To ensure effective evaluation, classroom teachers should have consistent views of the nature of educational measurement and evaluation. An 11-component model of educational measurement and evaluation was developed from a literature review. Based on this model, an instrument, the Conceptualization of Educational Measurement and Evaluation Scale (CEMES) was developed. The CEMES was administered to 100 secondary school teachers in Ondo (Nigeria) in science, the arts, and commercial and technical subjects; and 77 completed responses were analyzed. Overall, teacher attitudes were similar regardless of their fields. Findings suggest that teachers do not appreciate the use of non-test evaluation techniques. On the whole, there is ample room for improvement in the conceptualization of educational measurement and evaluation held by these teachers. Teacher education may need to focus on these areas to a greater degree. Two tables present study data, and two appendixes provide an additional two tables of values for subject area. (SLD)
Conceptualization of educational measurement and evaluation held by some Nigerian Secondary School teachers

Folajimi Akindehin Ph. D.
Adeyemi College of Education
Ondo
Ondo State
Nigeria.

Conceptualization of Educational measurement and evaluation held by some Nigerian Secondary School teachers.

Abstract

Classroom teachers are often involved in the evaluation of school learning. For effectiveness, teachers should hold a consistent view of the nature of educational measurement and evaluation.

The secondary school teachers involved in this study hold views of the nature of educational measurement and evaluation that are not wholesome, subject areas notwithstanding. This finding has implications for further research as well as for teacher education as pointed out in the paper.
Introduction

For effectiveness on the job, teachers should develop skills in the use of educational measurement and evaluation techniques. These techniques include constructing, administering, scoring of measurement instruments (like tests, questionnaires, rating scales etc), interpreting scores as well as making judgement in terms of set goals or for a specific purpose (Stanley & Hopkins, 1972).

Expecting teachers to be involved in detailed educational measurement and evaluation (Bloom, 1961; Ebel, 1961a; Stanley & Hopkins, 1972) is not an unusual demand. As a matter of fact, one may say that teachers are quite familiar with the demand. In the Nigerian situation in particular, the emphasis on continuous assessment in schools which requires the evaluation of student learning along the cognitive, affective and psychomotor domains of human behaviour, reechoes the demand (Ojerinde, 1983). Moreover, when one considers the history of testing as well as the prospects that testing has for the future (Bajar, 1983; Jaeger, 1987; Rudman, 1987) one would readily share the view that the demand may be with us for some time to come. However, one major implication of the demand is that teachers should acquire a very high level of competence in measurement and evaluation (Ebel, 1961b; Stanley & Hopkins, 1972). This is by no means unattainable. It is realised that complex as measurement of classroom learning may be (Stiggins, Conklin & Bridgesford, 1986) teachers can develop the instruments needed in educational measurement and evaluation (Ebel, 1975; Frisbie, 1988).
Besides competence in test construction however, teachers need to acquire a wholesome conceptualization of educational measurement and evaluation to enable them appreciate that educational measurement and evaluation consist of components which are distinct and interrelated. For the purpose of this study an appreciation of the interrelatedness of the components of educational measurement and evaluation is considered an indication of an individual’s conceptualization of educational measurement and evaluation. The point of view in this study is that teachers who have acquired a wholesome conceptualization of educational measurement and evaluation, would be in a better position to adequately monitor student learning and in addition foster in students favourable attitude to tests, thereby reducing the tension, stress and anxiety students generally associate with examinations (Saber et-al, 1992).

It has been reported that most students dread examinations to such an extent that they would readily resort to various forms of examination malpractice (Denga, 1983). To prevent this negative reaction to examinations, teachers should encourage students to accept examinations as a routine part of the teaching-learning process and not as events to be dreaded. Teachers and students should see examinations for what they are: measuring instruments that provide unbiased quantitative information about relevant attributes of the testee. In essence teachers should acquire a wholesome conceptualization of educational measurement and evaluation.
But it has been observed that some Nigerian secondary school teachers' hold questionable views about academic achievement and how it should be measured (Akindehin, in press). It was therefore considered necessary to investigate Nigerian secondary school teachers' conceptualization of educational measurement and evaluation.

Research Instrument

A model of educational measurement and evaluation was developed from an extended review of related literature. The model consists of eleven distinct components. They are:

I Identifying the learning outcome to be tested.

II Constructing tests

III Constructing other measuring instruments besides test (e.g. questionnaires, rating scale)

IV Administering tests in the classroom.

V Administering questionnaires and rating scales in school teaching.

VI Scoring (marking) tests, questionnaires or rating scales.

VII Computing statistical data for interpreting scores.

VIII Providing comprehensible measurement information on students' performance to parents/guardians.

IX Discussing test results with students to improve learning.

X Using test results for instructional planning.

XI Keeping suitable record of scores.

Based on this model, the Conceptualization of Educational Measurement and Evaluation Scale (CEMES) was developed. It is a semantic differential scale developed to measure understanding of the nature of educational measurement and evaluation. The seven point evaluation scales used in the CEMES (Useful/Useless,
Important/Unimportant; Easy/Difficult; Like a lot/Dislike a lot) were adopted from findings of factor analysis (Butzow & Davis, 1975). The scales have been validated and used with some Nigerian preservice science teachers. (Akindehin, 1985). To compute the reliability of the CEMES, factor scores were derived in respect of the 11 concepts of the CEMES as suggested by Heise (1977). The Cronbach's coefficient alpha obtained was 0.88.

Research Procedure

The CEMES was administered to one hundred secondary school teachers in Ondo, Ondo State Nigeria. The teachers belonged to the Science, Arts and Commercial/Technical subject areas. The responses returned duly completed were 77.

Data Analysis

The linear distance (D) between any two concepts was derived as suggested by Kerlinger (1979). It is a measure of the relatedness of the components of educational measurement and evaluation as conceptualized by the teachers (See the Appendices for the D values). This linear geometric distance approach has been shown to yield satisfactory results in preference to transformation of interconcept distances or rigorous statistical procedures (Sawrey, Keller & Conger, 1960; McQuitty, 1964; Hofman, 1967). The mean of the D-scores which was found to be 1.40 was used as the critical D value for determining concepts that teachers consider similar enough to form clusters. The cluster size (the number of concepts in a cluster) was obtained.
An analysis of variance test was carried out on the cluster size distribution to test the significance of differences in the conceptualization of educational measurement and evaluation held by teachers in the three subject areas.

Results and Discussion

The cluster size distribution is presented in Table 1.

Table 1 about here

It could be seen from the distribution that teachers in the different subject areas hold different conceptions of educational measurement and evaluation as indicated by differences in the cluster sizes. All the teachers involved in this study share the same view about Concept V. Also there is an appreciable measure of conformity in their views about Concepts I, II, III, IV, VIII, X and XI. However there are sharp contrasts about Concepts VI, VII and IX. While Arts and Science teachers relate Concept VI with eight other concepts, Commercial/Technical teachers relate it to only two other concepts. These are Concepts III and V (see Appendix II). This finding suggests that Commercial/Technical teachers associated scoring (marking) with questionnaires or rating scales and not with other components of educational measurement and evaluation.

The conception of Science teachers about Concept VII (computing statistical data for interpreting scores) disagreed with the conception of the two other groups. This finding is perhaps a reflection of difference in statistical computational skills of the teachers. It was also found that Arts as well as Commercial/Technical teachers identified the relatedness among Concept IX and other concepts.
Table 1

Cluster size distribution

<table>
<thead>
<tr>
<th></th>
<th>Cluster Size</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Arts</td>
<td>Science</td>
<td>Commercial/Technical</td>
</tr>
<tr>
<td>Concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
whereas Science teachers do not. This finding seems to suggest that Science teachers do not appreciate that discussing test results with students to enhance learning is important in educational measurement and evaluation. Perhaps these teachers need to be encouraged to adopt the practice.

One could also draw attention to the views the teachers hold about Concepts II and V. It seems the teachers involved in this study do not consider the concepts as part of educational measurement and evaluation. It would be recalled that these concepts relate to non-test evaluation techniques. Findings from this study suggest that the teachers do not appreciate the use of non-test evaluation techniques.

Generally there is an appreciable measure of conformity in the conception of educational measurement and evaluation held by all the teachers involved in this study irrespective of their subject areas. To subject this to statistical test the one way analysis of variance test was carried out on the cluster size distribution. The summary analysis of variance table is presented as Table 2. As seen in the table the computed F ratio was not significant.

Table 2 about here

Thus there is no significant difference in the conception of educational measurement and evaluation held by teachers in the different subject areas. It could however be seen that the common trend that runs through these conceptions shows that the secondary school teachers involved in the study need to develop a more wholesome conceptualization of educational measurement and evaluation.
<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>ms</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between group</td>
<td>10.42</td>
<td>2</td>
<td>2.21</td>
<td>1.48*</td>
</tr>
<tr>
<td>within group</td>
<td>105.82</td>
<td>30</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>116.24</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*not significant

Table 2
ANOVA Summary Table
In the Nigerian context where continuous assessment, with a lot of input from the teacher, is to form part of the final assessment of students' academic attainment at the different educational levels, the findings from this study calls for immediate action from all concerned to improve on the conception teachers hold of educational measurement and evaluation.

Also, this study has opened up an area that needs to be thoroughly investigated. If teachers do not hold a wholesome conception of educational measurement and evaluation, one may wish to investigate how educational measurement and evaluation is practised in schools. One may also wish to investigate the level of competence acquired by teachers with reference to educational measurement and evaluation. In the meantime, it could be suggested from this study, that there seems to be the need to design relevant teacher education programmes on educational measurement and evaluation for teachers.

Conclusion

This paper draws attention to the importance of educational measurement and evaluation to the education process and the role of teachers in this respect. But if teachers are to measure up to expectation, they need to develop a coherent conception of educational measurement and evaluation. Teachers' conceptualization of educational measurement and evaluation was determined in this study from their perception of interrelatedness of the 11 components of educational measurement and evaluation developed in the study. A semantic differential scale was developed for this purpose.
It was found that there was conformity in the conceptualization of educational measurement and evaluation held by all the teachers irrespective of the teachers' subject areas. On the whole, there is ample room for improvement in the conceptualization of educational measurement and evaluation held by the secondary school teachers involved in the study. The paper also discusses the implications of these findings for further research, and for the school system.

References

McQuitty, L.L. (1964): Capabilities and improvements of linkage analysis as a clustering method Educational and Psychological Measurement 25, 6 441-456

Rudman H.C. (1987): The future of testing is now, Educational Measurement Issues and Practice 6, 3: 5-11

Appendix I

D Values for Science and Arts

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.1</td>
<td>2.0</td>
<td>0.4</td>
<td>2.1</td>
<td>1.0</td>
<td>1.2</td>
<td>0.4</td>
<td>1.4</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>II</td>
<td>0.5</td>
<td>2.0</td>
<td>0.5</td>
<td>2.1</td>
<td>1.1</td>
<td>1.2</td>
<td>0.5</td>
<td>1.5</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>III</td>
<td>1.6</td>
<td>1.7</td>
<td>2.2</td>
<td>0.4</td>
<td>0.9</td>
<td>0.8</td>
<td>2.1</td>
<td>2.7</td>
<td>1.7</td>
<td>2.8</td>
<td>0.7</td>
</tr>
<tr>
<td>IV</td>
<td>0.7</td>
<td>1.7</td>
<td>2.4</td>
<td>1.3</td>
<td>1.4</td>
<td>0.2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>V</td>
<td>1.8</td>
<td>1.7</td>
<td>0.3</td>
<td>1.9</td>
<td>1.0</td>
<td>2.3</td>
<td>2.7</td>
<td>1.9</td>
<td>2.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>VI</td>
<td>1.9</td>
<td>1.0</td>
<td>1.3</td>
<td>0.7</td>
<td>0.2</td>
<td>1.2</td>
<td>1.9</td>
<td>1.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>VII</td>
<td>2.4</td>
<td>2.3</td>
<td>0.9</td>
<td>2.5</td>
<td>0.7</td>
<td>1.3</td>
<td>1.3</td>
<td>1.9</td>
<td>1.9</td>
<td>1.1</td>
<td>2.0</td>
</tr>
<tr>
<td>VIII</td>
<td>0.4</td>
<td>0.3</td>
<td>1.3</td>
<td>0.5</td>
<td>1.5</td>
<td>0.9</td>
<td>2.2</td>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>IX</td>
<td>0.6</td>
<td>0.3</td>
<td>1.7</td>
<td>0.4</td>
<td>1.7</td>
<td>1.3</td>
<td>2.6</td>
<td>0.6</td>
<td>1.7</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>X</td>
<td>0.9</td>
<td>0.7</td>
<td>1.4</td>
<td>0.5</td>
<td>1.7</td>
<td>1.1</td>
<td>2.3</td>
<td>0.8</td>
<td>0.7</td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>XI</td>
<td>0.9</td>
<td>0.8</td>
<td>2.1</td>
<td>0.5</td>
<td>2.2</td>
<td>1.7</td>
<td>3.0</td>
<td>0.9</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The upper triangle are the D-values for Science and the mirror image are the D-values for Arts.
Appendix II

D values for Commercial/Technical

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2.6</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>0.6</td>
<td>0.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2.1</td>
<td>2.0</td>
<td>1.1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>1.5</td>
<td>1.5</td>
<td>1.3</td>
<td>1.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>3.0</td>
<td>2.9</td>
<td>0.9</td>
<td>2.9</td>
<td>1.1</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>0.5</td>
<td>0.4</td>
<td>2.3</td>
<td>0.9</td>
<td>2.0</td>
<td>1.4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>0.7</td>
<td>1.2</td>
<td>2.9</td>
<td>1.2</td>
<td>2.3</td>
<td>1.7</td>
<td>3.1</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0.8</td>
<td>1.1</td>
<td>2.5</td>
<td>1.0</td>
<td>1.9</td>
<td>1.4</td>
<td>2.8</td>
<td>1.1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>0.5</td>
<td>0.8</td>
<td>3.0</td>
<td>0.9</td>
<td>2.5</td>
<td>2.0</td>
<td>3.4</td>
<td>0.8</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

BEST COPY AVAILABLE
I. DOCUMENT IDENTIFICATION:

Title: Conceptualization of Educational Measurement and Evaluation
 Held by Some Nigerian Secondary School Teachers

Author(s): Falajimi Akindehin

Corporate Source:

Publication Date:

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce the identified document, please CHECK ONE of the following options and sign the release below.

[] Sample sticker to be affixed to document

Level 1
“PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY
Sample
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC).”

Level 2
“PERMISSION TO REPRODUCE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY
Sample
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC).”

[] Sample sticker to be affixed to document

or here

Level 1

Check here

Permitting microfiche
(4”x 6” film), paper copy,
and optical media
reproduction

“PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY
Sample
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC).”

Level 2

“PERMISSION TO REPRODUCE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY
Sample
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC).”

Sign Here, Please

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

“I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.”

Signature:

Printed Name: Falajimi Akindehin

Address: Adagami College of Educaton

Ondo

Ondo State Nigeria

Position: Senior Lecturer

Organization:

Telephone Number: ()

Date: 3/3/93
MEMORANDUM

TO: NCME Conference Participants

FROM: Jennifer McCoy
ERIC/TME Acquisitions Coordinator

RE: Submitting papers to ERIC

Your participation in the National Council on Measurement in Education's (NCME) conference will contribute new ideas that are not readily available through traditional channels. We hope that you will share your contribution beyond the conference and further the exchange of ideas.

We encourage you to make concerted effort to submit your papers to ERIC. Selected documents become permanently accessible through computer searches of the ERIC database, Resources in Education (RIE) the ERIC monthly abstract journal, and Measurement Update, ERIC/TME's experimental newsletter. They are also permanently available in microfiche or paper copy through the ERIC Document Reproduction Service (EDRS).

For your ease and information, there is a reproduction release form on the back of this letter. You may mail your paper to ERIC/TME - NCME, American Institutes for Research, 3333 K Street, NW Suite 200, Washington, DC 20007. Be sure to include the copyright release form that appears on the back of this letter and two copies of your paper.

A copy of the abstract and a complimentary microfiche of your entire paper will be sent to you when the abstract appears in print. If you have any questions, please do not hesitate to contact me at (202) 342-5060.

American Institutes for Research
3333 K Street, NW, Suite 200
Washington, DC 20007
(202) 342-5060