This booklet is designed to introduce adult basic education/literacy instructors to a spiral sequencing approach that may be used to teach whole number skills. The booklet begins with a brief discussion of integration of numeracy into literacy instruction. Discussed next are the benefits of using a spiral sequence for numeracy facilitation and basic differences between the proposed spiral approach and the conventional linear approach found in many mathematics textbooks. The booklet's scope and structure are explained, and suggestions for using it are provided. A two-part spiral numeracy sequence, consisting of a 16-step preoperation sequence and a 23-step sequence for introducing whole number operations, is presented in detail. Concluding the booklet are linear sequences for addition, subtraction, multiplication, and division. (MN)
A Sequencing Guide for Numeracy

Kathleen Lucas
Betty Dondertman
Tom Ciancone

Whole numbers
A Sequencing Guide for Numeracy: Whole Numbers

Kathleen Lucas
Betty Dondertman
Tom Ciancone

The Board of Education for the City of Toronto
Adult Basic Education Unit
1991
Writers
Kathleen Lucas, Betty Dondertman, and Tom Ciancone

This publication was produced by
The Board of Education for the City of Toronto
Continuing Education Department
Adult Basic Education Unit
1991

With the generous support of
National Literacy Secretariat
Multiculturalism and Citizenship

Project Manager
Linda Monteith

Project Supervisor
Maria Adamczyk

Editorial Consultant
Robert Beaton

Design, Typing, and Assembly
Betty Dondertman

Printing and Cover Design
Is Five Printing and Graphics

For information on how to order copies of this publication, contact
Adult Basic Education Unit
777 Bloor Street West
Toronto, Ontario M6R 1L6
(416) 393-1995
A Sequencing Guide for Numeracy: Whole Numbers

Table of Contents

Page

About Numeracy 1

About the Spiral Approach 2

About This Sequencing Guide 4

A Spiral Numeracy Sequence

Part One: Pre-Operation 7

Part Two: Whole-Number Operations 11

The Steps of the Spiral Sequence in Summary 27

A Linear Sequence

Addition 30

Subtraction 31

Multiplication 32

Division 33
About Numeracy

This book is designed as a numeracy sequencing guide to help literacy instructors introduce whole-number skills to their classes. Many literacy instructors recognize that numeracy skills equip learners to cope with important areas of their lives, such as getting a job, assessing information, shopping, and managing money. Even so, a division between mathematics and literacy does exist in many instructors' minds. Because of their own anxiety about math, some literacy instructors are unsure of how to approach math in their classes. When numeracy is integrated into literacy practice, hesitation toward mathematics may be overcome. It may help to think of numeracy as the area where literacy and mathematics overlap. The focus of numeracy is not simply getting the right answers to math questions, but seeing how and when and where it is possible to use math skills in everyday life.

Literacy instructors are ideally suited to facilitate numeracy activities. They know how to integrate real life situations into the content of their teaching, and they have experience in working with students of varying backgrounds and skill levels. The attitudes of the instructor as well as the atmosphere of the classroom can encourage students to address their numeracy needs in the context of their literacy needs. Through participatory activities, instructors and students can become comfortable with numbers. In fact, the experience in facilitating literacy that instructors bring to their numeracy practice is vital in bridging the gap between literacy and mathematics.
About the Spiral Approach

The purpose of this booklet is to provide instructors with an overview of a spiral sequence for numeracy facilitation.

The ordering of math concepts and skills found in adult math books today is linear. The four operations (addition, subtraction, multiplication, division) are separated; each operation is presented on its own. Learners progress through increasingly complex variations of one operation, culminating in the application of this one skill to word problems. Each operation is covered completely before moving on to the next. We have found that this approach has several disadvantages when working with adult literacy students. Proceeding in a linear manner through the four arithmetic operations often results in a limited understanding of mathematical applications. Learners sometimes develop mechanical skills, but lack the ability to recognize the signs of operation, name what they are doing, estimate answers, decide which operation is needed, show their method, or apply the skills to their daily lives. Isolating the operations, without building the connecting links to other operations and applications, permits many gaps in understanding. Even though students may get the answer, they often lack insight into what they have done.

Perceiving these limitations, some facilitators take a "hopping around" approach to mathematics, responding to learners' requests for specific information and math skills to deal with a particular life skill. This thematic or functional approach avoids some of the boredom and futility of working through the operations linearly; however, it has some pitfalls of its own. An instructor can end up in a blind alley. How do you answer the question, "Is a metropass a good buy for you?" without knowing how to multiply first? Mathematical skills acquisition is to a great extent cumulative. The risk with "hopping around" is that gaps in mathematical understanding are easily missed in the absence of a structure. Math skills need to be identified, sequenced, reviewed and applied, if long-term understanding is to be achieved. We propose a spiral approach which provides a strong foundation in math and which also addresses students' more immediate needs.

Although the spiral approach is a departure from the linear approach found in many math text books, the proposed sequence is actually a rearrangement of the usual order of presentation. By incorporating a spiral order to whole-number operations and making each spiral relatively small, the student has the opportunity to develop a basic understanding of all operations before going on to more difficult concepts such as carrying and borrowing. This approach reduces the problem of students
doing operations mechanically without having a fundamental idea of their use. Patterns in numbers and operations are more easily perceived because the students are encouraged to contrast and apply the operations continuously.

There are other advantages to the spiral approach. Students are less likely to feel bored and frustrated with focusing too long on one operation, because they are soon working on a variety of operations. In fact, many adults have some familiarity with different operations. The problems that students encounter daily involve all four operations. In a numeracy/literacy class, continually moving among the four operations reflects reality and makes the mind more alert. The work requires thought; it cannot be done mechanically. This approach leads to an overall understanding rather than simply an answer. The emphasis shifts to the process of problem solving, "the process of applying previously acquired knowledge to new and unfamiliar situations." (from a position paper on basic mathematical skills - National Council of Supervisors of Mathematics)

The spiral sequence allows for continuous assessment of a learner’s understanding. For example, if students can find answers to addition and subtraction questions but cannot decide which operation to use to solve a word problem, they do not fully understand adding and subtracting. This is when clarification and practice can be facilitated. The spiral sequence builds in a process of review; in order to take the next step in division, the student must recall the previously learned skills. It is natural to combine a needed review with the next skill step.

Often, attendance in literacy classes is interrupted or sporadic. If a person is able to attend classes for only a short time, the spiral sequence would give exposure to a greater variety of skills. With short-term attendance, it is even more essential that learners are not deprived of making connections as early as possible. Using a spiral sequence, it is possible to group or pair students because most will soon have some basic knowledge of all four operations.

By alternating regularly among the four operations, linking them as they are applied, the learner is better able to construct a clear and complete picture. The spiral sequence gives learners the opportunity to compare, contrast, make decisions, ask questions, and bring to consciousness their problem-solving methods. This interaction facilitates a naming of the functions as well as a meaningful dialogue about the learning process. In conclusion, this approach is one that brings meaning to working with numbers while at the same time contributing to literacy.
About This Sequencing Guide

Once numeracy activities begin, many facilitators soon discover that it is very difficult to find material. Usually, only skill-based math texts are available. Most basic-level math material is either too juvenile or assumes more literacy skills than most participants in literacy classes have achieved. It is in response to this need for math materials written for adult literacy learners that the Adult Basic Education Unit of the Toronto Board of Education has begun to create numeracy materials. The greatest need for numeracy materials and guidance is at the basic level, for learners who have almost no background with numbers. We have focused on this need and hope that facilitators can see, within this approach, ways to adapt the materials.

The numeracy sequence proposed in this book is in two parts. The first part of the sequence deals with pre-operation concepts and skills. Based on a learner's pace of learning and previous experience with numbers, the order presented here may be rearranged. It is essential, however, that a learner understand the meaning of numbers and be able to count. Taking time for pre-operation skills sets a strong foundation for numeracy. The participatory approach taken by the instructor at this stage will set the tone for working comfortably with numbers in many aspects of daily life. The second part of the sequence deals with whole-number operations. These are presented in an order that continuously builds on previously learned skills.

There are two essential features to the spiral sequence proposed in this book. One is that the spirals are small. This means that we introduce each operation at a basic level, then return to each operation to introduce new skills one at a time. The other feature is that the spiral includes skills called "Making Connections". These skills involve integrating two or more operations. The spiral sequence itself presents the operational skills in a repeating pattern of steps starting with considering a problem, going on to introduce the new concept and arithmetic skill, and then applying the skill in a variety of ways. As well as integrating operations, this approach involves integrating relevant material throughout.

A fuller description of each of the steps follows. Please note that in this guide we have put these steps as part of the operations skills, and not the pre-operation skills.
Considering a Problem
This step makes use of discussion to establish a context for the next math skill. The facilitator may discuss situations where this new skill can be used to solve a problem. There may be a discussion about various ways to solve the problem mathematically. This is also an opportunity for the learners to relate their experiences. These discussions may reveal strategies that individual learners use to cope with these situations in their lives.

Concept, Sign Recognition and Vocabulary
This step needs to be covered before the actual arithmetic skill is introduced. Students need language to talk about what they are doing and mathematical notation to show what they are doing.

Facts
This step refers to arithmetic knowledge that must be practised and learned by heart until it becomes automatic. Multiplication tables are one example. Number combinations that add up to 10 are another example.

Skills
This step is different from "Facts" in that skills are not known by heart, as facts are, but are applied. Long division is an example. We don't know the answer to a long division problem just by looking at it, but we apply what we know in order to work it out.

Applications
This step includes a variety of activities. Discussions, word problems, and estimating are examples of applications. Word problems require students to make their methods conscious, use notation, and combine literacy and numeracy skills. It is crucial in this part of the sequence, to adapt to the particular needs of the learners. Working with grocery flyers, estimating how much rice to cook, calculating overtime pay, and looking at bills are examples of relevant applications.
Making Connections

This step refers to word problems and other activities (such as decoding and inverse operations) that use more than one operation. Students are always encouraged to interpret and assess information, make decisions, and exercise judgement, thereby developing confidence.

Learning math skills by way of this literacy approach, which integrates the skills into the everyday life of the learner, is the challenge of numeracy.

Clearly, this approach must be adapted to suit various situations. Learners’ needs, abilities, personalities, and backgrounds with numbers vary greatly. This sequence can suit the needs of the learners and the demands of the learning situation. For example, a larger spiral may be more appropriate for learners who have some previous background with math. Numeracy facilitation is something new to most instructors. We recognize that there is a need for training to reinforce the facilitation skills that are required to use this material more fully.

This sequencing guide is a natural companion to the book Numbers in our Lives - Numeracy Methods and Materials, which introduces basic numeracy concepts and whole-number skills. To that end, we have included page number references from Numbers in our Lives beside the descriptions of each step. There is enough space to add page numbers from other reference materials as well. Facilitators can refer to Numeracy Books for Adult Learners, an annotated bibliography also published by the Adult Basic Education Unit. For those people who prefer to develop materials themselves however, this sequencing guide is just as valuable on its own. We welcome feedback from anyone using this sequencing guide.

Kathy Lucas, Betty Dondertman, Tom Ciancone
A Spiral Numeracy Sequence
Part One: Pre-Operation

1. Recognizing and Drawing Shapes

△ ○ □

2. One-to-One Correspondence

Make pairs

△ → △
○ → △
□ → □

3. Recognizing and Drawing Numerals

1 2 3 4 5 6 7 8 9 0

Page References

Numbers in our Lives pages 7-12
4. **Reading and Writing Numbers**
 Using Numerals

 What is your telephone number?
 It is 393-1995

5. **Counting 1 – 10**

 Circle 4 squares.

 □ □ □ □
 □ □ □ □

6. **Counting to 50**

 How many days did you work in April?
 Count them on the calendar.

7. **Ordering and Comparing Numbers**

 Rewrite these numbers in order.
 23 27 25 26 24

8. **Counting to 100**

 Which number follows 79?
9. Counting to 1000

How many days are in a year? 365

10. Place Value: 1 - 999

If you have 2 hundred-dollar bills, 1 ten-dollar bill, and 3 loonies, you will have $213.

11. Ordering and Comparing Numbers to 1000

Which is larger? 405 or 410

12. Counting by 2’s, 5’s, and 10’s

These are even numbers: 2, 4, 6, 8, 10, 12...

13. Rounding

Is 93 closer to 90 or 100?
14. Estimating

Approximately how much money do you have with you today?

15. Reading and Writing Numbers in Words

1 one
2 two
20 twenty
21 twenty-one

16. Reading and Writing Ordinal Numbers

1st first
2nd second
3rd third
A Spiral Numeracy Sequence
Part Two: Whole Number Operations

1. Adding: one-digit numbers, answers to 10

Considering a Problem

Discussion to establish context

Addition: Concept, Sign Recognition, Vocabulary

\[\bigtriangleup \bigtriangleup + \bigtriangleup \bigtriangleup \bigtriangleup = \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \]

\[2 + 3 = 5 \]
two plus three is five

Addition Facts: 0 - 10

\[
\begin{array}{c}
5 \\
+ 2 \\
\hline \\
7
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

Page References

Numbers in our Lives page 101

NL pages 102 - 108

NL pages 109 - 117

NL pages 118 - 120
2. Subtracting: one-digit numbers

Considering a Problem

Discussion to establish context

Subtraction: Concept, Sign Recognition, Vocabulary

\[5 - 3 = 2 \]

five minus three is two

Subtraction Facts: 0 - 10

\[
\begin{array}{c}
3 \\
- 0 \\
\hline
3
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

Page References

NL page 121

NL pages 122 - 127

NL pages 128 - 134

NL pages 135 - 136
3. Making Connections: adding and subtracting

Decoding

\[
\begin{array}{ccc}
4 & + & 1 \\
+ & & \\
5 & = & 3
\end{array}
\]

Inverse Operations

\[
\begin{array}{ccc}
7 & + & 2 \\
+ & & \\
9 & = & 7
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

4. Multiplying: to 5 x 10

Considering a Problem

Discussion to establish context
Multiplication: Concept, Sign Recognition, Vocabulary

4 x 3 = 12
four times three is twelve

Multiplication Facts: 0 to 5 as multiplier

9 x 3 = 27

Applications

Estimating, word problems, discussions ...

5. Dividing: divisors up to 5, dividends up to 50

Considering a Problem

Discussion to establish context

Division: Concept, Sign Recognition, Vocabulary

14 + 7 = 2
fourteen divided by seven is two

Page References

NL pages 144 – 152

NL pages 153 – 161

NL pages 162 – 163

NL page 164

NL pages 165 – 172
Division Facts: divisors 1 to 5

\[20 + 4 = 5\]
\[30 + 5 = 6\]

Applications

Estimating, word problems, discussions ...

6. Making Connections: multiplying and dividing

Sign Recognition

\[15 + 5 = 3\]
\[8 \times 4 = 32\]
\[0 \times 7 = 0\]

Inverse Operations

\[4 \times 7 = 28\]
\[28 + 7 = 4\]

Applications

Estimating, word problems, discussions ...

Page References

NL pages
173 – 178

NL pages
179 – 180

NL page 181

NL pages
182–183

NL page 184
7. Adding: one-digit numbers, answers to 19

Considering a Problem

Discussion to establish context

Addition Facts: answers to 19

\[
\begin{array}{c}
9 \\
+ 4 \\
\hline
13
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

8. Subtracting: from two-digit numbers to 19

Considering a Problem

Discussion to establish context
Subtraction Facts: numbers to 19

$17 - 9 = 8$

Applications

Estimating, word problems, discussions . . .

9. Making Connections: adding and subtracting

Applications

Estimating, word problems, discussions . . .

10. Multiplying: to 10 x 10

Considering a Problem

Discussion to establish context

Multiplication Facts: up to 10 times table

$7 \times 6 = 42$
Applications

Estimating, word problems, discussions . . .

11. Dividing: one-digit divisor,
dividends up to 100

Considering a Problem

Discussion to establish context

Division Facts: one-digit divisor,
one-digit answer

\[
\begin{array}{c}
7 \\
8 \overline{56} \\
63 + 9 = 7
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

Page References

NL pages
237 – 240
(mixed)

NL pages
219 – 220

NL pages
221 – 230

NL pages
237 – 240
(mixed)
12. Making Connections: multiplying and dividing

Decoding

\[10 \times 2 = 20 \quad 10 + 2 = 5 \]

Inverse Operations

\[12 \div 4 = 3 \quad 3 \times 4 = 12 \]

Applications

- Estimating, word problems, discussions...

13. Adding: two- and three-digit numbers

Considering a Problem

Discussion to establish context

Addition: two digits, no carrying

\[
\begin{array}{c}
36 \\
+ 51 \\
\hline
87 \\
\end{array}
\]
Addition: with carrying

13 + 8 = 21
49 + 25 = 74
79 + 59 = 197

Applications

Estimating, word problems, discussions...

14. Subtracting: two- and three-digit numbers

Considering a Problem

Discussion to establish context.

Subtraction: two and three digits, no borrowing

56
- 31
-- 25

Page References

NL pages
248 - 252

NL page 253

NL pages
243 - 244

NL pages
254 - 256
Subtraction: with borrowing

\[
\begin{array}{c}
42 \\
- 15 \\
\hline
27
\end{array}
\]

Subtraction: borrowing with zeroes

\[
\begin{array}{c}
500 \\
- 326 \\
\hline
174
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

15. Making Connections: adding and subtracting

Applications

Estimating, word problems, discussions . . .
16. Multiplying: one-digit multiplier,
two or three digits on top

Considering a Problem

Discussion to establish context.

Multiplication: one-digit multiplier,
no carrying

\[
\begin{array}{c}
34 \\
\times \ 2 \\
\hline
68
\end{array}
\]

Multiplication: one-digit multiplier,
with carrying

\[
\begin{array}{c}
45 \\
\times \ 3 \\
\hline
135
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

Page References

NL pages
243 – 244

NL pages
261 – 266

NL pages
267 – 273

NL page 274
17. **Dividing: long division, one-digit divisor**

Considering a Problem

Discussion to establish context

Division: long division, one-digit divisor

\[
\begin{array}{c}
\begin{array}{c}
15 \\
\hline 6
\end{array} & \begin{array}{c}
34 \\
\hline 5
\end{array} \\
\hline
90 & 172 \\
\begin{array}{c}
6 \\
\hline
30
\end{array} & \begin{array}{c}
15 \\
\hline
22
\end{array} \\
\hline
30 & 20 \\
\hline
0 & 2
\end{array}
\]

Division: with zero as place holder

\[
\begin{array}{c}
30 \\
\hline 5
\end{array} & 154 \\
\begin{array}{c}
15 \\
\hline
04
\end{array}
\]

Applications

Estimating, word problems, discussions . . .

Page References

- **NC pages**
 - 243 - 244
- **NL pages**
 - 275 - 283
 - 284 - 291 (mixed)
18. Making Connections: multiplying and dividing

Applications

Estimating, word problems, discussions . . .

19. Making Connections: review all operations

Decoding and mixed practice

\[
\begin{align*}
87 + 15 &= 102 \\
56 - 27 &= 29 \\
8 \times 6 &= 48 \\
55 + 11 &= 5
\end{align*}
\]

Applications

Estimating, word problems, discussions . . .

20. Multiplying: two-digit multiplier

Considering a Problem

Discussion to establish context
Multiplication: by 10, 100, 1000

\[53 \times 10 = 530 \]

Applications

Estimating, word problems, discussions . . .

21. Dividing: two-digit divisor

Considering a Problem

Discussion to establish context

Division: two-digit divisors

\[
\begin{array}{c|cc}
& 4 \\
\hline
25 & 100 \\
\hline
& 100 \\
\hline
& 0 \\
\end{array}
\]

Division: by 10, 100, 1000

\[2600 + 100 = 26 \]
Applications

Estimating, word problems, discussions . . .

22. Making Connections: multiplying and dividing

Applications

Estimating, word problems, discussions . . .

23. Review: all operations

Applications

Estimating, word problems, discussions . . .
The Steps of the Spiral Sequence in Summary

Part One: Pre-operation

1. Recognizing and Drawing Shapes
2. One-to-One Correspondence
3. Recognizing and Drawing Numerals
4. Reading and Writing Numbers Using Numerals
5. Counting 1 - 10
6. Counting to 50
7. Ordering and Comparing Numbers
8. Counting to 100
9. Counting to 1000
10. Place Value: 1 - 999
11. Ordering and Comparing Numbers to 1000
12. Counting by 2's, 5's, and 10's
13. Rounding
14. Estimating

15. Reading and Writing Numbers in Words

16. Reading and Writing Ordinal Numbers

Part Two: Whole Number Operations

1. Adding: one-digit numbers, answers to 10

2. Subtracting: one-digit numbers

3. Making Connections: adding/subtracting

4. Multiplying: to 5×10

5. Dividing: divisors up to 5, dividends up to 50

6. Making Connections: multiplying/dividing

7. Adding: one-digit numbers, answers to 19

8. Subtracting: from two-digit numbers to 19

9. Making Connections: adding/subtracting

10. Multiplying: to 10×10

11. Dividing: one-digit divisor, dividends up to 100

12. Making Connections: multiplying/dividing
13. Adding: two- and three-digit numbers

14. Subtracting: two- and three-digit numbers

15. Making Connections: adding/subtracting

16. Multiplying: one-digit multiplier, two or three digits on top

17. Dividing: long division, one-digit divisor

18. Making Connections: multiplying/dividing

19. Making Connections: review all operations

20. Multiplying: two-digit multiplier

21. Dividing: two-digit divisor

22. Making Connections: multiplying/dividing

23. Review: all operations
A Linear Sequence: Addition

1. Concept

2. Addition Facts: 1 - 10

3. Addition Facts: adding one-digit numbers, answers greater than 9

4. Addition: two and three digits, no carrying

5. Addition: with carrying

6. Addition: mixed review

7. Applications
A Linear Sequence: Subtraction

1. Concept

2. Subtraction Facts: 0 – 10

3. Subtraction Facts: 0 – 19, no borrowing

4. Subtraction: two and three digits, no borrowing

5. Subtraction: with borrowing

6. Subtraction: with borrowing using zeroes

7. Subtraction: mixed review

8. Applications
A Linear Sequence: Multiplication

1. Concept

2. Multiplication Facts

3. Multiplication: one digit, no carrying

4. Multiplication: one digit, carrying

5. Multiplication: two digits, no carrying

6. Multiplication: two and three digits, carrying

7. Multiplication: by 10, 100, 1000

8. Multiplication: mixed review

9. Applications
A Linear Sequence: Division

1. Concept

2. Division Facts

3. Long Division: one-digit divisors, without and with remainder

4. Division: using zeroes as place holders

5. Division: two-digit divisors

6. Division by 10, 100, 1000

7. Division: mixed review

8. Applications
Other books available from the Adult Basic Education Unit:

- Numbers in Our Lives: Numeracy methods and materials
- Planning Numeracy Lessons for an ESL-Literacy Classroom: A beginning
- Numeracy Books for Adult Learners: An annotated bibliography

The Toronto Board of Education
Adult Basic Education Unit