An initial evaluation of tech prep revealed the following: (1) by 1993, nearly half the nation's school districts were involved in tech prep consortia; (2) changes resulting from tech prep have been more evident at the secondary than the postsecondary level; and (3) tech prep students are most likely to be white and attend a suburban school district in a southern state. An in-depth study of 10 tech prep consortia established the following trends: (1) articulation agreements linking individual courses at the high school and college levels are a major defining feature of tech prep; (2) although consortia have made some efforts to upgrade vocational education curricula, most curriculum change has focused on introducing applied approaches to teaching math, science, and English; and (3) views of the objectives/content/audience of tech prep vary greatly among individual consortia as do the structures for planning and coordinating tech prep development. The consortia studied were also facing the following issues: the importance of articulation in tech prep development, tech prep's impact on postsecondary education, and the role of employers in developing tech prep programs. (Contains an annotated bibliography of 18 print resources and 6 resource organizations concerned with tech prep.)
Tech Prep
Trends and Issues Alerts

Susan Imel
Tech Prep

Tech prep, an articulated secondary-postsecondary program that provides technical preparation in an occupational field, integrates academic and vocational education, and leads to placement in employment, has emerged in response to the call for reform of educational systems. The idea for tech prep originated in the 1980s with the work of Dale Parnell, but it did not become widespread until the Carl D. Perkins Vocational and Applied Technology Act of 1990 provided federal funds for tech prep in every state (Scruggs 1996).

An initial national evaluation of tech prep (Silverberg and Hershey 1995) revealed the following trends related to implementation:

- By 1993 almost half of all the nation's school districts—that included more than 60% of all secondary students—were involved in tech prep consortia. Only a small fraction of the students in these districts were actually participating in tech prep, however.
- Changes resulting from tech prep are more evident at the secondary than the postsecondary level even though postsecondary institutions often play key leadership roles in tech prep consortia. For example, articulation agreements report the revision of postsecondary courses, but articulation affects secondary courses much more often than postsecondary curriculum offerings, at least initially.
- Participation in tech prep is neither reflective of the student population nationwide nor within school districts. Tech prep students are concentrated in the south and in suburban areas. Although urban consortia have the potential to serve many students, thus far they have low participation rates. Also, the racial and ethnic composition of tech prep participants tends to differ from that of the overall student population in the school districts. Tech prep students are less likely to be members of a minority group.

The following programmatic trends were identified in an indepth study (Hershey, Silverberg, and Owens 1995) of 10 tech prep consortia:

- Articulation agreements linking individual courses at the high school and college level are a major defining feature of tech prep. In most sites, these articulation agreements predated the existing consortia.
- Consortia have made some efforts to upgrade vocational curricula, but most of the curriculum change has focused on the introduction of applied approaches to teaching math, science, and English.
- Among the consortia studied, tech prep is viewed quite differently. In some it is considered to be a distinct, high tech form of vocational education. In others, tech prep is primarily an upgrading of vocational programs with the addition of applied academic courses.
- Sites use a variety of structures for planning and coordinating tech prep development, ranging from an extensive array of committees and subcommittees to incorporation within ongoing school district operations. However, all sites have at least one person serving as a coordinator.

The consortium involved in the study (ibid.) also face a number of issues including whom should tech prep serve, how central is articulation to its development, how much will tech prep change postsecondary education, and what can employers contribute to the development of tech prep programs. However, an overriding issue mentioned by others (e.g., Dykman 1995; Edgar and Parnell 1996; Grubb et al. forthcoming) has to do with tech prep's role in the school-to-work movement. In its move to consolidate funding, Congress may eliminate tech prep funding in its current form and tech prep will become incorporated into school-to-work programs (Dykman 1995; Grubb et al. forthcoming). How that will happen, however, is likely to vary depending on tech prep's role in local and state school-to-work planning efforts. According to Edgar and Parnell, "In Ohio, Tech Prep is viewed as the pole holding up the school-to-work umbrella" (p. 34). In other states, however, it is not as clear because "the two groups don't talk," (Grubb et al. forthcoming, p. 53). The following resources can be consulted for more information on tech prep.

Print Resources


Tech prep programs are built on the premise that youth must become involved in the development of a technological society. Several models for integrating tech prep with academic education hold promise.


Tech prep programs do not have the potential to serve many students, thus far they have low participation rates. Also, the racial and ethnic composition of tech prep participants tends to differ from that of the overall student population in the school districts. Tech prep students are less likely to be members of a minority group.

The document is designed to help local practitioners construct new tech prep systems that bridge the federal Tech Prep Education Act with the new School-to-Work Opportunities legislation.


Survey responses from 42 of 50 state directors of vocational-technical education revealed the following: most agreed that tech prep is one option within school-to-work; tech prep's identity needs to remain strong; cooperation is needed; and coordinators are worried about the potential loss of funding.

Describes how Ohio has involved higher education as an integral partner in the development and implementation of the state's tech prep program. Includes critical components agreed upon by all players and provides an overview of Ohio's 24 tech prep consortia.


This monograph examines how community colleges are involved in educational reform by examining their role in integrating academic and occupational education and tech prep initiatives.


This document profiles the diverse approaches to tech-prep taken by 10 local districts across the United States. The final chapter discusses a number of emerging issues.


Reviews three misconceptions about tech prep (tech prep is an integration of academic and vocational education, tech prep is an articulation agreement between high schools and colleges, and tech prep is a 2 + 2 program that cannot include formal apprenticeship training) and refutes each by presenting the reality.


Three articles show what tech prep can mean for young people preparing for the world beyond high school: "Cultivating Potential, Academy Style" (Lozada); "A Path out of Poverty for Oklahoman" (Killackey); and "An 'A' Student Who Found Tech Prep the Right Fit" (Dykman).


A survey on selected aspects of tech prep planning and implementation on tech prep in the state of Washington found that lack of staff, time, and money dedicated to tech prep and lack of truly integrated curricula were the most commonly perceived program limitations.


Describes Tech Prep Middle College (TPMC), a Houston program designed to ensure that tech prep reaches at-risk students at the earliest possible stages. TPMC features a strong community-based component, encouraging field trips and community service at all levels. In fall 1994, the TPMC enrolled its first class of 60 students who were 46% Hispanic, 19% Black, and 55% male.


Presents questions regarding tech prep as an educational reform approach in the areas of tech prep strategies, processes, teams, and strategic planning. Offers answers that give a practical example or consideration for program development. A checklist of questions that can be used to assess existing programs and guide their future development is provided.


A survey of tech-prep coordinators at the state and local levels focused on the following: state role in promoting tech prep, setting for tech prep initiatives; organization, leadership, and resources of consortia; definition of tech prep; participation, school and workplace content; staff development; student outcomes; and local evaluation.


Interviews with university, state, and local educators highlighted some of the desirable qualities of tech prep (relevance, value to noncollege-bound students) and some barriers (lack of standards/guidelines, articulation problems, need for in-service training and employer involvement).


Included are answers to questions about the need for career awareness programs in tech prep program components and format, program facilitation, and integration of career awareness activities into applied academics classes.


This handbook explains the process of integrating a tech prep curriculum. Included are the nature of curriculum integration, benefits of curriculum integration to students and teachers, and the link between curriculum integration and tech prep.


This handbook presents 10 recommendations concerning integrating work-based learning into comprehensive tech prep programs.

Resource Organizations

American Vocational Association, 1410 King Street, Alexandria, VA 22314; (703/683-3111).

American Association for Community Colleges, One Dupont Circle, Suite 410, Washington, DC 20036-1176; (202/728-0200).

ERIC Clearinghouse for Community Colleges, UCLA, 301 Moore Hall, P. O. Box 951521, Los Angeles, CA 90024-1521; (800/832-8256).

ERIC Clearinghouse on Adult, Career, and Vocational Education, 1900 Kenny Road, Columbus, OH 43210-1090; (800/484-4815, ext. 4-7686).

National Tech Prep Network, Center for Occupational Research and Development, P. O. Box 21206, Waco, Texas 76702-1206; (800/231-3015).

S2WTP Listserv. To subscribe send a message to majordomo@ccins.ccncneb.edu tech prep. Enter *subscribe* in the message line.

Developed with funding from the Office of Educational Research and Improvement, U.S. Department of Education, under Contract No. R89K02001. Opinions expressed do not necessarily reflect the position or policies of OERI or the Department. *Trends and Issues Alerts* may be freely reproduced.