Biotechnology: Education and Training. Special Reference Briefs Series No. SRB 96-08.

National Agricultural Library, Beltsville, MD.

ISSN-1052-536X

Sep 96

52p.; Updates SRB-92-05.

Reference Materials - Directories/Catalogs (132)

MF01/PC03 Plus Postage.

Annotated Bibliographies; *Biotechnology; *Educational Resources; Elementary Secondary Education; Higher Education; Nonformal Education; Training

This document, prepared by The Biotechnology Information Center at the National Agricultural Library, contains sources of information that can provide a starting point for teachers, university faculty, extension agents, and other education leaders who have an interest in biotechnology education and training. Sections include a bibliography of the current literature in the field of biotechnology education and training, a guide to selected print and electronic resources, an author index, and a subject index. The citations included in the bibliography were drawn from the Agricola and ERIC databases. (JRH)
Biotechnology: Education and Training

Special Reference Briefs Series no. SRB 96-08
(updates SRB 92-05)

Compiled By:
Raymond Dobert
Biotechnology Information Center
National Agricultural Library
Agricultural Research Service
U.S. Department of Agriculture
National Agricultural Library Cataloging Record:

Dobert, Raymond.
Biotechnology : education and training.
(Special reference briefs ; 96-08)
1. Biotechnology—Study and teaching—Bibliography.
I. Title.
aZ5071.N3 no.96-08

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720-2791.

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C. 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is an equal employment opportunity employer.
BIOTECHNOLOGY: EDUCATION AND TRAINING

For many Americans, the promise or threat of biotechnology remains in the realm of science-fiction. As biofoods and other products developed using the tools of modern biotechnology begin entering the marketplace in large numbers, the questions about biotechnology will move out of the labs and meeting rooms into the produce aisle, giving consumers the power to make choices about biotechnology-derived foods. While actual knowledge of what biotechnology or genetic engineering is remains extremely low, consumers will need objective information and educational opportunities to help them form individual opinions about the "biotech" products available.

New food and agriculture products derived using the tools of biotechnology are the result of a great deal of research and development. The expansion of biotechnology as an industry will lead to the development of new jobs which require new skills. Thus, training a skilled workforce will be important for the future of biotechnology in the food and agricultural sectors.

To facilitate these processes, The Biotechnology Information Center at the National Agricultural Library has prepared this Special Reference Brief (SRB) in Biotechnology Education and Training. The sources of information found in this guide should provide a good starting point for teachers, university faculty, extension agents, and other education leaders who have an interest in biotechnology education and training.

The publication has several main sections, a bibliography of the current literature in the field of biotechnology education and training; a guide to selected print and electronic resources; an author index and a subject index. The citations included in the bibliography were drawn from the Agricola and ERIC databases. For most citations an NAL call number has been included, those items not in the NAL collection have "N/A" for not available in the call number field.

INDEX

Bibliography .. 1-28

Print Information Resources

Indexes and Abstracts .. 29-30
Dictionaries .. 30
Books .. 31
Journals/Newsletters .. 31

Equipment Resources ... 32

Internet Material .. 33

Author Index ... 35-38

Subject Index .. 39-44
SAMPLE CITATIONS

Citations in this bibliography are from the National Agricultural Library's AGRICOLA database. An explanation of sample journal, book, and audiovisual citations appears below.

Journal Article:

<table>
<thead>
<tr>
<th>Citation number</th>
<th>Title</th>
<th>Publisher</th>
<th>NAL Call Number</th>
</tr>
</thead>
</table>

Book:

<table>
<thead>
<tr>
<th>Citation number</th>
<th>Title</th>
<th>Publisher</th>
<th>NAL Call Number</th>
</tr>
</thead>
</table>

Audiovisual:

<table>
<thead>
<tr>
<th>Citation number</th>
<th>Title</th>
<th>Publisher</th>
<th>Date</th>
<th>NAL Call Number</th>
</tr>
</thead>
</table>
Document Delivery Services to Individuals

The National Agricultural Library (NAL) supplies agricultural materials not found elsewhere to other libraries. Submit requests first to local or state library sources prior to sending to NAL. In the United States, possible sources are public libraries, land-grant university or other large research libraries within a state. In other countries submit requests through major university, national, or provincial institutions.

If the needed publications are not available from these sources, submit requests to NAL with a statement indicating their non-availability. Submit one request per page following the instructions for libraries below.

NAL's Document Delivery Service Information for the Library

The following information is provided to assist your librarian in obtaining the required materials.

Loan Service -- Materials in NAL's collection are loaned only to other U.S. libraries. Requests for loans are made through local public, academic, or special libraries.

The following materials are not available for loan: serials (except USDA serials); rare, reference, and reserve books; microforms; and proceedings of conferences or symposia. Photocopy or microform of non-circulating publications may be purchased as described below.

Document Delivery Service -- Photocopies of articles are available for a fee. Make requests through local public, academic, or special libraries. The library will submit a separate interlibrary loan form for each article or item requested. If the citation is from an NAL database (CAIN/AGRICOLA, Bibliography of Agriculture, or the NAL Catalog) and the call number is given, put that call number in the proper block on the request form. Willingness to pay charges must be indicated on the form. Include compliance with copyright law on the interlibrary loan form or letter. Requests cannot be processed without these statements.

Charges:
- Photocopy, hard copy of microfilm and microfiche -- $5.00 for the first 10 pages or fraction copied from a single article or publication. $3.00 for each additional 10 pages or fraction.
- Duplication of NAL-owned microfilm -- $10.00 per reel.
- Duplication of NAL-owned microfiche -- $5.00 for the first fiche and $.50 for each additional fiche per title.

Billing -- Charges include postage and handling, and are subject to change. Invoices are issued quarterly by the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161. Establishing a deposit account with NTIS is encouraged. DO NOT SEND PREPAYMENT.

Send Requests to: USDA, National Agricultural Library Document Delivery Services Branch, PhotoLab 10301 Baltimore Ave., NAL Bldg. Beltsville, Maryland 20705-2351

Contact the Head, Document Delivery Services Branch at (301) 504-5755 or via Internet at ddsbhead@nal.usda.gov with questions or comments about this policy.
USDA - NATIONAL AGRICULTURAL LIBRARY

ELECTRONIC ACCESS FOR INTERLIBRARY LOAN (ILL) REQUESTS

The National Agricultural Library (NAL) Document Delivery Services Branch accepts ILL requests from libraries via several electronic methods. All requests must comply with established routing and referral policies and procedures. A sample format for ILL requests is printed below along with a list of the required data/format elements.

ELECTRONIC MAIL (Sample form below)

SYSTEM

ADDRESS CODE

INTERNET: lending@nal.usda.gov

Please use the following standardized one word subject line format as the first word in the subject line.

Start subject line with one word format: 3 letter month abbreviation day NAL # of request placed that day

jul25NAL4 (if this is the fourth request sent to NAL on July 25)

OCLC: NAL's symbol AGL need only be entered once but it must be the last entry.

SAMPLE ELECTRONIC MAIL REQUEST

<table>
<thead>
<tr>
<th>AG University/NAL</th>
<th>JUL25NAL4</th>
<th>1/10/95</th>
<th>DATE NOT NEEDED AFTER: 2/15/95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlibrary Loan Department</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture University Library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heartland, IA 56789</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Smith</td>
<td>Faculty</td>
<td>Ag School</td>
<td></td>
</tr>
<tr>
<td>De Jong, R. Comparison of two soil-water models under semi-arid growing conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ver: AGRICOLA</td>
<td>Remarks: Not available at AU or in region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAL Call Number: 56.8 C162</td>
<td>Auth: Charles Johnson</td>
<td>CCL</td>
<td>Maxcost $15.00</td>
</tr>
<tr>
<td>Ariel IP = 111.222.333.444.555 or Fax to 123-456-7890</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TELEFACSIMILE - 301-504-5675. NAL accepts ILL requests via telefacsimile. Requests should be created on standard ILL forms and then faxed to NAL. NAL fills requests via FAX as an alternative to postal delivery at no additional cost. When your fax number is included on your request, NAL will send up to 30 pages per article via fax. If the article length exceeds 30 pages NAL will ship the material via postal service. All requests are processed within our normal timeframes (no RUSH service).

ARIEL- IP Address is 198.202.222.162. NAL fills ILL requests via ARIEL when an ARIEL address is included in the request. NAL treats ARIEL as an alternative delivery mechanism, it does not provide expedited service for these requests. NAL will send up to 30 pages per article via ARIEL. If the article length exceeds 30 pages or cannot be scanned reliably, NAL will deliver the material via postal service.

REQUIRED DATA ELEMENTS/FORMAT

1. Borrower's name and full mailing address must be in block format with at least two blank lines above and below so form may be used in window envelopes.
2. Provide complete citation including verification, etc. and NAL call number if available.
3. Provide authorizing official's name (request will be rejected if not included).
4. Include statement of copyright compliance (if applicable) & willingness to pay NAL charges. Library and institution requests must indicate compliance with copyright by including the initials of one statement, either "CCL" for compliance with Copyright Law or "CCG" for compliance with Copyright Guidelines or a statement that the request complies with U.S. Copyright Law or other acceptable copyright laws (i.e. IFLA, CLA, etc.).
Biotechnology: Education and Training

1 NAL Call No.: 275.8-AG8
Agricultural education: First twenty-five years of the third millennium.
Includes references.
Descriptors: agricultural-education; biotechnology-; teacher-training; curriculum-; program-development; educational-planning; educational-resources; leadership-; public-schools; usa-; teacher-in-service

2 NAL Call No.: HD1773.A5U8
Agriculture and education--partners in progress.
Papers presented at the 44th Professional Agricultural Workers Conference, December 7-9, 1986, at Tuskegee University, Tuskegee, Alabama.
Descriptors: agricultural-education; agricultural-colleges; small-farms; biotechnology-; usa-; extension-activities; usa-

3 NAL Call No.: 275.8-AG8
Agriscience and technology: the answer to program revitalization.
Descriptors: agricultural-education; vocational-training; biotechnology-; technology-transfers; educational-planning; north-dakota

4 NAL Call No.: 275.8-AG8
Agriscience: good for students or just a charade.
Includes references.
Descriptors: agricultural-education; curriculum-; biotechnology-; physics-; mathematics-

5 NAL Call No.: N/A
Algae, electronics and ginger beer: explorations in biotechnology at the governor's school.
TIES Magazine, Philadelphia, PA
Descriptors: Biology; Microbiology; Problem Solving; Science Education; Science Projects; Secondary Education; Student Projects; Summer Science Programs; Technology; Algae; Technology Education
Abstract: Describes a variety of projects that were used in a summer program for gifted high school students to help teach biotechnical concepts and applications. Presents six projects utilizing algae as tool for solving problems. Also presents five production-oriented projects with hydroponics and fermentation as research and development themes.

6 NAL Call No.: N/A
All about amber.
Descriptors: Biology; Dinosaurs; DNA; Entomology; Genetic Engineering; Geology; High Schools; Minerals; Paleontology; Science Education; Scientific Concepts; Scientific Literacy; Amber
Abstract: Describes amber and its hardened form called copal. Explains how amber is formed and where it comes from. Discusses possibilities of obtaining DNA from insects caught in amber.

7 NAL Call No.: Z7994.L3A5
Alternatives to and reduction of animal use in biomedical research, education and testing.
Includes references.
Descriptors: animal-testing-alternatives; toxicity-
Abstract: Biomedical endeavors can be divided into three major categories: research, education, and testing. Within the context of each of these categories, activities involving whole animals have made major contributions and will continue to do so in the future. However, with technological developments in the areas of biotechnology and computers, new methods are already reducing the use of whole animals in certain areas. This article discusses the general issues of alternatives and then focuses on the development of new approaches to toxicity testing.

8 NAL Call No.: QH442.G452
AMA tells physicians to boost agriculture biotechnology.
Descriptors: consumer-education; food-safety; genetic-engineering; food-biotechnology; usa-; american-medical-association

9 NAL Call No.: 1.9-P69P
Appropriate education for plant pathologists planning to work in developing countries.
Descriptors: plant-pathology; education-; biotechnology-; technology-transfers; ecosystems-; tropics-; small-farms; farming-systems; cultural-environment; developing-countries

10 NAL Call No.: N/A
Beginning plant biotechnology laboratories using fast plants.
Descriptors: Agricultural Education; Biology; Environmental Education; Environmental Influences; Higher Education; Laboratory Experiments; Photosynthesis; Plant Growth; Plants (Botany); Science Activities; Science Education; Science Experiments; Secondary Education; Worksheets; Fast Plants; Germination; Life Cycles; Seeds

11 NAL Call No.: QD415 A1B53
Biochemical education in leisure.
Tayyab, S. Biochemical Education v.22(1): p.21-23 (1994 Jan.)
Descriptors: Biochemistry; Educational Games; Higher Education; Molecular Biology; Science Education; Science Instruction; Teaching Methods
Abstract: Presents two alternative teaching approaches to ensure that students become active participants of learning in the biochemistry classroom. Diagrams and rules are provided for using educational playing cards and creating a biochemical comic book.

12 NAL Call No.: QD415 A1B53
Biochemistry is a difficult subject for both student and teacher.
Descriptors: Biochemistry; Higher Education; Instructional Improvement; Molecular Biology; Science Education; Science Instruction; Science Teachers; Scientific Concepts; Teaching Methods
Abstract: Offers suggestions to aid the biochemistry and molecular biology teacher in enhancing student understanding of a subject that borrows from many other areas of study as well as its own.

13 NAL Call No.: QH634.5.C37-1992
Biosynthesis and the integration of cell metabolism.
Descriptors: Biosynthesis-Study-and-teaching; Cell-metabolism-Study-and-teaching
Biotechnology: Education and Training

14 NAL Call No.: N/A
Biotechniques.
Descriptors: Biological Sciences; Biotechnology; Enzymes; Science Activities; Science and Society; Science Education; Science Experiments; Science Instruction; Secondary Education; Secondary School Science; Secondary School Teachers; Teaching Methods; Detergents

Abstract: Biotechnology has arrived in the supermarket in the form of genetically engineered enzymes. Presents an activity in which students explore the presence of protease enzymes in laundry detergents.

15 NAL Call No.: TX341.J6
Biotechnology and food safety: dietetic professionals' views on bovine somatotropin.
Includes references.
Descriptors: food-safety; somatotropin-; biotechnology-; dietary-surveys; pesticides-; consumer-attitudes; men-; women-

Abstract: Some consumer advocates oppose the use of bovine somatotropin (BST), a hormone that can be produced through biotechnology, to increase milk production. The purpose of this study was to assess dietetic professionals' awareness of and attitudes about biotechnology and BST. A questionnaire was mailed to 1192 members of the Missouri Dietetic Association; 517 surveys were returned. Respondents agreed that, when used correctly, additives and pesticides enhance food quality and food production; however, most respondents indicated that they did not know if BST should be approved or if the approval of BST would make milk unsafe to drink. Most respondents indicated that they would tell clients that they did not know whether they should recommend or discourage the purchase of milk from cows treated with BST. Most felt that biotechnology should be controlled and that milk from BST-treated cows should be labeled. Almost all respondents indicated that they would like more information about biotechnology and food. The results of this study indicate that dietetic professionals need more education on biotechnology and BST in order to respond to consumer concerns.

16 NAL Call No.: 500-M663
Biotechnology and its future: implications for school and careers.
Descriptors: biotechnology-; universities-; students-; education-; career-development; minnesota-; university-of-minnesota

17 NAL Call No.: SS44.3.N7S3
Biotechnology and local economic development: biotechnology transfer extension program.
Descriptors: biotechnology-; cooperative-extension-service; diffusion-of-information; new-york

18 NAL Call No.: N/A
Biotechnology and the food industry.
Descriptors: Bacteria; Bakery Industry; Biology; Enzymes; Food; Genetic Engineering; Higher Education; Industry; Resource Materials; Science Activities; Science Education; Secondary Education; Teaching Methods; Technological Advancement; Technology; Biotechnology; Dairy Industry

Abstract: Traditional and novel uses of enzymes and microbes in the baking, brewing, and dairy industries are described. Cheese, yogurt, baking,
Special Reference Brief

brewing, vinegar, soy sauce, single-cell proteins, enzymes, food modification, vanilla, citric acid, monosodium glutamate, xanthan gum, aspartame, and cochineal are discussed. Industrial links with firms involved in food biotechnology are considered and suggestions are made for suitable teaching approaches.

22 NAL Call No.: N/A
Biotechnology career education: educational technology imperative for the 21st century.

Abstract: Biotechnology, the study and application of engineering and science to improve the quality of life, can be an integral part of technology education. Numerous project ideas exist to expose students to the career possibilities of this field.

23 NAL Call No.: Videocassette--no.1773
Biotechnology : careers for the 21st century.

24 NAL Call No.: 389.8-F7398
BIOTECHNOLOGY: Consumer concerns about risks and values.

Abstract: Many scientists would argue that the new food technologies now under development promise...
many benefits with few consequential risks associated with problems of food spoilage or adulteration, such as Salmonella poisoning, and note that we now have the safest, most secure food supply in the world.

25 NAL Call No.: N/A

Biotechnology: economic and behavioral considerations.
Descriptors: Administration; Biomedicine; Cost Effectiveness; Ethics; Health Education; Health Occupations; Higher Education; Needs Assessment; Pharmaceutical Education; Technological Advancement; Biotechnology

Abstract: The paper reviews factors related to effects of biotechnology on the discipline of pharmacy administration including needs assessment, diffusion of technology, cost benefit analysis, marketing, cost containment, patient education and compliance, ethics, and health professions training.

26 NAL Call No.: TP248.2.B546

Title from cover.
Descriptors: Biotechnology-Study-and-teaching-Periodicals

27 NAL Call No.: aS21.D27S64

Biotechnology: education.
(92-05) Bibliography.
Descriptors: biotechnology--; education--; textbooks--; training--; secondary-education; universities--; agriculture--; medicine--; microbiology--; mycology--; pharmacology--; plant-breeding; veterinary-science; bibliographies--

28 NAL Call No.: TP248.22.B54-1992

Biotechnology education inventory: representative activities nationwide.
Descriptors: Biotechnology-Study-and-teaching-United-States

29 NAL Call No.: TP248.65.F66Z55--1994

Biotechnology & food: leader and participant guide. Biotechnology and food, leader and participant guide.
Descriptors: Food-Biotechnology; Food-Study-and-teaching

30 NAL Call No.: 275.28-J82

Biotechnology: implications for Extension.
Hoban, T. J. J-Ext. Madison, Wis.: Extension Journal. v.27p.20-21 (1989 Fall)
Includes references.
Descriptors: biotechnology--; cooperative-extension-service; information-dissemination; educational-programs; roles--

31 NAL Call No.: N/A

Petersen, D. R.; Rehberger, T. (Mid-America Vocational Curriculum Consortium, Stillwater, Okla., U.S. Oklahoma, 1991)
318p.
Descriptors: Agricultural Education; Agricultural Engineering; Agricultural Production; Animal Husbandry; Biology; Botany; Classroom Techniques; Course Content; Educational Resources; Field Crops; Genetic Engineering; Learning Activities; Learning Modules; Lesson Plans; Postsecondary Education; Secondary Education; Teaching Methods; Technological Advancement; Units of Study; Zoology; Biotechnology
Special Reference Brief

Abstract: This curriculum guide is designed to help teachers to present a course that emphasizes the interrelationship of science and technology and the impact of this technology on agriculture and agricultural products. The guide contains six units that each contain some or all of the following basic components of a unit of instruction: objective sheet, suggested activities for the teacher, answers to assignment sheets, written test and answers, unit evaluation form, teacher supplements, transparency masters, information sheets, assignment sheets, student supplements, job sheets, and laboratory sheets.

32 NAL Call No.: QH1 A43
Biotechnology in the high school biology curriculum: the future is here.
Descriptors: Biology; Biotechnology; High Schools; Science Curriculum; Science Education; Science Instruction; Surveys; Measurement Instruments

Abstract: Describes the development and use of a survey instrument designed to make available information regarding the perceptions that teachers have as to the appropriate content areas in biotechnology for a high school biology curriculum and the instructional methods that would best convey this information.

33 NAL Call No.: QH1 A43
Biotechnology in the high school classroom.
Descriptors: Biology; Biotechnology; DNA; Genetics; Science Curriculum; Science Instruction; Scientific Concepts; Scientific Methodology; Secondary Education

Abstract: Describes a project that introduces students to the field of biotechnology and provides them with an understanding of the basic principles and techniques as well as an opportunity to participate in experimental methodology. Presents specific science projects that deal with polymorphism in the lipase gene and the genetic engineering of a lipase gene.

34 NAL Call No.: 275.28-J82
Biotechnology is in our future.
Reiners, N. M.; Roth, D. *J-Ext. Madison, Wis.*: *Extension Journal* v.27 p.19-20 (1989 Fall)
Includes references.
Descriptors: biotechnology-; risks-; safety-; information-sources; cooperative-extension-service; educational-programs

35 NAL Call No.: QH1 A43
Biotechnology outlines for classroom use.
Descriptors: Biology; Biotechnology; Course Descriptions; Definitions; Enzymes; Genetic Engineering; Genetics; Higher Education; High Schools; Lesson Plans; Science Activities; Science Curriculum; Science Education; Science Experiments; Science History; Science Instruction; Secondary School Science

Abstract: Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA.

36 NAL Call No.: TP248.14.B573
Descriptors: Biotechnology-Congresses
Biotechnology: Education and Training

37 NAL Call No.: Videocassette--no.1871
Biotechnology: the choice for your future.
Descriptors: Biotechnology-Vocational-guidance

Abstract: Describes various career opportunities available in the field of biotechnology.

38 NAL Call No.: Q183 U6J68
Breaking the genetic code in a letter by Max Delbruck.
Descriptors: Biology; Coding; DNA; Genetics; Heredity; Higher Education; Science Activities; Science History; Science Instruction

Abstract: Describes a classroom exercise that uses a letter from Max Delbruck to George Beadle to stimulate interest in the mechanics of a nonoverlapping comma-free code. Enables students to participate in the rich history of molecular biology and illustrates to them that scientists and science can be fun.

39 NAL Call No.: S605.5.A43
Can agricultural colleges meet the needs of sustainable agriculture.
Includes references.
Descriptors: agricultural-colleges; sustainability--; agricultural-education; extension--; biotechnology-

Abstract: As concern about the long-term viability of our food and fiber system has grown, many agricultural research administrators, prominent scientists and policymakers have focused increasing attention on the important research and educational needs in sustainable agriculture. Colleges of agriculture should be important in meeting the challenges of sustainable agriculture; a central question is whether they are adequate for the task. This paper highlights several individual and institutional constraints that limit the ability of these colleges to address the needs: 1) assumptions and biases regarding the relationship between humans and nature, and the concept of progress, 2) the demographic characteristics, education, and experience of research scientists, 3) the specialized departmental organization of research institutions; 4) imbalances among analyses on the molecular, cell, organism and ecosystem levels; 5) emphasis on farm level analysis and technology development; 6) new agricultural biotechnologies that may overemphasize short-term, narrow technical considerations and proprietary products; 7) compartmentalization of education by discipline, and the limited informal and field experiences for students; 8) the background and education of current Extension Service agents, 9) the emphasis on economic effects in research impact assessments, to the neglect of environmental effects and social consequences for farmers, rural communities and society at large; 10) limited capability for comprehensive public policy analysis. Despite these limitations, new research agendas and college programs are effectively addressing many needs of sustainable agriculture systems. To be more successful, these efforts must be broad-based and sensitive to a wide range of issues, and must include all participants in the system.

40 NAL Call No.: S544.N6
Careers in biotechnology.
In the subseries: Biotechnology Information Series. Iowa State University, Office of Biotechnology
Descriptors: biotechnology--; career-choice; careers--; career-education

41 NAL Call No.: 275.8-AG8
Changing the curriculum: Will it ever end.
Descriptors: agricultural-education; secondary-education; curriculum--; biotechnology--;
environmental-education; international-trade

42 NAL Call No.: N/A
Cloning—maximize your mediums.
Descriptors: Biology; Biotechnology; High Schools; Plant Propagation; Plants (Botany); Science Activities; Science Education; Science Experiments; Science Instruction; Science Materials; Scientific Concepts; Teaching Methods; Cloning

Abstract: Describes an easy and inexpensive method of preparing experimental growth media that high school students can use for plant cloning investigations.

43 NAL Call No.: 10-OU8
Communication between scientists and consumers.
Includes references.
Descriptors: agricultural-production; biotechnology--; food-production; food-supply; food-safety; macroeconomics--; communication--; consumer-education; scientists-

44 NAL Call No.: N/A
Computer graphics and metaphorical elaboration for learning science concepts.
Descriptors: Animation; Biotechnology; College Students; Computer Graphics; Concept Formation; Educational Media; Foreign Countries; Higher Education; Instructional Effectiveness; Instructional Material Evaluation; Learning Motivation; Learning Processes; Metaphors; Multimedia Instruction; Student Attitudes; Verbal Stimuli; Visual Aids; Visual Stimuli; Design Research; Instructional Materials Motivation Scale; Mental Imagery; Metaphorical Thought; Semantic Features; Visual Displays; Visual Imagery

Abstract: This study explores the instructional impact of using computer multimedia to integrate metaphorical verbal information into graphical representations of biotechnology concepts. The combination of text and graphics into a single metaphor makes concepts dual-coded, and therefore more comprehensible and memorable for the student. Visual stimuli help the learner establish semantic connections between the abstract and the concrete, and it is hoped that metaphoric stimuli can facilitate analogical links between the unfamiliar and the familiar. In this study, six versions of instructional materials were developed: non-graphics without metaphors (control group), static graphics without metaphors, animated graphics without metaphors, non-graphics with metaphors, static graphics with metaphors, and animated graphics with metaphors. Participating college students (n = 120) were randomly assigned into the six groups and studied the materials independently. A criterion-referenced test was used to assess students’ learning performance, while the Instructional Material Motivation Survey (IMMS) was used to gather attitudinal responses. Interviews and observations yielded information about how students employed graphics and metaphors for mental elaboration. Quantitative results suggested that animated graphics plus metaphorical treatment enhanced motivation the most, although metaphorical treatment seemed to be received positively regardless of what accompanied it. Furthermore, the results of the interviews and observations shed light on, among other things, how students process and interpret graphical displays and how the pace of animated presentations influences learning. As a sample of the metaphorical technique, an appendix offers a series of sequential drawings and accompanying verbal information that depict strands of genetic materials as "screwed zippers."
Concern about eating genetically engineered food.
Includes references.
Descriptors: meat--; milk-products--; food-safety--; risk--; consumer-attitudes--; food-production--; genetic-engineering--; food-technology--; consumer-information--; beliefs--; moral-values--; academic-achievement--; women--; consumer-surveys--; household-income--; regional-surveys--; florida--; north-carolina--; educational-attainment

Abstract: Concern about eating genetically engineered food is explored for a sample of residents from Florida and North Carolina. Previous research on consumers’ food safety concerns and perceived risk associated with food production suggests that concern about genetically engineered food is influenced by three factors. Concern is influenced by how well informed consumers are about food technology, their capacity to understand that information, and the compatibility of genetic engineering with consumers’ moral beliefs. Utilizing logistic regression, women and persons who viewed genetic engineering to be morally wrong were found to have greater concern about eating genetically engineered foods. Awareness and educational attainment also decreased concern among North Carolina residents. For the Florida sample, awareness had no effect on concern, and education decreased concern for only one of two types of food. Although addressing concerns based on moral beliefs may be problematic, efforts to better inform consumers, especially women, might reduce their concern.

Biotechnology: Education and Training

Concern about eating genetically engineered food.

Includes references.
Descriptors: meat--; milk-products--; food-safety--; risk--; consumer-attitudes--; food-production--; genetic-engineering--; food-technology--; consumer-information--; beliefs--; moral-values--; academic-achievement--; women--; consumer-surveys--; household-income--; regional-surveys--; florida--; north-carolina--; educational-attainment

Abstract: Concern about eating genetically engineered food is explored for a sample of residents from Florida and North Carolina. Previous research on consumers’ food safety concerns and perceived risk associated with food production suggests that concern about genetically engineered food is influenced by three factors. Concern is influenced by how well informed consumers are about food technology, their capacity to understand that information, and the compatibility of genetic engineering with consumers’ moral beliefs. Utilizing logistic regression, women and persons who viewed genetic engineering to be morally wrong were found to have greater concern about eating genetically engineered foods. Awareness and educational attainment also decreased concern among North Carolina residents. For the Florida sample, awareness had no effect on concern, and education decreased concern for only one of two types of food. Although addressing concerns based on moral beliefs may be problematic, efforts to better inform consumers, especially women, might reduce their concern.

Considering plants.

Descriptors: Biology--; College Science--; Discovery Processes--; Ecology--; Genetics--; Higher Education--; Plant Growth--; Plants (Botany); Research; Resource Materials--; Science Education--; Secondary Education--; Secondary School Science--; Weeds--; Molecular Biology

Abstract: Examples from research that incorporate plants to illustrate biological principles are presented. Topics include dried pea shape, homeotic genes, gene transcription in plants that are touched or wounded, production of grasslands, seaweed defenses, migrating plants, camouflage, and family rivalry. (KR)

The Consultative Group on International Agriculture Research--goals, accomplishments, and current activities.

Literature review.
Descriptors: agricultural-research--; international-organizations--; research-institutes--; objectives--; biological-techniques--; physical-properties--; social-sciences--; training--; biotechnology--; literature-reviews--; developing-countries

Consumer concerns about modern technology in agriculture: considerations for undergraduate and graduate teaching.

Presented at a symposium titled "Animal Agriculture's Image: Issue of Concern to Society" at the ASAS 85th Annu. Mtg., Spokane, WA.
Descriptors: agricultural-education--; biotechnology--; universities--; public-opinion--; consumer-attitudes

Abstract: A number of events over the last several decades have sensitized society to the possible negative impacts of technology. The majority of our population is one or more generations removed from direct experience on farms and ranches. Thus, few individuals are aware of the dramatic changes that have occurred in agriculture. Since the establishment of the land-grant university system,
agriculture in the United States has changed from a system employing 10 million farmers and farm workers each feeding five people to a system in which 2.1 million farmers feed more than 100 people each and support exports of more than $35 billion annually. There are perceptions, as well as survey data, indicating society is concerned about the use and impacts of technology in the food and agriculture system. Survey data indicate 87% of people disagreed that "economic growth is more important than environmental protection." In addition, the survey data indicate society is concerned about how technology is used and who decides which applications are to be pursued. More than 8 out of 10 people (85%) surveyed believed "citizens deserve a greater role in decisions about science and technology." There seems to be concern regarding the use of technology and resultant impacts on the environment, food safety, animal well-being, and the size and numbers of farms in the United States. Education, both formal and informal, is the key to helping the public make informed decisions regarding the role of science and technology in the food and agriculture system. The colleges of agriculture need to carefully evaluate their research, teaching, and extension portfolios to "rediscover" their mission. The "new" mission must be viewed by adapt teaching programs to meet the changing expectations of society and of the food and agriculture system as we enter a new era for agriculture and a new century.

49 NAL Call No.: 389.8-F7398
Consumer concerns and educational strategies: focus on biotechnology.
This record corrects IND 92001478 which was entered incorrectly under call number 389.8 AM34. Descriptors: biotechnology-; food-safety; consumer-attitudes; consumer-protection; consumer-education; environmental-protection; california-

Abstract: Surveys and workshops emphasize that education is the key to public understanding and proper evaluation of biotechnology.

50 NAL Call No.: -FNC 389.8-AM34
Consumer concerns and educational strategies: focus on biotechnology.
Includes references. Descriptors: biotechnology-; food-safety; consumer-attitudes; consumer-protection; consumer-education; environmental-protection; california-

Abstract: Surveys and workshops emphasize that education is the key to public understanding and proper evaluation of biotechnology.

51 NAL Call No.: 100-C12CAG
Cooperative extension at 75: people investigating in California's future.
Descriptors: cooperative-extension-service; information-services; research-projects; biotechnology-; educational-programs; policy-; natural-resources; farming-systems; integrated-pest-management; california-; land-grant-colleges

52 NAL Call No.: Q183 U6J68
Cooperative learning in introductory cell and molecular biology.
Descriptors: Asian Americans; Blacks; College Science; Cooperative Learning; Cytology; Higher Education; Hispanic Americans; Molecular Biology; Science Education; Science Instruction; Teaching Methods; Minority Education

Abstract: Discusses a pilot study conducted to determine whether cooperative learning had a beneficial effect on the academic performance of minority students and subsequent enrollments in the elective courses in biochemistry and molecular biology. Minority students average GPA increased from 2.13 (n=39) to 2.96 (n=17). Enrollment in
Biotechnology: Education and Training

The aforementioned courses increased from one minority student to eight.

53 NAL Call No.: 166.2-N47
Cooperatives in changing environment focus on marketing, equity, research.
Descriptors: cooperatives-; structural-change; agribusiness-; integration-; biotechnology-; agricultural-research; market-competition; communication- skills; educational-programs; usa-

54 NAL Call No.: N/A
A course in immobilized enzyme and cell technology.
Descriptors: Chemical Engineering; Course Content; Course Descriptions; Curriculum Development; Cytology; Elective Courses; Engineering Education; Higher Education; Instructional Materials; Undergraduate Students; Biotechnology

Abstract: Describes an undergraduate course in chemical engineering that details the technology of immobilized enzymes and cells. Includes the course rationale and purpose; the course outline when offered as an engineering elective in the biotechnology area; and discussion of appropriate text, selected real-world applications, and laboratory presentations. (42 references) (JJK)

55 NAL Call No.: TX537.C74-1994
Descriptors: Food-Microbiology-Study-and-teaching; Food-Contamination-Study-and-teaching; Food-adulteration-and-inspection-Study-and-teaching; Radiation-preservation-of-food-Study-and-teaching; curricula-; teaching-materials

56 NAL Call No.: L11 E38
Designing an authentic assessment.
Schnitzer, S. Educational Leadership v.50(7): p.32-35 (1993 Apr.)
Descriptors: Biology; Cooperative Learning; Decision Making; High Schools; Models; Science Tests; Thinking Skills; Aurora Public Schools CO; Authentic Assessment

Abstract: Describes the development of an authentic assessment model identifying 14 complex thinking processes. Two teachers designed a task allowing high school students to demonstrate their biotechnological knowledge and simultaneously deploy a complex thinking process (decision making). This model required students to synthesize and integrate what they had learned and justify the resulting decision to others.

57 NAL Call No.: 80-Ac82
The development of courses for plant tissue culture education.
Descriptors: educational-courses; training-; agricultural-education; northern-ireland; developing-countries; plant-tissue-culture

58 NAL Call No.: QH1 A43
Economic matrices for electrophoresis of dyes or dna: examples of culinary biotechnology.
Descriptors: Biotechnology; DNA; Science Education; Science Experiments; Secondary Education; Electrophoresis
Abstract: Describes an inexpensive replacement for the gel matrix, agarose, to aid teachers in reducing the cost of supplies needed to perform gel electrophoresis experiments.

59 NAL Call No.: S530.J6
Educating the next generation of plant breeders: challenges of integrating plant biotechnology.
Includes references.
Descriptors: agricultural-education; plant-breeding; integrated-systems; biotechnology-

60 NAL Call No.: HD9999.B443E8515
Education and information: the Japanese experience.
Mori, Y. Industrial biotechnology in Europe : issues for public policy / edited by Duncan Davies p.58-64. (1986 Winter)
Descriptors: biotechnology-; technical-progress; information-retrieval; research-; educational-programs; national-expenditure; japan-

61 NAL Call No.: TP248.2.R56
Education for biotechnology.
Rinard, B. F. B. F. 43p. (Center for Occupational Research and Development, Waco, Tex., 1986)
map
Descriptors: Biotechnology-Study-and-teaching; Biotechnology-Curricula

62 NAL Call No.: QK725.C37
Educational services for plant tissue culture.
Descriptors: plants-; tissue-culture; education-

63 NAL Call No.: N/A
The emerging significance of biotechnology for the study of international relations.
Descriptors: Agriculture; Court Litigation; Developed Nations; Developing Nations; Ecology; Futures (of Society); Higher Education; International Law; International Relations; International Studies; International Trade; Policy Formation; Political Issues; Political Science; Research and Development; Science and Society; Theory Practice Relationship; Biological Warfare; Biotechnology; International Systems

Abstract: Considers biotechnology's influence on international relations, focusing on agriculture, environmental issues, law, commerce, and biological warfare. Claims that, because biotechnology cuts across international boundaries and affects public and private interests, it necessitates the rethinking of international systems theory. Urges international relations scholars to examine the political implications of the current scientific, intellectual revolution.

64 NAL Call No.: QD1.A45
Encouraging research, development, and commercialization in agricultural biotechnology.
In the series analytic: Natural and engineered pest management agents / edited by P.A. Hedin, J.J. Menn, and R.M. Hollingworth.
Descriptors: biotechnology-; agriculture-; usda-; technology-transfer; regulations-; property-protection; patents-; consumer-education

Abstract: The applications of biotechnology to agriculture are growing at a significant rate throughout the world. With the application of any new technology, there often arise concerns about possible economic and societal effects. In the case of agricultural biotechnology, these concerns
65 NAL Call No.: HD1755.H86
Enhancing public participation in rural development.
Farrell, K. R. Human resources development in rural America : myth or reality p.108-112 (1986) editor, Thomas T. Williams. Tuskegee, Ala. : Tuskegee University, Human Resources Development Center Descriptors: rural-development; government-; public-investment; participation-; agricultural-policy; decentralization-; technical-progress; biotechnology-; research-; educational-institutions; usa-

66 NAL Call No.: N/A
Establishing a taxonomic structure for the study of biotechnology in secondary school technology education.
Wells, J. G. Journal of Technology Education v.6(1): (1994 Fall) Descriptors: Biotechnology; Classification; Curriculum Development; Secondary Education; Technology Education
Abstract: A Delphi panel of 19 experts identified 8 main knowledge areas of biotechnology: bioprocessing, foundations, genetic engineering, agriculture, biochemistry, medicine, environment, and bioethics. Round 2 elicited 84 subdivisions and round 3 adjusted the ratings. The resulting classification suggests a different context and focus for technology education students than for pure science, medicine, and so forth

67 NAL Call No.: BJ59.B87--1993
Ethics: the next generation or, moral education in the technoscientific enterprise.
Descriptors: Technology-Moral-and-ethical-aspects

68 NAL Call No.: HD9999.B443E85--1993
Europe at work : labour and training in the biotechnology small firm sector : a report for the COMETT II programme.

69 NAL Call No.: TP248.195.E85E97--1994

70 NAL Call No.: HD9000.1.J6

71 NAL Call No.: TP248.185.U48-1991
FDA biotechnology inspection guide : reference materials and training aids.
Special Reference Brief

Descriptors: Biotechnology-United-States-Evaluation-Handbooks,-manuals,-etc

72 NAL Call No.: 275.8-AG8
Food for thought.
Descriptors: agricultural-education; vocational-training; technology-; innovations-; biotechnology-

73 NAL Call No.: QH1 A43
Genetic engineering--a lesson on bioethics for the classroom.
Descriptors: Academic Achievement; Bioethics; Biology; Cognitive Development; Controversial Issues (Course Content); Critical Thinking; Debate; Decision Making; Ethics; Genetic Engineering; Genetics; Pretests Posttests; Questionnaires; Science Activities; Science Curriculum; Science Education; Secondary Education; Secondary School Science; Student Attitudes; Teaching Methods
Abstract: A unit designed to cover the topic of genetic engineering and its ethical considerations is presented. Students are expected to learn the material while using a debate format. A list of objectives for the unit, the debate format, and the results from an opinion questionnaire are described.

74 NAL Call No.: QH1 A43
Genetic transformation of bacteria.
Descriptors: Bacteria; College Science; DNA; Genetic Engineering; Genetics; Heredity; Higher Education; Laboratory Procedures; Microbiology; Science Activities; Science Education; Secondary Education; Secondary School Science; Teaching Methods
Abstract: An activity in which students transform an ampicillin-sensitive strain of E. coli with a plasmid containing a gene for ampicillin resistance is described. The procedure for the preparation of competent cells and the transformation of competent E. coli is provided.

75 NAL Call No.: QH1 A43
Getting DNA into a cell: a survey of transformation methods.
Descriptors: Biotechnology; Genetic Engineering; Genetics; High Schools; Learning Activities; Science Education; Science Instruction; Scientific Concepts; Secondary School Science; Bioengineering

76 NAL Call No.: SB950.2 A1J58
Grassroots strategies for confronting biotechnology.
Descriptors: Activism; Biotechnology; Community Action; Community Education; Environmental Education; Genetic Engineering; Moral Values; Action Plans; Environmental Health; Environmental Issues
Abstract: Describes strategies used by the Biotechnology Working Group during their efforts to influence state and local policy concerning biotechnology issues. Strategies address methods for framing the issue, educating self and others, recruiting allies, and developing citizen pressure.

77 NAL Call No.: S1.A375
High tech in agriculture [Plant and animal biotechnological research, genetic manipulation of microorganisms, Canadian higher education].
Descriptors: Canada-
Impact of education on the attitudes of college students toward biotechnology.
Includes references.
Descriptors: agricultural-education; biotechnology-; college-students; usa-

Implications of biotechnology, risk assessment, and communications for the safety of foods of animal origin.
Includes references.
Descriptors: food-safety; biotechnology-; risk-; consumer-education

Infrastructure and activities of cells.
Descriptors: Cells-Study-and-teaching; Cells-Morphology-Study-and-teaching; Cells-Motility-Study-and-teaching; Cell-interaction-Study-and-teaching; Cell-physiology-Study-and-teaching

Inservice education needs of teachers of pilot agriscience courses in Mississippi.
Descriptors: Agricultural Education; Educational Needs; High Schools; Inservice Teacher Education; Pilot Projects; Agricultural Sciences; Mississippi

Abstract: Most of the 31 (of 39) teachers of pilot agriscience courses surveyed considered themselves competent and thought the units were important. Most pressing inservice needs were in the areas of biotechnology, computers, and mechanical/physical technology. Teachers perceived a lack of instructional materials for these and other less traditional areas, such as aquaculture, entomology, and environmental sciences.

Integrating a biotechnology program into the postsecondary curriculum.
Descriptors: Biotechnology; Curriculum Development; Educational Benefits; Educational Technology; Fused Curriculum; Postsecondary Education; Tables (Data)

Abstract: Integrating a program of biotechnology into the curriculum can help increase student enrollment, stimulate interest, and add educational value and diversity to a school. The program can be a stand-alone program, an independent research study, or a module to be included as part of existing technical courses.

Introducing applications of biotechnology to high school students.
Descriptors: Biochemistry; Biological Sciences; Biomedicine; Chemistry; Course Descriptions; High Schools; Science and Society; Science Education; Secondary Education; Secondary School Science; Technological Advancement; Technology; Biotechnology

Abstract: The need to give high school students a more pragmatic grasp and understanding of technology, in addition to guidance concerning their career paths, is discussed. Described are the design, initiation, methods, topics and evaluation of this exploratory program. Recommendations for future implementation of similar programs are provided.
84 NAL Call No.: HD101.S6
Introducing foods produced using biotechnology: the case of bovine somatotropin.
Includes references.
Descriptors: somatotropin-; milk-consumption; demand-; consumer-attitudes; household-surveys; biotechnology-; demography-; case-studies; virginia-

Abstract: A mailed questionnaire was used to assess consumer concerns and potential consumption response attributable to the introduction of bovine somatotropin (bST). Responses from 605 households in Virginia are described and analyzed. Logit models were estimated to identify which issues shape consumers’ decisions to alter milk purchases contingent on the introduction of bST and to determine whether socioeconomic characteristics explain consumers’ attitudes toward these issues. Estimates based on survey responses point toward sizable reductions in fluid milk purchases if bST is introduced. Large retail price reductions are predicted to be insufficient to offset these estimated decreases. Consumer education and marketing strategies are discussed.

85 NAL Call No.: TP248.22.157-1990
An Introduction to biotechnology. Biotechnology education.
Descriptors: Biotechnology-Study-and-teaching

87 NAL Call No.: QH1 A43
Isolation and characterization of plasmid from E.coli.
Descriptors: Bacteria; Biology; Biotechnology; Genetics; High Schools; Science Activities; Science Education; Escherichia Coli; Plasmids

88 NAL Call No.: SB319.2.F6F56
A laboratory exercise for teaching tissue culture technique using Cyperus alternifolius as a source of explants.
Descriptors: cyperus-alternifolius; tissue-culture; teaching-; organogenesis-; explants-; totipotency-

89 NAL Call No.: SB1.H6
A laboratory exercise to demonstrate adventitious shoot formation using stem internodes of parrot-feather.
Kane, M. E.; McConnell, D. B.; Sheehan, T. J.; Dehgan, B. Hortscience v.23(2): p.408. ill. (1988 Apr.)
Includes references.
Descriptors: teaching-materials; laboratory-methods; tissue-culture; shoots-; growth-; myriophyllum-aquaticum; stems-; internodes-

90 NAL Call No.: 281.28-R88
Land-grant university-industry relationships in biotechnology: a comparison with the non-land-
Biotechnology: Education and Training

Su-Tony research universities.
Includes references.
Descriptors: biotechnology; agricultural-colleges; industry; research-institutes; universities; college-programs; educational-resources; funds; usa-

Abstract: The results of a 1986 survey of 185 biotechnology faculty in the land-grant colleges of agriculture are presented. Comparisons are made to a previous survey of biotechnology faculty in nonagricultural research universities. The survey investigates issues raised by industrial involvement in university biotechnology research and the impact of the new biosciences on the agricultural colleges. It was found that college of agriculture biotechnologists have more recently received their highest degrees, show more industrial involvement, and are more positive about the possible benefits of that involvement than their nonagricultural university counterparts. Industrial funding proved to be a significant exogenous variable affecting the activities and attitudes of agricultural college biotechnology faculty. Those with higher levels of industrial funding appear to have lower university productivity.

91 NAL Call No.: 280.8-J822
Low-input/sustainable agricultural research and education: challenges to the agricultural economics profession.
Includes references.
Descriptors: farm-inputs; alternative-farming; sustained-yield-management; research; educational-programs; agricultural-economics; biotechnology; biological-control; farm-management; trends; usa-

92 NAL Call No.: HD9999.B443E8552--1992
Manpower and training needs for biotechnology in north and south Europe in the '90s: the report of a meeting organised by the COMETT II UETP BEMET held at the Technological Park of Galicia, Spain on 18-19 September 1992.
Descriptors: Biotechnology-industries-Employees-Training-of-Europe

93 NAL Call No.: QK745.P55
Multiplication of Cyperus alternifolius from Axillary Buds in vitro: Instructive Laboratory Exercises.
Includes references.
Descriptors: cyperus-alternifolius; buds; tissue-culture; organogenesis; laboratory-methods; teaching-methods

94 NAL Call No.: Videocassette--no.1980
National Biotechnology Summit : town meeting : toward a scientifically educated America : how can America prepare for the biotechnology revolution. Town meeting.
"S03.
Descriptors: Biotechnology-Study-and-teaching-Congresses/ Biotechnology-Forecasting-Congresses

Abstract: Six speakers discuss the role of education in biotechnology. Topics covered include how to communicate with the public about biotechnology, the education programs offered by the North Carolina Biotechnology Center, and the future of medical research and agricultural biotechnology.

95 NAL Call No.: 41.8-V641
New horizons for veterinary medicine: Can the educators respond.
Includes references.
Special Reference Brief

Descriptors: veterinary-education; veterinary-medicine; teachers-; veterinary-schools; animal-welfare; genetic-engineering; united-kingdom

96 NAL Call No.: S544.N6
A new technological revolution: How will agriculture adjust.
In the series analytic: Policy choices for a changing agriculture / edited by A.L. Frederick and D.R. Henderson.
Descriptors: biotechnology-; agricultural-development; innovation-adoptions; educational-programs; usa-

Abstract: The purpose of this two-part series regarding North American consumer magazine coverage on nutrition and food-related health articles is to help UK readers understand some of the reasons why some consumers do and other consumers don't believe advertising claims for food products and advice from health professionals. Part 1 was a retrospective summary of how, in 1992, journalists presented the latest biomedical research, food labelling issues and advances in food technology. Part 2 now takes a more prospective approach to the business and health education value of keeping in tune with consumers by knowing what magazines are telling their readers.

97 NAL Call No.: QH1 A43
Nucleic acids as information molecules.
Descriptors: Biochemistry; Biology; DNA; Genetics; Higher Education; Molecular Biology; Nucleic Acids; RNA; Science Activities; Scientific Concepts

Abstract: Presents an activity that aims at enabling students to recognize that DNA and RNA are information molecules whose function is to store, copy, and make available the information in biological systems, without feeling overwhelmed by the specialized vocabulary and the minutia of the central dogma.

98 NAL Call No.: TX341.B75
Nutrition education through consumer magazines. 2.
Includes references.
Descriptors: nutrition-education; nutrition-information; periodicals-; consumer-education; consumer-behavior; health-education; trends-; animal- welfare; food-industry; food-biotechnology; men-; women-; usa-; women's-health

Abstract: The purpose of this study was to examine the content and quality of nutrition information in consumer magazines. The study compared the nutritional information in these magazines to the Dietary Guidelines for Americans. The results showed that the nutrition information in these magazines was generally accurate and included a variety of topics.

99 NAL Call No.: QH1.S5
Off-the-shelf bugs hungrily gobble our nastiest pollutants.
Snyder, J. D. Smithsonian v.24(1): p.67-70,72,74,76 (1993 Apr.)
Descriptors: Bacteria; Environmental Education; Genetic Engineering; Microbiology; Poisons; Public Education; Solid Wastes; Waste Disposal; Environmental Problems; Environmental Protection; Oil Spills; Pollutants

Abstract: Describes the historical development of the use of microbes to solve environmental problems such as oil spill clean-up and animal waste disposal.

100 NAL Call No.: BIC Working Tool
The Ohio Science Workbook: Biotechnology.
Reames, S. E. C. (Ohio Academy of Science, Columbus., Ohio, 1993)
Descriptors: Biochemistry; Biology; Biotechnology; Cytology; DNA; Environmental Education; Enzymes; Genetic Engineering; Genetics; High Schools; Laboratory Manuals; Laboratory Procedures; Physiology; Plants (Botany); Science Activities; Science Experiments; Science Projects; Secondary School Science; Hands on Science; Protein
Biotechnology: Education and Training

Abstract: Because of the daily impact of biotechnology, it is important that students have some knowledge and experience with biotechnology in order to enable them to deal with the issues that arise as a result of its implementation. The purpose of this workbook is to assist in the efforts to expose students to the concepts of biotechnology through hands-on project activities. The projects in this book represent ideas that may be used as a starting point for a student project.

101 NAL Call No.: TP248.2.B772--1994
Opportunities in biotechnology careers.
Descriptors: Biotechnology-Vocational-guidance

102 NAL Call No.: 56.8-S039
Pedotechnology--soil genetic engineering: how and why soil scientists should be involved.
A written version of a seminar presented to the University of Maryland, and environs, Pedology, Soil Mineralogy, Soil Chemistry Research Group on February 17, 1989.
Descriptors: soil-science; soil-formation; pedology-; soil-types-anthropogenic; soil-parent-materials; time-; climate-; soil-biology; relief-; agricultural-education; training-; soil-pedogenic-effects

103 NAL Call No.: S494.5 B563T36 1991
Plant biotech lab manual.
Descriptors: Biotechnology; Botany; Higher Education; Plants (Botany); Science Activities; Science Experiments; Science Instruction; Secondary Education

104 NAL Call No.: S530.J6
A plant biotechnology course for distance delivery.
Includes references.
Descriptors: agricultural-education; biotechnology-; video-cameras; audiovisual-aids; continuing-education; south-carolina

105 NAL Call No.: QK710.P63
Plant molecular biology and biotechnology at UNESCO.
Descriptors: plant-breeding; molecular-biology; biotechnology-; educational-programs; educational-institutions; united-nations-educational, -scientific- and-cultural-organization; biotechnology-action-council

106 NAL Call No.: 80-Ac82
Plant tissue culture education at Krakow Agricultural University.
Descriptors: agricultural-education; training-; plant-tissue-culture

107 NAL Call No.: N/A
Plasmid instability in batch cultures of recombinant bacteria. A laboratory experiment.
Descriptors: Bacteria; Biological Sciences; College
Abstract: Described is a laboratory experiment designed to expose students to problem-solving methods individually and as a group. Included are background information, a list of materials, laboratory procedures, analysis methods, and probable results.
Biotechnology: Education and Training

standards, the U.S. Departments of Education and Labor have awarded grants to 22 technical committees, composed of representatives from business, labor, and education, in a variety of industries and occupations. These projects will begin proposing national standards and certification for competencies. This report consists of a profile of each of these 22 projects based on their response to the following sets of questions: (1) What is the definition of industry for your project? What criteria did you use to define the boundaries of your industry? What approach are you using to organize your industry in order to set standards?; (2) What definition of a standard are you using for your project? What is an example of such a standard?; and (3) How will performance against the standards be assessed? Each of the 22 profiles consists of one-page answers to these questions; the address, telephone number, contact, and date project began are also included. The 22 projects are in the following occupational areas: advanced manufacturing; agriscience and biotechnology; heating, air conditioning, and refrigeration occupations; automotive, auto body, and truck technicians; bioscience industry; computer-aided drafting and design; chemical process industries; electrical construction; electronics (both Labor and Education funded projects); food marketing industry; hazardous materials management technician; health science and technology; heavy highway and utility construction and environmental remediation; hospitality and tourism; human services; industrial launderers; metalworking; photonics technician; printing; retail trade; and welding occupations.

Abstract: Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described.

113 NAL Call No.: QH1 A43
Projector center. What is biotechnology?
Descriptors: Biology; College Science; Food; Higher Education; Science and Society; Science Education; Science History; Secondary Education; Secondary School Science; Teaching Methods; Technological Advancement; Technology; Biotechnology

Abstract: Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described.

114 NAL Call No.: QH1 A43
Protein electrophoresis in the biology classroom using "safe" gels.
Descriptors: Biology; Science Education; Science Instruction; Science Materials; Secondary Education; Electrophoresis; Laboratory Techniques; Molecular Biology; Proteins

115 NAL Call No.: Q1.S37
Public acceptance of biotechnology depends on how well scientists communicate the facts.
Descriptors: biotechnology-; public-opinion; communication-skills; science-education

116 NAL Call No.: 389.8-F7398
PUBLIC COMMUNICATIONS: Genetically improved food crops.
Includes references.
Descriptors: biotechnology-; genetic-engineering; food-biotechnology; consumer-education; food-safety; regulations-; communication-; attitudes-

Abstract: This article will address subjects related to public communications on genetically engineered food crops. It will discuss various findings of related public opinion polls on food and give some critics' positions on biotechnology. Concluding the article are recommendations for a broad approach for communicating on biotechnology-related issues.
117 NAL Call No.: 80-Ac82
Rapid-cycling Brassicas as a tool for plant biotechnology education.
Descriptors: brassica-; biotechnology-; educational-resources; plant-tissue-culture

Abstract: A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in society.

118 NAL Call No.: QH1 A43
Rapid transformation of a color mutant of yeast.
Descriptors: Biology; DNA; Genetic Engineering; High Schools; Science Experiments; Science Instruction; Secondary School Science

119 NAL Call No.: N/A
Reclaiming the future: what every educator needs to know.
Hicks, D. Australian Journal of Environmental Education v.9 p.71-84 (1993 Sept.)
Descriptors: Biotechnology; Educational Trends; Elementary Secondary Education; Environmental Education; Futures (of Society); Student Interests; Environmental Education Curriculum; Environmental Issues; World Views

Abstract: Proposes that a futures dimension be included in the environmental education curriculum. Presents eight points to justify its inclusion and eight potential future trends that could be explored. Other methods of envisioning the future and moving forward are discussed.

120 NAL Call No.: QH1 A43
Recombinant DNA for teachers.
Descriptors: Biological Sciences; Biology; DNA; Genetic Engineering; Higher Education; Science and Society; Science Education; Science Instruction; Secondary Education; Teacher Workshops; Biotechnology

Abstract: As powerful as the compelling reasons for reform in science education are, there is also uncertainty about where this reform may lead. This special issue focuses on reform in K-12 science
Biotechnology: Education and Training

education. The 23 articles in this book are placed in the following sections: (1) In this issue, (2) Project 2061, (3) The Scope, Sequence and Coordination (SS&C) Project, (4) Teacher Preparation, (5) Science Assessment, (6) Technology in Science Education, (7) Earth Science Education, and (8) Biotechnology Education. (PR)

123 NAL Call No.: SB1.H6
Research and extension's role in the future of dry bean production in the United States.
Includes references.
Descriptors: phaseolus-; production-possibilities; breeding-aims; disease-resistance; cultivars-; genetic-engineering; extension-education; usa-

124 NAL Call No.: TP248.6.C6-1985
Descriptors: Genetic-engineering-Research-European-Economic-Community-countries; Biochemical-engineering-Research-European-Economic-Community-countries; Plant-genetics-Research-European-Economic-Community-countries; Agriculture-Research-European-Economic-Community-countries; Plant-genetics

125 NAL Call No.: S494.5.B563W57-1988
The role of Extension in the transfer of biotechnology: final report.
Descriptors: United-States-Extension-Service; Agricultural-biotechnology-United-States

126 NAL Call No.: TX945.S344
Role of food biotechnology in child nutrition programs.
Includes references.
Descriptors: school-food-service; food-biotechnology; nutrition-programs; child-nutrition; food-safety

Abstract: Rapid developments in food biotechnology will soon impact child nutrition programs (CNP). Food biotechnology is defined as the application of new technologies of genetic modification of bacteria, plants, and animals to improve specific characteristics of these organisms. This paper describes the field for professionals in CNPs. Our recent history of genetics and the global food situation are used to justify food biotechnology. Specific examples of food biotechnological developments that will be of concern are given for plant production, animal agriculture, microorganism production, and food processing operations. Many applications are discussed that will improve the flavor and textural properties of menu items. Examples of improving the nutritional qualities of menu items are given. Regulatory precautions for maintaining food safety are referenced. Although the need is great, food biotechnology will fail if the public does not trust its developments. When children are informed about food biotechnology, they will grow up accepting its advantages. An example of an action project for school cafeterias is given. CNPs can benefit dramatically from this involvement.

127 NAL Call No.: 389.8-F7398
The sciences of nutrition.
Descriptors: nutrition-; history-; health-protection; biotechnology-; nutrition-knowledge; nutrition-education; innovations-; food-sciences

Abstract: Abstract: This article discusses the history and the future of nutrition as a scientific discipline. Topics include the role of nutrition in
medicine, biotechnology, food technology, nutrition education programs for health professionals, and global nutrition.

128 NAL Call No.: aQK981.4.P76
Scientists as teachers/communicators: the importance of biotechnology education.
Includes references.
Descriptors: biotechnology-; genetic-engineering; agriculture-; education-; scientists-; science-education; research-workers; educational-policy; educational-methods

129 NAL Call No.: SB1.H6
Semiportable laminar flow hood for tissue culture and microscope use for research and teaching.
Includes references.
Descriptors: experimental-equipment; portable-instruments; plants-; tissue-culture; research-; teaching-; microscopes-

130 NAL Call No.: 275.8-AG8
Shift your gears--to high technology.
Descriptors: agricultural-education; technology-; telecommunications-; genetic-engineering; vocational-training

131 NAL Call No.: SS30.J6
Should public funds support biotechnology development? A case about herbicide-resistant cotton.
Includes references.
Descriptors: agricultural-education; herbicide-resistance; biotechnology-; research-support; public-finance; agricultural-financial-policy; ethics-; teaching-methods; case-studies; higher-education; gossypium-hirsutum; genetic-engineering; induced-resistance; bromoxynil-; weed-control; policy-analysis; agricultural-controversies

132 NAL Call No.: TP248.22.S67--1990
A sourcebook of biotechnology activities.
Descriptors: Biotechnology-Study-and-teaching

133 NAL Call No.: QH1 A43
Species identity of commercial stocks of paramecium in the u.s.
Descriptors: Biology; DNA; Elementary Secondary Education; Higher Education; Laboratory Procedures; Microbiology; Science Education; Biotechnology; Laboratory Techniques; Paramecia
Abstract: Describes how paramecium can be identified through the use of DNA-binding fluorescent compounds. The authors used these techniques to test the paramecium stocks from 12 commercial sources. The details of the staining procedures and the results of the commercial tests are presented in this article.

134 NAL Call No.: QH1 A43
Staining for ribonuclease activity in polyacrylamide gels.
Descriptors: Biology; Biotechnology; College Science; Higher Education; Laboratory Procedures; Learning Activities; Plants (Botany); Science Activities; Science Instruction; Teaching Methods; Electrophoresis; Proteins
Biotechnology: Education and Training

Abstract: Describes procedures for identifying the protein ribonuclease from plant tissue extracts using mini-gel electrophoresis.

135 NAL Call No.: 275.8-AG8
Teachers making a difference: Miller and McNutt--a case study.
Includes references. Descriptors: teachers--; agricultural-education; biotechnology--; curriculum--; food-sciences; pennsylvania--

136 NAL Call No.: N/A
Teaching a biotechnology unit in high school general biology.
Descriptors: Biology; Biotechnology; DNA; Genetic Engineering; Heterogeneous Grouping; High Schools; Portfolios (Background Materials); Science Instruction; Secondary School Students; Student Projects; Teaching Methods; Technology Education

Abstract: Describes a unit in biotechnology for average and below average high school students. Students developed productive team membership, used math and communication skills to solve problems, and used the scientific method to learn about biotechnology. Students separated DNA, transformed bacterial cells, interpreted DNA fingerprints, completed creative writing assignments, and produced portfolios of their work.

137 NAL Call No.: N/A

United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Science, Technical and Environmental Education. Descriptors: Bioethics; Biology; Biotechnology; Elementary Secondary Education; Science Activities; Science and Society; Science Curriculum; Science Education; Science Experiments; Science History; Science Instruction; Scientific and Technical Information

Abstract: This document series has been established as part of UNESCO's Science and Technology Programme to encourage an international exchange of ideas and information in science education. This volume addresses the improvement of biotechnology education in school up to year 10 and aims at improving the quantity and quality of biotechnology taught in schools worldwide. The five chapters deal with the following subjects: an overview of biotechnology; the principles and applications of biotechnology; the social implications of biotechnology; and considerations for implementation. In addition to discussing the history and basic principles of biotechnology, the book provides detailed classroom lessons that can be incorporated into many general science and biology programs. The lessons on the science of biotechnology are complemented by discussions of ethical and policy issues related to biotechnology, and these discussions are developed further in the chapter on the social implications of biotechnology and the educational context in which they should be considered. The book concludes with an overview of common barriers to the introduction of biotechnology into the curriculum and with suggestions for overcoming those barriers.

138 NAL Call No.: HD1755.A39-1988
Technological innovations with implications for agricultural economists: a discussion.
Paper presented at a conference on "Agriculture
Special Reference Brief

and Rural Areas Approaching the Twenty-first Century: Challenges for Agricultural Economics," August 7-9, Ames, Iowa.
Descriptors: agricultural-economics; technical-progress; innovations; research; extension-activities; agricultural-structure; biotechnology; information-dissemination; structural-change; educational-programs;

139 NAL Call No.: 275.8 AG8
Theme--agriculture education: 2025.
Riesenberg, L. E.; And Others Agricultural Education Magazine v.63(12): p.4-19 (1991 June)
Descriptors: Admission Criteria; Agricultural Education; Change Strategies; Educational Trends; Futures (of Society); Higher Education; Leadership; Secondary Education; Teacher Education; Teacher Role; Vocational Education; Biotechnology

Abstract: Seven theme articles address predictions for change in the field of vocational agriculture, strategies for effective change, Idaho's revised admission standards, professionalism and leadership development, and the development of skills for the future.

140 NAL Call No.: Z7914.B33T66--1994
Descriptors: Biotechnology-Study-and-teaching-Bibliography

141 NAL Call No.: 275.8-AG8
Toto, I don't think we're in Kansas anymore--agricultural education in a land of biotechnology.
Descriptors: agricultural-education; biotechnology; technology-transfers; educational-planning; north-carolina; usa-

142 NAL Call No.: 80-Ac82
The training and role of the pomologist in Europe's fruit research and industry.
Descriptors: scientists; training; horticulture; higher-education; college-curriculum; organic-farming; agricultural-research; biotechnology; trends; europe; horticulturists; specialized-curriculum; generalized-curriculum

143 NAL Call No.: S530.J6
Training expected for future private breeders.
Includes references.
Descriptors: plant-breeding; training; biotechnology; plant-pathology; private-farms

144 NAL Call No.: S530.J6
Training expected for future public plant breeders.
Includes references.
Descriptors: plant-breeding; training; molecular-genetics; biotechnology

145 NAL Call No.: N/A
Twelfth-grade biology pupils' opinions of interventions of man in nature: agreement, indifference, and ambivalence.
Descriptors: Biology; Educational Research; Foreign Countries; Research Reports; Science and Society; Science Education; Science Instruction; Secondary Education; Biotechnology; Israel;
Biotechnology: Education and Training

Science Education Research

146 NAL Call No.: N/A
Update. Biotechnologists aim to shoot plants.
Descriptors: Biological Sciences; Botany; College
Science; Culturing Techniques; Ethics; Genetic
Engineering; Genetics; Higher Education;
Laboratory Procedures; Plants (Botany); Science
and Society; Science Education; Science
Instruction; Technological Advancement

Abstract: Reviewed are some of the techniques
being used in plant biotechnology laboratories.
Described are tissue culture and genetic
manipulation. Advantages and disadvantages of this
approach and ethics and public concern issues are
discussed.

147 NAL Call No.: SB379.A9A9
The urban connection: farm advisor's role takes
on new direction.
Jan.)
Descriptors: environmental-education; cooperative-
extension-service; pesticides-; waste-disposal;
endangered-species; wetlands-; urban-areas;
agriculture-; safety-; biotechnology-; california-

148 NAL Call No.: Q320.A4
USDA official says biotech vital to ag future.
Feb.)
Descriptors: biotechnology-; food-costs;
regulations-; science-education; usda-; national-
research-council’s-board-on-agriculture

149 NAL Call No.: QH1 A43
A user-friendly method for teaching restriction
enzyme mapping.
Ehrman, P. American Biology Teacher v.52(7):
p.429-35 (1990 Oct.)
Descriptors: Bacteria; Biochemistry; Biology;
College Science; DNA; Enzymes; Genetic
Engineering; Genetics; Higher Education;
Laboratory Procedures; Maps; Nucleic Acids;
Science Activities; Science Education; Structural
Analysis (Science); Biotechnology

Abstract: Presented is a teaching progression that
enhances learning through low-cost, manipulative
transparencies. Discussed is instruction about
restriction enzymes, plasmids, cutting plasmids,
plasmid maps, recording data, and mapping
restriction sites. Mapping wheels for student use is
included.

150 NAL Call No.: Q1 A3S3
UW team reaches out to grade- and high-school
students.
Descriptors: College Faculty; DNA; Genetic
Engineering; High Schools; Molecular Biology;
Outreach Programs; Science Activities; Science
Education; Science Instruction; Science Programs;
Scientific Concepts; Hands on Science; Human
Genome Project

Abstract: Describes an outreach program designed
to expose high school students to cutting-edge
science. High school students are provided with
hands-on experience in molecular biology
(polymerase chain reaction, restriction mapping,
chromatography, gel electrophoresis, human DNA
sequencing, etc.) and may have an opportunity to
participate in the Human Genome Project.

151 NAL Call No.: 241.5 IM7
What are genetic resources and why should they
be conserved?
Hawkes, J. G. Impact of Science on Society
Descriptors: Agricultural Production; College
Science; Endangered Species; Farm Management;
Food; Genetic Engineering; Genetics; Higher
Education; Land Use; Overpopulation; Plant
Propagation; Population Growth; Science Education

Abstract: Discussed is the need for producing
Special Reference Brief

varieties of plants that can withstand the depredations of pests and diseases and are more adapted to stress conditions. Genes for better resistance and adaption are being found in conserved ancient farmers' varieties and related wild species. The importance of conserving these strains is emphasized.

152 NAL Call No.: QH1 A43
What's a nice biology teacher like you doing teaching humanities?
Descriptors: Biological Sciences; College Science; Community Colleges; Controversial Issues (Course Content); Course Descriptions; Ethics; Higher Education; Humanities; Reading Skills; Science Education; Writing Skills; Biotechnology

Abstract: Described is the College Success Program designed to enhance retention of at-risk individuals. The goals, bioethics course offerings at various colleges, course outline for a bioethics course taught in the humanities, and evaluation of the course are discussed.

153 NAL Call No.: 61.8-SE52
World's friendlist biotechnology lab.
Descriptors: tissue-culture; biotechnology-; science-education; usda-; agricultural-research-service
Biotechnology: Education and Training

PRINT INFORMATION SOURCES

Subject Headings

The following Library of Congress subject headings can be used to locate books on biotechnology:

- Agricultural Biotechnology
- Agricultural Engineering
- Animal Biotechnology
- Bioengineering
- Bioethics
- Biotechnology
- Biotechnology Industries
- Cell Nuclei -- Transplantation
- Cloning
- DNA
- Fertilization in vitro
- Gene Libraries
- Gene Mapping
- Genetic Engineering
- Genetic Recombination
- Marine Biotechnology
- Microbial Genetic Engineering
- Molecular Cloning
- Pharmaceutical Biotechnology
- Plant Biotechnology
- Protein Engineering
- Recombinant DNA

The subdivision Biotechnology is also listed under individual and groups of chemicals, such as Insulin--
Biotechnology

Indexes and Abstracts:

Following are some of the indexing and abstracting services that index journal and magazine articles. For some
of the indexes, suggested search terms are also included.

- Applied Science and Technology Index (1913-)
 see: bioengineering, biotechnology, deoxyribonucleic acid, fermentation, gene therapy, genetic
 engineering

- Bibliography of Agriculture (1942-)
 see: biotechnology, clone, genetics, recombinant
 Online database: AGRICOLA

- Biological Abstracts (1926-)
 see the subject index which uses keywords taken from the article titles.
 Examples: biotechnology, cell fusion, clone, DNA, gene regulation
 Online database: Biosis

- Biological and Agricultural Index (1916-)
 see: agricultural biotechnology, biotechnology, genetic engineering.

- Chemical Abstracts (1907-)
 see: biotechnology, deoxyribonucleic acids-- recombinant, genetic engineering
 Online database: CA search
Special Reference Brief

ERIC
see: biotechnology, bioengineering, genetic engineering

Index Medicus (1960-)
see: antibodies, monoclonal, biotechnology, cloning(molecular), DNA recombinant, recombinant proteins
Online database: Medline

Reader's Guide to Periodical Literature (1990-)
see: clones (biology), DNA, genetic research

Science Citation Index (1955-)
see the permuterm subject index which uses keywords from the article titles.
Examples: biotechnology, DNA, genetic(s), recombinant
Online database: Scisearch

Social Sciences Index (1974-)
see: bioethics, biological research, genetic engineering, microbial genetics, recombinant DNA
Online database: Social Scisearch

DICTIONARIES

Biotechnology: Education and Training

BOOKS
In addition to those books found in the bibliography section, these publications provide valuable information for educators.

Massachusetts Biotechnology Research Institute. Biotechnology Resources for Teachers, Worcester, MA, 1993 ($25.00, call 508 797-4200)

JOURNALS/NEWSLETTERS

Biotechnology Education
Pergamon Press, Inc.
660 White Plains Road
Tarrytown, NY 10591
Tel: (914)524-9200

Carolina Genes
North Carolina Biotechnology Center
Box 13547
Research Triangle Park, NC 27709-3547
Tel: (919)541-9366

GENERations - A science education newsletter
Genetics Society of America
c/o Dr. Gail Simmons, Editor
Department of Biology
City College of New York
Convent Avenue at 138th Street
New York, New York 10031
E-MAIL: simmons@scisun.sci.ccny.cuny.edu

Your World/Our World
Pennsylvania Biotechnology Association
1524 W. College Avenue, Suite 206
State College, PA 16801
Tel:(814)238-4080

The American Biology Teacher
National Association of Biology Teachers
11250 Roger Bacon Drive #19
Reston, Virginia 22090
Tel: (703)471-1134
Special Reference Brief

EQUIPMENT RESOURCES

Carolina Biological Supply Co. (Cabisco)
2700 York Road
Burlington, NC 27215
Tel: (800)227-1150
(800)334-5551
FAX: (800)222-7112
caroscipub@aol.com
http://www.carosci.com/

Connecticut Valley Biological
82 Valley Road, P. O. Box 326
Southampton, MA 01073
Tel: (800)628-7748
FAX (413)527-8286

EDVOTEK
P. O. Box 1232
West Bethesda, Maryland 20827-1232
Tel: (800)338-6835

Fotodyne Inc.
Brian Walsh
Educational Products Division
950 Walnut Ridge Drive
Hartland, WI 53029-9399
Tel:(414)369-7000
(800)362-4657

"EPD Digest," published by the Educational Products Division of Fotodyne, Inc., phone 1-800-DNA-FOTO or 800-362-3686

Life Technologies (GIBCO/BRL)
Dr. Ray Hadley
Senior Scientist
Tel: (301) 670-7730
(800) 828-6686 tech services

Modern Biology
P.O. Box 97
Dayton, IN 47941
Tel: (800)733-6544

Nasco
P.O. Box 901
Fort Atkinson, WI 53538-0901
Tel: (800)558-9595

Pharmacia Biotech Inc.
800 Centennial Avenue
Piscataway, NJ 08855
Tel: (800)526-3593

Promega Corp.
Woods Hollow Road
Madison, WI 53713
Tel: (800)356-9526

Stratagene, Inc.
Randy Carver
11011 North Torrey Pines Road
LaJolla, CA 92037
Tel: 1-800-424-5444 ex5569
FAX (619) 535-0045
email: randy_carver@Stratagene.com

Wards' Natural Science Establishment, Inc.
5100 W. Henrietta Rd.
P.O. Box 92912
Rochester, NY 14692
Tel: (716)359-2502
FAX (716)334-6174
Toll-free: (800)962-2660
INTERNET MATERIAL

LISTSERV's

BCEPP - Biotech Education Public Policy Network
Enables people working in biotechnology education and public policy to exchange ideas and documents.
Send mail to: BCEPP@relay.adp.wisc.edu
Subscribe to: listserver@relay.adp.wisc.edu

GENTALK
Discussions on genetic engineering and bioethical issues.
Send mail to: Gentalk@usa.net
Subscribe to: Listserv@usa.net

OTHER INTERNET RESOURCES

Biotechnology Information Center - Educational Resources
http://www.nal.usda.gov/bic/Education_res/
An extensive collection of education documents and links to other biotechnology education sites. Includes sections on General Education materials, Career Information and Training Opportunities.
For more information contact: biotech@nal.usda.gov

Access Excellence
http://www.gene.com/ae/
Access Excellence is a national educational program designed to enhance high school biology education by linking teachers and scientists through an interactive online network that provides peer support as well as access to critical sources of new information about leading-edge research and developments in the biological sciences.
For more information contact: aeperiodic@gene.com

Iowa State University Biotechnology Education Home Page
http://biotech.zool.iastate.edu/Biotech_Public_Ed.html
A collection of education materials from ISU's Office of Biotechnology and numerous other sources. Includes the Biotechnology Information Series, a series of plain language brochures covering the basics of biotechnology and specific applications.

The Biotechnology Education Program for the Public
http://www.biotech.wisc.edu/Education/education.html
A joint program of the UW Biotechnology Center and UW-Extension, this site contains a range of excellent teaching resources including "leader guides", classroom activities and several biotechnology posters.

National Center for Biotechnology Education (NCBE)
http://www.reading.ac.uk:80/NCBE/
Program based at the University of Reading (U.K.), providing access to the lab guide, Practical Biotechnology and other education resources.
Author Index

Acuff, G.R. 79
Adams, P.E. 104
Ahmed, Maryam 33
Airozo, D. 27
Albanese, R.A. 79
Armour, Shaun 14
Armstrong, Kerri 73
Association of Biotechnology Companies (U.S.). Education Committee. 28
Atkins, Thomas 114
Bach, A. 106
Batt, C.A. 79
Battaion, Scott 58
Beall, G.A. 51
Beardsley, Robert S. 25
Belzer, Bill 113
Bentley, O.G. 2
Benton, William E. 107
Berndt, D.L. 79
Biermann, Carol A. 152
BioConferences International, Inc. 94
Biotechnology and Food Videoconference. 29
Biotechnology Education Project. 85
Biotechnology in Europe Manpower, Education and Training (Project). 69
Biotechnology Industry Organization. 37
Biotechnology Industry Organization. Education Committee. 140
Borne, C. 72
Bottino, P.J. 62
Brinkman, M.J. 59
Brown, Sheldon S. 101
Bruening, T.H. 155
Bruhn, C.M. 49, 50
Bull, L.S. 48
Burkhardt, Jeffrey, 1951 67
Busch, L. 24
Byers, F.M. 79
Cartledge, T. G. 13
Case, Christine L. 113
Casells, A.C. 57
Chan, Kung-Chi 44
Chandler, J.M. 131
ChanLin, Lih-Juan 44
Cole, Thomas A. 133
Colorado State University, Cooperative Extension Service. 55
Commission of the European Communities.
Division Genetics and Biotechnology. 124
Cook, Ron C. 42
Coyne, D.P. 123
Cronn, J. 16
Crueger, Anneliese. 20
Crueger, Wulf. 20
Curry, J. 90
Curtis, J. 92
Dale, B.E. 79
Davenport, T.L. 88
Davidson, D. 117
Davis, Lawrence C. 87
Dehgan, B. 89
Denton, J.H. 79
dePamphillis, Claude 109
Dobbins, M.J. 15
Dobert, R. 128
Dreyfus, Amos 145
DuPuis, E.M. 19
Duvall, James G., III 120
Ehrman, Patrick 149
Fall, Ray 14
Fanning, D.S. 102
Farrell, K.R. 65
Ferguson, N.H. 104
Flannery, Maura C. 46
Forsberg, R.A. 144
Fox, Marty 38
Franklin, R.E. 104
Frazier, J.M. 7
Frey, J. 16
Freymark, P.J. 59
Fuchs, R.L. 79
Garrison, Stephen J. 109
Gastel, B. 79
Gates, G. 15
Geisler, C. 19
Gill, K. 53
Gliem, J.A. 4
Goldberg, A.M. 7
Griffin, M. 69
Griffin, M. 68, 92
Halbrendt, C.K. 78
Hall, J. 117
Hall, Julie. 101
Hames, B. David 110
Harlander, S.K. 43
Harley, Suzanne M. 134
Biotechnology: Education and Training

Hassanein, Neva 76
Hawkes, J. G. 151
Hays, Lana 136
Hayward, S. 68, 92
Heidelbaugh, N.D. 79
Henderson, Jenny 18
Hepfer, Carol Ely 86
Hicks, David 119
Hoban 45
Hoban, T. 115
Hoban, T.J. 30, 45, 48
Hobbs, J.E. 70
Holdt, C. 15
Hood, Leroy 150
Hoover, T. 135
Horne, M.E. 47
Hughes, K. 15
Ingenthron, G.D. 116
Israel, G.D. 45
Jaschik, S. 108
Jenkins, R. O. 13
Johnson, Donald M. 81
Jones, D.D. 64
Jones, G.M. 84
Kane, M.E. 89
Karcher, Susan J. 75
Kendall, P.A. 48
Kenney, M. 90
Kerr, W.A. 70
Ketchersid, M.L. 131
King, D.R. 41
Kitto, S.L. 78
Klein, K.K. 70
Knutson, R.D. 138
Kompala, Dhinakar S. 107
Kotlik, J.W. 72
Lacy, W.B. 39
Le Roux, E.J. 77
Leach, C. K. 13
Lee, D. 59
Lee, M. 59
Lee, William E., III 54
Litz, R.E. 88
Luft, V.D. 3
Lundberg, Doug 6
Lyon, J. 117
Madden, P. 91
Markstein, James A. 52
Matheson, Rob 132
McConnell, D.B. 89
McGhan, William F. 25
McGuirk, A.M. 84
McInerney, Joseph D. 97, 137
McNutt, K. 98
Mellano, V.J. 147
Meyer, M.M. Jr. 129
Millam, S. 117
Mohamed Yasseen, Y. 88, 93
Montelone, Beth A. 118
Mori, Y. 60
Moss, Robert. 74
Newman, Michael E. 81
North Carolina Biotechnology Center. 132
Nowels, K.E. 130
Open Universiteit. 13, 80
Paolella, Mary Jane 35
Parton, G. 72
Peterson, D. 3
Peterson, Dennis R. 31
Pfizer Inc. Central Research Division. 23
Phillips, M.J. 96
Plucknett, D.L. 47
Posner, Herbert B. 52
Powers, L. 1
Preston, W.P. 84
Rahn, Mikala L., Comp. 112
Rasmussen, Alison M. 132
Rasmussen, Christine G. 134
Raymond, G. 130
Reames, Spencer E., Comp. 100
Rehberger, Thomas 31
Reiners, N.M. 34
Riesenberg, Lou E. 139
Rinard, Bonnie F. 61
Roth, D. 34
Roth, Zvi 145
Ruggles, Stanford 21
Sansavini, S. 142
Santiago-Blay, Jorge A. 58
Schmidt, Karl 87
Schnitzer, Sandra 56
Sheehan, T.J. 89
Sheerman, Suzanne 146
Silva-Guerrero, Luis 111
Slusher, B. 15
Smith, D. 141
Author Index

Snyder, James D. 99
Soulsby, E.J.L. 95
Spain, J. 15
Splittstoesser, W.E. 88, 93
Staton, J.C. 64
Sterling, L.G. 78
Su, G.Q. 59
Sundquist, W.B. 96
Sutphin, H. Dean 111
Tant, Carl 103
Tayyab, Saad 11
Texas A & M University. Center for Biotechnology Policy and Ethics. 67
Thier, S.O. 127
Thompson, P.B. 131
Thorne, J.C. 143
Thurston, H.D. 9
Tomal, Daniel R. 22, 82
UK Interest Group on Education in Biotechnology. 68, 92
United States. Congress. Senate. Committee on Agriculture, Nutrition, and Forestry. 121
United States. Food and Drug Administration. 71
University of Florida. Biotechnology Institute for Technology Transfer. 36
Unklesbay, K. 126
Unklesbay, N. 126
Vasil, I. K. 36, 105
Veldboom, L.R. 59
Vietor, D.M. 131
Voichick, Jane. 29
Walson, F. 1
Warmbrodt, R.D. 27
Webber, G.D. 40
Weber, G.M. 48
Weber, Kurt 73
Wells, John 5
Wells, John G. 66
Weston, G. D. 13
Wiegele, Thomas C. 63
Wilken, Karen. 55
Williams, Mike 10
Wise, Donald L. 83
Wolek, Francis W. 125
Wood, E. J. 12
Young, A.L. 64
Zeller, Michael F. 32
Zinnen, T. 128
Zinnen, Thomas Matthew. 29
Subject Index

1990-Farm-Bill 108
Academic Achievement 45, 73
academic-freedom 108
Action Plans 76
Activism 76
Administration 25
Admission Criteria 139
agribusiness- .53, 70
Agricultural-biotechnology-United-States 121, 125
agricultural-colleges 2, 39, 90
agricultural-controversies 131
agricultural-development 96
agricultural-economics 91, 138
agricultural-education 1, 2, 3, 4, 10, 31, 39,
41, 48, 57, 59, 72, 78, 81, 102, 104,
106, 108, 111, 130, 131, 135, 139,
141
Agricultural Engineering 31
agricultural-financial-policy 131
agricultural-policy 65
Agricultural Production 31, 43, 151
agricultural-research 47, 53, 142
Agricultural-Research-Service 153
Agricultural Sciences 81
agricultural-structure 138
Agriculture 27, 63, 64, 128, 147
Agriculture-and-state-United-States 121
Agriculture-Research-European-Economic-
Community-countries 124
Agriculture-Research-United-States 121
Algae 5
alternative-farming 91
american-medical-association 8
Animal Husbandry 31
animal-testing-alternatives 7
animal-welfare 95, 98
Animation 44
Asian Americans 52
attitudes- 116
audiovisual-aids 104
Aurora Public Schools CO 56
Authentic Assessment 56, 122
Bacteria 18, 74, 87, 99, 107, 110, 149
Bakery Industry 18
Behavioral Objectives 112
beliefs- 45
bibliographies- 27
Biochemistry 11, 12, 83, 97, 100, 110, 149
Bioethics 73, 137
biological-control 91
Biological Sciences 14, 107, 120, 146,
152
biological-techniques 47
Biological Warfare 63
Biology 5, 6, 10, 18, 31, 32, 33, 35, 38, 42,
46, 56, 73, 87, 97, 100, 109, 113,
114, 118, 120, 133, 134, 136, 137,
145, 149
Biomedicine 25, 83
Biosynthesis-Study-and-teaching 13
Biotechnology-Action-Council 105
Biotechnology-Congresses 36
Biotechnology-Curricula 61
Biotechnology-Forecasting-Congresses 94
Biotechnology-industries-Employees-Training-
of-Europe 92
Biotechnology-industries-Europe-Statistics 68
Biotechnology-Study-and-teaching 20, 61, 85,
132
Biotechnology-Study-and-teaching-Bibliography
140
Biotechnology-Study-and-teaching-Congresses
94
Biotechnology-Study-and-teaching-Higher-
Europe 69
Biotechnology-Study-and-teaching-Periodicals
26
Biotechnology-Study-and-teaching-United-States
28
Biotechnology-Study-and-teaching-United-States-
Evaluation-Handbooks,-manuals,-etc 71
Biotechnology-Vocational-guidance 23, 37,
101
Blacks 52
Botany 31, 103, 146
bovine-growth-hormone 19
brassica- 117
breeding-aims 123
bromoxynil- 131
buds- 93
California- 49, 50, 51, 147
Canada- 70, 77
career-development 16
Career Education 22, 40
careers- 40
Biotechnology: Education and Training

case-studies 84, 131
Cell-interaction-Study-and-teaching 80
Cell-metabolism-Study-and-teaching 13
Cell-physiology-Study-and-teaching 80
Cells-Study-and-teaching 80
Center-for-Rural-Affairs 108
Change Strategies 139
Chemical Engineering 54
Chemical Reactions 109
Chemistry 83, 109
child-nutrition 126
Classification 66
Classroom Research 122
Classroom Techniques 31
climate- 102
Cloning 42
Cognitive Development 73
college-curriculum 142
College Faculty 150
college-programs 90
College Science 46, 52, 74, 86, 107, 110, 113, 134, 146, 149, 151, 152
College Students 44, 78
communication- 43, 116
communication- skills 53, 115
Community Action 76
Community Colleges 152
Community Education 76
Competence 112
Competency Based Education 112
Computer Graphics 44
Concept Formation 44, 122
constraints- 70
consumer-attitudes 15, 45, 48, 49, 50, 84
consumer-behavior 98
consumer-education 8, 24, 43, 49, 50, 64, 79, 98, 116
consumer- information 45
consumer-protection 24, 49, 50
consumer-surveys 45
continuing-education 104
Controversial Issues 73, 152
Cooperative-extension-service 17, 30, 34, 51, 147
Cooperative Learning 52, 56, 107
cooperatives- 53
Cost Effectiveness 25, 111
Course Content 31, 54

Course Descriptions 35, 54, 83, 152
Court Litigation 63
Critical Thinking 73
cultivars- 123
cultural- environment 9
Culturing Techniques 146
curriculum- 1, 4, 41, 55, 108, 135
Curriculum Development 21, 54, 66, 82
Curriculum Research 111
cyperus-alternifolius 88, 93
Cytology 52, 54, 100
dairy-cows 19
Dairy Industry 18
debate 73
decentralization- 65
Decision Making 21, 56, 73
Definitions 35
demand- 84
demography- 84
Design Research 44
detergents 14
Developed Nations 63
developing-countries 9, 47, 57, 63
dietary-surveys 15
diffusion-of-information 17
dinosaurs 6
Discovery Processes 46
disease-resistance 123
DNA 6, 33, 38, 58, 74, 86, 97, 100, 110, 118, 120, 133, 136, 149, 150
DNA Fingerprinting 86
Ecology 46, 63
ecosystems- 9
educational-attainment 45
Educational Benefits 82
Educational Change 122
educational-courses 57
Educational Games 11
educational-institutions 65, 105
Educational Media 44
educational-methods 128
Educational Needs 81
educational-planning 1, 3, 141
educational-policy 128
educational-programs 30, 34, 51, 53, 60, 91, 96, 105, 138
educational-reform 108
Educational Research 111, 145
Subject Index

Educational Technology 82
Educational Trends 119, 139
Elective Courses 54
Electrophoresis 58, 114, 134
Elementary School Science 21, 122
Elementary Secondary Education 21, 119, 122, 133, 137
Emerging Occupations 22
Endangered Species 147, 151
Engineering Education 54
Entomology 6
environmental-education 10, 21, 41, 76, 99, 100, 108, 119, 147
Environmental Education Curriculum 119
Environmental Health 76
Environmental Influences 10
Environmental Issues 76, 119
Environmental Problems 99
Environmental Protection 49, 50, 99
Enzymes 14, 18, 35, 100, 110, 149
Escherichia Coli 87
Ethics 25, 73, 131, 146, 152
Europe-142
experimental-equipment 129
explants-88
extension-activities 2, 39, 138
extension-agents 70
extension-education 123
farm-inputs 91
farm-management 91, 151
farm-surveys 70
farmers'-attitudes 70
farmers-for-alternative-agricultural-research 108
farming-systems 9, 51
Fast Plants 10
Federal Programs 112
Field Crops 31
Florida-45
Food 18, 113, 151
Food-adulteration-and-inspection-Study-and-teaching 55
food-beliefs 24
food-biotechnology 8, 29, 98, 116, 126
Food-Contamination-Study-and-teaching 55
food-costs 148
food-industry 98
Food-Microbiology-Study-and-teaching 55
food-processing 24
food-production 43, 45
food-safety 8, 15, 43, 45, 49, 50, 79, 116, 126
food-sciences 127, 135
Food-Study-and-teaching 29
food-supply 43
food-technology 24, 45
Foreign Countries 44, 145
fused curriculum 82
generalized-curriculum 142
Genetic-engineering-Research-European-Economic-Community-countries 124
Genetics 33, 35, 38, 46, 73, 74, 75, 86, 87, 97, 100, 146, 149, 151
Geology 6
Germination 10
gossypium-hirsutum 131
government-65
green-revolution 19
growth-89
growth-promoters 19, 70
guidelines-108
Hands on Science 100, 150
Health Education 25, 98
health-hazards 24
Health Occupations 25
health-protection 127
herbicide-resistance 131
Heredity 38, 74
Heterogeneous Grouping 136
High Schools 6, 32, 35, 42, 56, 75, 81, 83, 86, 87, 100, 109, 118, 136, 150
Hispanic Americans 52
history-127
horticulture-142
household-income 45
household-surveys 84
Human Genome Project 150
Humanities 152
induced-resistance 131
industry-18, 90
information-dissemination 30, 138
information-retrieval 60
information-services 51, 70
information-sources 34
innovation-adoption 70, 96
innovations-72, 127, 138
Biotechnology: Education and Training

Inservice Teacher Education 81
institutional-administration 19
Instructional Effectiveness 44
Instructional Improvement 12
Instructional Material Evaluation 44
Instructional Materials 54
Instructional Materials Motivation Scale 44
integrated-pest-management 51
integration-systems 59
integration- 53
International Law 63
international-organizations 47
International Relations 63
International Studies 63
International Systems 63
International Trade 41, 63
internodes- 89
Israel 145
Japan- 60
Job Skills 112
Laboratory Equipment 110
Laboratory Experiments 10
Laboratory Manuals 100
laboratory-methods 89, 93
Laboratory Procedures 74, 100, 107, 110, 133, 134, 146, 149
Laboratory Techniques 114, 133
land-grant-colleges 51
Land Use 151
Leadership 1, 139
Learning Activities 31, 75, 86, 134
Learning Modules 31
Learning Motivation 44
Learning Processes 44
Lesson Plans 31, 35
Life Cycles 10
literature-reviews 47
macroeconomics- 43
Maps 149
market-competition 53
market-planning 70
mathematics- 4
Measurement Instruments 32
meat- 45
medicine- 27
men- 15, 98
Mental Imagery 44
Metaphorical Thought 44
Metaphors 44
Microbiology 5, 27, 74, 99, 133
Microbiology-Study-and-teaching 20
microscopes- 129
milk-consumption 84
milk-products 45
Minerals 6
Minneapolis- 16
Minority Education 52
Mississippi 81
Models 56
Molecular Biology 11, 12, 46, 52, 97, 105, 114, 150
molecular-genetics 144
Molecular Structure 110
Moral Values 45, 76
Multimedia Instruction 44
mycology- 27
myriophyllum-aquaticum 89
National Industry Skills Standards Projects 112
National-Research-Council's-Board-on-Agriculture 148
natural-resources 51
Needs Assessment 25
New-York 17
North-Carolina 45, 141
North-Dakota 3
Northern-Ireland 57
Nucleic Acids 97, 110, 149
nutrition- 127
nutrition-education 98, 127
nutrition-information 98
nutrition-knowledge 127
nutrition-programs 126
nutritive-value 24
Occupational Information 22, 112
Oil Spills 99
organic-farming 142
organogenesis- 88, 93
Outreach Programs 150
Overpopulation 151
Paleontology 6
Paramecia 133
participation- 65
patents- 64
pedology- 102
Pennsylvania- 135
Subject Index

periodicals- 98
pesticides- 15, 147
Pharmaceutical Education 25
pharmacology- 27
Phaseolus- 123
Photosynthesis 10
physics- 4
Physiology 100
Pilot Projects 81
plant-breeding 27, 59, 105, 143, 144
Plant-genetics 124
Plant-genetics-Research-European-Economic-Community-countries 124
Plant Growth 10, 46
plant-pathology 9, 143
Plant Propagation 42, 151
plant-tissue-culture 57, 106, 117
plants- 62, 129
Plants (Botany) 10, 42, 46, 100, 103, 134, 146
Plasmids 87
Poisons 99
policy- 51
policy-analysis 131
Policy Formation 63
Political Issues 63
Political Science 63
Pollutants 99
Polymerase Chain Reaction (PCR) 109
Population Growth 151
portable-instruments 129
Postsecondary Education 31, 82, 112
Pretests Posttests 73
private-farms 143
Problem Solving 5, 21, 107
production-possibilities 123
Program Development 1, 112
Project 2061 (AAAS) 122
property-protection 64
Protein 100
Proteins 114, 134
Public Education 99
public-finance 131
public-investment 65
public-opinion 48, 115
public-schools 1
Quality of Life 22
Questionnaires 73
Radiation-preservation-of-food-Study-and-teaching 55
Reading Skills 152
regional-surveys 45
regulations- 64, 116, 148
relief- 102
Research 46, 60, 65, 91, 129, 138
Research and Development 63
research-institutes 47, 90
research needs 111
research-projects 51
Research Reports 145
research-support 108, 131
research-workers 128
Resource Materials 18, 46
risk- 34, 45, 79
RNA 97
rural-development 65
rural-economy 19
rural-sociology 19
safety- 34, 110, 147
school-food-service 126
Science Activities 10, 14, 18, 21, 35, 38, 42, 73, 74, 86, 87, 97, 100, 103, 107, 109, 110, 134, 137, 149, 150
Science and Society 14, 21, 63, 83, 113, 120, 137, 145, 146
Science Curriculum 32, 33, 35, 73, 122, 137
Science Education Research 145
Science Experiments 10, 14, 35, 42, 58, 86, 100, 103, 118, 137
Science History 35, 38, 113, 137
Science Instruction 11, 12, 14, 32, 33, 35, 38, 42, 52, 75, 86, 103, 114, 118, 120, 134, 136, 137, 145, 146, 150
Science Materials 42, 114
Science Programs 150
Science Projects 5, 100
Science Teachers 12, 122
Science Tests 56
Scientific and Technical Information 137
Scientific Concepts 6, 12, 33, 42, 75, 86, 97, 122, 150
Scientific Literacy 6
Scientific Methodology 33
scientists- 43, 128, 142
Scope Sequence and Coordination 122
Secondary Education 5, 10, 14, 18, 27, 31,
Biotechnology: Education and Training

33, 41, 46, 58, 66, 73, 74, 83, 103, 113, 114, 120, 139, 145
Secondary School Science 14, 21, 35, 46, 73, 74, 75, 83, 86, 100, 113, 118, 122
Secondary School Students 136
Secondary School Teachers 14
seeds 10
Semantic Features 44
shoots- 89
Skill Development 112
small-farms 2, 9, 19
social- sciences 47
socio-economic-constraints 70
soil-biology 102
soil-science 102
Solid Wastes 99
somatotropin- 15, 84
South-Carolina 104
specialized-curriculum 142
standards- 24, 112
stems- 89
Structural Analysis (Science) 149
structural-change 53, 138
Student Attitudes 44, 73
Student Evaluation 122
Student Interests 119
Student Projects 5, 136
students- 16
Summer Science Programs 5
Surveys 32
sustainability- 39
Sustainable- agriculture-United-States 121
sustained-yield-management 91
Teacher Education 122, 139
teacher-in-service 1
Teacher Role 139
teacher-training 1
Teacher Workshops 120
teachers- 95, 135
teaching- 88, 129
teaching-materials 55, 89
Teaching Methods 11, 12, 14, 18, 31, 42, 52, 73, 74, 86, 93, 110, 113, 131, 134, 136
technical-progress 60, 65, 138
Technological Advancement 18, 25, 31, 83, 113, 146
Technology 5, 18, 21, 72, 83, 107, 113, 122, 130
Technology Education 5, 22, 66, 136
Technology-Moral-and-ethical-aspects 67
technology-transfer 64
technology-transfers 3, 9, 19, 141
telecommunications- 130
textbooks- 27
Theory Practice Relationship 63
Thinking Skills 56
tissue-culture 62, 88, 89, 93, 129, 153
totipotency- 88
toxicity- 7
training- 27, 47, 57, 102, 106, 142, 143, 144
trends- 91, 98, 142
tropics- 9
Undergraduate Students 54
United-Kingdom 95
United-Nations-educational,-scientific-and-cultural-organization 105
United-States-Extension-Service 125
Units of Study 31
universities- 16, 27, 48, 90
university-of-minnesota 16
urban-areas 147
USA- 1, 2, 8, 53, 65, 78, 90, 91, 96, 98, 108, 123, 138, 141
USDA- 2, 64, 108, 148, 153
Verbal Stimuli 44
terinary-medicine 95
terinary-schools 95
terinary-science 27
video-cameras 104
Virginia- 84
Visual Aids 44
Visual Imagery 44
Visual Stimuli 44
Vocational Education 111, 139
vocational-training 3, 72, 130
Waste Disposal 99, 147
weed-control 131
Weeds 46
wetlands- 147
women- 15, 45, 98
women's-health 98
Worksheets 10
World Views 119
Writing Skills 152
Zoology 31
NOTICE

REPRODUCTION BASIS

☐ This document is covered by a signed “Reproduction Release (Blanket)” form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a “Specific Document” Release form.

✓ This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either “Specific Document” or “Blanket”).