This instructor guide, which was developed for use in a manufacturing firm's advanced technical preparation program, contains the materials required to present a learning module that is designed to prepare trainees for the program's statistical process control module by improving their basic math skills in working with line graphs and teaching them how to plot points on a graph. The guide is divided into five sections. The first section contains the following preliminary information: individual assessment sheet, instructor notes, and primary objectives. The second section consists of lessons and worksheets on the following topics: graph-related vocabulary, types of graphs and their purposes, introduction to control charts, and plotting points. The final three sections contain answers to the worksheets, a posttest, and a posttest answer key.
Fieldcrest Cannon, Inc.
Advanced Technical Preparation
Statistical Process Control (SPC)

PRE-SPC II
SPC & Graphs
Instructor Book

Instructor: ____________________________

Workforce Education Services

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY
SD Aveitt
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."
World Class Manufacturer
World Class Workforce
Table of Contents

1. Preliminary Information
 • Individual Assessment Sheet
 • Instructor Notes
 • Primary Objectives

2. PRE-SPC Lessons and Worksheets
 • Vocabulary Quick Reference
 • What Are Graphs?
 • Control Chart Introduction
 • Plotting Points

3. Answer Key

4. Posttest

5. Posttest Answer Key
Fieldcrest Cannon, Inc.
Advanced Technical Preparation
Statistical Process Control (SPC)

PRE-SPC II Graphs
Individual Assessment Sheet

Associate Name

Social Security Number __ __ __ - __ __ __ __

Plant __________ Location ________________

Pretest PRE-SPC II score _______ N/A Instructor ________ N/A

Date of Pretest _______ N/A Comments ________ N/A

Posttest PRE-SPC II score _______

Date of Posttest _______

Comments __________________
Fieldcrest Cannon, Inc.
Advanced Technical Preparation
Statistical Process Control (SPC)

PRE-SPC II Graphs
Instructor Notes

• Each associate must have access to a calculator

• Encourage associates to write words that they do not know or understand in their vocabulary notebooks (PRE-SPC II participants will need a vocabulary notebook)

• The following book is an integral part of the PRE-SPC II graph module:

Contemporary's Real Numbers
Developing Thinking Skills in Math
Tables, Graphs, and Data Interpretation
Author: Allan D. Suter

• PRE-SPC II Graph mastery level 90% (number correct /total)

• Administer a PRE-SPC II Graph posttest
Forward all graded posttests to: Workforce Education Services
4501 Sears Road
Columbus, Georgia 31907-1762
Primary Objectives for PRE-SPC II

- Improve associates' basic math skills in working with line graphs
- Instruct associates on how to plot points on a graph
- Assist associates in preparing for participation in SPC Training (Control Charts)
PRE-SPC Graphs
Vocabulary Quick Reference
Section 1
Directions
• Read the following text (pp. 1&2)
• Circle words that you do not know
• Ask your instructor to pronounce the words aloud
• Write the words and their definitions in your vocabulary notebook
1. **X**
 Pronounced X Bar / another way to say average
 Average is the result of adding a column of numbers and then dividing the total by the total number of numbers added.

2. **R**
 \(R = \text{range} \)
 The word range has several meanings, but only one applies to SPC. The range is the number found by subtracting the smallest measurement number from the largest measurement number.

3. **\(\bar{R} \)**
 Pronounced R Bar
 The arithmetic average of the ranges for all groups on a control chart.

4. **UCL**
 LCL
 Upper Control Limit
 Lower Control Limit
 The control limits are like boundaries. If the measurements fall outside the boundaries, the process may be "out of control."

 Each time part of a job is checked, the process is compared against the UCL and LCL. If the process goes out of bounds, the associate is alerted to watch the graph for a continued trend.

5. **data**
 Facts, measurements, or information collected for charting

6. **frequency**
 Rate of repetition

7. **limit**
 The final or furthest boundary

8. **mean**
 Another word for average

9. **plot**
 A line drawn on a chart to connect dots -- the dots represent different values

10. **process**
 People, materials, equipment, and environment that produce a product or service
11. SPC
Statistical Process Control - a method of monitoring a process and its output by using statistical techniques such as charts

12. sample
The word sample refers to a part or parts of a larger group to be selected for measurement. The sampling times and measurement numbers will be written in the correct spaces on the chart.

13. specification
A production requirement that pertains to the acceptability of materials, measurements, or any part of a process.

14. trend
Continuous movement up or down; a long series of points without a change in direction

15. variables
Things or qualities that can be measured to show differences
Directions
- Read the following text
- Circle the best answer

1. Another word for average is:
 a. mean
 b. median
 c. mode
 d. frequency

2. A continuous movement up or down; a long series of points without a change in direction is called a:
 a. chart
 b. control
 c. trend
 d. upper control limit (UCL)

3. A method of monitoring a process and its output by using statistical techniques such as charts:
 a. statistical process control
 b. UCL
 c. SPC
 d. both a and c
PRE-SPC Graphs
What Are Graphs?
Section II
What are graphs?

A graph is a visual display of information. Since it is drawn, rather than written, a graph makes it possible for Fieldcrest Cannon associates to get a quick look at a lot of information. A graph also allows associates to make comparisons and draw conclusions.

Although there are various types of graphs, this module will focus on line graphs. A line graph is drawn with one or more thin lines that extend across the graph. This type of graph is most useful in showing trends and developments.

Directions
- Study the following graph
- Answer the questions on the next page

Carding Efficiency
Shifts A & B

Carding Efficiency %

<table>
<thead>
<tr>
<th>Date</th>
<th>Shift A</th>
<th>Shift B</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/21</td>
<td>98</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>7/28</td>
<td>96</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>8/4</td>
<td>94</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>8/11</td>
<td>92</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>8/18</td>
<td>96</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>

Data Collection Dates 7/21 - 8/18/1996
Math Tip
Use the corner of a piece of paper to help determine where points on the line are to be read on each shift.

Directions
- Answer the following questions
- Refer to the graph on page 4

1. What is the title of the graph? ____________________________

2. Data from which shifts are included? ____________________________

3. What do the numbers on the bottom of the graph mean? ____________________________

4. What is the efficiency goal for both shifts? ____________________________

5. What is the efficiency rating for Shift A on 8/4? ____________________________

6. What is the efficiency rating for Shift B on 7/28? ____________________________

7. Which shift has the lowest rating on 8/11? ____________________________
Fieldcrest Cannon associates use line graphs in working with statistical process control (SPC) charts. A line graph gets its name from the thin line that it uses to show data. It allows associates to:

- Establish a quick idea about the data being shown
- Compare data points
- Recognize whether the process is going to produce defects or errors
- Correct problem areas

Since every point on the line has a value, a line graph can be used to show continuous changes in data.

Carding Efficiency

Shifts A, B, and C

<table>
<thead>
<tr>
<th>Carding Efficiency %</th>
<th>100</th>
<th>98</th>
<th>96</th>
<th>94</th>
<th>92</th>
<th>90</th>
<th>88</th>
<th>86</th>
</tr>
</thead>
</table>

Data Collection Dates 7/21 - 8/18/1996
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

Directions
• Refer to the graph on page 6
• Answer the following questions
• Write your answers in the blocks

1. Which shift experienced the lowest efficiency percentage? Identify the week.

Shift ☐

Week ☐

2. Which shift experienced the highest efficiency percentage? Identify the week.

Shift ☐

Week ☐

Graph Tip
The bottom row of numbers (Horizontal or X Axis) on the graph indicates the week of data collection.
A line graph shows changing information in visual form. The graph may represent the following changes in data:

- A line going up shows an increase
- A line going down shows a decrease
- If a line rises steadily over several points, it shows an upward trend
- If a line falls steadily over several points, it shows a downward trend

Look at the graph.
What is the overall trend?
Explain your answer.
Graphs are pictures of numerical data. A line graph shows changing information in visual form. A line going up shows an increase. A line going down shows a decrease. If a line rises steadily over several points, it shows an upward trend. One that falls steadily over several points shows a downward trend.

Every line graph should have a title and two scales. The title tells what is being measured. The scales tell how the information is being measured. A horizontal scale goes across the graph. A vertical scale goes up and down the side of the graph.

Directions
- Study the following graph
- Fill in the blanks on page 10
Directions
- Refer to page 9
- Select words from the word box above to complete the following sentences
- Write the words on the lines provided

The title on the previous page tells us that the graph shows ________________
______________ ________________. The vertical scale shows temperature readings in ________________. Each dot shows the temperature reading at a certain time. The temperature is read from the left and the time is read from the ________________ of the graph.
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

Hourly Temperature Readings

Temperature Readings (In Degrees)

<table>
<thead>
<tr>
<th>Noon</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions

- Answer the following questions
- Write your answers on the lines provided

1. What is the highest temperature reading?

 Time _________ Temperature Reading _________

2. What was the lowest temperature reading on the graph?

 Time _________ Temperature Reading _________

3. When was there an upward trend?

 There was an upward trend from _________ until _________ o'clock.
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

Associate Progress Report

Test Scores (% Correct)

<table>
<thead>
<tr>
<th>Tests</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>65</td>
<td>60</td>
</tr>
</tbody>
</table>

Directions
- Study the graph
- Answer the following questions

1. Overall, have the associate's test scores improved? ________________

2. If 70% is the lowest passing score, how many tests did the associate pass? _______
Associate Progress Report

Test Scores (% Correct)

<table>
<thead>
<tr>
<th>Test Scores</th>
<th>85</th>
<th>80</th>
<th>75</th>
<th>70</th>
<th>65</th>
<th>60</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Directions
- Study the graph
- Answer the following questions

- Sometimes a dot falls between two lines on a graph.
- The associate must estimate the answer when the dot does not fall exactly on a line.

1. Which test score does not fall on a line? __________________________

2. Refer to question 1. What is the estimated test score? __________________________
Ask your instructor for the following book:

Contemporary's Real Numbers
Developing Thinking Skills in Math
Tables, Graphs, and Data Interpretation

Allan D. Suter (Pages 35-36)

Note: Associate may choose to complete the entire workbook.
PRE-SPC Graphs
Control Chart Introduction
Section III
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

Introduction

A control chart is a special graph that shows the results of periodic small inspections over time. It is like a moving picture of a manufacturing process. The control charts will show associates when to correct a process and when to leave it alone.

Understanding key words and knowing where to locate them on the control chart are skills that will help associates. Although there are many types of control charts, a sample is shown on the next page. Some of the key words are circled. These words are defined on pages 1 and 2.

Directions
- Answer the following questions
- Write your answers in complete sentences

1. What is a control chart?

2. What information can associates get from the charts?
Quality Training for Quality Improvement

Variables Control Chart

Interpretation Guidelines
- Any point outside the control limits
- A trend of 7 points - all rising or falling
- A run of 7 points - all above or below the centerline
- Any other obvious non-random pattern

Documentation
For every change in the process, write the sample number and answer the following questions:
- What happened?
- How did it happen?
- Why did it happen?
- How was it corrected?
- Who corrected it?
Use the back if necessary.

BEST COPY AVAILABLE
Control charts are often used to display a series of measurements. An upper control limit (UCL) and a lower control limit (LCL) are shown on the chart. The plotting of points on a control chart will show when readings or measurements are out of limits; thus, requiring corrective action. In addition, the charts will show which direction the readings or measurements are trending.

Room Temperature Control Chart

Temperature (Degrees Fahrenheit (F))

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00</td>
<td>73</td>
</tr>
<tr>
<td>5:00</td>
<td>75</td>
</tr>
<tr>
<td>6:00</td>
<td>76</td>
</tr>
<tr>
<td>7:00</td>
<td>75</td>
</tr>
<tr>
<td>8:00</td>
<td>74</td>
</tr>
<tr>
<td>9:00</td>
<td>73</td>
</tr>
</tbody>
</table>

Directions
- Study the graph
- Answer the following questions

1. What temperature represents the upper control limit (UCL)?

2. What temperature represents the lower control limit (LCL)?
The room temperature must be kept between $76 \pm 2^\circ F$

± means plus or minus 2 degrees Fahrenheit, or between 74° and 78°

Directions
- Study the graph
- Answer the following questions

1. What readings are out of limits?

 Time ___________ Temperature Reading ___________

 Time ___________ Temperature Reading ___________

2. Which way did the temperature trend during the shift? ______________

3. At what points should the associate be alerted that an adjustment in temperature may have to be made? ______________
PRE-SPC Graphs
Control Chart -- Plotting Points
Section IV
The following sample measurements were taken every hour:

<table>
<thead>
<tr>
<th>Time</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00</td>
<td>66.9</td>
</tr>
<tr>
<td>5:00</td>
<td>67.0</td>
</tr>
<tr>
<td>6:00</td>
<td>66.8</td>
</tr>
<tr>
<td>7:00</td>
<td>66.6</td>
</tr>
<tr>
<td>8:00</td>
<td>67.1</td>
</tr>
<tr>
<td>9:00</td>
<td>66.2</td>
</tr>
<tr>
<td>10:00</td>
<td>66.0</td>
</tr>
<tr>
<td>11:00</td>
<td>66.6</td>
</tr>
</tbody>
</table>

Direction

Plot the measurements on the graph.

Sample Measurement Records
Refer to the preceding page. The graph is similar to an SPC control chart. The plotted points within the control limits (between the UCL and LCL lines) indicate that the process is in statistical control. When the points are outside the control limits, the process may be out of statistical control -- the associate is alerted to watch the graph for a continued trend. Corrective action may need to be taken.

Directions
- Answer the following question
- Write your answers on the lines provided
- Refer to page 17

When could the process be out of statistical control?

1. Time _________ Measurement _________
2. Time _________ Measurement _________
1. Record sample measurements – readings are listed below
2. Calculate the average and range for each sample
3. Use a calculator

SPC Team Readings

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Measurements</td>
<td>27</td>
<td>26</td>
<td>30</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>Measurements</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>Measurements</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Measurements</td>
<td>30</td>
<td>30</td>
<td>26</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Averages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculating the Average

\[
\frac{3.224}{5} = .645
\]

Calculating the Range

\[
\frac{.649 - .641}{.008} = .008
\]

Note: Work teams are recommended.
1. Refer to page 19
2. Plot the average for each sample

Average Chart

Are any of the averages out of the control limits?
Identify the averages outside the control limits.

Note: Work teams are recommended.
1. Refer to page 19
2. Plot the range for each sample (1-5)

Are any of the ranges out of the control limits? ____________
Identify the ranges outside the control limits. ________________________

Note: Work teams are recommended.
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

PRE-SPC Graphs
Supplemental Material

Do you need more practice?

Ask your instructor for the following book:

Contemporary's Real Numbers
Developing Thinking Skills in Math
Tables, Graphs, and Data Interpretation

Allan D. Suter (Pages 37-39)

Note: Associate may choose to complete the entire workbook.
Page 1A (5 points)
Check vocabulary notebook (words and definitions will vary)

Page 1 & 2 (See Page 1A)

Page 3 (3 points)
1. a 2. c 3. d

Page 4 (0 points)

Page 5 (7 points)
1. Carding Efficiency 2. A & B 3. Dates the information was collected 4. .92 or 92%
5. 94% 6. 98% 7. Shift B

Page 6 (0 points)

Page 7 (4 points)
1. shift B week 8/11 2. shift B week 7/28

Page 8 (2 points)
Sample answer: There tends to be an upward movement -- assuming the points are within the control limits.
Use discretion when awarding points

Page 9 (0 points)

Page 10 (2 points)
Hourly Temperature Readings
degrees
bottom

Page 11 (3 points)
1. 3:00 P.M. 70° 2. Noon 65° 3. Noon 3:00 P.M.

Page 12 (2 points)
1. No 2. 3

Page 13 (2 points)
1. #6 2. Approximately 63

Page 14 (2 points)
1. A control chart is a graph showing the results of periodic small inspections. (answers may vary)
2. Associates can determine if a process needs to be corrected.
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

PRE-SPC II
SPC and Graphs

Answer Key (Continued page 2)

Page 15 (2 points)
1. 78° 2. 74°

Page 16 (3 points)
1. 9:00 73°
 10:00 73°

2. Downward trend
 3. As soon as the temperature drops below LCL - 74° (Between 9:00 and 10:00)

Page 17 (9 points)

Sample Measurement Records

Page 18 (4 points)
1. 8:00 67.1
 2. 10:00 66

Page 19 (20 points)

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>26</td>
<td>30</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>26</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Totals</td>
<td>135</td>
<td>133</td>
<td>133</td>
<td>130</td>
<td>133</td>
</tr>
<tr>
<td>Averages</td>
<td>27</td>
<td>26.6</td>
<td>26.6</td>
<td>26</td>
<td>26.6</td>
</tr>
<tr>
<td>Ranges</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Page 20 (15 points)

⇒ There are two points out of statistical control
⇒ Sample 1 — average 27
⇒ Sample 4 — average 26

Average Chart

Page 21 (15 points)

⇒ All points are out of statistical control

Range Chart

Maximum Points = 100
PRE-SPC Graphs
Control Chart -- Posttest
Section V
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

Directions
- Add the total
- Calculate the sample average
- Calculate the range for each sample measurement
- Calculate the process average (Need help? See page 49, PRE-SPC I)
- Use a calculator

Total, Sample Average, Range, and Process Average

<table>
<thead>
<tr>
<th>Sample Measurement</th>
<th>Monday Sample #1</th>
<th>Tuesday Sample #2</th>
<th>Wednesday Sample #3</th>
<th>Thursday Sample #4</th>
<th>Friday Sample #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>+ 30</td>
<td>+ 30</td>
<td>+ 28</td>
<td>+ 28</td>
<td>+ 31</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the process average? \(\bar{X} = \)
Directions
1. Refer to page 22
2. Plot the averages

Average Chart

1. Identify points out of the control limits.
 Sample ___________ Average ___________
 Sample ___________ Average ___________
 Sample ___________ Average ___________
 Sample ___________ Average ___________
Directions
1. Refer to page 22
2. Plot the ranges

Range Chart

<table>
<thead>
<tr>
<th>Range</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td></td>
</tr>
</tbody>
</table>

1. Identify points outside the control limits.

Sample _______ Range _______

47
Fieldcrest Cannon, Inc.
Advanced Technical Preparation (ATP)

PRE-SPC II
SPC and Graphs
Posttest

Answer Key

Page 22 (40 points)

<table>
<thead>
<tr>
<th>Sample Measurement</th>
<th>Monday Sample #1</th>
<th>Tuesday Sample #2</th>
<th>Wednesday Sample #3</th>
<th>Thursday Sample #4</th>
<th>Friday Sample #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>+30</td>
<td>+30</td>
<td>+28</td>
<td>+28</td>
<td>+31</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>139</td>
</tr>
<tr>
<td>Average</td>
<td>27</td>
<td>26.6</td>
<td>26.6</td>
<td>26.6</td>
<td>27.8</td>
</tr>
<tr>
<td>Range</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

\[
\bar{X} = 26.92 \\

134.6/5 = 26.92

Page 23 (30 points)

Sample 2 26.6 Sample 3 26.6
Sample 4 26.6 Sample 5 27.8

Average Chart

Average

28
27.8
27.6
27.4
27.2
27
26.8
26.6
26.4

Sample

1 2 3 4 5

48
Page 24 (30 points)
Sample 1 5
Sample 5 5

Range Chart

Maximum Points = 100
I. DOCUMENT IDENTIFICATION:

<table>
<thead>
<tr>
<th>Title</th>
<th>ADVANCED TECHNICAL PREPARATION FOR PROCESS CONTROL (SPC) PRE-SEC II (GRAPHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>DR. SALLIE D. AVERITT</td>
</tr>
<tr>
<td>Corporate Source</td>
<td>WORKFORCE EDUCATION SERVICES</td>
</tr>
<tr>
<td>Publication Date</td>
<td>1996</td>
</tr>
</tbody>
</table>

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce the identified document, please CHECK ONE of the following options and sign the release below.

Check here

Level 1

```
Sample sticker to be affixed to document

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."
```

Level 2

```
Sample sticker to be affixed to document

"PERMISSION TO REPRODUCE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY

Sample

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."
```

Sign Here, Please

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Wireless Technologies, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printed Name</td>
<td>SALLIE D. AVERITT, Ed.D.</td>
</tr>
<tr>
<td>Address</td>
<td>PO. BOX 9285, Columbus, GA 31908</td>
</tr>
<tr>
<td>Telephone Number</td>
<td>(706) 561-8518</td>
</tr>
<tr>
<td>Date</td>
<td>11/7/96</td>
</tr>
</tbody>
</table>

OVER