The information matrix for the parameters in a latent-variable model is bounded from above by the information that would obtain if the values of the latent variables could also be observed. The difference is the "missing information." This paper discusses the structure of the information matrix, and characterizes the degree to which missing information can be recovered by exploiting collateral variables for respondents. The results are illustrated with data from the Armed Services Vocational Aptitude Battery reported in the survey Profile of American Youth. An appendix presents a heuristic argument in support of a large sample result in the paper. (Contains 7 tables and 13 references.) (Author/SLD)
THE INFORMATION MATRIX IN LATENT-VARIABLE MODELS

Robert J. Mislevy
and
Kathleen M. Sheehan

This research was sponsored in part by the
Cognitive Science Program
Psychological Sciences Division
Office of Naval Research, under
Contract No. N00014-85-K-0683

Contract Authority Identification Number
NR No. 150-539

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, New Jersey

April 1988

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Approved for public release; distribution
unlimited.

BEST COPY AVAILABLE
The information matrix for the parameters in a latent-variable model is bounded from above by the information that would obtain if the values of the latent variables could also be observed. The difference is the "missing information." This paper discusses the structure of the information matrix, and characterizes the degree to which missing information can be recovered by exploiting collateral variables for respondents. The results are illustrated with data from the Armed Services Vocational Aptitude Battery.
The Information Matrix in Latent-Variable Models

Robert J. Mislevy
and
Kathleen M. Sheehan
Educational Testing Service

April 1988

1This work was supported by Contract No. N00014-85-K-0683, project designation NR 150-539, from the Cognitive Science Program, Psychological Sciences Division, Office of Naval Research. The authors are grateful to Murray Aitkin and Charles Lewis for their comments and suggestions.
The Information Matrix in Latent-Variable Models

Abstract

The information matrix for the parameters in a latent-variable model is bounded from above by the information that would obtain if the values of the latent variables could also be observed. The difference is the "missing information." This paper discusses the structure of the information matrix, and characterizes the degree to which missing information can be recovered by exploiting collateral variables for respondents. The results are illustrated with data from the Armed Services Vocational Aptitude Battery.

KEY WORDS: collateral information, item response theory, latent variables, missing information principle.
1. Introduction

Latent variable models are used in the social sciences to provide parsimonious descriptions of the associations among observable variables in terms of theoretically derived constructs. Let \(x = (x_1, \ldots, x_n)' \) denote observable variables, \(\theta \) denote latent variables, and \(\beta_1 \) denote parameters of the regressions of the \(x_j \)'s on \(\theta \) through the known functions \(f_j(x_j | \theta, \beta_1) \). Under the assumption of conditional independence,

\[
\ell(x | \theta; \beta_1) = \prod_j f_j(x_j | \theta, \beta_1).
\]

If \(g(\theta | \beta_2) \) is the density function of \(\theta \) in a population of interest, then the density of the observed variables is given by the mixture

\[
h(x | \beta) = \int f(x | \theta, \beta_1) g(\theta | \beta_2) \, d\theta,
\]

where \(\beta = (\beta_1, \beta_2) \). For notational convenience, we shall suppress dependence on \(\beta_1 \) and \(\beta_2 \) in \(f, g, h \), and elsewhere.

Some examples of latent-variable models follow:

0. An item response theory (IRT) model for an \(n \)-item educational test gives the probability that an examinee will respond correctly to item \(j \)--\(x_j = 1 \) rather than \(0 \)--as a function of (i) an unobservable scalar \(\theta \) characterizing the proficiency of the examinee and (ii) a possibly vector-valued parameter \(\beta_{1j} \).
characterizing the regression of x_j on θ (Lord 1980). In this case, there is a distinct subparameter β_{1j} for each item, so that $\beta_1 = (\beta_{11}, \ldots, \beta_{1n})$.

In factor analysis models (Thurstone 1948), the "factor loadings" β_{1j} of the observed variable x_j are coefficients of its linear regression on unobservable trait values θ. It is often assumed that g is a standardized multivariate normal density.

In latent class models (Lazarsfeld 1950), β_1 implies response probabilities for items from members of classes 1 through K, but respondents' class memberships θ are not observed. Their distribution g is multinomial, with parameters β_2.

This paper concerns the structure of information matrices that arise in the estimation of β. If values of latent variables are construed as missing data (as in Dempster, Laird, and Rubin 1977), the expected information matrix associated with estimating β from values of x is bounded from above by the expected information that would obtain if values of θ were observed as well (Orchard and Woodbury 1972). The difference is "missing information." We aim to characterize this loss, and to demonstrate how covariates, or collateral variables y for respondents, can be used to recover some of the missing information for β_1. The following section gives background and notation for latent variables models. Subsequent sections discuss expected information in maximum likelihood (ML) estimation of β.
Results are then presented for observed information matrices. Finally, a numerical illustration with data from the Profile of American Youth (U.S. Department of Defense 1982) is given.

2. Background and Notation

In the terminology of Dempster, Laird, and Rubin (1977), estimating \(\beta \) from a sample of \(N \) independent observations of \((\theta, x) \) is a "complete-data" problem. The loglikelihood for \(\beta \) is

\[
\lambda_{\theta|x} = \sum_{i=1}^{N} \ln \left[f(x_i | \theta_1, \beta_1) g(\theta_1 | \beta_2) \right].
\]

(2.1)

Assume that both \(f \) and \(g \) are twice-differentiable, and define the gradient vector \(s(\theta, x) \) for \(\beta \) for the loglikelihood of a single observation by

\[
s(\theta, x) = [s^1(\theta, x), s^2(\theta, x)]
\]

\[
= \left[\frac{\partial}{\partial \beta_1} \ln f(x | \theta, \beta_1), \frac{\partial}{\partial \beta_2} \ln g(\theta | \beta_2) \right].
\]

(2.2)

Under regularity conditions, the MLE \(\hat{\beta} \) solves the likelihood equation

\[
\theta = \sum_{i=1}^{N} s(\theta_i, x_i)
\]

and for large \(N \) is approximately multivariate normal in repeated samples, with mean \(\beta \) and covariance given by the inverse of the
expected information matrix $N \Theta_X$. Using the fact that $E_{X\Theta}(s) = 0$, we further our purpose by writing $I_{\Theta X}$ in the following manner:

$$I_{\Theta X} = \int s(\theta' x) s'(\theta, x) p(\theta | x, \beta) \, d\theta \, h(x | \beta) \, dx$$

[where $p(\theta | x, \beta)$ is obtained by Bayes theorem as $f(x|\theta)g(\theta)/h(x)$]

$$= E_X[E_{\Theta}(ss'|x)]$$

$$= \text{Var}_{X\Theta}(s).$$

Let $I_{\Theta X}^{1} = \text{Var}_{X\Theta}(s^{1})$ denote the block of the information matrix that pertains to β^{1}, and note that (2.2) implies that the off-diagonal block of $I_{\Theta X}$ for elements of β^{1} and those of β^{2} is zero.

Suppose that collateral variables y such as educational or demographic status could also be observed for respondents, and let $p(y | y)$ denote their density in a population of interest. In an extension of conditional independence, it is desirable to posit that

$$f(x | \theta, \beta^{1}, y) = f(x | \theta, \beta^{1});$$

(2.3)

that is, θ also explains the associations among observed responses x and collateral variables. (See Thissen, Steinberg, and Wainer 1987 on how this assumption can be tested in the context of IRT.)

When (2.3) holds, the joint density of (x, θ, y) is
\[p(x, \theta, y | \beta_1, \beta_2, \gamma) = f(x | \theta, \beta_1) \ g(\theta | y, \beta_2) \ p(y | \gamma). \]

(Note the slight change in the meaning of \(g \); in a similar manner, \(h \) becomes \(h(x | y, \beta) \) when collateral variables are present.) As long as \(\beta_1, \beta_2, \) and \(\gamma \) are distinct, the loglikelihood induced by observing \(y \) along with \(\theta \) and \(x \) is equal to (2.1) plus a constant insofar as \(\beta \) is concerned. Moreover,

\[I_{\theta X Y} = I_{\theta X} \quad (2.4) \]

where

\[I_{\theta X Y} = E_{Y | X, \theta} E_{\theta | s_{1} s_{2}} (s_{1} s_{2} | x, y) - \text{Var}_{Y | X, \theta} (s_{1}) \]

Since the off-diagonal blocks of \(I_{\theta X Y} \) for elements of \(\beta_1 \) with those of both \(\beta_2 \) and \(\gamma \) are zero, it can be concluded that observing \(y \) provides no additional information about \(\beta_1 \) if both \(\theta \) and \(x \) are also observed.

3. Estimating \(\beta \) from \(x \)

Of course it is never possible to observe \(\theta \). But, since \(\theta \) is missing for all respondents regardless of the values of \(\theta \) and \(x \), it can be considered missing data that is "missing completely at random," and appropriate likelihood and sampling distribution inferences follow by marginalizing over \(\theta \) in the complete-data likelihood (Little and Rubin 1987). It is common practice to
estimate β from values of x alone--ignoring y even if it is available--by maximizing the "incomplete-data" loglikelihood

$$
\lambda_X = \sum \ln h(x_i | \beta) - \ln [E_\theta(\exp \lambda_{\theta X} | x_1, \ldots, x_N; \beta)].
$$

(In the context of IRT, Bock and Aitkin 1981 refer to this procedure as "marginal maximum likelihood" estimation.) Again under regularity conditions, the MLE solves what is now an "incomplete-data" likelihood equation $0 = \partial \lambda_X / \partial \beta$. Provided differentials can be passed through the integral,

$$
\frac{\partial \lambda_X}{\partial \beta} = \sum_i \ln h(x_i | \beta)
$$

$$
-\sum_i \int \frac{\partial}{\partial \beta} \left[f(x_i | \theta, \beta_1) \frac{g(\theta | \beta_2)}{h^{-1}(x_i | \beta)} \right] h^{-1}(x_i | \beta) \, d\theta
$$

$$
- \sum_i \int \frac{\partial}{\partial \beta} \left[\ln f(x_i | \theta, \beta_1) g(\theta | \beta_2) \right] f(x_i | \theta) g(\theta) h^{-1}(x_i) \, d\theta
$$

$$
- \sum_i s(\theta, x_i) p(\theta | x_i, \beta) \, d\theta
$$

$$
- \sum E_\theta(s | x_i).
$$

Accordingly, the incomplete-data information matrix is $N I_X$, where

$$
I_X = E_\theta[E_\theta(s | x) E_\theta(s' | x)] = Var_\theta[E_\theta(s | x)].
$$
the final equality using $E_x[E_\theta(s|x)] - 0$. I_X is related to $I_{\theta X}$ through a decomposition of variance--an instance of Orchard and Woodbury's (1972) "missing information principle:"

$$I_{\theta X} = \text{Var}_X[E_\theta(s|x)] + E_x[\text{Var}_\theta(s|x)]$$

$$= I_X + I_{\theta|X} \quad \text{(3.1)}$$

$I_{\theta|X}$, the missing information, is the average variance of the complete-data gradient vector given x but not θ; that is, variation in s over possible values of θ that could give rise to observed data x, averaged over x. If the variance of $p(\theta|x,\beta)$ were zero for all x--loosely speaking, if x determined θ with complete accuracy--then $\text{Var}_\theta(s|x) = 0$ for all x, and no information would be lost as a result of not observing θ. If values of θ are not completely determined by x, this variance increases and information about β is decreased. The proportional decrease, from diagonal elements of $I_{\theta X}$ to those of I_X, need not be the same for all elements of β.

4. Estimating β from x and y

When collateral variables y are available for respondents, the extended incomplete-data loglikelihood is

$$\lambda_{XY} = \sum_i \ln \left[h(x_i | \beta) \, p(y_i | \gamma) \right]$$

$$- \ln \left[E_\theta(\exp \lambda_{\theta X} | x_1, y_1, \ldots, x_N, y_N; \beta) \right] + \sum_i \ln \, p(y_i | \gamma) \, .$$
As long as β is distinct from γ, the shape of the likelihood surface with respect to β involves only the first term—the conditional distribution of the xs, given the observed values of the ys. In particular, the likelihood equation for β is

$$0 = \frac{\partial \lambda_{XY}}{\partial \beta},$$

where

$$\frac{\partial \lambda_{XY}}{\partial \beta} = \sum \int s(\theta, x) \ p(\theta | x, y, \beta) \ d\theta$$

$$= \sum \mathbb{E}_\theta(s | x, y).$$

with $p(\theta | x, y, \beta) = f(x | \theta, \beta_1) \ g(\theta | y, \beta_2) / h(x | y, \beta)$. The asymptotic distribution of the MLE under repeated samples of $N (x,y)$ pairs does involve the distribution of y, however. The block of the information matrix for (β, γ) that pertains to β is $N I_{XY}$, where

$$I_{XY} = \mathbb{E}_Y \mathbb{E}_X [\mathbb{E}_\theta(s | x, y) \mathbb{E}_\theta(s' | x, y)] = \text{Var}_Y [\mathbb{E}_\theta(s | x, y)].$$

Large sample ML inferences about β under repeated sampling of (x,y) can be based on this block alone, since the off-diagonal block pertaining to the crossing of β and γ is zero. (Section 5 concerns repeated samples of $N (x,y)$ values with the ys fixed at prespecified values.)

We now focus on the effect of including y upon information about β_1. Expressions for the I^{-1}_{XY} block suffice, since the nullity of the off-diagonal block in $I^{-1}_{\theta X}$ implies the nullity of the corresponding block in I^{-1}_X (see Appendix). Using (2.4) and applying the missing information principle,
As in (3.1), the missing information corresponds to a loss in the precision with which β_1 can be estimated. The loss is expressed as expected variation of s^1 over possible values of the latent variable θ, conditional now on values of y as well as those of x. Intuitively, less information should be lost if y is observed along with x. An expression for how much of the missing information has been recovered begins with another decomposition of the total variation in s^1. Since

$$I_{\theta X}^1 = I_{\theta XY}^1 + I_{\theta|XY}^1,$$

where

$$I_{\theta|XY}^1 = E_x E_y [\text{Var}_\theta (s^1 | x, y)] .$$

it follows that

$$I_{\theta X}^1 = \text{Var}_X [E_Y E_\theta (s^1)] + E_x [\text{Var}_Y (E_\theta (s^1))] + E_x E_y [\text{Var}_\theta (s^1)]$$

$$= I_X^1 + I_{Y|X}^1 + I_{\theta|XY}^1 .$$

I_X^1 is the variance in expected values of s^1 over x, averaging over y and θ. $I_{Y|X}^1$ is the expected variance of the average values of s^1 with respect to θ as y varies. It represents variation in
$E_{\theta}(s^1)$ explained by y beyond that explained by x. $I_{\theta|XY}^1$ is the expected variation in s^1 remaining unexplained after both x and y have been accounted for.

The portion of missing information about β_1 that is recovered by using y, then, is $I_{XY}^1 - I_X^1 = I_{Y|X}^1$ -- another application of the missing information principle, with (x,y) treated as the complete data and x as the incomplete data. When y and θ are independent, this term is zero because for each x, $E_{\theta}(s^1)$ takes the same value at all values of y. No information about β_1 is lost by ignoring y in this case. When y and θ are not independent, the degree to which information about β_1 increases depends not simply upon the strength of their relationship, but on the strength of their relationship conditional on x. There is less to be gained by using collateral information when θ is already well determined by x alone.

These results indicate that greater benefit accrues from using collateral information as it relates more strongly to the latent variable, and as less information is available from the observed responses x. Mislevy's (1987) analyses in the context of item response theory indicate that in typical applications of educational and psychological testing, readily available collateral variables such as educational and demographic data can often account for a third of the population variance, and increase the precision of β_1 roughly as much as two to six additional test items. This gain is substantial in applications such as educational assessment or attitudinal surveys, where a subject
might be administered only five or ten items; it is potentially useful in adaptive testing, where he might receive fifteen well-chosen items. The proportional gain is not impressive with individual achievement tests, where test lengths of 60 to 100 items are common.

5. "Conditional Expected" Information

The preceding sections concern information matrices that require marginalization over the sample spaces of both x and y. They reflect the point of view one has before observing either x or y values. This section presents results for expected information conditional on given values of y.

Expected information conditional on y is pertinent to the problem of experimental design, for example. If it is possible to stratify on y when gathering data, expected information for various combinations of y values can be compared to choose an optimal sampling scheme. This requires expectations over x conditional on fixed values of y. Let \(y = (y_1, \ldots, y_N) \) be a vector of N specified values of y. Define the mixture density

\[
p_y(\theta | \beta_2) = N^{-1} \sum_{i=1}^{N} g(\theta | y_i, \beta_2),
\]

which represents the marginal density of \(\theta \) in samples drawn in accordance with y. The complete-data expected information matrix
that corresponds to this density is defined analogously to $I_\theta X$ in Section 3, as

$$I_\theta X(y) = \iint s(\theta, x) s'(\theta, x) p_y(\theta \mid x, \beta) \ d\theta \ h_y(x \mid \beta) \ dx, \quad (5.1)$$

where

$$h_y(x \mid \beta) = \int f(x \mid \theta, \beta_1) p_y(\theta \mid \beta_2) \ d\theta$$

and

$$p_y(\theta \mid x, \beta) = f(x \mid \theta, \beta_1) p_y(\theta \mid \beta_2) / h_y(x \mid \beta).$$

$I_\theta X(y)$ is the expected information about β corresponding to repeated observations of (x, θ) sampled in accordance with y. When, as in practice, observations consist of (x, y), one can calculate expected information when estimation ignores y values and when estimation uses y values. These are, respectively,

$$I_X(y) = \int [\int s \ p_y(\theta \mid x, \beta) \ d\theta] [\int s' p_y(\theta \mid x, \beta) \ d\theta] \ h_y(x \mid \beta) \ dx$$

$$= E_X(y) \ [\text{Var}_\theta(y)(s \mid x)] \quad (5.2)$$

and

$$I_{XY} = N^{-1} \sum_{i=1}^{N} \int [E_\theta(s \mid x_i, y_i) E_\theta(s' \mid x_i, y_i)] \ h(x \mid y_i, \beta) \ dx$$
By the missing information principle, the gain in information about β_1 expected when exploiting y for this particular value of y, or $I_{Xy}^{-1} - I_{X(y)}^{-1}$, is at least positive semidefinite.

6. Observed Information

The expected matrices discussed in the preceding sections are functions of the true values of β. In practice, they are sometimes approximated by substituting maximum likelihood estimates $\hat{\beta}$ for β. The resulting "estimated expected information matrices" are consistent estimates of the desired values. They are to be distinguished, however, from "observed information" matrices.

An observed information matrix is the negative inverse of the second derivative matrix of the loglikelihood, calculated with maximizing value $\hat{\beta}$, the observed responses (x_1, \ldots, x_N), and, if required, (y_1, \ldots, y_N). Observed information reflects the point of view after N sampled values of both x and y have been observed, and indicates the precision with which β has been estimated from the realized sample (Efron and Hinkley 1978). In a large-sample normal approximation to the posterior distribution of β under Bayesian inference, the posterior variance is the negative inverse of the observed information.

Define the complete-data second derivative $d(\theta, x)$ as $\partial s(\theta, x)/\partial \beta'$. Using Louis' (1982) expressions for observed information in missing data problems,
\[N I_x = \sum_{i=1}^{N} \left[\int (-d) p(\theta | x_i, \beta) \, d\theta - \int ss' p(\theta | x_i, \beta) \, d\theta \right] \]

and

\[N I_{xy} = \sum_{i=1}^{N} \left[\int (-d) p(\theta | x_i, y_i, \beta) \, d\theta - \int ss' p(\theta | x_i, y_i, \beta) \, d\theta \right] \]

In contrast to results with expected information, the off-diagonal blocks of \(I_x \) and \(I_{xy} \) for the crossing of \(\beta_1 \) and \(\beta_2 \) need not be zero. Moreover, the appealing decomposition of expected information into variance components of \(s \) does not carry over to observed information; it depended on the fact that \(E(ss')=-E(d) \). For unfortuitous combinations of \(x \) and \(y \) values, \(I_x \) can exceed \(I_{xy} \) in some or even all diagonal elements. Inasmuch as observed information is quite generally a consistent estimate of expected information, however, the results of Section 4 suggest that one would expect to find the greater diagonal entries in \(I_{xy} \) more often than not.

7. A Numerical Illustration

This section illustrates the ideas developed above in the context of an item response theory (IRT) model for mental test data. The values of \(I_{\theta X(y)} \), \(I_{X(y)} \), and \(I_{XY} \) --the quantities relevant to "conditional expected information"--are approximated here by evaluating (5.1) through (5.3) with \(\hat{\beta} \) in place of \(\beta \).
7.1 The Data

Observed responses x are vectors of responses to four items from the Arithmetic Reasoning test of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A, as observed in the sample of respondents from the survey Profile of American Youth (U.S. Department of Defense 1982) whose data are reported by Mislevy (1986). Response counts are shown in Table 1 for the N=776 respondents as a whole, and as broken down into the four categories of a demographic design with subsample sizes N_y of 263, 228, 140, and 145. A correct response is indicated by a 1, an incorrect response by a 0.

Table 1 about here

7.2 The Model

Using the numerical procedure described in Mislevy (1987), the 2-parameter logistic (2PL) IRT model was fit to the response counts in Table 1 by maximizing a loglikelihood of the form of (2.1). Under the usual IRT assumption of conditional independence, and with β_4 representing the item parameters $(a_1, b_1, \ldots, a_4, b_4)$, we have

$$f(x|\theta, \beta_4) = \prod_{j=1}^{4} \exp[1.7a_j x_j (\theta - b_j)] / [1 + \exp[1.7a_j (\theta - b_j)]]$$

or, equivalently,

$$= \prod_{j} p_j(\theta)^{x_j} q_j(\theta)^{1-x_j}$$

15
where \(P_j(\theta) = f_j(x_j = 1|\theta, a_j, b_j) \) and \(Q_j(\theta) = 1 - P_j(\theta) \). The parameters \(a_j \) and \(b_j \) give the (linear) regression of the logit of \(x_j \) on \(\theta \). Normal densities were assumed for \(g(\theta|y, \beta_2) \), for \(y = 1, \ldots, 4 \). The population parameters \(\beta_2 = (\mu_1, \sigma_1, \ldots, \mu_4, \sigma_4) \) were constrained in order to make the model identified, by incorporating the computationally convenient constraints

\[
\Sigma \mu_y = 0 \quad \text{and} \quad \Sigma (\sigma^2_y + \mu^2_y)/4 = 1.
\]

The resulting MLE's are shown in Table 2.

From this point on, the MLEs shown in Table 2 will be treated as known true values for the purpose of approximating expected information matrices. Using the results of Section 5, expected information matrices will be calculated conditional on the observed subsample proportions \(p(y) = (.339, .294, .180, .187) \). The density \(p_y(\theta) \) that obtains after fixing \(y \) in this manner is thus a mixture of four normal components:

\[
p_y(\theta|\beta_2) = \sum_{y=1}^{4} g(\theta|\mu_y, \sigma^2_y) p(y).
\]

Values of \(y \) account for about 18-percent of the variation of \(\theta \) in the mixture.
7.3 Formulae

Let u_j be an element of β_1. Let $W_j(\theta)$ take the value 1.7($\theta - b_j$) if $u_j = a_j$, and the value -1.7a_j if $u_j = b_j$. The element of the complete-data gradient vector corresponding to u_j is

$$s(u_j; \theta, x) = [x_j - P_j(\theta)] W_j(\theta).$$

Computing expected information requires the expected count of each response pattern $x_k = (x_{k1}, \ldots, x_{k4})$. In subpopulation y, this value is

$$\hat{N}_{xy} = N_y \int f(x_1|\theta, \beta_1) g(\theta|\mu_y, \sigma_y) d\theta.$$

For the undifferentiated population (given the observed values of y) as a whole, $\hat{N}_x = \sum \hat{N}_{xy}$. These values are given in Table 3.

Expected information matrices are now obtained as follows:

$$I_{\Theta X(y)} = \sum 2 \int \hat{N}_{xy} s(x_{k1} - p_y(\theta|\theta x_{k})) d\theta,$$

where $s_{x_{k1}} = s^1(\theta, x_{k1})$ and $p_y(\theta|\theta x_{k}) = f(x_{k1}|\theta, \beta_1) p_y(\theta|\beta_2) / h_y(x|\beta)$.
\[
I^{1}_{X(y)} = \sum_{\ell} \hat{N}_{\ell} \left[\int s_{\ell} p_{y}(\theta|x_{\ell}) \, d\theta \right] \left[\int s_{\ell} p_{y}(\theta|x_{\ell}) \, d\theta \right] ;
\]

and

\[
I^{1}_{Xy} = \sum_{\ell \gamma} \hat{N}_{\ell \gamma} \left[\int s_{\ell} p(\theta|x_{\ell},y) \, d\theta \right] \left[\int s_{\ell} p(\theta|x_{\ell},y) \, d\theta \right] ,
\]

where \(p(\theta|x_{\ell},y) = f(x_{\ell} | \theta, \beta_{1}) \, p(\theta | \beta_{2}, y) / h(x_{\ell} | y, \beta) \).

7.4 Results

Tables 4, 5, and 6 present \(I^{1}_{\Theta X(y)} \), \(I^{1}_{X(y)} \), and \(I^{1}_{Xy} \). These matrices are block-diagonal, with only off-diagonal elements for the \(a \) and \(b \) parameters of a given item taking possibly non-zero values. The proportions of effective information and partial recovery for the diagonal elements are summarized in Table 7.

Compared to the information expected if \((x, \theta)\) were observed, the degree of information expected when only \(x \) is observed averages 36-percent for \(a \) parameters and 85-percent for \(b \) parameters. Using \((x, y)\) yields corresponding values of 40-percent and 87-percent. Averaging over item-level results, the degree to which missing information is recoverable (for the observed values of \(y \)) is 7-percent for \(a \)'s and 17-percent for \(b \)'s.
References

Appendix

Section 4 uses the large-sample result that if the off-diagonal block in $I_{\theta X}$ corresponding to the crossing of β_1 and β_2 is null, so is the corresponding block in I_X. This appendix gives a heuristic argument in support of that claim. Since the observed information matrix I_X introduced in Section 6 is a consistent estimate of I_X', it suffices to show that the expectation of the off-diagonal block in I_X is null.

From Section 6,

$$N I_X = \sum_i^N \left[\int (-d) p(\theta | x_i, \hat{\beta}) \, d\theta - \int s s' p(\theta | x_i, \hat{\beta}) \, d\theta \right].$$

Substituting β for $\hat{\beta}$, and taking expectation over x gives

$$E_X I_X = E_X[E_\theta (-d)] - E_X[E_\theta (ss')]. \quad (A.1)$$

It is clear from (2.2) that the off-diagonal block of d is null for all x and all θ, so the corresponding block of the first term on the right of (A.1) is null. The second term is $\text{Var}_{\theta X}(s)$, or $I_{\theta X}'$, which, from Section 2, also has a null off-diagonal block. The off-diagonal block of the matrix difference between the two terms must be null too.
Table 1

Observed Counts of Response Patterns

<table>
<thead>
<tr>
<th>Response</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>23</td>
<td>20</td>
<td>27</td>
<td>29</td>
<td>99</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>14</td>
<td>66</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>22</td>
<td>23</td>
<td>15</td>
<td>14</td>
<td>74</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>21</td>
<td>18</td>
<td>7</td>
<td>19</td>
<td>65</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>11</td>
<td>15</td>
<td>9</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>23</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>86</td>
<td>42</td>
<td>2</td>
<td>4</td>
<td>134</td>
</tr>
<tr>
<td>Total</td>
<td>263</td>
<td>228</td>
<td>140</td>
<td>145</td>
<td>776</td>
</tr>
</tbody>
</table>

Table 2

Maximum Likelihood Estimates of β

<table>
<thead>
<tr>
<th>Item</th>
<th>a_j</th>
<th>b_j</th>
<th>y-value</th>
<th>μ_y</th>
<th>σ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.006</td>
<td>-.421</td>
<td>1</td>
<td>.485</td>
<td>1.164</td>
</tr>
<tr>
<td>2</td>
<td>.672</td>
<td>-.213</td>
<td>2</td>
<td>.073</td>
<td>.855</td>
</tr>
<tr>
<td>3</td>
<td>.775</td>
<td>.139</td>
<td>3</td>
<td>-.513</td>
<td>.642</td>
</tr>
<tr>
<td>4</td>
<td>.834</td>
<td>.402</td>
<td>4</td>
<td>-.502</td>
<td>.640</td>
</tr>
</tbody>
</table>
Table 3

Expected Counts of Response Patterns

<table>
<thead>
<tr>
<th>Response</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>27.17</td>
<td>27.85</td>
<td>31.70</td>
<td>32.34</td>
<td>119.06</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>4.88</td>
<td>5.81</td>
<td>5.37</td>
<td>5.54</td>
<td>21.60</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>7.55</td>
<td>8.97</td>
<td>8.46</td>
<td>8.73</td>
<td>33.71</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>3.16</td>
<td>3.56</td>
<td>2.31</td>
<td>2.41</td>
<td>11.44</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>12.76</td>
<td>15.04</td>
<td>14.69</td>
<td>15.13</td>
<td>57.62</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>4.80</td>
<td>5.49</td>
<td>3.77</td>
<td>3.92</td>
<td>17.98</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>7.07</td>
<td>8.15</td>
<td>5.77</td>
<td>6.00</td>
<td>26.99</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>6.00</td>
<td>5.55</td>
<td>2.35</td>
<td>2.46</td>
<td>16.36</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>15.72</td>
<td>18.75</td>
<td>16.23</td>
<td>16.79</td>
<td>67.48</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>8.38</td>
<td>8.95</td>
<td>5.08</td>
<td>5.31</td>
<td>27.72</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>12.04</td>
<td>13.04</td>
<td>7.68</td>
<td>8.01</td>
<td>40.77</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>14.77</td>
<td>11.66</td>
<td>3.80</td>
<td>3.99</td>
<td>34.22</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>17.86</td>
<td>19.80</td>
<td>12.37</td>
<td>12.90</td>
<td>62.93</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>19.51</td>
<td>16.26</td>
<td>5.76</td>
<td>6.05</td>
<td>47.58</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>26.58</td>
<td>22.79</td>
<td>8.46</td>
<td>8.88</td>
<td>66.71</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>74.75</td>
<td>36.33</td>
<td>6.20</td>
<td>6.55</td>
<td>123.83</td>
</tr>
<tr>
<td>Total</td>
<td>263.00</td>
<td>228.00</td>
<td>140.00</td>
<td>145.00</td>
<td>776.00</td>
</tr>
</tbody>
</table>

Table 4

Expected Complete-Data Information

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>176.75</td>
<td>290.81</td>
<td>254.24</td>
<td>249.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-68.60</td>
<td>371.64</td>
<td>-37.80</td>
<td>201.01</td>
<td>31.42</td>
<td>250.70</td>
<td>75.89</td>
</tr>
</tbody>
</table>

Note: Only diagonal blocks are shown; all other entries are zero.
Table 5
Expected Incomplete-Data Information, Ignoring y

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>b1</th>
<th>a2</th>
<th>b2</th>
<th>a3</th>
<th>b3</th>
<th>a4</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>51.76</td>
<td>114.82</td>
<td>90.72</td>
<td>95.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-55.09</td>
<td>298.63</td>
<td>-31.91</td>
<td>179.77</td>
<td>31.70</td>
<td>215.75</td>
<td>70.80</td>
<td>224.58</td>
</tr>
</tbody>
</table>

Note: Only diagonal blocks are shown; all other entries are zero.

Table 6
Expected Incomplete-Data Information, Using y

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>b1</th>
<th>a2</th>
<th>b2</th>
<th>a3</th>
<th>b3</th>
<th>a4</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>53.39</td>
<td>119.79</td>
<td>105.18</td>
<td>116.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-46.78</td>
<td>308.91</td>
<td>-22.49</td>
<td>183.28</td>
<td>44.33</td>
<td>222.03</td>
<td>85.86</td>
<td>232.98</td>
</tr>
</tbody>
</table>

Note: Only diagonal blocks are shown; all other entries are zero.
Table 7
Recovery of Missing Information (Diagonal Elements)

\[
\begin{array}{c|ccccc}
 & a_1 & a_2 & a_3 & a_4 & \text{average} \\
\hline
I_{X(y)}/I_{\Theta X(y)} & .29 & .39 & .36 & .38 & .36 \\
I_{XY}/I_{\Theta X(y)} & .30 & .41 & .41 & .47 & .40 \\
I_{XY} - I_X(y) & .01 & .03 & .09 & .14 & .07 \\
i_{\Theta X(y)} - I_X(y) & & & & & \\
\end{array}
\]

\[
\begin{array}{c|ccccc}
 & b_1 & b_2 & b_3 & b_4 & \text{average} \\
\hline
I_{X(y)}/I_{\Theta X(y)} & .80 & .89 & .86 & .84 & .85 \\
I_{XY}/I_{\Theta X(y)} & .83 & .91 & .89 & .87 & .87 \\
I_{XY} - I_X(y) & .14 & .17 & .18 & .19 & .17 \\
i_{\Theta X(y)} - I_X(y) & & & & & \\
\end{array}
\]
Dr. Terry Ackerman
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. James Algina
University of Florida
Gainesville, FL 32605

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

Dr. Eva L. Baker
UCLA Center for the Study of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Systems Center
Orlando, FL 32813

Dr. Bruce Bloxom
Defense Manpower Data Center
550 Camino El Estero, Suite 200
Monterey, CA 93943-3231

Dr. R. Darrell Bock
University of Chicago
NORC
6030 South Ellis
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
Naval Training Systems Center
Orlando, FL 32813

Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52243

Dr. Lyle D. Broemeling
ONR Code 1111SP
800 North Quincy Street
Arlington, VA 22217

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

Dr. Robert Carroll
OP 01B7
Washington, DC 20370

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235
Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Pat Federico
Code 511
NPRDC
San Diego, CA 92152-6800

Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Myron Fischl
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. Donald F.1. Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Robert D. Gibbons
Illinois State Psychiatric Inst.
Rm 529W
1601 W. Taylor Street
Chicago, IL 60612

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dipl. Pad. Michael W. Habon
Universitat Dusseldorf
Erziehungswissenschaftliches Universitatsstr. 1
D-4000 Dusseldorf 1
WEST GERMANY

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts at Amherst
Hills House
Amherst, MA 01003

Dr. Delwyn Harnisch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Institut fur Psychologie
RWTH Aachen
Jaegerstrasse 17/19
D-5100 Aachen
WEST GERMANY
Dr. Charles Lewis
Educational Testing Service
Princeton, NJ 08541

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. Milton Maier
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. William L. Maloy
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08541

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace, Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Dr. George B. Macready
Department of Measurement Statistics & Evaluation
College of Education
University of Maryland
College Park, MD 20742

Dr. Robert McKinley
Educational Testing Service
20-P
Princeton, NJ 08541

Dr. James McMichael
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara Means
Human Resources Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Ms. Kathleen Moreno
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Headquarters, Marine Corps
Code MPl-20
Washington, DC 20380

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

Deputy Technical Director
NPRUC Code 01A
San Diego, CA 92152-6800

Director, Training Laboratory,
NPRUC (Code 05)
San Diego, CA 92152-6800
German Military Representative
ATTN: Wolfgang Wildegrube
Streitkraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
NRC GF-176
2101 Constitution Ave
Washington, DC 20418

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152-6800

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Kentaro Yamamoto
Computer-based Education Research Laboratory
University of Illinois
Urbana, IL 61801

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Dr. Anthony R. Zara
National Council of State Boards of Nursing, Inc.
625 North Michigan Ave.
Suite 1544
Chicago, IL 60611