A method of estimating Rasch-model difficulty calibrations from judges' ratings of item difficulty is described. The ability of judges to estimate item difficulty was assessed by correlating estimated and empirical calibrations on each of four examinations offered by the American Association of State Social Work Boards. Thirteen members of the association's examination committee served as expert judges, and seven of these judges rated all four examinations. The correlations were highly significant for all four examinations, so judges seem to be able to distinguish among items of varying difficulty. This method can be used to adjust passing scores that yield unacceptably high or low pass rates. (Contains 3 tables and 26 references.) (Author/SLD)
THE ACCURACY AND USE OF ITEM DIFFICULTY CALIBRATIONS
ESTIMATED FROM JUDGES' RATINGS OF ITEM DIFFICULTY

Kurt T. Taube
American Association of State Social Work Boards

Larry S. Newman
Assessment Systems, Inc.

ABSTRACT

A method of estimating Rasch-model item difficulty calibrations from judges' ratings of item difficulty was described. The ability of judges to estimate item difficulty was assessed by correlating estimated and empirical calibrations on each of four examinations. The correlations were highly significant for all four examinations, so judges seem to be able to distinguish among items of varying difficulty. This method can be used to adjust passing scores which yield unacceptably high or low pass rates.

Presented at the American Educational Research Association annual meeting, New York City, April 12, 1996.
Variations of the Angoff procedure are frequently used to set passing scores for examinations used in licensure and certification. Angoff (1984) described the procedure as follows:

Ask each judge to state the probability that the 'minimally acceptable person' would answer each item correctly. In effect, the judges would think of a number of minimally acceptable persons, instead of only one such person, and would estimate the proportion of minimally acceptable persons who would answer each item correctly. The sum of these probabilities, or proportions, would then represent the minimally acceptable score. (p. 10)

Bowers and Shindoll (1989, p. 1) stated that "the purpose of (a) passing score study (is) to determine the performance of the 'borderline' test taker, i.e., the performance of an individual who is just above the borderline that separates competent from incompetent performance." These individuals are, by definition, neither clearly qualified nor clearly unqualified.

The process of estimating the proportion of minimally competent examinees who will answer a given item correctly is analogous to item response theory (IRT). Harris (1989, p. 35) defined IRT as an attempt to "model the relationship between an unobserved variable, usually conceptualized as an examinee's ability, and the probability of the examinee correctly responding to any particular test item." Kane (1987) suggested that an item's minimum pass level (MPL), or Angoff rating, is an estimate of the true score for minimally competent examinees on that item:

If we assume that there is some value, θ^*, on the θ scale that characterizes minimal competence, then $P_i(\theta^*)$, the value for θ^* of the item characteristic curve for Item i, would indicate the expected observed score on the item for minimally competent examinees. Therefore...the expected MPL over the population of raters for each item should equal $P_i(\theta^*)$ for the item for some fixed value of θ^*. (pp. 334-335)

The process of determining an item's Angoff rating has been described by Harker and Cope (1988):
The judges' task seems appropriately modeled by item response theory....The Angoff method requires them to fix the minimum competence level θ^* of θ, the trait in question. Then they are required to estimate the probability...that an examinee at level θ^* will answer a given item g correctly. $P(\theta^*)$ is not a p-value in the conventional sense. Yet...we suggest that we want them to supply a p-value when in fact we are asking for something else. To judges conversant with item response theory we could more accurately instruct them as follows: "Decide the θ^* that represents the level of minimum competence, then look at the items and estimate their $P(\theta^*)$. You may first want to try estimating b, the difficulty parameter. But you will also need to consider the item discrimination, a. And because the item is multiple choice, you will also want to estimate c, the pseudo-guessing parameter, unless of course you are of the Rasch persuasion, in which case you can take one 'd' for this and all the other items and forget about 'c'." In practice, few if any judges know IRT. Yet this seems to be the sort of thought process expected of them. Their task, so explicated, is difficult. (p. 14)

Given the nature of the process, Haladyna (1994, p. 252) questioned the "underlying assumption...that content experts can look at any item and determine the relative performance of borderline competent professionals." Glass (1978) also questioned whether judges can estimate the performance of minimally competent examinees with any degree of accuracy. Mills and Melican (cited in Wheeler, 1991, p. 1) stated that "one problem associated with the use of item judgment methods has been the low to modest relationship of raters' perception of item difficulty to the actual item difficulty." Shepard (1980, p. 453) wrote that judges "have the sense that they are pulling the probabilities from thin air." Shepard believes that the simplicity of the Angoff procedure is an advantage, because the basic subjectivity of the process is not obscured.

Positive correlations between p-values (the proportion of examinees who answered the item correctly) and mean Angoff ratings of items on national certification examinations have been reported (Norcini, Shea, & Kanya, 1988; Bowers & Shindoll, 1989). Smith and Smith (1988)
transformed p-values and mean Angoff ratings of items from a statewide high school graduation test to log odds and obtained a positive correlation between these variables. Poggio, Glasnapp, and Eros (cited in Ward & Marshall, 1982) reported that student performance on items from competency tests correlated positively with teacher estimates of student performance.

Sometimes judges are asked to choose one of a number of previously defined difficulty values rather than supply one. This is usually referred to as a "modified" Angoff procedure. Some researchers (Ward & Marshall, 1982; Thorndike, cited in Melican, Mills, & Plake, 1989; Wheeler, 1991) have obtained positive correlations between p-values and mean judges' ratings using this procedure. The Angoff and modified Angoff procedures generally yield similar results. Harker and Cope (1988) used both procedures and obtained significantly different passing scores only once in eight trials. Garrido and Payne (1991) noted positive correlations between mean judges' ratings and p-values using both procedures. The difference between the two correlations was not significant.

Klein (1984) believes that judges base their performance estimates on average or above average examinees rather than the minimally competent, thus these estimates will tend to be unrealistically high. Klein (1984) and Norcini (1994) suggested providing judges with performance data to ensure that the resulting standards are reasonable. However, as Klein pointed out, "it is one thing to provide item statistics to content experts, but it is quite another to have the content experts use them appropriately" (p. 5). A number of researchers have observed that the availability of item difficulty data leads judges to conform to the data when making their Angoff ratings. Correlations of item difficulty and judges' ratings with data provided are significantly higher than correlations of item difficulty and ratings made without access to data (Cope, 1987; Harker & Cope, 1988; Norcini et al., 1988; Bowers & Shindoll, 1989; Garrido & Payne, 1991). Indeed, the correlations of item difficulty and judges' ratings with data provided approached unity in two of these studies (Bowers & Shindoll, 1989; Garrido & Payne, 1991).

Judges' reliance on the data is also reflected in the variability of the ratings. When data are provided, ratings conform closely to reported p-values. Difficult items tend to receive lower
ratings, and easier items tend to receive higher ratings, thus, ratings made with data provided are more variable than ratings made without access to data. Bowers and Shindoll (1989) noted that the standard deviation of Angoff ratings made with data provided was 98 percent as large as the standard deviation of the reported p-values, while the standard deviation of ratings made without data was only 52 percent as large. Other researchers (Harker & Cope, 1988; Norcini et al., 1988) have reported similar effects of lesser magnitude. Thus, providing performance data as a "reality check" (Harker & Cope, 1988, p. 13; Norcini, 1994, p. 169) is a questionable practice because it may lead judges to disregard their own judgment (Cope, 1987; Garrido & Payne, 1991; Wheeler, 1991). Performance data were not provided to judges in the present study. For this reason, studies in which data were provided were not included in the literature review.

The present study

Most of the research on the relationship between empirical and estimated item difficulty is based on the correlation of p-values obtained from the entire group of examinees with judges' estimates of the performance of a minimally competent subgroup of these examinees. It would be more appropriate to compare empirical and estimated item difficulty for equivalent groups of examinees.

One possible approach is to correlate Angoff ratings with p-values from groups of examinees identified as minimally competent. Some researchers (Ward & Marshall, 1982; Cope, 1987; Harker & Cope, 1988; Melican et al., 1989) have identified borderline groups of examinees based on performance on the entire examination or other criteria (e.g., course grade). Cope reported positive correlations between mean Angoff ratings and borderline group p-values on a professional certification test. Others (Ward & Marshall, 1982; Harker & Cope, 1988; Melican et al., 1989) have obtained nearly identical correlations between judges' ratings and p-values for the total group and the borderline group. Melican et al. used the Nedelsky procedure, which, like the modified Angoff procedure, allows only a limited number of possible ratings.
Another strategy is to estimate the performance of the entire group of examinees from judges' estimates of the performance of minimally competent examinees. The present study describes a method of estimating Rasch-model item difficulty calibrations from Angoff ratings. These estimated calibrations were then correlated with empirical calibrations derived from the performance of the entire group of examinees. The use of empirical and estimated calibrations rather than p-values and Angoff ratings eliminates one possible source of distortion, because the range of calibrations is not bounded, while proportions can only fall between .00 and 1.00.

METHOD

The examination program

The American Association of State Social Work Boards' (AASSWB) examinations are a criterion of licensure for social workers in 49 states, the District of Columbia, and the Virgin Islands. AASSWB offers four examinations designed to test entry-level competence at four different levels of social work practice. These examinations are denoted Basic, Intermediate, Advanced, and Clinical. Each examination form consists of 170 four-option multiple-choice items, of which 150 count toward an examinee's score and 20 are pretest items which do not count toward an examinee's score.

Standard-setting procedure

Thirteen members of the AASSWB Examination Committee served as expert judges, of whom seven rated all four examinations. A modified Angoff procedure was employed in which ratings were limited to 5 percent increments. Item difficulty data were not provided, and items were not discussed unless the difference between the highest and lowest ratings was at least 20 percent. The raw passing score recommended for each examination was the sum of the mean ratings of all rated items. The recommended passing scores yielded significantly lower pass rates than had been obtained in the past, so the passing scores ultimately applied to each examination.
were 1 to 3 standard errors of measurement lower than those recommended by the committee. Such adjustments are common in setting passing scores on licensure examinations (Biddle, 1993; Cizek, 1996).

Estimation of calibrations from Angoff ratings

The Rasch model estimates the probability of answering a specific item correctly given a certain level of ability, or $p(c|\theta)$, according to the equation:

$$p(c|\theta) = \frac{1}{1 + \exp(b-\theta)}$$

θ represents the examinee's ability, and b represents the difficulty index, or calibration, of the item. Both θ and b are expressed in log-odds units, or logits. When item calibration and examinee ability are equal, the probability of a correct answer is .50.

An Angoff rating can be understood as an estimate of $p(c|\theta)$ at the level of minimal competence, or $p(c|\theta^*)$. This is not a p-value in the usual sense. It is a conditional p-value; an estimate of the proportion of minimally competent examinees who will answer that item correctly.

The previous equation can be algebraically rearranged to solve for $(b^*-\theta^*)$, the expected difference between item difficulty and minimal competence:

$$(b^*-\theta^*) = \ln\left(\frac{1}{p(c|\theta^*)} - 1\right)$$

For example, if an item's Angoff rating is .69:

$$(b^*-\theta^*) = \ln\left(\frac{1}{.69} - 1\right) = \ln(.4493) = -.80$$

This item's estimated calibration is .80 logits below the level of minimal competence. Note that $(b^*-\theta^*)$ cannot be estimated if an item's Angoff rating is .00 or 1.00.

In this procedure, θ^* corresponds to the ability of examinees defined as minimally competent, thus it represents the hypothetical passing score. Therefore, the calibration of each item was estimated by adding the logit corresponding to the recommended raw passing score for that examination to $(b^*-\theta^*)$ as estimated above. Expressed mathematically, $(b^*-\theta^*) + \theta^* = b^*$.
Data analysis

Items were calibrated according to the Rasch model using the BIGSCALE software program (Wright, Linacre, & Schulz, 1990). Each examination was calibrated separately. The relationship between p-value and calibration is inverse, thus easier items have negative calibrations and more difficult items have positive calibrations. Only items which were both rated and calibrated were considered in the present study. Items which were added to the examinations after the standard setting procedure was conducted, or were not calibrated (e.g., more than one answer was later judged to be defensibly correct), were not included.

The ability of the judges to estimate item difficulty was assessed by correlating the estimated (b*) and empirical (b) calibrations for each of the four examinations. To the extent that judges' estimates of item difficulty were accurate, these correlations were expected to be significant and positive.

RESULTS

The p-values, Angoff ratings, and empirical and estimated calibrations obtained for each examination are summarized in Table 1. The standard deviations of the calibrations estimated from mean judges' ratings were only 16-35 percent as large as the standard deviations of the empirical calibrations. This is consistent with results obtained by other researchers (Ward & Marshall, 1982; Harker & Cope, 1988; Bowers & Shindoll, 1989). One reason for this may be the judges' reluctance to rate items as extremely easy or difficult, but the averaging of judges' ratings also accounts for part of this phenomenon. The standard deviation of the calibrations estimated from an individual judge's ratings was larger than the standard deviation of the calibrations estimated from the mean judges' ratings for that examination in 39 of 40 cases.2 Others (Ward & Marshall, 1982; Bowers & Shindoll, 1989) have noted similar results. Note that the mean Angoff rating was higher than the mean p-value for the Intermediate and Advanced examinations. This suggests that the judges' initial estimates of the performance of minimally
competent examinees on these two examinations may have been inconsistent with the actual performance of these examinees.

The correlations between empirical calibrations and calibrations estimated from mean judges' ratings are presented in Table 2. All were highly significant ($p < .001$). The correlations between empirical calibrations and calibrations estimated from individual judges' ratings are also presented in Table 2. These correlations were significant ($p < .05$) for all judges on the Basic examination and for all but one judge on each of the other three examinations (37 of 40 in all), but the judges varied greatly in their ability to estimate item difficulty. Other researchers (Ward & Marshall, 1982; Kleinke, cited in Ward & Marshall, 1982; Cross, Impara, Frary, & Jaeger, 1984; Smith & Smith, 1988; Bowers & Shindoll, 1989) have reported similar results. The highest correlations obtained for individual judges on each examination were similar to the correlations between empirical calibrations and calibrations estimated from mean judges' ratings for that examination. Only once did a correlation based on an individual judge's ratings exceed the correlation based on mean judges' ratings for that examination.

DISCUSSION

The correlations between estimated and empirical calibrations were highly significant for all four examinations. Therefore, judges seem to be able to distinguish among items of varying difficulty to a great extent. These results contradict the fears of researchers such as Glass (1978), Shepard (1980), Mills and Melican (cited in Wheeler, 1991), and Haladyna (1994), and provide a
measure of support for the validity of the Angoff procedure. However, there is much room for improvement. Mean judges' ratings accounted for only 16-39 percent of the variance of the calibrations.

One possible explanation for differences in judges' ability to estimate item difficulty is differences in the expertise of the judges themselves. Chang, Dziuban, Hynes, and Olson (1994) noted that judges tended to set higher standards for items they answered correctly and lower standards for items they answered incorrectly. However, other researchers (Norcini et al., 1988; Plake, Impara, & Potenza, 1994) have failed to obtain this effect.

The accuracy of individual judges, as measured by the correlation between empirical calibrations and calibrations estimated from individual judges' ratings, was not significantly correlated with the mean ($r = -.10$) or standard deviation ($r = -.08$) of the individual's ratings or the mean ($r = .12$) or standard deviation ($r = -.12$) of the calibrations estimated from the individual's ratings.2,3 Inspection and analysis of scatterplots revealed no nonlinear relationships with individual accuracy. Therefore, suggesting that judges alter their ratings to be more stringent, more lenient, or more variable should have little effect on accuracy. However, the relative lack of variability among Angoff ratings produced a systematic pattern of overestimation on difficult items and underestimation on easy items. For example, according to the Rasch model, it was expected that 98-99 percent of minimally competent examinees would respond correctly to the easiest item on each examination. The highest observed Angoff rating was .90, so judges underestimated the performance of minimally competent examinees on the easiest items. In contrast, it was expected that only 9-32 percent of minimally competent examinees would respond correctly to the most difficult item on each examination. All Angoff ratings exceeded .50, so judges substantially overestimated the performance of minimally competent examinees on the most difficult items. The degree of overestimation is partially a result of the Rasch model's lack of a nonzero lower asymptote, but even so, the lowest Angoff ratings were well above chance level. If judges overestimate the performance of minimally competent examinees (Klein, 1984), they do so primarily on difficult items.
Cizek (1996, p. 16) stated that "one particularly vexing issue in standard setting is the issue of adjustments to the data that result from carefully implemented procedures." The Angoff procedure may yield pass rates which are unacceptably high or low. One possible reason for this is that the judges' estimates of the performance of minimally competent examinees are unrealistic. Whatever the cause, the remedy typically involves raising or lowering the passing score by some arbitrary number of standard errors of measurement until an acceptable pass rate is achieved (Biddle, 1993; Cizek, 1996). A more rational method of adjusting the passing score of an examination would be to subtract the difference between the mean estimated and empirical calibrations from the logit equivalent of the unadjusted Angoff passing score. This adjustment is summarized in Table 3. For example, the mean estimated calibration for the Basic examination was .23 logits higher than the mean empirical calibration for that examination. The logit equivalent of the Angoff passing score was 1.13. Therefore, the adjusted passing score (θ^{**}) for this examination can be set at the raw score closest to .90 logits (1.13 - .23). The adjusted raw passing score would be six items lower than that obtained through the Angoff procedure, resulting in a 12 percent increase in the pass rate. Note that the pass rates for the Intermediate and Advanced examinations would still be rather low even after the passing scores are adjusted, so the organization may elect to lower the passing scores for these two examinations by an additional amount. Note also that this adjustment incorporates examinee performance data without contaminating expert judgment.

Insert Table 3 about here

Because ($b^* - \theta^*$) is equal to ($b - \theta^{**}$), identical results are obtained by estimating the ability level corresponding to minimal competence for each item given the item's empirical calibration and Angoff rating, thus bypassing estimated calibrations altogether:

$$\theta^{**} = b - \ln \left(\frac{1}{p(e|\theta^*)} \right) - 1$$
The mean of these estimates is the passing score of the examination expressed in logits. This method deviates from the Angoff procedure in that the standard is defined in terms of the level of minimal competence estimated for each item rather than the ability level corresponding to the sum of the estimated probabilities of correct responses across all items for minimally competent examinees. Note that the test characteristic curve (the expected proportion of correct responses across all items on the examination) is "elongated" in comparison to the Rasch-model item characteristic curve due to variation in item calibrations, so this method will usually result in a lower passing score than that obtained from the Angoff procedure.

This procedure can also be applied to logistic models with more than one parameter. For example, given a three-parameter item for which \(a = 1.15, b = .59, c = .22\), and Angoff rating \((p(c|\theta^*)) = .71:\)

\[
p(c|\theta) = c + (1-c) / (1 + \exp (-1.70240-b))
\]

\[
\theta^{**} = b + \ln \left(((1-c) / (p(c|\theta^*) -c) -1) / -1.702a \right)
\]

\[
\theta^{**} = .59 + \ln \left((.78/.49) -1 \right) / -1.9573 = .86
\]

The estimated ability level corresponding to minimal competence for this item is .86 logits. Cizek (1996) reported that this procedure was used to measure intrajudge consistency in setting achievement levels on the National Assessment of Educational Progress (NAEP). The ability levels corresponding to each of three levels of performance on each item were estimated for each judge. The standard deviation of each judge's estimates at each level provided a measure of intrajudge consistency. In the present study, the correlations between consistency and accuracy, as measured by the correlation between empirical calibrations and calibrations estimated from individual judges' ratings, were highly significant \((r < -.82; p < .01)\) for all four examinations. It is not surprising that judges who hold a more stable conception of minimal competence tend to estimate the performance of minimally competent examinees with greater accuracy.

The Angoff procedure can be quite tedious if large numbers of items must be rated (Grosse & Wright, 1986; Norcini, 1994). Grosse and Wright stated that "approaches to standard setting that require review of a large number of items can result in a cursory review" (p. 280).
Grosse and Wright went on to suggest that a passing score can be set based on a detailed review of a subset of "criterion" items, thus eliminating the need to rate every item on an examination. One such method is the "item mapping" procedure described by McKinley, Newman, and Wiser (1996). Items are placed on a horizontal axis according to their Rasch-model difficulty calibrations. Judges estimate the ability level at which the probability of a correct response for a minimally competent examinee is .50 after reviewing a subset of items in detail. This ability level is the passing score expressed in logits.

As Van der Linden (1982, p. 298) pointed out, "All latent trait models are approximations of the actual characteristic function of the items under consideration. If a model fits this function satisfactorily, it can be used for analyzing the item responses." The use of items in standard setting which do not fit the IRT model being used is a questionable practice, and the consequences of using such items should be investigated further. However, the standard setting procedure described in the present study was conducted before IRT methodology was introduced. Therefore, items which were subsequently determined to fit the Rasch model poorly were included in the standard setting procedure and were later calibrated. The mean θ^{**} was recalculated for each examination after these items were deleted from the data set.

The relationship between calibration (b) and θ^{**} was essentially linear (r_s ranged from .93 to .99), which was expected because b is used to calculate θ^{**}. In this data set, the items which were deleted due to poor fit tended to be more difficult than those which were retained. Therefore, the mean calibrations of the retained items were lower than those of the entire set of items. This resulted in lower mean θ^{**} values, which would have resulted in higher passing rates had the resulting standards been applied. The opposite effect would have occurred if the deleted items were relatively easy. This effect must be taken into account in setting and adjusting passing scores if the entire set of items is not rated. One possible strategy would be to determine the linear regression equation for predicting θ^{**} from item calibration for the rated items, and estimate the value of θ^{**} corresponding to the mean calibration of the entire set of items. The set
of rated items should be relatively large and representative of the content and difficulty
distribution of the examination to ensure accurate estimation of the passing score.

The present study was based on four examinations in one examination program, using
certain judges and statistical assumptions. Replication would be desirable to confirm that the
results obtained in this study occur in other situations.

NOTES

1. All empirical calibrations, estimated calibrations, and logit passing scores reported in this paper
reflect the "bank" scale rather than the "local," or single-administration, scale. The mean local
calibration for any single administration of an examination is .00.

2. One judge assigned ratings of 1.00 to two items on the Intermediate examination. Following
Smith and Smith's (1988) procedure, these ratings were changed to .995 before calibrations were
estimated.

3. Estimated calibrations were expressed in \((b^* - \theta^*) \) form because each examination had a
different logit passing score.

4. Items were considered to fit poorly if either Infit or Outfit (Wright et al., 1990) was
unacceptable \((p < .01) \). Eighteen items met this criterion on the Basic examination, eleven on
Intermediate, seven on Advanced, and fourteen on Clinical.
REFERENCES

Table 1

P-values, Angoff Ratings, and Empirical and Estimated Calibrations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of items</td>
<td>145</td>
<td>145</td>
<td>147</td>
<td>149</td>
</tr>
<tr>
<td>Number of examinees</td>
<td>1121</td>
<td>1008</td>
<td>637</td>
<td>1130</td>
</tr>
<tr>
<td>Number of judges</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

P-value
- Mean: .715, .728, .676, .755
- Standard deviation: .169, .154, .177, .174
- Maximum: .985, .976, .984, .982
- Minimum: .131, .298, .186, .118

Angoff rating
- Mean: .704, .754, .718, .725
- Standard deviation: .044, .061, .031, .039
- Maximum: .832, .900, .806, .806
- Minimum: .568, .573, .628, .511

Empirical calibration (b)
- Mean: .02, .11, .19, .03
- Standard deviation: .99, .94, 1.00, 1.11
- Maximum: 3.15, 2.19, 2.62, 3.53
- Minimum: -3.15, -2.48, -3.11, -2.65

Estimated calibration (b*)
- Mean: .26, .27, .45, .28
- Standard deviation: .22, .33, .16, .19
- Maximum: .86, 1.13, .87, 1.21
- Minimum: -.47, -.78, -.03, -.17
Table 2

Correlations Between Empirical and Estimated Calibrations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration estimated from mean judges' ratings</td>
<td>.46</td>
<td>.42</td>
<td>.40</td>
<td>.62</td>
</tr>
<tr>
<td>Calibration estimated from individual judges' ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>.29</td>
<td>.30</td>
<td>.26</td>
<td>.44</td>
</tr>
<tr>
<td>Maximum</td>
<td>.43</td>
<td>.42</td>
<td>.41</td>
<td>.54</td>
</tr>
<tr>
<td>Minimum</td>
<td>.14</td>
<td>.12</td>
<td>.08</td>
<td>.04</td>
</tr>
</tbody>
</table>

Note. Mean individual correlations were calculated by the Root Mean Square (RMS) procedure described by Cross et al. (1984). RMS is the square root of the mean of a set of squared correlations.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated (b*)</td>
<td>.26</td>
<td>.27</td>
<td>.45</td>
<td>.28</td>
</tr>
<tr>
<td>Empirical (b)</td>
<td>.02</td>
<td>.11</td>
<td>.19</td>
<td>.03</td>
</tr>
<tr>
<td>Difference</td>
<td>.23</td>
<td>.16</td>
<td>.26</td>
<td>.25</td>
</tr>
<tr>
<td>Logit passing score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angoff ((\theta^*))</td>
<td>1.13</td>
<td>1.42</td>
<td>1.39</td>
<td>1.25</td>
</tr>
<tr>
<td>Adjusted ((\theta^{**}))</td>
<td>.90</td>
<td>1.26</td>
<td>1.13</td>
<td>1.01</td>
</tr>
<tr>
<td>Raw passing score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angoff</td>
<td>105</td>
<td>113</td>
<td>108</td>
<td>109</td>
</tr>
<tr>
<td>Adjusted</td>
<td>99</td>
<td>109</td>
<td>101</td>
<td>103</td>
</tr>
<tr>
<td>Pass rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angoff</td>
<td>.652</td>
<td>.456</td>
<td>.355</td>
<td>.700</td>
</tr>
<tr>
<td>Adjusted</td>
<td>.771</td>
<td>.594</td>
<td>.568</td>
<td>.835</td>
</tr>
</tbody>
</table>
I. DOCUMENT IDENTIFICATION:

Title: The accuracy and use of item difficulty calibrations estimated from judges' ratings of item difficulty

Author(s): K. Taube & L. Newman

Corporate Source: ASDWB ASI

Publication Date: 4/96

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce the identified document, please CHECK ONE of the following options and sign the release below.

Check here

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Sample

to the Educational Resources Information Center (ERIC)."

Sample sticker to be affixed to document

or here

"PERMISSION TO REPRODUCE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY

Sample

to the Educational Resources Information Center (ERIC)."

Level 1

Level 2

Sign Here, Please

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

"I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this document as indicated above. Reproduction from the ERIC microfiche or electronic/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries."

Signature: Kurt T. Taube
Printed Name: Kurt T. Taube
Address: 400 South Ridge Parkway, Suite B
Culpeper VA 22701

Position: Psychometrician
Organization: American Association of State Social Work Boards
Telephone Number: (540) 829-6880
Date: 4-10-96
February 27, 1996

Dear AERA Presenter,

Congratulations on being a presenter at AERA¹. The ERIC Clearinghouse on Assessment and Evaluation invites you to contribute to the ERIC database by providing us with a written copy of your presentation.

Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced to over 5,000 organizations. The inclusion of your work makes it readily available to other researchers, provides a permanent archive, and enhances the quality of RIE. Abstracts of your contribution will be accessible through the printed and electronic versions of RIE. The paper will be available through the microfiche collections that are housed at libraries around the world and through the ERIC Document Reproduction Service.

We are gathering all the papers from the AERA Conference. We will route your paper to the appropriate clearinghouse. You will be notified if your paper meets ERIC’s criteria for inclusion in RIE: contribution to education, timeliness, relevance, methodology, effectiveness of presentation, and reproduction quality.

Please sign the Reproduction Release Form on the back of this letter and include it with two copies of your paper. The Release Form gives ERIC permission to make and distribute copies of your paper. It does not preclude you from publishing your work. You can drop off the copies of your paper and Reproduction Release Form at the ERIC booth (23) or mail to our attention at the address below. Please feel free to copy the form for future or additional submissions.

Mail to: AERA 1996/ERIC Acquisitions
The Catholic University of America
O’Boyle Hall, Room 210
Washington, DC 20064

This year ERIC/AE is making a Searchable Conference Program available on the AERA web page (http://tikkun.ed.asu.edu/aera/). Check it out!

Sincerely,

Lawrence M. Rudner, Ph.D.
Director, ERIC/AE

¹If you are an AERA chair or discussant, please save this form for future use.