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Abstract

Unstable, and potentially invalid, variance component estimates may result from

using only a limited portion of available data from operational performance assessments.

However, missing observations are common in these settings because of the nature of the

assessment design. This paper describes a procedure for overcoming the computational and

technological lithitations in analyzing data with missing observations by extracting data from

a sparsely-filled data set into analyzable smaller subsets of data. This parsing is accomplished

by creating data sets that exhibit structural designs that are common in generalizability

analyses, namely the crossed, mixed, and nested designs. An example of how to perform the

procedure is given.
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Generalizability Theory: A New Approach to Analyze Non-Crossed

Performance Assessment Data

Introduction

In recent years, performance assessment has become popular as a means for assessing

students because these assessments provide direct measures of non-traditional student

outcomes. Generalizability theory (G-theory), developed by Cronbach, Gleser, and

Rajaratnam (1963), is often used in the development of performance assessments to identify

the relative strengths of multiple sources of measurement error and to make projections

concerning how to increase score reliability. A common problem encountered by those using

G-theory with large-scale performance assessments is working with missing data (i.e.,

observations are missing for some pairings of the elements of two or more facets). The

purpose of this paper is to investigate the comparability of several methods for analyzing data

sets with missing observations.

In this paper, we first describe the technical problems caused by missing observations

in performance. Then we present some common approaches used to overcome these missing

data and the limitations of these approaches. Next, we discuss G-theory techniques, followed

by an illustration of how to restructure and analyze a hypothetical sparsely-filled data set so

that it can be accommodated by currently-available analytic methods. Finally, we apply our

methods to a data set coming from a large scale writing assessment, and present the results of

these analyses in terms of the comparability of the methods.
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Theoretical Rationale

Because of a variety of problems unique to performance assessments (e.g., the

extended amount of time required for examinees to formulate a response, the increased cost

of testing, rater attrition, and rater availability), examinees may not respond to all items, and

raters rarely evaluate all examinees. Brennan, Jarjoura, & Deaton (1980) refer to this

situation as an unbalanced design, or a design with missing data. We adopt the latter term

in this paper. Unfortunately, software that is designed to perform generalizability analyses,

like GENOVA (Crick & Brennan, 1983) cannot handle missing data. Furthermore, according

to Bell (1985) and Brennan (1992a), alternative analysis procedures (e.g., proc VARCOMP

in SAS) that use iterative estimation methods (e.g., Maximum Likelihood or Restricted

Maximum Likelihood) are computationally complex and require considerable computer

resources and computational time. For example, Bell (1985) analyzed a survey containing

the responses of 831 students from 112 schools with each student answering 11 questions

(each response constituting a separate record so the total number of records were 11 x 831

= 9141). Bell compared the process time of two procedures for estimating variance

components using the SAS system (SAS Institute, Inc., 1985), namely the VARCOMP

procedure (i.e., TYPE1 and ML) and the GLM procedure. In all cases, a minimum of five

minutes of central processing unit time was needed to complete the estimation procedure.

We had a similar experience with the data analyzed for this study. At one point, we

allowed the SAS VARCOMP procedure to run for over 24 hours on these data, and the

estimation procedures still did not converge. In an age when funding for education is at a
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premium, we must all find ways to conserve resources and avoid discarding data simply

because we lack the technology to perform the analyses.

Researchers who use generalizability theory have devised several methods for

analyzing test data with missing values. One approach is to collapse ratings across raters,

ignoring the fact that different raters assigned scores to different examinees. For example,

when two raters are randomly selected from a pool of raters to score examinees' response, it

is a common practice to correlate the scores assigned by the first randomly-selected scorer

with the scores assigned by the second randomly-selected scorer. The problem is that this

approach jeopardizes the internal validity of the study by confounding the influences of

multiple raters. A second approach is to select a single fully-crossed subset of data from the

entire data set. An example of this approach may occur when a small number of raters make

up a pool of raters from which pairs of raters are randomly assigned to score an examinee's

response. In such a case, each pair of raters scores a small number of examinees in common.

The pair of raters with the largest number of examinees in common may be chosen as the

target of the analyses in such a situation. Unfortunately, by ignoring large portions of the

data, this approach jeopardizes the external validity of the study (i.e., the chosen pair of raters

may not be representative of the universe of raters). A third approach that may be employed

is to perform analyses on all such fully-crossed subsets of data within a large data set and

make comparisons across these data sets. Although this approach is considerably more

desirable than the previous two, it still fails to take full advantage of all of the information

contained in the entire data set. Our study investigates one option for analyzing missing data

7
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that preserves both the internal and external validity of the G study while more fully utilizing

the information contained in the data set.

Generalizability Theory

Generalizability theory offers a method of evaluating the effects that multiple sources

of variability have on test reliability. Each source of variability is associated with a condition

of the measurement framework called a facet (e.g., raters, items) or an interaction of these

conditions (e.g., rater-by-item interactions). In this sense, G-theory extends the concept of

measurement error as represented by classical test theory (i.e., Observed Score = True Score

+ Error) by decomposing the error term into multiple components that are associated with

distinct features of the measurement context. In a two facet generalizability study, there are

seven such terms. One facet arises from differences among examinees' performance and is

denoted a2(p). Typically, this facet is referred to as the object of measurement (Brennan,

1992a; Cronbach, Gleser, Nanda, & Rajaratnam; 1972, and Shavelson & Webb 1991). The

second source of variability arises from the differences in the difficulty of the items, and is

denoted as a2(i). The third source of variability arises from the differences between the

standards used by different raters. The fourth source of variability arises from the educational

and experiential background that examinees bring to the test items. For instance, a test item

could be more difficult for one student but not for the others. This examinee-by-item

interaction is denoted a2(pi). Two other sources of variability exist due to interactions

between facets. The a2(pr) represents the interaction due to the fact that different raters may

apply the scoring criteria differentially across examinees (i.e., a rater-by-examinee

interaction), whereas the a2(ir) represents the interaction due to the fact that some raters apply

8
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different standards to items that have the same level of difficulty (i.e., a rater-by-item

interaction). The seventh source of variability may arise out of randomness, other systematic

but unidentified error, or both. It is signified as a2(pir,e). This term is often referred to as the

examinee-by-item-by-rater interaction, confounded by error.

One purpose of G-theory is to estimate the relative magnitude of indices (referred to

as variance components) of the various sources of variability contained in a measurement

context. This purpose is achieved through the use of a generalizability study (G study).

Researchers examine the pattern and magnitude of these sources of variability and may

change the scoring procedure with the hopes of reducing sources of error that are considered

to be undesirable (e.g., the rater-related effects like a2(r), a2(pr), and a2(ir)) so that reliability

can be increased. Measurement error attributable to effects like these can be reduced by

increasing the number of raters, the number of items in a test, or both. A decision study (D

study) is often used to estimate how changes in the number of items and/or number of raters

would improve the reliability of an examinee's score. That is, D studies use the information

from a G study concerning the multiple sources of measurement error to make projections to

other operational settings. Introductory G-theory textbooks and research reports (e.g.,

Cronbach, Linn, Brennan, & Haertel, 1995; Shavelson & Webb, 1991) provide detailed

discussions on the distinctions between these two studies. Our intent is to emphasize that

getting valid information from a G study is critical to the precision of the projections that are

made in a D study. The more comprehensive and representative the data we analyze, the

more accurate and precise our predictions will be. However, the issue of representativeness is

often treated as an assumption rather than as an empirical question. Our study examines this
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representativeness issue by comparing the variance components obtained through different

methods for compensating for missing data in a G study design.

Methods for Analyzing Missing Data

This section illustrates how to restructure a hypothetical sparsely-filled data matrix

into smaller subsets for generalizability analyses. Our goal is to show how nearly all of the

information can be considered without resorting to "discarding" data or ignoring

distinctions by "collapsing" across elements (e.g., individual raters) of the measurement

design. The G study results from the various designs that we describe can be averaged to

produce a single set of variance components for the entire data set. In the following

examples, we describe a measurement context in which 15 examinees each answer 2 test

items which are rated by any 2 of 4 raters (named A, B, C, and D). That is, the design of

our G study contains 2 facets: (a) items and (b) raters and can be represented as a fully-

crossed examinee x item x rater (15 x 2 x 4) design with many pieces of missing data.

Figure 1 depicts such a data matrix. This design matrix indicates which two raters rated a

particular examinee on the two items. For instance, the four scores in the first row show

that Examinee 1 was graded by Rater A and Rater B on both of the two items.

We can use four different methods to extract information from this sparse data

matrix. In the collapsed method, we intentionally ignore which specific rater was the first

rater or the second rater. That is, regardless of which pair of raters rated an examinee's

response, the first rater in the pair was always labeled Rater 1 and the second rater was

labeled Rater 2. Figure 2 depicts this collapsed data structure. The remaining three methods

decompose the entire data set into exhaustive subsets. That is, the sum of the number of

10
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observations analyzed by these three methods will equal the number of obseivations in the

original data set. The data matrices from these subsets of data can each be analyzed under a

different G study design. For the crossed method, we extract all possible crossed data subsets

from the larger data set so that in each subset of data contains all examinees who were rated

by a specific pair of raters on both items. In Figure 1, for example, Rater A and Rater B rated

the response to both the first and the second item (AB, AB; where Item 1 and Item 2 are

separated by a comma) for Examinees 1, 3, and 14. In this crossed design, each data set only

contains scores given by a single pair of raters. Figure 3 shows how the information in Figure

1 decomposes into several crossed data sets. Responses of Examinees 1, 3, and 14 are rated

by the same two raters (i.e., A & B) on both items, and for this reason scores for these two

examinees are extracted from the entire data set and are stored in a smaller subset containing

scores given by only Rater A and Rater B. In the same figure, Examinees 2 and 4 are graded

by both Rater C and Rater D on the two items, and so these cases are extracted and saved in

a data set with the label Crossed (2). The "2" in parentheses indicates the data set is a second

of the crossed design type. In general, the parenthetical numbers distinguish one data set from

the others within a type of design. By going down the rows, we exhaust all crossed designs

and store them in these two subsets.

A nested design is formed every time one pair of raters rates the first item and a

completely different rater pair rates the second item (e.g., Rater A and Rater B rate Item 1

and Rater C and Rater D rate Item 2 denoted AB, CD). Using the same algorithm as for

extracting crossed data sets, we extract all nested subsets so that each nested data set contains

scores of examinees' who are graded by the same four raters. In Figure 3, Examinees 5 and 6

.
11
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are graded by Raters A and B on Item 1 and Raters C and D on Item 2. As a result, these

examinees' scores are stored in one data set which is labeled Nested (1). Similarly, the

Nested (2) data set contains all examinees scored by Raters B and C on Item 1 and Raters A

and D on Item 2. The Nested (3) data set contains all examinees graded by Raters A and C on

Item 1 and Raters B and D on Item 2. These three nested data sets exhaust all of the cases of

nested ratings in the entire data set. Hence, we have used 12 of the 15 cases with the nested

and crossed designs.

Our third design, the mixed design, accounts for the remaining cases. A mixed design

is formed every time one rater rates both items and is paired with a different second rater on

each item. For example, for Examinee 11, Rater A rates both items and is paired with Rater B

on Item 1 and Rater C on Item 2 (AB, AC). However, there is a problem with this design-

rater B and rater C always rate only one item each so that no information is available for

evaluating the item effect for Rater B or Rater C. This problem is resolved by adding into

the same data set two other rater combinations, (BA, BC) and (CA,CB). In these two

designs rater B and rater C rate examinees' responses on both items. As a result, a fully

nested data set contains all nested examples for a particular triplet of raters. Figure 3

depicts how to identify these three sets of raters and how to extract them from a data set.

Because Examinees 11, 12, and 13 are, in turn, double-graded by the raters A, B, and C,

the scores of these three examinees were stored into one data set and this data set also

contains scores for other examinees who are graded by the same three raters in this mixed

design.

12
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Thus, we have been able to recover the data within the larger data set by parsing it

into several subsets. Each of these subsets, if analyzed separately, will produce a set of

variance component estimates. But, the variance component estimates produced by any one

of these separate analyses may not adequately represent the variance structure of the entire

data set. Unfortunately, the entire data set usually cannot be adequately analyzed because

of weaknesses in the technology (i.e., computational time) or software (i.e., failure to

handle missing data) used to perform the analyses. However, we can average the variance

components from several G studies (Brennan, Gao, & Colton, 1995) to get more accurate

and comprehensive variance component estimates. Hence, we can use our exhaustive

parsing method (as described above) to extract all cases from a data set, perform G studies

on each of these subsets of the data, and average the variance components across these G

studies. These averaged variance components can serve as the information upon which D

studies are based. In doing so, we preserve all of the information from the larger data set

and create data sets with a structure that can be handled by currently-available software

with a minimal processing load.

Research Questions

To our knowledge, such a method for parsing a large data set into mutually-

exclusive and exhaustive subsets for the purpose of creating multiple data sets that are

fully-analyzable in a generalizability theory framework has not been proposed. The goal of

this approach is to obtain the most accurate G study variance component estimates possible

so that generalizations beyond that data set will be valid. However, the validity of such a

13
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method must be examined first. To this end, we investigated the following research

questions.

1. Can these parsing methods be used to feasibly overcome the problem of computational
complexity of analyzing a large, sparse data set?

2. Do the various methods produce comparable variance component estimates?

3. Are the variance components produced by the parsing methods superior to those
produced by the collapsing method?

Method

The data we analyzed come from a large-scale college level writing assessment in

which each examinee (N=5,905) responded to two essay prompts. Throughout the paper, we

use "item" interchangeably with "essay". Each response was evaluated by a pair of raters

randomly selected from a pool of nine trained raters, resulting in a total of 23,620 ratings

(5,905 examinees x 2 essay prompts x 2 raters). Ratings were assigned on a six-point holistic

scale. Table la summarizes the interrater agreement for the two essays. The total number of

responses read by a particular rater ranged from 154 to 5,681 (see Table lb for number of

essays read by the nine raters). Because pairs of raters were randomly selected from a pool,

this data set is sparse (i.e., not all examinees were rated by all raters). We analyzed the data

using the four methods mentioned earlier.

All 23,620 ratings were analyzed using the collapsed design. A data set was analyzed

as a crossed, nested, or mixed design only if the sample size for that data set was 20 or larger.

As a result, we analyzed 9 of the 16 crossed data sets found in the entire data set, 22 of the 96

nested data sets, and 21 of the 40 mixed data sets. We used 84% (19,856) of the ratings, and

14
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no data were used more than once. A G study was run for each of these data sets. GENOVA

was used for the estimation of collapsed, crossed, and nested designs. The SAS VARCOMP

procedure (estimation method = MIVQUEO) was used to analyze each mixed data set.

According to Bell (1985), the MIVQUEO estimation method is preferred to the TYPE1, ML,

and REML because it is computationally efficient and the estimates are virtually identical to

those obtained from full data sets. Because the sample sizes (i.e., number of examinees) vary

among data sets, the variance components of the three designs were averaged using a pooled

average formula modified from the formula typically used for obtaining the average over two

samples. The formula follows.

2
(n, 1)s, 2 + (n2 0s2 2 +...+(nk 1)4

S pooled -
(n, 1) + (n2 1)+...+(nk 1)

(1)

where sit is the variance component in the ith data set within a design, ni is the number of

examinees in the ith data set within a design. For instance, there were nine data sets of the

crossed design and therefore, the average variance component a&(r) associated with the rater

facet was a pooled average of the nine variance components from these data sets.

We evaluated the comparability of the three methods using these averaged variance

components, based on the assumption that these aggregate components are representative

of the individual data sets. This assumption was checked using the Pearson product

moment correlation coefficients. In each design, we obtain a correlation between the

average variance components with every single data set. We then took the average of these

correlations. As a result, every one of the three designs has an average correlation which

15
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indicates the extent to which the average variance components are representative of the

individual data sets.

Following the assumption checking, we used a multivariate analysis of variance test

(MANOVA) to examine the means of the variance components across the three methods.

Wilk's X, is the test statistic associated with the MANOVA test and its distribution could be

approximated by using Rao's F (Stevens, 1996). In our multivariate analysis, we

hypothesize that the three methods are comparable in terms of the averaged variance

components, and our null hypothesis in the multivariate analysis was that variance

components were equal across the three methods. In the multivariate analysis, each

variance component is treated as a dependent variable and the three methods are treated as

levels in a factor. Although our intention is to conduct an omnibus test for the averaged

variance components, the fact that the nested data sets have fewer variance components

(due to the confounding rater and item effect) than the other two methods prohibits the use

of a single multivariate test. To resolve this problem, we use two multivariate tests, one for

comparing the seven variance components (see Table 8 for the seven components) between

the crossed design and the mixed design, and the one for comparing the five variance

components (see Table 9 for the five components) among all three designs.

To compare the crossed, mixed, and nested methods with the collapsed method, we

conduct multiple one sample independent t-tests and adjust for the alpha level using the

Bonferroni (e.g. Stevens, 1996) approach. Since we use 23 t-tests, we adjust the alpha level

to .0021 (which is obtained by dividing the conventional level .05 by 23). Shavelson

(1988) refers to the independent t-test we use a case 1 t-test. It is defined as

16
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(2)

where tobserved has degrees of freedom N-1, X is the average variance component within a

facet, p is the fixed value from the collapsed design, s and N are the standard deviation of

the average variance component and the number of data sets used in a design, respectively.

Using the t-test, each averaged variance component from the three designs was compared

to the corresponding variance component obtained in the collapsed design. These

independent t-tests indicate whether the sample mean of the variance component was

drawn from a hypothesized population with a specified mean equal to the fixed value

obtained from the collapsed design.

Results

Variability Within Parsing Methods

Table 2 shows the variance components for three of the crossed data sets chosen to be

representative of the range of results obtained from the nine crossed data sets. In each case

the a2(p), a2(pi), and a2(pir,e) effects account for the greatest proportion of variance. The

a2(i) variance components are not as large, and the a2(r), a2(pr) and &(ir) components are

negligible. However, there is considerable variability among these three crossed data sets. For

example, the proportion of variance accounted by the a2(p) effect ranged from 23% to 62% of

the total variance. Such variability between subsets of the data emphasizes the risk associated

17
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with estimating variance components from only a sample of raters. One way to avoid

obtaining non-representative variance component estimates is to average variance

components from multiple G studies (Brennan, Gao, & Colton, 95). Table 3 shows the

variance components averaged across all nine of the crossed data sets we analyzed. The

relative magnitudes of the variance components associated with each effect are similar to

those in the individual data sets. However, these averaged variance components are more

accurate and stable estimates of the variance components for the entire data set. Note that

these averaged variance components have a rank ordering similar to that observed for each of

the three example data sets shown in Table 2. The average correlation between these

averaged variance components and the variance components obtained from each of the nine

crossed data sets we analyzed was T. = .91.

Table 4 shows the estimated variance components for the three of the 21 mixed data

sets. These were chosen to represent the range of results obtained under this parsing method.

As with the crossed data sets, the largest variance are a2(p), a2(pi), and a2(pir,e). The a-2(i)

and a2(pr) components are small. The a2(r) and a2(ir) terms are close to zero. There is a large

amount of variability between the variance components obtained from the three example data

sets for the mixed designs (as was true for the crossed data sets). Table 5 shows the average

variance components across all 21 mixed data sets. Again, these estimates should be more

representative of the information contained in the entire data set than would be any single

subset of the data. The averaged variance components shown in Table 5 are similar to those

obtained from each of the individual mixed data sets. The average correlation was T. = .94.

18



Analyzing Non-Crossed Performance Assessment Data

18

Table 6 shows the variance components for three of the 22 nested data sets.

Comparing to the other two designs, the nested design has more data sets of smaller size.

Recall that only 22 of the 96 data sets have 20 or more examinees. This is not surprising in

operational settings in which it is more convenient and efficient to randomly select four

different raters than to systematically pair up raters. Due to the fact that raters are confounded

within essays, there is no way of estimating the unique effect for a2(r), a2(ir), and a2(pr). This

confounding nature allows estimations to be made for only five variance components. Like

the other two designs, the largest proportion of variance is accounted by &(p), cr2(pi), and

a2(p(ri),e). The within variability among the data sets is large that, for example, the a2(p) is

ranged from 11.33% to 65.71%. Again, the average variance components are more

representative to the entire data set. The average correlation between these averaged variance

components and the variance components obtained from each of the 22 nested data sets we

analyzed was .76. Although this r seems low comparing to those obtained for the crossed and

mixed designs, when considering the fact that the nested design has two variance components

fewer than the other two designs, a correlation of .76 suggests that the average variance

components resemble a reasonably consistent rank ordering of the individual data sets.

Comparison Across Parsing Methods

Table 8 compares the average variance components for the crossed and mixed data

sets with the variance components obtained from the collapsed method. The proportions of

variance accounted for by each effect in these three designs are similar. As would be

expected, the a2(r), a2(pr), and a2(ir) effects look smaller with the collapsed method, as the

result of confounding the effects of individual raters. Independent t-tests indicate that there
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are no statistically significant differences between the variance components from the mixed

and crossed designs and those from the collapsed design. A MANOVA test is conducted to

test if any pairs of the mean variance components differ between the crossed and mixed

methods. The omnibus test is insignificant (Wilk's = .79, F722 = 0.83, p =.57) implying that

no mean variance components differ between the two designs.

Table 9 compares variance components from the crossed, mixed, and nested

methods to those from the collapsed method. Because the a2(r) and a2(i) effects are

confounded in the nested design, it is necessary to recalculate the variance components for

the previous designs to show such a similar confounding effect. To this end, the a2(ni)

component is estimated as the sum of the a2(r) component and the a2(ir) components, and

the a2(p(ni),e) component is estimated as the sum of the a2(pr) and a2(pir,e) components

(Brennan, 1992b) for the average variance components obtained under the crossed, mixed,

and collapsed methods. For the nested method, the variance components for a2(p) and

a2(p(ri),e) are slightly smaller, and the a2(i) and a2(pi) variance components are slightly

larger than those of the crossed, mixed, and collapsed designs. An omnibus MANOVA test

reveals that none of these differences, in the nested method, are large enough to be

considered significant (Wilk's X =.77, F10,9010,90 1.27, p = .26). However, using the one

sample independent t-tests, we find a2(r:i) differs significantly (p < .002) between the

collapsed design and the mixed design. We also find that a2(p(r:i),e) differs significantly (p

< .002) between the collapsed and the nested design.
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Discussion and Conclusions

In this paper, we have shown that sparsely-filled performance assessment data sets

can be restructured into analyzable smaller subsets of data. The method we used is

particularly suitable for analyzing operational performance assessment data in which

missing observations are unavailable due to the constraints caused by using expert

judgments for scoring or by the increased costs of administering these assessments.

As opposed to our expectation, the results obtained from the collapsed method look

similar to that from the other three methods. However, we recommend against the use of

this collapsed method because we know it is incorrect to ignore raters' identity. One

possible explanation to these unanticipated results is that the t-tests we used are

inappropriate for comparing the collapsed method to the other three methods. It is

inappropriate because the data analyzed in the three methods are dependent on those

analyzed in the collapsed method (i.e. the examinees in each of the three methods are the

same as those analyzed in the collapsed method). A more appropriate test is needed in

future studies for handling this dependency issue.

Although our results indicate that the three methods (i.e., crossed, mixed, and

nested) are comparable using a large scale writing assessment data set, we need to conduct

a more thorough study to examine whether the methods generalize to other data sets with

more than two facets and to other data sets with different magnitude in the variance

components. Based on the evidence, the averaged variance components across designs are

probably the best estimate of "true" variance components for a sparsely-filled data set.

Future Monte Carlo (MC) studies (e.g., Hamilton, 1992, provides a lucid introduction to
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this topic; Harwell, 1992, discusses how to summarize MC results in methodological

research) are need to be used, to determine whether each method produces unbiased and

accurate variance component estimates. This could be accomplished by generating a large,

fully-crossed data set, following by obtaining the variance components from computer

packages such as GENOVA. Then, we could randomly pull samples from this large data

set according to the specifications of our rating design (i.e., we would randomly-sample 2

raters for every examinee x item combination). For each of these samples, we would

estimate variance components using the various methods for parsing the data. This would

create a distribution of variance component estimates for each facet of the design under

each of our parsing methods. We would check if the different methods are unbiased by

examining how different the means of the distributions differs from the parameter value,

and we would know if the different methods are accurate by examining the variance of the

distributions around the parameter value.

Last but not least, for future studies, we suggest researchers explore the use of other

tests, in addition to the MANOVA test, for examining the comparability of the three

methods we employed. If the methods are comparable, no matter what tests are used the

results should be the same that variance components from the three methods do not differ

significantly within a facet. One such test for comparability is the multivariate

homogeneity test (Raudenbush, Becker and Kalaian, 1988) which is usually used in

research synthesis (or meta-analysis coined by Glass, 1976). The advantage of this

multivariate homogeneity test is that only one analysis is needed for testing whether or not

the averaged variance components are representative and comparable.
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Once the three methods are tested to be comparable using a variety of tests (e.g.

MANOVA test and homogeneity test) AND once they are shown to be generalizable to

other data sets with more than two facets, we could consider taking a step further to

average the mean variance components obtained from the three methods. This way of

taking an average could be applied to every variance component and, therefore every

component has an index. We expect these average mean variance components to be the

most stable and parsimonious indices in generalizability studies in which some

observations are missing.
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Figure 1. A hypothetical data matrix. Rows represent examinees, columns represent items,

and sub-columns represent raters. This matrix contains scores assigned by 2 randomly-

selected raters (from the pool of four) to each examinee's response to each item. Subscripts

represent examinees, items, and raters.

Figure 2. A hypothetical data matrix that illustrates how the data are structured when rater

identity is ignored. Subscripts represent examinees, items, "collapsed" rater, and "specific"

rater. In a collapsed analysis, the "specific" rater is ignored.

Figure 3. A hypothetical data matrix, identical to that in Figure 1. The last two columns

illustrate how to restructure the sparse data set into multiple smaller data sets analyzable by

the three methods, namely the crossed, mixed, and nested methods.
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Table la

Average Percentage of Agreement for Two Essays

Perfect Agreement Percent Adjacent

(1 Scale Point)

Percent Non-Adjacent

(2 or more Scale Point)

Essay 1

Essay 2

73.6.

73.6

25.5

26.2

0.9

0.3

Table lb

Number of Essays Read by the Nine Raters

Rater Essay 1 Essay 2

(Frequency) (Frequency)

Total

(Frequency)

Total

(Percentage)

1 992 836 1828 7.7

2 2797 2884 5681 24.1

3 485 316 801 3.4

4 2281 2509 4790 20.3

5 2011 2002 4013 17

6 2169 2474 4643 19.7

7 100 130 230 1.0

8 856 624 1480 6.3

9 119 35 154 0.7

Total Number of Essays Read by the Nine Raters = 23,620 100
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Table 2

Variance Components for Three Crossed Design Data Sets

Source

Data Set 1
(N=144)

VC %

Data Set 2
(N=179)

VC %

Data Set 3
(N=61)

VC %

Person (p) 0.33399 62.13 0.12771 36.81 0.08593 22.56

Item (i) 0.00918 1.71 0.04309 12.42 0.02828 7.42

Rater (r) 0.00009 0.02 0.00025 0.07 0.00403 1.06

Person x Item (pi) 0.08076 15.02 0.07981 23.00 0.16025 42.07

Person x Rater (pr) 0.00000 0.00 0.00534 1.54 0.00000 0.00

Item x Rater (ir) 0.00000 0.00 0.00176 0.51 0.00984 2.58

Person x Item x Rater, Error
(pir,e)

0.11353 21.12 0.08902 25.66 0.09262 24.31

Note: N is the number of persons contained in the data set. VC is the variance component

for the source. % is the percent of the total variance accounted for by the source.
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Table 3

Average Variance Components for All Crossed Data Sets

Source Mean VC SD VC

Person (p) 0.21123 44.86 0.07989

Item (i) 0.02396 5.09 0.01851

Rater (r) 0.00186 0.39 0.00185

Person x Item (pi) 0.11199 23.78 0.03783

Person x Rater (pr) 0.01135 2.41 0.04185

Item x Rater (ir) 0.00222 0.47 0.00528

Person x Item x Rater, Error (pir,e) 0.10828 22.99 0.02277

Note: Mean VC is the average variance component across the nine crossed data sets. % is

the percent of the total variance accounted for by the source. SD VC is the standard

deviation of the variance component across the nine crossed designs. The average N=105.
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Table 4

Variance Components for Three Mixed Design Data Sets

Source

Data Set 1
(N=158)

VC %

Data Set 2
(N=132)

VC

Data Set 3
(N=52)

VC

Person (p) 0.27380 53.87 0.27597 43.03 0.07186 21.78

Item (i) 0.02062 4.06 0.03090 4.82 0.01619 4.91

Rater (r) 0.00003 0.01 0.00200 0.31 0.00000 0.00

Person x Item (pi) 0.11412 22.46 0.19736 30.77 0.13550 41.08

Person x Rater (pr) 0.00099 0.19 0.03986 6.21 0.01598 4.84

Item x Rater (ir) 0.00240 0.47 0.00000 0.00 0.00338 1.02

Person x Item x Rater, Error
(pir,e)

0.09627 18.94 0.09527 14.85 0.08696 26.36

Note: N is the number of persons contained in the data set. VC is the variance component

for the source. % is the percent of the total variance accounted for by the source.
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Table 5

Average Variance Components for All Mixed Data Sets

Source Mean VC SD VC

Person (p) 0.20771 44.75 0.08296

Item (i) 0.01833 3.95 0.01857

Rater (r) 0.00268 0.58 0.00518

Person x Item (pi) 0.11745 25.30 0.04163

Person x Rater (pr) 0.01223 2.63 0.02111

Item x Rater (ir) 0.00287 0.62 0.01174

Person x Item x Rater, Error (pir,e) 0.10290 22.17 0.04794

Note: Mean VC is the average variance component across the 21 mixed data sets. % is the

percent of the total variance accounted for by the source. SD VC is the standard deviation

of the variance component across the 21 mixed designs. The average N=161.
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Table 6

Variance Components for Three Nested Design Data Sets

Source

Data Set .1 (N=20)

VC

Data Set 2 (N=21)

VC

Data Set 3
(N=30)

VC

Person (p) 0.36053 65.71 0.20417 40.26 0.03621 11.33

Item (i) 0.03224 5.88 0.00000 0.00 0.01466 4.59

Rater:Item (r:i) 0.00000 0.00 0.01071 2.11 0.02069 6.47

Person x Item (pi) 0.06711 12.23 0.21964 43.31 0.12701 39.75

Person x (Rater:Item), Error
(p(r:i))

0.08882 16.19 0.07262 14.32 0.12098 37.86

Note: N is the number of persons contained in the data set. VC is the variance component

for the source. % is the percent of the total variance accounted for by the source.
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Table 7

Average Variance Components for All Nested Data Sets

Source Mean VC ova SD VC

Person (p) 0.19170 41.62 0.09555

Item (i) 0.03613 7.84 0.05946

Rater:Item (r:i) 0.00314 0.68 0.00575

Person x Item (pi) 0.12995 28.21 0.07967

Person x Rater:Item, Error (p(r:i),e) 0.09967 21.64 0.02041

Note: Mean VC is the average variance component across the 22 nested data sets. % is the

percent of the total variance accounted for by the source. SD VC is the standard deviation

of the variance component across the 22 nested designs. The average N=29.
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Table 8

Averaged Components for Crossed, Mixed, and Collapsed Parsing Methods

Crossed Mixed Collapsed

Source Mean VC % Mean VC % Mean VC %

P 0.21123 44.86 0.20771 44.75 0.21031 44.25

i 0.02396 5.09 0.01833 3.95 0.01784 3.75

r 0.00186 0.39 0.00268 0.58 0.00036 0.08

Pi 0.11199 23.78 0.11745 25.30 0.12710 26.74

pr 0.01135 2.41 0.01223 2.63 0.00336 0.71

it 0.00222 0.47 0.00287 0.62 0.00000 0.00

pir,e 0.10828 22.99 0.10290 22.17 0.11629 24.47

Note: Mean VC is the averaged variance component for the source across all data sets of

this type. % is the percent of the total variance accounted for by the source. Associated

statistics for the three rater-related variance components are as follows. In the crossed

design: for a2(r), t8 = 1.93, p = .09; for a2(pr), t8= 1.25, p = .25; for a2(ir), t8 = 1.62, p = .15.

In the mixed design: for a2(r), t20 = 3.19, p = .005; for a2(pr), t20= 2.65, p = .016; for a2(ir), t20

= 2.12, p = .05.
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Table 9

Averaged Components for Crossed, Mixed, Nested, and Collapsed Parsing Methods

Crossed Mixed Nested Collapsed

Source Mean % Mean VC % Mean VC % Mean %
VC VC

p 0.21123 44.86 0.20771 44.75 0.19170 41.62 0.21031 44.25

0.02396 5.09 0.01833 3.95 0.03613 7.84 0.01784 3.75

r:i 0.00408 0.87 0.00841* 1.20 0.00314 0.68 0.00036 0.08

Pi 0.11199 23.78 0.11745 25.30 0.12995 28.21 0.12710 26.74

p(r:i),e 0.11963 25.40 0.11513 24.80 0.09967* 21.64 0.11965 25.18

Note: Mean VC is the averaged variance component for the source across all data sets of

this type. % is the percent of the total variance accounted for by the source. Associated

statistics for the two rater-related variance components are as follows. In the crossed

design: for cy2(ni), t8 = 2.16, p = .06; for cr2((p(ni)), t8 = 0.76, p = .47. In the mixed design:

for a2(r:i), t20 = 3.76, p = .001; for a2((p(ri)), t2o= 0.70, p = .49. In the nested design: (72(ni),

t20 = 2.30, p = .03; for a2((p(ri)), t20= 4.11, p < .001.
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