase but eccentric.

KNEES
Same as load phase but eccentric.

HIPS
Same as load phase but eccentric.
WRISTS
Maximal extension and radial flexion.

ELBOW
Same as load phase but conc.

SHOULDER
Same as load phase.

Long Snap

Description:

Athlete has feet planted farther than shoulders width apart and knees are slightly flexed. The hips and torso are fully flexed so that the back is below the horizontal. The neck is flexed so that the athlete is looking through his legs. Shoulders are flexed fully with hands out in front of the athlete's head. The athlete then forcefully extends the shoulders which brings the hands through the legs at which point the football is released.

Analysis:

The long snap will be divided into three steps for further kinesiological analysis. The first step is the stance position which is a static position. The next phase is the acceleration phase which consist of forceful shoulder joint and elbow extension. The last phase is the release and deceleration phase.

Stance Position

ANKLES
Dorsi Flexion
Gastrocnemius (eccen.)
Soleus (eccen.)
Peronius Longus (eccen.)
Peronius Brevis (eccen.)
Tibialis Posterior (eccen.)
Flexor Digitorum Longus (eccen.)
Flexor Hallucis Longus (eccen.)

KNEES
Flexion
Rectus Femoris (eccen.)
Vastus Lateralis (eccen.)
Vastus Medialis (eccen.)
Vastus Intermedius (eccen.)

**HIPS**

**Flexion**
Gluteus maximus (eccen.)
Biceps Femoris (eccen.)
Semimembranosus (eccen.)
Semitendinosus (eccen.)

**TORSO**

**Flexion**
Iliocostalis Lumborum (eccen.)
Iliocostalis Cervicis (eccen.)
Erector Spinae (eccen.)

**SHOULDER JOINT**

**Flexion**
Anterior Deltoid (conc.)
Coracobrachialis (conc.)
Supraspinatus (conc.)

**Adduction**
Latissimus Dorsi (conc.)
Teres Major (conc.)
Medial Rotators (conc.)

**ELBOW**

**Flexion**
Triceps Brachii (eccen.)

**WRIST**

Neutral

**Acceleration Phase**

**ANKLES**

**Plantar Flexion**
Same as stance phase but conc.

**KNEES**

Extension
Same as stance phase but conc.
HIPS
Flexion
Pssoas Major (conc.)
Iliacus (conc.)
Tensor Fascia Latae (conc.)
Rectus Femoris (conc.)

TORSO
Flexion
Rectus Abdominus (conc.)

SHOULDER JOINT
Extension
Latissimus Dorsi (conc.)
Posterior Deltoid (conc.)
Infraspinatus (conc.)
Teres Minor (conc.)

ELBOW
Extension
Triceps Brachii (conc.)

WRIST
Flexion
Flexor Carpi Radialis (conc.)
Flexor Carpi Ulnaris (conc.)

Release and Deceleration Phase

TORSO
Flexion
Iliocostalis Lumborum (eccen.)
Iliocostalis Cervicis (eccen.)
Longisimus Thoracis (eccen.)
Longisimus Cervicis (eccen.)
Longisimus Capitis (eccen.)
Spinal Thoracis (eccen.)
BIOMECHANICAL CONSIDERATIONS

Karate Roundhouse Kick

One of the most important biomechanical considerations involved in performing a proper roundhouse kick is Newton’s Law of action reaction. The most forceful dimension within all five phases of the roundhouse kick is the delivery of the kick. During the delivery of the kick the hip is forcefully flexed as the knee is forcefully extended. The forces generated from this rigid action will inevitably cause a loss of balance unless this action is offset by an equal and opposite reaction. The equal and opposite reaction is produced primarily through a precise simultaneous contraction of the rectus abdominis, external obliques, and the internal obliques.

The other action partially responsible for offsetting the action of the delivery is a shift in the pelvic girdle which involves complex forces and lines of action. The only contact with the ground is with the left foot which does not directly assist as a stabilizer for this action reaction couple. Therefore, this action reaction couple occurs practically in mid air which increases its difficulty. The inability to properly execute this action reaction couple can lead to a less effective kick or even injury.

Vertical Jump

One debate in vertical jump testing is whether to have the subject jump from a position in which the feet are planted or jump after a walking or running start. When an individual jumps with a horizontal velocity of zero (from a standing position with the feet planted) he or she is relying strictly on muscular contraction to produce vertical velocity. On the other hand, if the subject is allowed to walk or run immediately before jumping he or she is able to utilize horizontal velocity in the production of vertical velocity.

The best example of the conversion of horizontal velocity to vertical velocity is the approach of the high jumper. The high jumper utilizes the horizontal component of the approach to increase the vertical component of the jump. From a standing position a high jumper obviously could not clear near the heights he or she is capable of with a running start. Subjects involved in a vertical jump test should be able to score higher if a horizontal component is involved. Because of this factor the tester should be consistent with pre and post test measurements. If the standing position is used as a measurement, the same standing approach should be used throughout that subject’s test.

Rope Jumping

There are four mechanical principles which can be applied to rope jumping: Principle of motion, principle of force, principle of balance and stability, and principle of projection (Pitreli & O’Shea, 1986). Six components of the principle of motion will be discussed. The first is the combination of rotary and translatory motion. Rope jumping requires the successful integration of turning the rope (rotary motion) and vertical
jumping (translatory motion). The continuous rotary motion of the rope is initiated and maintained by a coordinated effort of the shoulders, elbows and wrist which leads to the second component which is continuity of motion. The motions of the upper body which maintain the angular momentum of the rope must be steadily coordinated with the action of the lower body. Any hesitation of these motions will create problems in the total technique.

The next component is that of transfer of momentum. The arms create the rotary and vertical component. The momentum established by the shoulder, elbow, and wrist is transferred to the lower body to assist in accomplishing the vertical component.

The fourth component is the effect of momentum which addresses the fact that the momentum of the rope can be altered by manipulating either the mass or the velocity of the rope. If the momentum of the rope (specifically speed) is increased the effect the rope has as a result of ground contact will be less.

The next component is the principle of maximum acceleration and efficiency of motion. This applies to speed rope jumping when the maximum number of revolutions are accomplished in the shortest time. All available forces should be applied sequentially, with proper timing, and as directly as possible (Pitreli & O'Shea, 1986).

The last component of motion is that of the body's effect of radius and rotational speed. The shoulder, elbow, and wrist can manipulate the rope in order to increase or decrease the radius of the rotary component. Shortening the radius will increase the speed and lengthening it will decrease the speed. These adjustments are needed to compensate for momentum variation resulting from the rope hitting the ground.

Long Snap

One of the major biomechanical considerations in the long snap is the shift in the center of gravity. In the stance position the center of gravity is slightly forward (on the body) because the ball is resting on the ground which provides some support. As the acceleration phase is initiated the center of gravity starts to shift back slightly. This has to occur, otherwise the athlete would fall on his face because the ball is no longer providing support. The center of gravity will reverse and start forward again when the hands pass between the legs until the release. This shifting in center of gravity is affected by numerous forces throughout the snap. Failure to balance the center of gravity may decrease the consistency of hitting the target which is the punter, or holder for the kicker.
CHAPTER V

DISCUSSION

Long Snap

The exercises performed for developing strength for the long snap should relate as closely as possible to the actual body movement for which the speed and velocity variables are needed. To train the muscles involved in the long snap, the strength training must be performed at an accelerating rate (Ohton, 1988). Power and quickness exercises are commonly included in the training program.

The strength and conditioning program is divided into four phases; Post-season, Off-season, Pre-season and In-season.

POST SEASON: 8 Weeks Starting February

Goals: - Progressively build strength
- Concentrate on aerobic endurance
- Perform specific tests

MUSCULAR STRENGTH:

Four Core Exercises: 3 x Week

- Power Clean
  Weeks 1 & 2 = 3x12 @ 75% 1RM
- Bench Press (Incline)
  Weeks 3-8 = 3x6-8 @ 80% 1RM
- Squat
- Shoulder Press
- Supplemental (Choose 2/Workout) = 3x10-12
  - Lateral Raise Bent Over Row
  - Shrugs Arm Curls
  - Leg Curls Lat Pulldown

** Always perform Neck Exercises (Manual/Partner Resistive)

ENERGY/CARDIOVASCULAR FITNESS: (Starting 5th or 6th Week)

** AEROBIC (2 x Week)

- Jog 880
- 4x440-Jog/Walk 220
- Cardio/Endurance 1.5 mile run
- Jump Rope
- Sit ups (3x90)
- Push-ups (Max in 2 min)

** ANAEROBIC (1 x Week)

- 2 x 40,60,100yd.sprints (1 min. rest intervals)
- Sled Pulls
- (4 sets/4x45lb.plates)
OFF-SEASON CYCLE: 12 Weeks (April-June)

Goals: -Continue strength building
-Use same 4 Core Lifts
-Increase sets/Lower reps
-Lower Volume due to intro. to Plyometrics
-Drop Supplemental Exercises
-Add Stadium Steps(2 Sets)

MUSCULAR STRENGTH:

4 Core Lifts: 3 x Week
Power Clean 5x5 @90% 1RM
Bench Press(Incline)
Squat/Shoulder Press/Neck Exercises

ENERGY/CARDIOVASCULAR FITNESS:

AEROBIC(1 x Week)
Jog 880
4x440-Jog/Walk 220
1.5 Mile Run
Jump Rope
Sit-ups/Push-ups(same)

ANAEROBIC(2 x Week)
2 x 40,60,100yd.sprints (45 sec. rest intervals)
Sled Pulls
PLYOMETRICS(3x10)
Push-ups(Claps)
Power Hops
Medicine Ball Throws
Squat Jumps

PRE-SEASON CYCLE: 8 Weeks (July/August)

Goals: -Focus on Sport Specific Exercise
-Add 3 sets/fast reps(15-25) 1 x Week
-Add 3 sets 1-3 rep max.
-Concentrate completely on anaerobic metabolism
(Increase to 4 x Week)

MUSCULAR STRENGTH:

4 Core Lifts: -2 x Week 50%RM 3x15-25 Fast rep/All out
Power Cleans -1 x Week 90%RM 3x1-3 rep/max
Bench Press(Incline)
Squat
Shoulder Press
**Neck Exercises
ENERGY/CARDIOVASCULAR FITNESS:  
NO AEROBIC WORKOUT

ANAEROBIC  
Day 1: Jog 440  
Sled Pulls  
Jump Rope  
Sit-ups/Push-ups  
Day 2&3: Sprints 5 x 100,60,40(35 sec.rest)  
(1.5 min. rest between sets)  

Day 3: Same as Day 1  
Add 2 x Stadium Steps/Grass Drills

IN-SEASON CYCLE: September-December/January  
Goals: -Concentrate on maintenance work  
-Add anaerobic work into practice

MUSCULAR STRENGTH:  

MAINTENANCE PROGRAM  
4 Core Lifts: 1 x Week 2x5 @90% 1RM  
Power Cleans 1 x Week 2x1 Max.  
Squat 1 x Week 1x10 @60% 1RM  
Bench Press(Incline)  
Shoulder Press  
**Neck Exercises

ENERGY/CARDIOVASCULAR FITNESS:  
Plyometrics added into practice Drills  
Drop Jump  
Push/Pulls  
Fire Block  

ANAEROBIC  
Sled Drive Work(1 x Week)  
Grass Drills  
Explosion Start Work

WARM-UP EXERCISES  
440 Jog/Form Running  
Jumping Jacks  
Squat Thrusts  
Chest/Shoulder Stretch

COOL DOWN EXERCISES  
440 Jog/Form Reading  
Jumping Jacks  
Back & Hips  
Seated Straddle Groin Stretch

57
Roundhouse Kick

The strength and conditioning program for the karate roundhouse kick involves four phases: hypertrophy, basic strength, power, and maintenance. The goals of the program are to increase force production and speed in punches, kicks, and blocks, increase endurance, and increase size.

Hypertrophy Phase

The purpose of the hypertrophy phase is to increase lean body mass while decreasing the total amount of fat (Hobusch & McClellan, 1990). The total volume is relatively high and the training emphasis is conditioning.

**Monday/Thursday (3x10)**
- Dumbbell squat
- Squat
- Leg extension
- Hip flexion
- Leg curl
- Hip extension
- Hip adduction/abduction

**Tuesday/Friday (3x10)**
- Close-grip bench press
- Dumbbell bench press
- Chin-up
- Pull-up
- Bent-over lateral raise
- Lying tricep extension
- Barbell curl

Power Phase

During the power cycle, the athlete performs circuits that are more sport specific than during the hypertrophy cycle. Three to five minute intervals between sets allow the athlete to increase his anaerobic capacity.

**Monday Circuit (3x5)**
- Dumbbell bench press
- Lat Pulldown
- Hip flexion
- Bent-over row
- Hip extension
- Leg extension
- Leg curl

**Wednesday Circuit (3x5)**
- Hip adduction
- Lateral raise
- Hip abduction
- Neck machine
- Plate pass

**Friday Circuit (3x5)**
- Hip flexion
- Chin-up
- Hip extension
- Leg extension
- Leg curl

Peaking Phase

The phase nearest the major competitive event is the Peaking phase. The athlete works out three to four times per week to allow for recovery. Volume and intensity are reduced two weeks before competition which lessens the chance of overtraining.
**Monday/Thursday**  
(2x6)  
Power clean  
Leg press  
Circuit:  
Reverse grip bench press  
Leg extension  
Dumbbell row  
Leg curl  
Neck machine  

**Tuesday/Friday**  
(2x6)  
Power clean  
Squat  
Circuit:  
Bench press  
Chin-up  
Hip flexion  
Leg extension  
Leg curl

**Vertical Jump**

The strength and conditioning program for vertical jumping involves working the entire body and concentrates on plyometrics and power drills. Free weights are used during the program for added balance and stability.

The program consists of three phases:

- **Phase I**: (3-5 weeks) Strength is the goal in this phase with less emphasis on plyometrics.
- **Phase II**: (3-5 weeks) Same strength goals as in Phase I with more concern in plyometrics.
- **Phase III**: (3-5 weeks) Plyometrics is the main consideration with less emphasis on strength gain.

The same exercises are used throughout the program with an increase in the amount of repetitions from Phase I to Phase III. There are three workouts per week to allow for adequate rest.

**Phase I**  
Squat 3x6  
Bench press 3x6  
Leg extension 3x15  
Leg curl 3x15  
Military press 3x6  
Lateral raise 3x10  
Barbell curl 3x6  
Lying ext. 3x6

**Phase II**  
Squat 3x8  
Bench press 3x8  
Leg extension 3x15  
Leg curl 3x15  
Military press 3x8  
Lateral raise 3x12  
Barbell curl 3x8  
Lying ext. 3x8

**Phase III**  
Squat 2x10  
Ben. Press 2x10  
Leg ext. 2x15  
Leg curl 2x15  
Mil. press 2x10  
Lat. raise 2x12  
B.B. curl 2x10  
Lying ext. 2x10

Plyometrics:
<table>
<thead>
<tr>
<th>Exercise</th>
<th>Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push-ups (claps)</td>
<td>1x10</td>
</tr>
<tr>
<td>Squat jumps</td>
<td>1x10</td>
</tr>
<tr>
<td>Power hops</td>
<td>1x10</td>
</tr>
<tr>
<td>Vertical jump</td>
<td>2x10</td>
</tr>
<tr>
<td>Push-ups (claps)</td>
<td>2x10</td>
</tr>
<tr>
<td>Squat jumps</td>
<td>2x10</td>
</tr>
<tr>
<td>Power hops</td>
<td>2x10</td>
</tr>
<tr>
<td>Vertical jump</td>
<td>3x10</td>
</tr>
<tr>
<td>Push-ups</td>
<td>3x10</td>
</tr>
<tr>
<td>Squat jumps</td>
<td>3x10</td>
</tr>
<tr>
<td>Power hops</td>
<td>3x10</td>
</tr>
<tr>
<td>Vertical jump</td>
<td>4x10</td>
</tr>
</tbody>
</table>

Rope Jumping

The benefits of rope jumping in terms of improved agility and coordination can be expanded to include cardiovascular fitness when it is incorporated into a general athletic strength and conditioning program (Pitreli & O'Shea, 1986). It provides a rhythmic exercise for the heart during heavy strength training, while it offsets valsavlc maneuvers imposed upon the heart by heavy squatting and bench pressing.

GENERAL ATHLETIC TRAINING CYCLE:

Warm up: Rope jumping 5 minutes
Core Exercises:

1) Power cleans
   - Rope jumping: 3x8, 2 minutes
   - Rest: 2 minutes

2) Squat
   - Rope jumping: 3x10, 2 minutes
   - Rest: 2 minutes

3) Bench press
   - Rope jumping: 3x10, 2 minutes
   - Rest: 5 minutes

Mini Weight Circuit

- Arm curls: 10-12 repetitions
- Tricep extension: 10-12
- Dumbbell front raise: 10-12
- Leg curl: 10-12
- Rope jumping: 2 minutes
- Rest: 2 minutes

Repeat circuit 2-4 times using a variety of weight exercises (Pitreli & O'Shea, 1986)

STRENGTH and POWER CYCLE

Warm-up: Rope jump for 3 minutes
Core Exercises:

1) Bench or Incline press 3-4x4-6
   Rope jump 1 minute
   Rest 2 minutes

2) Power clean 3-4x4-6
   Rope jump 1 minute
   Rest

3) Squats 3-4x4-6
   Rope jump 1-2 minutes
   Rest 5 minutes

4) Start auxiliary workout—sport specific exercises and every third exercise rope jump for 1 minute.

5) At the conclusion of the workout cool down with 2-3 minutes of rope jumping.

CONCLUSION

The majority of the kinesiological results of this study were similar to that of other existing research. All four techniques were performed as closely as possible to the techniques used in other research studies. These similarities enabled closer comparisons of the respective results. Any differences in kinesiological analysis results was probably due to slight variations in the performance of skills.

A thorough biomechanic analysis of any skill can get extremely complex and tedious which was far beyond the scope of this study, therefore the biomechanical analysis of the skills only touched on specific aspects of the performances which may spur ideas for further research. Through the use of the kinesiological and biomechanical analysis of the long snap, karate kick, vertical jump, and jump roping, a strength and conditioning program was formulated to meet the conditioning needs of these specific skills within their respective sports.

This study may have introduced new ideas for future biomechanic research but also reinforced existing research in these sport specific areas.
REFERENCES


BIOMECHANICAL AND KINESIOLOGICAL BIBLIOGRAPHY


(SPORT SPECIFIC)

Baseball


Basketball


**Cycling**


**Dance and Aerobics**


**Gymnastics**


**Raquet Sports**


**Running**


**Skiing**


**Soccer**


Speed Skating


Swimming and Water Polo


Track and Field


Volleyball

Demerchant, R. (1995, August). A chip off the old block - How to teach everyone to hit around the block or to "wipe" off it. Scholastic Coach, 65 (1), 44-46.


Weight Training


Miscellaneous Sports

Water skiing, field hockey, rowing, golf, windsurfing, rugby, handball, ice hockey, football, wrestling, tennis and archery.


I. DOCUMENT IDENTIFICATION:

Title: LAB EXERCISES FOR KINESIOLOGY

Author(s): MILLS, ET AL.

Corporate Source: UNITED STATES SPORTS ACADEMY

Publication Date: 4-25-97

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following two options and sign at the bottom of the page.

Check here
For Level 1 Release:
Permitting reproduction in microfiche (4" x 6" film) or other ERIC archival media (e.g., electronic or optical) and paper copy.

The sample sticker shown below will be affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 1

Check here
For Level 2 Release:
Permitting reproduction in microfiche (4" x 6" film) or other ERIC archival media (e.g., electronic or optical), but not in paper copy.

The sample sticker shown below will be affixed to all Level 2 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 2

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

"I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries."

Signature: [Signature]

Printed Name/Position/Title: BRET D. MILLS

Organization/Address: UNITED STATES SPORTS ACADEMY

Telephone: 334-626-3303

E-Mail Address: bdmills@usa-sport.usaa.edu

Date: 4-25-97

(over)
III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant reproduction release is held by someone other than the addressee, please provide the appropriate name and address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse: THE ERIC CLEARINGHOUSE ON TEACHING AND TEACHER EDUCATION
ONE DUPONT CIRCLE, SUITE 610
WASHINGTON, DC 20036-1188
(202) 293-2450

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2d Floor
Laurel, Maryland 20707-3598

Telephone: 301-497-4080
Toll Free: 800-799-3742
FAX: 301-953-0263
e-mail: ericfac@inet.ed.gov
WWW: http://ericfac.piccard.csc.com

6/96