Analysis of variance (ANOVA) was invented in the 1920s to partition variance of a single dependent variable into uncorrelated parts. Having uncorrelated parts makes the computations involved in ANOVA incredibly easier. This was important before computers were invented, when calculations were all done by hand, and also were done repeatedly to check for calculation errors. This paper demonstrates that ANOVA effects in a balanced design are perfectly uncorrelated. A mathematical proof that the four sums-of-squares (SOS) partitions (two main effect, one two-way interaction, and error) for a factorial two-way design are all uncorrelated, i.e., sum exactly to the SOS of the dependent variable is presented, and a small heuristic data set is included in an appendix to illustrate the proof. (Contains 71 references.) (Author/SLD)
Understanding That ANOVA Effects are Perfectly Uncorrelated

Yvette Hester
Texas A&M University

Fisher invented ANOVA in the 1920's to partition variance of a single dependent variable into uncorrelated parts. Having uncorrelated parts makes the computations involved in ANOVA incredibly easier. This was important before computers were invented, when calculations were all done by hand, and also were done repeatedly, to check for calculation errors.

The present paper demonstrates that ANOVA effects in a balanced design are perfectly uncorrelated. A mathematical proof that the 4 sums-of-squares partitions (2 main effect, 1 two-way interaction, and error) for a factorial two-way design are all uncorrelated, i.e., sum exactly to the SOS of the dependent variable is presented and a small heuristic data set is included to illustrate the proof.
Fisher invented ANOVA in the 1920's to partition variance of a single dependent variable into uncorrelated parts. Having uncorrelated parts makes the computations involved in ANOVA incredibly easier. This was important before computers were invented, when calculations were all done by hand, and also were done repeatedly, to check for calculation errors.

The present paper demonstrates that ANOVA effects in a balanced design are perfectly uncorrelated. A mathematical proof that the 4 sums-of-squares partitions (2 main effect, 1 two-way interaction, and error) for a factorial two-way design are all uncorrelated, i.e., sum exactly to the SOS of the dependent variable is presented and a small heuristic data set is included to illustrate the proof.

Let \(A \) be the independent variable with levels 1, ..., \(j \), ..., \(a \) and subjects 1, ..., \(i \), ..., \(n \). For the one factor case, we can describe the influences responsible for the performance of the \(i^{th} \) subject in the \(j^{th} \) treatment group by writing the \(ij^{th} \) response in terms of the sum of (the overall mean performance of all subjects) and (the difference between the \(j^{th} \) treatment mean and the overall mean) and (the unexplained component of the \(i^{th} \) subject's score).

The statistical model for the one factor completely randomized design with fixed effects is given by

\[
x_{ij} = \mu + (\mu_j - \mu) + (x_{ij} - \mu_j),
\]

which completely accounts for the \(ij^{th} \) response (Kennedy & Bush, 1985).

For ease of notation, let \(\alpha_j = (\mu_j - \mu) \) and \(\epsilon_{ij} = (x_{ij} - \mu_j) \), allowing us to rewrite the model as

\[
(1) \quad x_{ij} = \mu + \alpha_j + \epsilon_{ij}.
\]

Let \(\bar{x}_{..} = \hat{\mu} \rightarrow \mu \) and \(\bar{x}_{j} = \hat{\mu}_j \rightarrow \mu_j \) be the least-squares estimators of the population parameters in the above model. (Note that \(\cdot \) indicates that the subscript varies over all cases whereas the explicit subscript remains fixed. For example, \(\bar{x}_{j} \) is the mean of the \(j^{th} \) treatment group over all subjects 1, ..., \(n \).) Thus, the working model is given as

\[
(2) \quad x_{ij} = \bar{x}_{..} + (\bar{x}_{j} - \bar{x}_{..}) + (x_{ij} - \bar{x}_{j})
\]
where $\alpha_j = (\bar{x}_j - \bar{x}_.)$ and $\varepsilon_{ij} = (x_{ij} - \bar{x}_j)$. Note that α_j denotes the effect for the j^{th} level of the independent variable A and that $\sum_{j}^{a} \alpha_j = 0$. (The assumption of fixed effects is important for this result). Also, recall that $\varepsilon_{ij} \sim N, \mathcal{ID}(0, \sigma^2)$.

To generalize to the two-factor case, let A and B be two independent variables with levels 1,...,a for A, levels 1,...,b for B, and subjects 1,...,n. Note that the set of all values x_{ijk}, for all $i = 1,...,n$, $j = 1,...,a$ and $k = 1,...,b$

can be thought of as a vector with $n \cdot a \cdot b$ entries. For example, suppose $n = 2$, $a = 2$, and $b = 3$. Then this vector has $2 \cdot 2 \cdot 3 = 12$ entries. We write $X = (x_{ijk})$ to stand for the vector having $n \cdot a \cdot b$ entries. This is an $n \times a \times b$ vector, commonly called a tensor, (a tensor can be conceptualized as a 3-dimensional matrix), whose mean is given by

$$\bar{X} = \frac{1}{nab} \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} x_{ijk}.$$

We can now describe and completely account for the ijk^{th} response in a similar manner to the one-factor case ij^{th} response by generalizing the statistical model in equation (1) to

$$(1)^* x_{ijk} = \mu + \alpha_j + \beta_k + \alpha \beta_{jk} + \varepsilon_{ijk}.$$

For ease of notation in writing down the generalized model, we will use the following shorthand:

$$\sum_{i} = \sum_{i=1}^{n}, \sum_{j} = \sum_{j=1}^{a}, \sum_{k} = \sum_{k=1}^{b}.$$

It follows that

$$\sum_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{a}, \sum_{ik} = \sum_{i=1}^{n} \sum_{k=1}^{b}, \sum_{jk} = \sum_{j=1}^{a} \sum_{k=1}^{b}, and \sum_{ijk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b}.$$
The least-squares type estimators are now given as

(a) \[\bar{x}_{..} = \frac{1}{abn} \sum_{ijk} x_{ijk} \rightarrow \mu , \]

(b) \[\bar{x}_{.j} = \frac{1}{bn} \sum_{ik} x_{ijk} \rightarrow \mu_j , \]

(c) \[\bar{x}_{..k} = \frac{1}{an} \sum_{ij} x_{ijk} \rightarrow \mu_k , \]

(d) \[\bar{x}_{jk} = \frac{1}{n} \sum_{i} x_{ijk} \rightarrow \mu_{jk} . \]

Using these estimators, we can define the components of (1)* as

\[\alpha_j = (\bar{x}_{.j} - \bar{x}_{..}) , \quad \beta_k = (\bar{x}_{..k} - \bar{x}_{..}) , \quad \alpha \beta_{jk} = (\bar{x}_{.jk} - \bar{x}_{.j} - \bar{x}_{..k} + \bar{x}_{..}) , \]

and \[\varepsilon_{ijk} = (x_{ijk} - \bar{x}_{.jk}) . \]

Using the estimator \(\bar{x}_{..} \) for \(\mu \) and subtracting it from both sides of equation (1)*, we have

\[(*) \quad x_{ijk} - \bar{x}_{..} = \alpha_j + \beta_k + \alpha \beta_{jk} + \varepsilon_{ijk} . \]

We will use equation (*) and the least-squares type estimators (a) - (d) to prove the following claim.

Claim: \[SS(\text{Total}) = SS(A) + SS(B) + SS(AB) + SS(\text{Error}) \] where all the SS terms are uncorrelated.

Proof: If we square both sides of (*) and sum over all \(ijk \), we have

\[(**) \quad \sum_{ijk} (x_{ijk} - \bar{x}_{..})^2 = \sum_{ijk} (\alpha_j + \beta_k + \alpha \beta_{jk} + \varepsilon_{ijk})^2 \]
\[E = \sum_{ijk} \alpha_{ij}^2 + \sum_{ijk} \beta_{ik}^2 + \sum_{ijk} (\alpha_j \beta_{jk})^2 + \sum_{ijk} \varepsilon_{ijk}^2 \]

(mixed terms) \[+ 2 \left[\sum_{ijk} \alpha_j \beta_{ik} + \sum_{ijk} \alpha_j \alpha \beta_{jk} + \sum_{ijk} \alpha_j \varepsilon_{ijk} + \sum_{ijk} \beta_k \alpha \beta_{jk} \right] \]

It is important to note at this point that if it can be shown that each of \(\overline{\alpha} \), \(\overline{\beta} \), \(\overline{\alpha \beta} \), and \(\overline{\varepsilon} \) is zero, then each of the mixed terms in (***) represents the covariance of two tensors. In general, the covariance of two tensors \(U \) and \(V \) is given by

\[\text{cov}(U, V) = \sum_{ijk} (u_{ijk} - \overline{U})(v_{ijk} - \overline{V}). \]

Thus, it will suffice to show that each of \(\overline{\alpha} \), \(\overline{\beta} \), \(\overline{\alpha \beta} \), and \(\overline{\varepsilon} \) is zero and that the mixed terms above is each equal to zero, since \(U \) and \(V \) are uncorrelated (perpendicular or orthogonal) if and only if

\[\text{cov}(U, V) = 0. \]

Subclaim 1: Each of \(\overline{\alpha} \), \(\overline{\beta} \), \(\overline{\alpha \beta} \), and \(\overline{\varepsilon} \) is zero.

I. Consider \(\overline{\alpha} \).

\[\overline{\alpha} = \frac{1}{abn} \sum_{ijk} \alpha_j = \frac{1}{abn} \sum_{ijk} (\overline{x}_{ij} - \overline{x}_- \overline{x}_{..}) \]

\[= \frac{1}{abn} \sum_{ijk} \overline{x}_{ij} - \frac{1}{abn} \sum_{ij} \overline{x}_- \overline{x}_{..} \]
\[
\bar{\beta} = \frac{1}{abn_{ijk}} \sum \beta_k = \frac{1}{abn_{ijk}} \sum (\bar{x}_{..k} - \bar{x}_{..})
\]

\[
= \frac{1}{abn_{ijk}} \sum \bar{x}_{..k} - \frac{1}{abn_{ijk}} \sum \bar{x}_{..}
\]

\[
= \frac{1}{abn_{ijk}} na \sum \bar{x}_{..k} - \frac{1}{abn} abn \bar{x}_{..}
\]

\[
= \frac{1}{b} \sum \bar{x}_{..k} - \bar{x}_{..} = \bar{x}_{..} - \bar{x}_{..}
\]

\[
= 0.
\]

III. Consider \(\bar{\epsilon}\).

\[
\bar{\epsilon} = \frac{1}{abn_{ijk}} \sum \epsilon_{ijk} = \frac{1}{abn_{ijk}} \sum (\bar{x}_{ijk} - \bar{x}_{..k})
\]
\[\alpha = \frac{1}{abn} \sum_{ijk} \bar{x}_{ijk} - \frac{1}{abn} \sum_{ijk} \bar{x}_{jk} \]

\[= \bar{x}_{..} - \frac{1}{ab} \sum_{jk} \bar{x}_{jk} = \bar{x}_{..} - \bar{x}_{..} \]

\[= 0. \]

IV. Consider \(\alpha \beta \).

\[\alpha \beta = \frac{1}{abn} \sum_{ijk} \alpha \beta_{jk} = \frac{1}{abn} \sum_{ijk} (\bar{x}_{jk} - \bar{x}_{..} \cdot \bar{x}_{..} + \bar{x}_{..}) \]

\[= \frac{1}{abn} \sum_{ijk} \bar{x}_{jk} - \frac{1}{abn} \sum_{ijk} \bar{x}_{..} \cdot \bar{x}_{..} + \frac{1}{abn} \sum_{ijk} \bar{x}_{..} \]

\[= \bar{x}_{..} - \bar{x}_{..} - \bar{x}_{..} + \bar{x}_{..} \]

\[= 0. \]

Thus, each of \(\bar{\alpha}, \bar{\beta}, \alpha \beta, \) and \(\bar{\epsilon} \) is zero and subclaim 1 is proved.

Note that all of the possible mixed or combination terms of the four components

\[\alpha_j = (\bar{x}_{..} - \bar{x}_{..}), \quad \beta_k = (\bar{x}_{..} - \bar{x}_{..}), \quad \alpha \beta_{jk} = (\bar{x}_{..} - \bar{x}_{..} - \bar{x}_{..} + \bar{x}_{..}), \]
and \(\varepsilon_{ijk} = (x_{ijk} - \bar{x}_{jk}) \) from equation (*) are represented in equation (**).

Thus, since each of \(\overline{\alpha}, \overline{\beta}, \overline{\alpha\beta}, \) and \(\overline{\varepsilon} \) is zero, now showing each mixed term equal to zero will consequently show that

\[
\alpha \perp \beta, \quad \alpha \perp \alpha\beta, \quad \alpha \perp \varepsilon, \quad \beta \perp \alpha\beta, \quad \beta \perp \varepsilon, \quad \text{and} \quad \alpha\beta \perp \varepsilon.
\]

Subclaim 2: Each of the 6 mixed terms in equation (**) is equal to 0.

I. Consider the first mixed term of (**), \(\sum_{ijk} \alpha_j \beta_k \).

\[
\sum_{ijk} \alpha_j \beta_k = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \beta_k = \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\sum_{k=1}^{b} \beta_k \right)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\sum_{k=1}^{b} \left(\bar{x}_{..k} - \bar{x}_{..} \right) \right) \quad \text{by definition of (*)}
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\sum_{k=1}^{b} \left(\frac{1}{an} \sum_{i=1}^{n} \sum_{j=1}^{a} x_{ijk} - \bar{x}_{..} \right) \right) \quad \text{by (c)}
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\frac{1}{an} \sum_{k=1}^{b} \sum_{i=1}^{n} \sum_{j=1}^{a} x_{ijk} - b\bar{x}_{..} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(b\bar{x}_{..} - b\bar{x}_{..} \right) \quad \text{by (a)}
\]

\[
= 0.
\]
II. Consider the second mixed term of (**) \(\sum_{ijk} \alpha_j \alpha \beta_{jk}\).

\[
\sum_{ijk} \alpha_j \alpha \beta_{jk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \alpha \beta_{jk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\sum_{k=1}^{b} \alpha \beta_{jk} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\sum_{k=1}^{b} (\bar{x}_{jk} - \bar{x}_{..j} - \bar{x}_{..k} + \bar{x}_{...}) \right) \text{ by definition of (*)}
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\sum_{k=1}^{b} \bar{x}_{jk} - \sum_{k=1}^{b} \bar{x}_{..j} - \sum_{k=1}^{b} \bar{x}_{..k} + \sum_{k=1}^{b} \bar{x}_{...} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(\frac{1}{n} \sum_{k=1}^{b} \sum_{i=1}^{n} x_{ijk} - \frac{1}{bn} \sum_{i=1}^{n} \sum_{k=1}^{b} x_{ik} - \frac{1}{an} \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} x_{ijk} + b \bar{x}_{...} \right) \text{ by (d),(b),(c)}
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(bx_{..j} - \frac{1}{bn} \sum_{k=1}^{b} bn \bar{x}_{..j} - b \bar{x}_{...} + b \bar{x}_{...} \right) \text{ by (b) and (a)}
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{a} \alpha_j \left(bx_{..j} - \sum_{k=1}^{b} \bar{x}_{..j} \right) = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \left(b \bar{x}_{..j} - b \bar{x}_{..j} \right)
\]

\[
= 0.
\]

III. Consider the third mixed term of (**) \(\sum_{ijk} \alpha_j \varepsilon_{ijk}\).

\[
\sum_{ijk} \alpha_j \varepsilon_{ijk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \varepsilon_{ijk} = \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \left(\sum_{i=1}^{n} \varepsilon_{ijk} \right)
\]
\[
= \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \left(\sum_{i=1}^{n} (x_{ijk} - \bar{x}_{jk}) \right) \quad \text{by definition of (*)}
\]

\[
= \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \left(\sum_{i=1}^{n} x_{ijk} - \sum_{i=1}^{n} \bar{x}_{jk} \right)
\]

\[
= \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha_j \left(n\bar{x}_{jk} - n\bar{x}_{jk} \right) \quad \text{by (d)}
\]

\[
= 0.
\]

IV. Consider the fourth mixed term of (**), \(\sum_{ijk} \beta_k \alpha \beta_{jk} \).

\[
\sum_{ijk} \beta_k x \beta_{jk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \beta_k \alpha \beta_{jk} = \sum_{i=1}^{n} \sum_{k=1}^{b} \left(\sum_{j=1}^{a} \alpha \beta_{jk} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{k=1}^{b} \left(\sum_{j=1}^{a} (\bar{x}_{jk} - \bar{x}_{j} - \bar{x}_{..k} + \bar{x}_{...}) \right) \quad \text{by definition of (*)}
\]

\[
= \sum_{i=1}^{n} \sum_{k=1}^{b} \left(\sum_{j=1}^{a} \bar{x}_{jk} - \sum_{j=1}^{a} \bar{x}_{j} - \sum_{j=1}^{a} \bar{x}_{..k} + \sum_{j=1}^{a} \bar{x}_{...} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{k=1}^{b} \left(\frac{1}{n} \sum_{j=1}^{a} x_{ijk} - \frac{1}{bn} \sum_{j=1}^{a} \sum_{i=1}^{n} x_{ijk} - \frac{1}{an} \sum_{i=1}^{n} \sum_{j=1}^{a} x_{ijk} + \frac{1}{an} \sum_{i=1}^{n} \sum_{j=1}^{a} \bar{x}_{jk} \right) \quad \text{by (d),(b),(c)}
\]

\[
= \sum_{i=1}^{n} \sum_{k=1}^{b} \left(a\bar{x}_{..k} - a\bar{x}_{...} - \frac{1}{an} \sum_{j=1}^{a} an\bar{x}_{..k} + a\bar{x}_{...} \right) \quad \text{by (c),(a), (c)}
\]
\[
\sum_{i=1}^{n} \sum_{k=1}^{b} \beta_k \left(a\bar{x}_k - \sum_{j=1}^{a} \bar{x}_j \right) = \sum_{i=1}^{n} \sum_{k=1}^{b} \beta_k (a\bar{x}_k - a\bar{x}_k) = 0.
\]

V. Consider the fifth mixed term of (**) \[\sum_{ijk} \beta_k \varepsilon_{ijk} \]

\[
\sum_{ijk} \beta_k \varepsilon_{ijk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \beta_k \varepsilon_{ijk} = \sum_{j=1}^{a} \sum_{k=1}^{b} \beta_k \left(\sum_{i=1}^{n} \varepsilon_{ijk} \right)
\]

by definition of (*)

\[
= \sum_{j=1}^{a} \sum_{k=1}^{b} \beta_k \left(\sum_{i=1}^{n} (x_{ijk} - \bar{x}_{jk}) \right) = \sum_{j=1}^{a} \sum_{k=1}^{b} \beta_k \left(n\bar{x}_{jk} - n\bar{x}_{jk} \right)
\]

by (d)

= 0.

VI. Consider the sixth mixed term of (**) \[\sum_{ijk} \alpha \beta_{jk} \varepsilon_{ijk} \]

\[
\sum_{ijk} \alpha \beta_{jk} \varepsilon_{ijk} = \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha \beta_{jk} \varepsilon_{ijk} = \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha \beta_{jk} \left(\sum_{i=1}^{n} \varepsilon_{ijk} \right)
\]

by definition of (*)

\[
= \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha \beta_{jk} \left(\sum_{i=1}^{n} (x_{ijk} - \bar{x}_{jk}) \right) = \sum_{j=1}^{a} \sum_{k=1}^{b} \alpha \beta_{jk} \left(\sum_{i=1}^{n} x_{ijk} - \sum_{i=1}^{n} \bar{x}_{jk} \right)
\]
\[
\sum_{j=1}^{a} \sum_{k=1}^{b} \alpha \beta_{jk} (\bar{n}_{jk} - \bar{n}_{jk}) = 0.
\]

Thus, since all mixed terms of (**) equal 0,

\[
\sum_{ijk} (x_{ijk} - \bar{x}_{ij})^2 = \sum_{ijk} \alpha_i^2 + \sum_{ijk} \beta_j^2 + \sum_{ijk} \alpha \beta_{jk}^2 + \sum_{ijk} \varepsilon_{ijk}^2
\]

which is the mathematical equivalent of

\[
SS(\text{Total}) = SS(A) + SS(B) + SS(AB) + SS(\text{Error}), \quad \text{since each of}
\]

\[
\bar{\alpha}, \bar{\beta}, \alpha \beta, \text{and } \bar{\varepsilon} \text{ is zero.}
\]

Consequently, since all possible covariance combinations equal 0,

\[
\alpha \perp \beta, \alpha \perp \alpha \beta, \alpha \perp \varepsilon, \beta \perp \alpha \beta, \beta \perp \varepsilon, \text{and } \alpha \beta \perp \varepsilon.
\]

Thus, the 4 sums-of-squares partitions (2 main effects, 1 two-way interaction, and error) for a completely randomized factorial two-way design with fixed effects are all uncorrelated.
Appendix A

This appendix consists of an example using a small heuristic data set and calculations illustrating how to work through the proof.

Example: 18 students, 9 male and 9 female, are distributed randomly among 3 training conditions: cooperative learning, lecture and control. Let A be the independent variable representing gender and B be the independent variable representing training condition. This example represents a two-way (2 x 3) balanced design where A has 2 levels and B has 3 levels.

Let Y be the dependent variable representing grade/performance on a 10 point test over the chosen topic. The following table represents test scores as a function of training condition and gender.

<table>
<thead>
<tr>
<th>Training Condition</th>
<th>Male (j = 1)</th>
<th>Female (j = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k = 1) Cooperative Learning</td>
<td>5 6 7</td>
<td>8 8 9</td>
</tr>
<tr>
<td>(k = 2) Lecture</td>
<td>7 9 9</td>
<td>4 5 6</td>
</tr>
<tr>
<td>(k = 3) Control</td>
<td>2 3 4</td>
<td>2 3 6</td>
</tr>
</tbody>
</table>

number of subjects per group by gender (n = 3) i = 1, ..., 3

A - gender (a = 2) j = 1, 2
B - training condition (b = 3) k = 1, ..., 3

\[a \cdot b \cdot n = 18 \]
\[\bar{x}_{ij} = \frac{1}{abh} \sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} x_{ijk} = \frac{1}{18} \sum_{i=1}^{3} \sum_{j=1}^{2} \sum_{k=1}^{3} x_{ijk} \]

\[= \frac{1}{18} \sum_{i=1}^{3} \sum_{j=1}^{2} \left(x_{y11} + x_{y12} + x_{y13} \right) = \frac{1}{18} \sum_{i=1}^{3} \left[(x_{i11} + x_{i21}) + (x_{i12} + x_{i22}) + (x_{i13} + x_{i23}) \right] \]

\[= \frac{1}{18} \left[(x_{111} + x_{112} + x_{122} + x_{113} + x_{123}) + (x_{211} + x_{221} + x_{212} + x_{222} + x_{213} + x_{223}) \right] \]

\[+ (x_{311} + x_{321} + x_{312} + x_{322} + x_{313} + x_{323}) \]

\[= \frac{1}{18} [(5 + 8 + 7 + 4 + 2 + 2) + (6 + 8 + 9 + 5 + 3 + 3) + (7 + 9 + 9 + 6 + 4 + 6)] \]

\[= \frac{103}{18} = 5.7222222 \]

\[\bar{x}_{..1} = \frac{1}{9} \sum_{i=1}^{3} x_{i ..} \Rightarrow \left\{ \begin{array}{c} \bar{x}_{..1} = \frac{1}{9} (52) = 5.7777778 \\ \bar{x}_{..2} = \frac{1}{9} (51) = 5.6666667 \end{array} \right. \]

\[\bar{x} = \frac{1}{18} \sum_{i=1}^{3} \sum_{k=1}^{3} 2 (\bar{x}_{..} - \bar{x}_{...}) = \frac{1}{18} \sum_{i=1}^{3} \sum_{k=1}^{3} [(\bar{x}_{..1} - \bar{x}_{...}) + (\bar{x}_{..2} - \bar{x}_{...})] \]

\[= \frac{1}{18} \sum_{k=1}^{3} ((5.7777778 - 5.7222222) + (5.6666667 - 5.7222222)) \]

\[= \frac{1}{18} \sum_{k=1}^{3} (.0555556 - .0555556) = 0 \]

\[\bar{x}_{..k} = \frac{1}{6} \sum_{i=1}^{3} x_{i ..} \Rightarrow \left\{ \begin{array}{c} \bar{x}_{..1} = \frac{1}{6} (5 + 6 + 7 + 8 + 8 + 9) = \frac{1}{6} (43) = 7.166666667 \\ \bar{x}_{..2} = \frac{1}{6} (7 + 9 + 9 + 4 + 5 + 6) = \frac{1}{6} (40) = 6.666666667 \\ \bar{x}_{..3} = \frac{1}{6} (2 + 3 + 4 + 2 + 3 + 6) = \frac{1}{6} (20) = 3.333333333 \end{array} \right. \]
\[
\sum_{i=1}^{3} \sum_{j=1}^{2} \alpha_j \left(\sum_{k=1}^{3} (\bar{x}_{ik} - \bar{x}_i) \right) = \sum_{i=1}^{3} \sum_{j=1}^{2} \alpha_j \left[(7.16666667 - 5.72222222) \\
+ (6.66666667 - 5.72222222) \\
+ (3.33333333 - 5.72222222) \right] \\
\]

\[
= \sum_{i=1}^{3} \sum_{j=1}^{2} \alpha_j (1.44444447 + 0.44444447 - 2.38888887) \\
\]

\[
= \sum_{i=1}^{3} \sum_{j=1}^{2} \alpha_j (0) = 0.
\]
Educational and Psychological Measurement, 36, 586-589.

