The models of standard test theory, having evolved under a trait-oriented psychology, do not reflect the knowledge structures and the problem-solving strategies now seen as central to understanding performance and learning. In some applications, however, key qualitative distinctions among persons as to structures and strategies can be expressed through mixtures of test theory models, drawing upon substantive theory to delineate the components of the mixture. This approach is illustrated with response latencies to spatial visualization tasks that can be solved by mental rotation or by a nonspatial rule-based strategy. It is assumed that a subject employs the same strategy on all tasks, but the possibility of extending the approach to strategy-switching is discussed. (Contains 21 references, 8 tables, and 6 figures.) (Author)
RESOLVING MIXTURES OF STRATEGIES IN SPATIAL VISUALIZATION TASKS

Robert J. Mislevy
Marilyn S. Wingersky
Educational Testing Service

Sidney H. Irvine
Peter L. Dann
Polytechnic South West
Plymouth, England

This research was sponsored in part by the Program Research Planning Committee Educational Testing Service; the Cognitive Science Program Cognitive and Neural Sciences Division Office of Naval Research, under Contract No. N00014-88-K-0304 Contract Authority Identification No. R&T 4421552; and the Polytechnic South West under a Research Agreement with the Army Personnel Research Establishment Ministry of Defence, England

Robert J. Mislevy, Principal Investigator
Educational Testing Service
Princeton, New Jersey

July 1990

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Resolving Mixtures of Strategies in Spatial Visualization Tasks (Unclassified)

The models of standard test theory, having evolved under a trait-oriented psychology, do not reflect the knowledge structures and the problem-solving strategies now seen as central to understanding performance and learning. In some applications, however, key qualitative distinctions among persons as to structures and strategies can be expressed through mixtures of test theory models, drawing upon substantive theory to delineate the components of the mixture. This approach is illustrated with response latencies to spatial visualization tasks that can be solved by mental rotation or by a nonspatial rule-based strategy. It is assumed that a subject employs the same strategy on all tasks, but the possibility of extending the approach to strategy-switching is discussed.
Resolving Mixtures of Strategies in Spatial Visualization Tasks

Robert J. Mislevy
Marilyn S. Wingersky
Educational Testing Service

Sidney H. Irvine
Peter L. Dann
Polytechnic South West
Plymouth, England

July 1990

The work of the first two authors was supported by the Program Research Planning Committee of Educational Testing Service and by Contract No. N00014-88-K-0304, R&T 4421552, from the Cognitive Science Program, Cognitive and Neural Sciences Division, Office of Naval Research. Polytechnic South West has a Research Agreement with the Army Personnel Research Establishment, Ministry of Defence, under which the data collection and the work of the latter two authors were carried out. We are grateful to Murray and Irit Aitkin for their counsel on mixture distributions, to Peter Pashli and Kentaro Yamamoto for their comments on an earlier draft, and to Officer Commanding, Army Personnel Selection Centre, Sutton Coldfield, for permission to collect and coordinate data from recruits in October, 1988.
Resolving a Mixture of Strategies in
Spatial Visualization Tasks

Abstract

The models of standard test theory, having evolved under a trait-oriented psychology, do not reflect the knowledge structures and the problem-solving strategies now seen as central to understanding performance and learning. In some applications, however, key qualitative distinctions among persons as to structures and strategies can be expressed through mixtures of test theory models, drawing upon substantive theory to delineate the components of the mixture. This approach is illustrated with response latencies to spatial visualization tasks that can be solved by mental rotation or by a nonspatial rule-based strategy. It is assumed that a subject employs the same strategy on all tasks, but the possibility of extending the approach to strategy-switching is discussed.

Key words: EM algorithm, item-solving strategies, mental rotation, mixture models, spatial visualization.
Introduction

Recent research in cognitive and educational psychology reveals the central role of strategies, mental models, and knowledge structures in learning and problem-solving. Clancy (1986) describes the shift in perspective to "describing mental processes, rather than quantifying performance with respect to stimulus variables." To this task, standard test theory, with its focus on overall level of proficiency, is ill suited.

Consider as an example a test in which different persons employ different solution strategies. By characterizing examinees simply in terms of their propensities to make correct responses, the models of standard test theory (item response theory [IRT] as well as classical test theory) cloud analyses in several ways: information about subjects' mental processes is obscured, relationships between tasks' features and difficulties are confounded with strategy choice, and comparisons of subjects in terms of overall proficiencies are equivocal.

Mislevy and Verhelst's (in press) mixture model approach to test theory can be employed to handle certain distinctions of this type, as when different subjects employ different solution strategies. The following assumptions are made:

1. Potential strategies can be delineated a priori.
2. An examinee uses the same strategy on all tasks.
3. An examinee's responses are observed directly but strategy choice is not.

4. The responses of examinees following a given strategy conform to a response model of a known form, possibly characterized by unknown parameters.

5. For each strategy, psychological or substantive theory delineates relationships between the observable features and the difficulties of tasks.

The present paper illustrates this approach by modelling response latencies for spatial rotation tasks that can be solved by either a rotational or a rule-based strategy. Simplified versions of processing models from the visualization literature are the basis of inference about strategy usage. An empirical Bayesian approach provides maximum likelihood estimates of the "structural" parameters of the problem and, for each subject, posterior probabilities of membership in each strategy class and conditional estimates of proficiency under each.

The Data

The data were gathered with a computer administered test of what are typically called "mental rotation tasks." This area was selected by virtue of its long history of research in both psychometrics (e.g., Michael, Guilford, Fruchter, & Zimmerman, 1957; Thurstone, 1938) and cognitive psychology (e.g., Just Carpenter, 1985; Lohman, Pellegrino, Alderton, & Regian, 1987). Of particular interest is the finding that tasks of some tests
designed to measure spatial visualization abilities can be solved with nonspatial, analytic strategies (French, 1965; Kyllonen, Lohman, & Snow, 1984; Pellegrino, Mumaw, & Shute, 1985).

The tasks addressed in this paper concern a right-angled triangle whose vertical height was 150 units on a computer presentation screen, and whose horizontal side adjacent to the right angle was 80, 100, 120, or 140 units (see Figure 1). The model triangle was presented on the top half of the screen. Immediately below it was a second triangle whose sides were identical in size, but which had been rotated from the vertical by 40, 80, 120, or 160 degrees. This target was either an exact match to the original or a mirror-image, and the subject was instructed to indicate whether the two triangles were the same or different. Response latency and correctness were recorded. The stimulus set was constructed from the Cartesian product of four factors: side lengths (4), rotations (4), identical or mirror-image (2), and hypotenuse of the model triangle left or right of the vertical (2), for 64 distinct stimuli in total. Because systematic differences are found routinely between patterns on rotations tasks whose correct answer is "same" compared to those for which the correct answer is "different" (e.g., Cooper & Podgorny, 1976), we address only the 32 stimuli in which the target triangle is identical to the model.

[Figure 1 about here]

Subjects were male recruits to the British Army, between 18 and 24 years of age, undergoing selection and allocation in the
Army Personnel Selection Centre. They were tested throughout by a single presenter during the week of October 17, 1988. They were assigned in groups of approximately 40 subjects by daily cohort of recruits to one of three experimental groups. All groups were presented two replications of the entire task set, but they received different instructions. Two groups started under the "standard testing condition" described below, and the third group was additionally shown a nonspatial rule-based strategy for solving the tasks. One of the two standard groups was given the rule-based strategy instruction before their second replication, but because only data from the first replication is addressed here, the two standard groups will not be distinguished.

The standard testing condition was derived from the customary way of demonstrating this class of rotational tasks to naive subjects. An overhead projector was used to display two cardboard right triangles vertically, as in Figure 1, creating solid black images on a white background. The bottom triangle was rotated to several positions to show that it could be "shuffled around on the page" to match the top one. It was physically lifted to show that it could be fitted exactly over the top one. By similar means, the mirror image of the top triangle was shown to be different from the top one, no matter how it was moved about in the plane. The same demonstration was given for both the hypotenuse-left and hypotenuse-right versions of the original stimulus. This introduction was devised to encourage the subjects to use a mental rotation strategy for problem solution, a strategy described by
Shepard and Meltzer (1971) as "isomorphic." Under this strategy, degree of rotation is a primary determiner of task difficulty, in terms of both response latency (Shepard & Meltzer, 1971) and accuracy (Tapley & Bryden, 1977).

The second experimental condition was devised to encourage the use of an "analytic" or "rule-based" strategy. Such strategies employ procedural learning rules rather than mental visualization to determine correct answers. Subjects were shown how to judge whether the target was identical or mirror-image of the model by attending to a specific feature of the triangle, namely the length of the side clockwise adjacent to the right angle. The triangles are different if one encounters the long side of one triangle but the short side of the other. It can be hypothesized that under this strategy, difficulty is nearly independent of the degree of rotation, but depends primarily on the saliency of the key feature; that is, the strategy should be more difficult to implement as the right triangle becomes more nearly isosceles.

The rule was derived by asking British Naval Engineering cadets at the Royal Naval Engineering College at Plymouth how they habitually solved such tasks. While some replied they knew just by looking at them (i.e., their strategies were not consciously available), others said they never rotated the objects themselves; they instead moved their gaze around the model from a fixed point on it, noting the presence or absence of some salient feature. They then found the same starting point on the target and checked
for the presence or absence of the feature. If it was there, the target had to be the same as the model. If not, it had to be different.

Data from 244 subjects were initially made available for this study. The analyses reported here concern the 196 remaining after trimming those with the highest and the lowest 10-percent of within task-type variance, as pooled over the 16 rotation/side-length pairs, so as to leave the remaining 80-percent nearly homoscedastic with respect to this component of variation. Of these, 131 had not been instructed in the rule and 65 had. Note that the 2:1 ratio reflects equal trimming of noninstructed and instructed subjects.

Figures 2 and 3 plot median latencies to "same" tasks against coded angular displacement and side length, respectively. Throughout the paper we work with natural logarithms of response times, standardized over all tasks and subjects. Figure 2 shows that average response latency tends to increase linearly with angular displacement, which is coded as -1.5, -.5, .5, and 1.5 along the x-axis. The plot symbols are coded side lengths, from shortest (most acute) to longest (most nearly isosceles) as -2.25, -1.25, .75, and 2.75. Coding side length in these unequally spaced intervals produces the nearly linear relationship shown in Figure 3, where the x-axis gives coded side length and plot symbols give coded angular displacements. Table 1 gives three representative subjects' observed means, averaging over left- and right-hypotenuse tasks within rotation and side-length.
The Model

A mixture model for the data described above is laid out in two phases. First is the response model, which concerns the distribution of response latencies conditional on choice of strategy and proficiency in using that strategy. Second is the population model, which concerns the proportions of subjects that employ the various strategies and the distributions of proficiency within strategy classes. The generic model described below is for a mixture of K strategy groups; a single strategy can be modelled by setting K to one. After presenting the model, we give the results of fitting three single-strategy models and a mixture of two strategies.

The Response Model

Suppose that K potential strategies are available to solve tasks in a test, and each subject uses one strategy exclusively on all tasks. Each subject will be characterized by two vector-valued unobservable variables. The first is the indicator variable $\phi = (\phi_1, \ldots, \phi_K)$, where ϕ_k takes the value 1 if Strategy k is the one the subject uses, 0 if not. The second is $\theta = (\theta_1, \ldots, \theta_K)$, where θ_k is proficiency under Strategy k. Only one of the elements of θ plays a role in producing the data observed from a given subject, namely the one for which $\phi_k = 1$. Task j is characterized by the vector of difficulty parameters
\[\beta_j = (\beta_{j1}, \ldots, \beta_{jK}) \], where \(\beta_{jk} \) determines the difficulty of Task \(j \) for subjects who employ Strategy \(k \).

We work with a log normal distribution for the response latency \(t_j \) of a subject to Task \(j \), given that Strategy \(k \) is employed. Defining \(x_j \) as \(\ln t_j \) and \(\delta_k \) as a scale parameter of the log-normal density pertaining to Strategy \(k \), the response model is given by

\[
f(x_j | \theta, \delta, \beta_j, \delta) = \prod_k f_k(x_j | \theta_k, \beta_{jk}, \delta_k) \phi_k, \quad [1]
\]

where

\[
f_k(x_j | \theta, \beta, \delta) = \frac{1}{\sqrt{2\pi} \delta_k} \exp \left\{ -\frac{1}{2\delta_k^2} [x_j - (\theta_k - \beta_{jk})]^2 \right\}. \quad [2]
\]

Thus [2] gives the density for log response time to Task \(j \) for a subject employing Strategy \(k \), with proficiency \(\theta_k \) under that strategy. The difference \((\theta_k - \beta_{jk}) \) is the mean and \(\delta_k \) is the standard deviation. Note that lower values of \(\theta \) signify faster expected response times (i.e., more proficiency on the part of the subject), while higher values imply slower response times. Lower values of \(\beta \) signify slower expected response times (greater difficulty on the part of the task), while higher values imply faster response times. The product over \(k \) that appears in [1] serves merely to select the \(f_k \) that applies, since \(\phi_k = 1 \) in this case and 0 in all others. In the sequel \(f_k(x_j | \theta, \beta, \delta) \) will be abbreviated at times as \(f_k(x_j | \theta_k) \), suppressing the dependence on \(\beta_{jk} \) and \(\delta_k \).
Equations [1] and [2] posit individual differences among subjects as to strategy selection and speed-within-strategy. Individual differences corresponding to slopes might also be entertained, but to do so here increases complexity without adding insight into the inferential approach. We note in passing, however, that recent studies suggest that at least some of the slope differences among individuals found in standard analyses may be related to the use of different strategies (Carter, Pazak, & Kail, 1983; Just & Carpenter, 1985).

Psychological theory about what makes tasks easy or hard under various strategies appears in the form of models for the β_{jk}'s. Following Scheiblechner (1972) and Fischer (1973), let q_{jk} be a known vector of coefficients expressing the extent to which Task j exhibits each of M_k features that determine task difficulty under Strategy k; let α_k be a parameter vector, also of length M_k, that conveys the influence of those features. Assuming a linear relationship between task features and task difficulty,

$$ f_{ijk} = \sum_{m=1}^{M_k} q_{jkm} \alpha_{km} - q_{jk} \alpha_k. \quad [3] $$

For the rotational strategy, for example, angular displacement is a major determinant of difficulty. Tasks rotated to the four equally-spaced displacements will have q values for this feature coded as -1.5, -0.5, 0.5, or 1.5. The corresponding element of α would indicate the incremental difficulty associated with an increase of one additional unit of angular displacement.
For a strategy under which side length is posited to contribute to difficulty, tasks will have q values of -2.25, -1.25, .75, or 2.75 that indicate the saliency of this key feature. The corresponding element of α would reflect the additional difficulty resulting from an additional increment toward being isosceles.

Task responses are assumed to be independent given α, θ, and ϕ. Letting $x=(x_1, \ldots, x_n)$ be a vector of log latencies to n tasks,

$$P(x|\theta_k, \phi_k, \alpha_k, \delta_k) = \prod_j f_k(x_j|\theta_k) = f_k(x|\theta_k),$$

so that

$$P(x|\theta, \phi, \alpha, \delta) = \prod_k f_k(x|\theta_k).$$

[4]

The Population Model

Suppose that subjects are a representative sample from a population in which the proportion employing Strategy k is π_k, with $0<\pi_k<1$. Denote by π the vector (π_1, \ldots, π_K). Denote by $g_k(\theta_k)$ the density function of θ_k for members of Class k. We assume normal distributions (although other distributions or even nonparametric approximations could be used), so that $g_k(\theta_k|\mu_k, \sigma_k)$ has the form

$$g_k(\theta_k|\mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi} \sigma_k} \exp \left\{ -\frac{1}{2\sigma_k^2} (\theta_k - \mu_k)^2 \right\}.$$

For brevity, denote the population distribution parameters by $\Gamma = \Gamma_k = (\gamma_1, \ldots, \gamma_K) = (\mu_1, \sigma_1, \ldots, \mu_K, \sigma_K)$.

16
Estimation

Equation [4] is the conditional probability of a response pattern \(x \), or the probability of observing \(x \) from a subject having particular values of \(\theta \) and \(\phi \). Assuming the population model described above, the probability of observing \(x \) from an examinee selected at random, or the marginal probability of \(x \), is given as

\[
p(x|\alpha, \delta, \pi, \Gamma) = \sum_{k} \pi_k \int f_k(x|\theta_k, \alpha_k, \delta_k) g_k(\theta_k|\alpha_k) d\theta_k.
\]

Let \(x = (x_1, \ldots, x_N) \) be the response matrix of a random sample of \(N \) subjects to \(n \) tasks. A realization of \(x \) induces the marginal likelihood function for \(\alpha, \delta, \pi, \) and \(\Gamma \) as the product over subjects of factors like [5]:

\[
L(\alpha, \delta, \pi, \Gamma|x) = \prod_{i=1}^{N} p(x_i|\alpha, \delta, \pi, \Gamma).
\]

We refer to \(\alpha, \delta, \pi, \) and \(\Gamma \) as the structural parameters of the problem. Their number remains constant as \(N \) increases. The incidental parameters \(\theta \) and \(\phi \), whose numbers increase in direct proportion to \(N \), have been eliminated by marginalizing over their respective distributions. Marginal maximum likelihood (MML) estimation finds the values of the structural parameters that maximize [6], say \(\hat{\alpha}, \hat{\delta}, \hat{\pi}, \) and \(\hat{\Gamma} \). The Appendix gives a numerical
solution for the present problem using Dempster, Laird, and Rubin's (1977) EM algorithm. The solution is for data in which strategy use is not known with certainty for any subject, as was the case in the present study. If strategy-use information is available for some subjects, however, as from follow-up interviews with a subsample, estimates of structural parameters can be improved--sometimes dramatically--by exploiting it (Titterington, Smith, & Makov, 1985, Section 4.2).

Once MML estimates of structural parameters have been obtained, one can obtain empirical Bayesian approximations of probabilities of class membership for any examinee, and estimates of θ_k conditional on membership in any class k. If the structural parameters were known with certainty, the posterior density for Subject i would be

$$p(\theta_k, \phi_k = 1 | x_i, \alpha, \delta, \pi, \Gamma)$$

$$= \frac{\pi_k f_k(x_i | \theta_k, \alpha_k, \delta_k) g_k(\theta_k | \alpha_k)}{\sum_h \pi_h \int f_h(x_i | \theta_h, \alpha_h, \delta_h) g_h(\theta_h | \alpha_h) d\theta_h}. \quad [7]$$

An empirical Bayes approximation substitutes MLEs for the structural parameters. The posterior probability that Subject i employed Strategy k, denoted \hat{P}_{ik}, is approximated as

$$\hat{P}_{ik} = P(\phi_k = 1 | x_i) \approx \int p(\theta_k, \phi_k = 1 | x_i, \hat{\alpha}, \hat{\delta}, \hat{\pi}, \hat{\Gamma}) d\theta_k. \quad [8]$$

Conditional on membership in Class k, the posterior expectation and variance of θ_k are approximated as
\[E(\theta_k | \phi_{ik}, x_1) = \int p(\theta_k, \phi_{ik} | x_1, \hat{\alpha}, \hat{\beta}, \hat{\pi}, \hat{\Gamma}) d\theta_k \] [9]

and

\[\text{Var}(\theta_k | \phi_{ik}, x_1) = \int \theta_k^2 p(\theta_k, \phi_{ik} | x_1, \hat{\alpha}, \hat{\beta}, \hat{\pi}, \hat{\Gamma}) d\theta_k \] - \[\hat{\theta}_k^2 \] [10]

Single-Strategy Solutions

This section uses single-strategy solutions to illustrate Q matrices, obtain baseline likelihood statistics, calculate task-difficulty estimates under different models, and give a feel for the data by looking more closely at the subjects introduced in Table 1. These solutions assume not only that a subject applies the same strategy on all tasks, but that all subjects are applying the same strategy. Three such solutions are considered:

1. Rule-based (difficulty depends on side length only),
2. Mental rotation without side-length effects (difficulty depends on degree of rotation only), and
3. Mental rotation with side-length effects (difficulty depends on both side length and degree of rotation).

Side-Length Only

Suppose that all subjects followed a rule-based strategy, under which difficulty is determined by side length alone. Under this scenario, the only systematic sources of variation in
response times are subjects' overall proficiencies and tasks'
differing side lengths. Proficiency is denoted by the univariate
variable θ, assumed to follow a normal distribution whose mean μ
and standard deviation σ are to be estimated. Task difficulty is
given as $\beta_j = q_{j1} \alpha_1$, where q_{j1} is the coxed side-length of task j
(-2.25, -1.25, .75, or 2.75), and α_1 is the change in difficulty
associated with an additional increment in side length toward
isosceles. Finally, δ is the standard deviation of log response
time within task type and subject.

The first panel of Table 2 gives the MLEs of the structural
parameters. The value of $-2 \log$ likelihood, or $-2 \ln \Sigma p(z_k)$,
also appears, which will be used to compare the fit of alternative
models. The estimate of α_1 is -.124, which translates into
expected increases in response latency as side length increases.
The first panel of Table 3 gives the resulting βs, with higher
values corresponding to faster response times and lower numbers
corresponding to slower ones. The modelled standardized log
latency of a particular subject on a particular task type under
this model would be obtained by subtracting the task's β value
from that subject's θ value--thereby maintaining for all subjects
the pattern of increasing difficulty with increasing side length
without effects of degree of rotation.

[Insert Tables 2 and 3 about here]

This pattern is illustrated with the subject whose observed
means data appear in the second panel of Table 1. The Bayes
estimate θ is -.317, a measure of overall proficiency. Combining
with the βs gives the modelled latencies in the second panel of Table 4. The third panel gives residuals, which indicate faster averages than expected in some cells, slower in others, but no systematic trend in average residuals in either the side-length or rotation margins. (The residuals do not sum to zero because the expectations were based on a Bayesian proficiency estimate, as opposed to, say, least-squares within subject.) Table 5 gives residuals for all three sample subjects. Note the strong trend related to rotation for the last subject.

[Insert Tables 4 and 5 about here]

Rotation Only

Even though the side-length model fits the data of subjects like the second fairly well, the familiar relationship between difficulty and degree of rotation appears in the residuals of subjects like the fifth. An alternative simple model has difficulty depend on rotation only, neglecting the possible impact of differences in side-length. Under this model, $\beta = q_{2j} \alpha_2$, where q_{2j} is the coded rotation of Task j (-1.5, -.5, .5, or 1.5) and α_2 is the impact on difficulty of an additional increment in rotation. The results of fitting this model appear in the second panel of Table 2. The MLE of α_2 is -.108, signalling increasing difficulty as the degree of rotation increases. The resulting βs are in the second panel of Table 3, showing patterns of expected difficulty that depend on rotation alone.

The value of $-2 \log$ likelihood is 14907.78. To compare the fit of alternative, possibly nonnested, models to the same data
set, Akaike (1985) calculates the index AIC ("an information criterion") for each model: -2 log likelihood plus twice the number of parameters estimated. The model with the smaller AIC is preferred. AIC for rotation-only is $14907.78 + 2 \times 4 = 14915.78$. AIC for side-length only, which also has four parameters, is 14432.40—smaller by 483. The side-length only model fits better than the rotation only model.

Subject θ estimates in this model combine with the βs to give expected response latencies that maintain the same relative relationships seen in the βs, but vary as to overall speed. Subtracting such expectations calculated with θs from the observed data gives the residuals shown in Table 6 for the sample subjects. The third subject's strong linear trend in residuals associated with rotation has been dampened considerably, but a reverse trend in the rotation margin has been introduced for the first two subjects. Note also the tendency toward a consistent ordering in the side-length residuals.

[Table 6 about here]

Rotation and Side-Length

A final single-strategy model incorporates main effects for both rotation and side-length: $\beta_j = q_{j1} a_1 + q_{j2} a_2$, where the qs and as have the same meanings as in the preceding models. This incorporates a more elaborate scenario for mental rotation, allowing for latency to increase not only with degree of rotation, but with the difficulty of comparison after rotation is complete (Cooper & Podgorny, 1976). Parameter estimates and -2 log
likelihood appear in the third panel of Table 2. Because of the orthogonal experimental design, as are identical to those of the previous single-feature models. AIC for this model is 14258.72, smaller than the side-length AIC by 173 and smaller than the rotation AIC by 661. The model incorporating both task features thus fits better than both models with a single feature only, even accounting for the additional parameters being estimated. The resulting β's appear in the third panel of Table 3.

The residuals for the sample subjects are in Table 7. Because of the orthogonal design, the rotation margins of the residual tables under this model match the corresponding margins under the rotation only model, and the side-length margins match those from the side-length only model.

[Table 7 about here]

A Two-Strategy Solution

This model posits a mixture of two types of subjects: those employing the rule-based strategy, whose response patterns can be largely captured with the side-length only model, and those employing mental rotation, whose responses depend on both side-length and degree of rotation. There are ten parameters to estimate in this model: the relative proportion of strategy use in the sample; a mean, standard deviation, and within task-type standard deviation for each strategy; an a for side-length for the rule-based strategy component; and two as, one for side-length and one for rotation, for the rotation strategy component. The
estimates appear in the final panel of Table 2. AIC improves over
the rotation and side-length single-strategy model by 72.

Two distinct sets of βs result in this model, one for each
strategy. These appear in the last two panels of Table 3. The
side-only component, like the side-length only single strategy
panel, shows only a side-length effect. Interestingly, it is
smaller than the corresponding effect in the side-length single-
strategy model. The "side-length and rotation" component shows
both effects. Compared to the corresponding single strategy
solutions, both the side-length and the rotational effects are
stronger. The interpretation would be that decreasing the
distinctness of the salient feature of the stimulus hampers
subjects employing rotation more than those employing the rule.

The point of mixture modelling is that we do not know with
certainty which subjects are employing which strategy. One of the
structural parameters is the proportion using each; MLEs are 57-
percent for the rule-based strategy and 43-percent for the
rotational strategy. These values can be expressed as the
averages of subjects' posterior probabilities of being in one
strategy group or the other (Equation 8). The histograms in
Figure 4 show subjects' posterior probabilities for the rule-
based strategy. Most have probabilities below .2 or above .8,
indicating fairly good separation of the components of the
mixture. To put this in the context of the statistical literature
on mixtures (e.g., Titterington et al., 1985), Figure 5 gives the
histogram of a closely matching "mixture of homoscedastic Gaussian
components" problem. The mixing probability is .55 and the
distance between the means of the components is 2.2 standard
deviations. The information about the mixing proportion is about
half what it would be if component membership were observable
(Hill, 1963). Figure 6 breaks the information from Figure 4 down
by whether subjects were shown the rule. The proportion of
instructed subjects whose responses are strongly allied with the
rule-based strategy is substantially higher--nearly half, as
compared to just a fourth of those not instructed.

Table 8 gives posterior probabilities and residuals for the
sample subjects. As suggested by patterns of residuals from the
single strategy models, the posterior probabilities of Subjects 1
and 2 are concentrated on Strategy 1, the rule-based strategy (Ps
of .98 and .70), and that of Subject 3 is concentrated on the
rotational strategy (P nearly 1.00). The main factor that
determines strategy assignment is the presence of a linear trend
related to rotation. Of secondary importance is the strength of
the trend related to side length, with stronger trend being
associated with the rotational strategy. The high probability of
the rule-based strategy for Subject 1 is a consequence of both a
lack of trend for rotation and a weak trend for side length in the
observed data (see Table 1).

For a decision-making problem that depends on identifying a
subject's strategy use, the strategy with the higher posterior
probability is the choice. For a problem that depends on
predicting future performance, the optimal prediction is a mixture. For Subject 2, for example, predictions would be calculated under both strategies, using the task parameters and his posterior θ distribution within each; these distinct predictions would be averaged with weights of .70 for the rule-based strategy and .30 for the rotational one. The predictions for the residuals in Table 8 were calculated in this manner, using conditional within-strategy posterior means for θs.

[Insert Table 8 about here]

Discussion

This presentation was meant to demonstrate how a mixture-model approach can be incorporated into test theory to deal with different problem solving approaches. We readily concede that the psychological model for the visualization tasks is overly simplistic. There are some ways it could be made more realistic while preserving the assumption that a subject maintains the same strategy throughout observation. These include modeling subprocesses, relaxing distributional assumptions, or incorporating individual difference terms for residual variances or sensitivity to rotational angles. But more substantial steps toward reality lie beyond this framework.

It must first be admitted that the two strategies discussed here do not exhaust the variety of approaches that subjects bring to bear upon such tasks. They may be viewed as archetypes, one or the other of which may be sufficiently close to a given subject's data to provide a serviceable guide to selection or instruction.
In applied work, analyses of subjects' fit and patterns of residuals will be important to flag patterns that are not modelled, either for special consideration if they are few in number, or for incorporation into the model if they are recurrent.

Perhaps more importantly, we must consider the possibility of strategy switching, or the violation of the assumption that a subject follows the same strategy on all tasks. This assumption may be reasonable if strategy is defined through knowledge structures, so that response patterns associated with advanced structures are not accessible to learners in earlier stages. An example of this type is Siegler's analysis (1981) balance beam tasks, where competence is increased by adding rules to a repertoire in a largely predictable order. It may also be reasonable if strategies associated with alternative mental models of a domain are unlikely to coexist in a given subject.

The same assumption is less reasonable in a domain where alternative strategies are available to the same subject, so that the conditions and the frequency of strategy switching become additional sources of individual difference. Kyllonen, Lohman, and Snow (1984) note increasing use of non-spatial strategies as mental rotation tasks become more difficult. A more appropriate model in this case would characterize mixtures within subjects; not just that a subject followed Strategy A or Strategy B, but that she used Strategy A on 30-percent of the tasks and Strategy B on 70-percent---and that the characteristics of tasks that were relevant to her strategy choice were such-and-such. Given the
vicissitudes of even the straight mixture model, it is clear that
modelling mixtures within subjects will require richer information
than the familiar correctness or response times, perhaps in the
form of response protocols, intermediate products, or physical
measures such as eye movement (as in Just & Carpenter, 1976).

It would appear that mixture models of the type illustrated
here have most promise in contexts where the qualitative
distinctions among persons are relatively few in number, stable
during the period of observation, and distinguishable in terms of
their implications for observable behavior. We have demonstrated
by example that the calculations in this case are tractable and
the mixtures can be resolved satisfactorily. Future work will
focus on a more general computational scheme and a broader variety
of more educationally relevant applications.
References

Scheiblechner, H. (1972). Das lernen und losen komplexer

Statistical analysis of finite mixture distributions. Chichester: Wiley.
Appendix: Estimating Structural Parameters via the EM Algorithm

Equation [5] is an "incomplete data" density function of the form addressed by Dempster, Laird, and Rubin (1977) in "Maximum likelihood from incomplete data via the EM algorithm." Estimating the structural parameters would be straightforward if values of the latent variables θ and ϕ could be observed from each subject along with his or her response vector x; this would be a "complete data" problem. The EM algorithm maximizes the incomplete-data likelihood [6] iteratively. The E-step, or expectation step, of each cycle, calculates the expectations of the summary statistics that the complete-data problem would require, conditional on the observed data and provisional estimates of the structural parameters. The M-step, or maximization step, solves what looks like a complete-data maximum likelihood problem using the conditional expectations of summary statistics. The resulting maxima for the structural parameters are improved estimates of the incomplete-data solution, and serve as input to the next E-step.

We employ the variation of the EM algorithm suggested by Mislevy and Verhelst (in press) to estimate the parameters of mixtures of psychometric models. The integration that appears in [5] is approximated by summation over a fixed grid of points. The E-step calculates, for each examinee, conditional probabilities of belonging to each component of the mixture (i.e., strategy class) and, conditional on component membership, the probabilities that θ takes various grid-point values. The grid points play the role of weighted pseudo-data points in the M-step. Numerical integration
could be avoided in the special case considered above, but the approach described below also applies with alternative response models and distributional forms.

Solving the "Complete Data" Problem

This section gives the ML solution for θ, δ, π, and Γ that would obtain if values of θ and δ were observed for each subject along with π. Among the N_k sampled subjects from Strategy Class k, some number L_k distinct values of θ would be observed, say $\theta_{k\ell}$ for $\ell=1,\ldots,L_k$. Define the following statistics:

- $I_{ik\ell}$, an indicator variable that takes the value 1 if Subject i is in Strategy Class k and has proficiency $\theta_{k\ell}$.
- N_k, the number of examinees observed to be in Class k:

\[N_k = \sum_i \phi_{ik} = \sum_i \sum_{\ell} I_{ik\ell}. \]

- $N_{k\ell}$, the number of examinees in Class k with $\theta=\theta_{k\ell}$:

\[N_{k\ell} = \sum_i I_{ik\ell}. \]

- \bar{x}_{jk}, the mean of θ-centered log latencies for Task j from subjects in Class k:

\[\bar{x}_{jk} = N_{k}^{-1} \sum_{i} \sum_{\ell} (x_{ij} - \theta_{k\ell}) I_{ik\ell}. \]

- s^2_{jk}, the average square of θ-centered log latencies for Task j from subjects in Class k:

\[s^2_{jk} \]
The complete data likelihood for \(\alpha, \delta, \pi, \) and \(I \) that would be induced by the observation of \(x, \theta, \) and \(\phi \) can be written as

\[
L^* (\alpha, \delta, \pi, I | x, \theta, \phi) = \prod_k P(N_k | \pi) \prod_k P(N_{kl} | N_k, \alpha) \prod_i f_k(x_{ij} | \theta_{kl}, \alpha_k, \delta_k) I_{ikl},
\]

whence the complete data log likelihood

\[
\ell^* (\alpha, \delta, \pi, I | x, \theta, \phi) = \sum_k N_k \log \pi_k \sum_k N_{kl} \log \theta_{ikl} \mu_k, \sigma_k
\]

\[+ \sum_i \sum_k I_{ikl} \sum_j \log f_k(x_{ij} | \theta_{ikl}, \alpha_k, \delta_k). \tag{A5}\]

ML estimation for the complete data problem proceeds by solving the likelihood equations, which are obtained by setting to zero the first derivatives of [A5] with respect to each element of \((\alpha, \delta, \pi, I)\). That is, for a generic element \(u \) of \((\alpha, \delta, \pi, I)\),

\[
0 = \left. \frac{\partial \ell^* (\alpha, \delta, \pi, I | x, \theta, \phi)}{\partial u} \right|_{u = u^*}. \tag{A6}
\]

For elements of \(\pi \), one must impose the constraint that \(\sum \pi_k = 1 \), say with a Lagrangian multiplier. One obtains a closed form solution for the proportion of subjects in each strategy class:
For elements of the population parameter vector \(\Gamma \), the ML estimates in the normal case are, for \(k=1,...,K \),

\[
\hat{\mu}_k = N_k^{-1} \sum \theta_{kl} N_{kl} \] \[\text{[A8]}\]

and

\[
\hat{\sigma}_k^2 = N_k^{-1} \sum (\theta_{kl} \hat{\mu}_k)^2 N_{kl} \] \[\text{[A9]}\]

For the parameters of the task response model,

\[
\hat{\alpha}_k = - (Q_k Q_k')^{-1} Q_k \hat{x}_k \] \[\text{[A10]}\]

where \(Q_k = [q_{1k} \ldots q_{nk}] \) and \(\hat{x}_k = (\hat{x}_{1k}, \ldots, \hat{x}_{nk}) \), and

\[
\hat{\delta}_k^2 = n^{-1} \sum_{j} \left[s_{jk}^2 + 2 \beta_{jk} \hat{x}_{jk} + \beta_{jk}^2 \right] \] \[\text{[A11]}\]

Solving the "Incomplete Data" Problem

The likelihood equations in the incomplete-data problem, in which \(\theta \) and \(\phi \) are not observed, are the first derivatives of the
log of the marginal likelihood function, [6], set to zero. Under mild regularity conditions, these take the form of a data-weighted average of the complete-data likelihood equations shown as [A6].

Letting $l(\alpha, \delta, \pi, \Gamma | x) = \ln L(\alpha, \delta, \pi, \Gamma | x)$, the incomplete-data likelihood equation for a generic element u of $(\alpha_0, \delta_0, \pi, \Gamma)$ is

$$0 = \frac{\partial l(\alpha, \delta, \pi, \Gamma | x)}{\partial u}$$

$$0 = \sum_k \frac{\partial \tilde{z}^*(\alpha, \delta, \pi, \Gamma | x, \theta, \phi_k - 1)}{\partial u} p(\theta, \phi_k - 1 | x) d\theta, \quad [A12]$$

where

$$p(\theta, \phi | x) = \prod_i \frac{p(x_i | \theta_i, \phi_i, \alpha, \delta, \pi, \Gamma)}{p(x_i | \alpha, \delta, \pi, \Gamma)}. \quad [A13]$$

It is seen in [5] that evaluating the denominator of [A13] involves integration over the $N(\mu_k, \sigma_k)$ distributions. We approximated these integrals via Gaussian quadrature. Tabled values are obtained for L points $\theta_1, \ldots, \theta_L$, with associated weights w_1, \ldots, w_L. (We used $L=80$, ranging from -3 to +3). Calculation proceeds as though these were the only possible values for θ; I_{ikl} indicates whether Subject i used Strategy k and had proficiency θ_k.

In the incomplete-data problem, neither the values of θ_i nor ϕ_i are known, so neither are the I_{ikl} values used to calculate $p(x_i | \alpha, \delta, \pi, \Gamma)$.
summary statistics. If the values of the structural parameters Γ, $\mathbf{\alpha}$, $\mathbf{\beta}$, and $\mathbf{\rho}$ were known, however, it would be possible to calculate the expected values of the $I_{ik\ell}$s given \mathbf{x}_i as follows:

$$ I_{ik\ell} = E(I_{ik\ell} | \mathbf{x}_i, \mathbf{\alpha}, \mathbf{\beta}, \mathbf{\rho}, \Gamma) $$

$$ = \frac{\pi_k \sum_{h} W_h \sum_{r} f_h(x_{ik\ell} | \mathbf{x}_i, \mathbf{\alpha}_k, \mathbf{\beta}_k, \mathbf{\rho}_k, \mathbf{\omega}_h)}{\sum_{h} W_h \sum_{r} f_h(x_{ik\ell} | \mathbf{x}_i, \mathbf{\alpha}_h, \mathbf{\beta}_h, \mathbf{\rho}_h, \mathbf{\omega}_h)} $$

In the E-step of the EM algorithm, one evaluates [A14] for each i, k, and ℓ using provisional estimates of $\mathbf{\alpha}$, $\mathbf{\beta}$, $\mathbf{\rho}$, and Γ. One then obtains expectations of the summary statistics defined in [A1]-[A4], say N_k, $N_k\ell$, $x_{ik\ell}$, and $s_{ik\ell}^2$. The grid values $\mathbf{\beta}_k$ in the incomplete-data solution thus correspond to the observed $\mathbf{\beta}$ values in the complete data solution.

In the M-step, one solves facsimiles of the complete data likelihood equations, [A7]-[A11], with N_k, $N_k\ell$, $x_{ik\ell}$, and $s_{ik\ell}^2$ in place of their observed counterparts. Cycles of E- and M-steps continue until changes are suitably small. Convergence to a local maximum is assured, except from initial values that lie on boundaries of the parameter space (e.g., $\pi_1 = 0$). Repeated solutions from different starting values help identify the global maximum. Accelerating methods may be used if convergence is too slow.

Equation [A14] will be recognized as an application of Bayes theorem, giving the posterior probability that $\theta_{ik} \sim \mathbf{\beta}_k$ and $\phi_{ik} \sim 1$ after observing \mathbf{x}_i. The normalizing constant in the denominator
is an approximation of $p(x_i)$ as given in [5]. During the E-step, one may therefore accumulate the sum $-2 \sum \log p(x_i)$ to track the performance of improvement in fit over cycles, to examine the fit obtained with various values of structural parameters, or to compare the fit of alternative models.

Empirical Bayes Estimates of Examinee Parameters

The numerical approximations employed above to estimate structural parameters can be used for subsequent empirical Bayesian estimates for individual subjects. The expectations of the indicator variables I_{ikl} are evaluated via [A14] with MML estimates of α, β, π, and Γ. The empirical Bayes approximation of probability of membership in Strategy Class k is given as

$$\bar{P}_{ik} = P(\phi_{ik}^{-1} | x_i) = \sum_{k} I_{ikl}. \hspace{2cm} [A15]$$

Conditional on membership in Class k, the posterior expectation of θ_{ik} is approximated as

$$\bar{\theta}_{ik} = E(\theta_{ik} | \phi_{ik}^{-1}, x_i) = \bar{P}_{ik} \sum_{k} I_{ikl}. \hspace{2cm} [A16]$$

and the corresponding posterior variance is

$$\text{Var}(\theta_{ik} | \phi_{ik}^{-1}, x_i) = \bar{P}_{ik} \sum_{k} I_{ikl} \bar{\theta}_{ik}^2. \hspace{2cm} [A17]$$
Table 1
Examples of Observed Standardized Mean Log Response Times

Subject 1

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-0.069</td>
<td>0.059</td>
<td>-0.508</td>
<td>-0.676</td>
<td>-0.299</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-0.724</td>
<td>-0.483</td>
<td>-0.242</td>
<td>-0.383</td>
<td>-0.458</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>-0.591</td>
<td>-0.828</td>
<td>0.406</td>
<td>-0.993</td>
<td>-0.502</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>-0.288</td>
<td>-0.287</td>
<td>-0.485</td>
<td>-0.483</td>
<td>-0.386</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-0.418</td>
<td>-0.385</td>
<td>-0.207</td>
<td>-0.634</td>
<td>-0.411</td>
<td></td>
</tr>
<tr>
<td>Within Cell Pooled Standard Deviation</td>
<td>0.779</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject 2

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-1.692</td>
<td>-0.277</td>
<td>-1.012</td>
<td>-0.863</td>
<td>-0.961</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.705</td>
<td>0.514</td>
<td>-0.450</td>
<td>-0.871</td>
<td>-0.025</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>-1.082</td>
<td>-0.912</td>
<td>0.224</td>
<td>0.126</td>
<td>-0.411</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>0.661</td>
<td>0.015</td>
<td>-0.316</td>
<td>-0.035</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-0.352</td>
<td>-0.165</td>
<td>-0.389</td>
<td>-0.411</td>
<td>-0.329</td>
<td></td>
</tr>
<tr>
<td>Within Cell Pooled Standard Deviation</td>
<td>0.713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject 3

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-0.413</td>
<td>-0.545</td>
<td>-0.192</td>
<td>-0.304</td>
<td>-0.363</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-1.699</td>
<td>-1.849</td>
<td>-0.108</td>
<td>0.223</td>
<td>-0.858</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>-1.186</td>
<td>-0.019</td>
<td>-0.189</td>
<td>0.966</td>
<td>-0.107</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>-0.451</td>
<td>-0.815</td>
<td>-0.525</td>
<td>0.404</td>
<td>-0.347</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-0.937</td>
<td>-0.807</td>
<td>-0.254</td>
<td>0.322</td>
<td>-0.419</td>
<td></td>
</tr>
<tr>
<td>Within Cell Pooled Standard Deviation</td>
<td>0.687</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Parameter Estimates and -2 Log Likelihood

<table>
<thead>
<tr>
<th>Model</th>
<th>-2 log likelihood</th>
<th>μ</th>
<th>σ</th>
<th>δ</th>
<th>α(1)</th>
<th>α(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length Only</td>
<td>14424.40</td>
<td>0.000</td>
<td>0.645</td>
<td>0.726</td>
<td>-0.124</td>
<td></td>
</tr>
<tr>
<td>Rotation Only</td>
<td>14907.78</td>
<td>0.000</td>
<td>0.644</td>
<td>0.756</td>
<td>-0.108</td>
<td></td>
</tr>
<tr>
<td>Side Length and Rotation</td>
<td>14248.72</td>
<td>0.000</td>
<td>0.645</td>
<td>0.716</td>
<td>-0.124</td>
<td>-0.108</td>
</tr>
<tr>
<td>Two Strategy Model</td>
<td>14167.03</td>
<td>0.000</td>
<td>0.645</td>
<td>0.716</td>
<td>-0.124</td>
<td>-0.108</td>
</tr>
</tbody>
</table>

Strategy

<table>
<thead>
<tr>
<th>Strategy</th>
<th>π</th>
<th>μ</th>
<th>σ</th>
<th>δ</th>
<th>α(1)</th>
<th>α(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule</td>
<td>0.566</td>
<td>0.099</td>
<td>0.745</td>
<td>0.668</td>
<td>-0.104</td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td>0.434</td>
<td>-0.129</td>
<td>0.455</td>
<td>0.753</td>
<td>-0.151</td>
<td>-0.219</td>
</tr>
<tr>
<td>Side Length Only Model</td>
<td>Rotation</td>
<td>Side Length</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
<td>80</td>
<td>0.279</td>
<td>0.279</td>
<td>0.279</td>
<td>0.279</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.155</td>
<td>0.155</td>
<td>0.155</td>
<td>0.155</td>
<td>0.155</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>-0.093</td>
<td>-0.093</td>
<td>-0.093</td>
<td>-0.093</td>
<td>-0.093</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>-0.341</td>
<td>-0.341</td>
<td>-0.341</td>
<td>-0.341</td>
<td>-0.341</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation Only Model</th>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td></td>
<td>80</td>
<td>0.162</td>
<td>0.054</td>
<td>-0.054</td>
<td>-0.162</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.162</td>
<td>0.054</td>
<td>-0.054</td>
<td>-0.162</td>
<td>-0.162</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>0.162</td>
<td>0.054</td>
<td>-0.054</td>
<td>-0.162</td>
<td>-0.162</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>0.162</td>
<td>0.054</td>
<td>-0.054</td>
<td>-0.162</td>
<td>-0.162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side Length and Rotation Model</th>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td></td>
<td>80</td>
<td>0.441</td>
<td>0.333</td>
<td>0.225</td>
<td>0.117</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.317</td>
<td>0.209</td>
<td>0.101</td>
<td>-0.007</td>
<td>-0.007</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>0.069</td>
<td>-0.039</td>
<td>-0.147</td>
<td>-0.255</td>
<td>-0.255</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>-0.180</td>
<td>-0.287</td>
<td>-0.395</td>
<td>-0.503</td>
<td>-0.503</td>
</tr>
</tbody>
</table>

(continued)
Table 3, continued

Task Difficulty Parameters

Two Strategy Model: Side Length Only Component

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>0.234</td>
<td>0.234</td>
<td>0.234</td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
<td>-0.078</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>-0.286</td>
<td>-0.286</td>
<td>-0.286</td>
<td>-0.286</td>
</tr>
</tbody>
</table>

Two Strategy Model: Side Length and Rotation Component

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>0.667</td>
<td>0.448</td>
<td>0.229</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.517</td>
<td>0.298</td>
<td>0.079</td>
<td>-0.140</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0.215</td>
<td>-0.003</td>
<td>-0.222</td>
<td>-0.441</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>-0.086</td>
<td>-0.305</td>
<td>-0.524</td>
<td>-0.742</td>
</tr>
</tbody>
</table>
Table 4
Modelling Subject 2 under Side Length Only

<table>
<thead>
<tr>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-1.692</td>
<td>-0.277</td>
<td>-1.012</td>
<td>-0.863</td>
<td>-0.961</td>
</tr>
<tr>
<td>100</td>
<td>0.705</td>
<td>0.514</td>
<td>-0.450</td>
<td>-0.871</td>
<td>-0.025</td>
</tr>
<tr>
<td>120</td>
<td>-1.082</td>
<td>-0.912</td>
<td>0.224</td>
<td>0.126</td>
<td>-0.411</td>
</tr>
<tr>
<td>140</td>
<td>0.661</td>
<td>0.015</td>
<td>-0.316</td>
<td>-0.035</td>
<td>0.081</td>
</tr>
<tr>
<td>Average</td>
<td>-0.352</td>
<td>-0.165</td>
<td>-0.389</td>
<td>-0.411</td>
<td>-0.329</td>
</tr>
</tbody>
</table>

\[\theta = -0.317 \]

<table>
<thead>
<tr>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-0.599</td>
<td>-0.599</td>
<td>-0.599</td>
<td>-0.599</td>
<td>-0.599</td>
</tr>
<tr>
<td>100</td>
<td>-0.475</td>
<td>-0.475</td>
<td>-0.475</td>
<td>-0.475</td>
<td>-0.475</td>
</tr>
<tr>
<td>120</td>
<td>-0.227</td>
<td>-0.227</td>
<td>-0.227</td>
<td>-0.227</td>
<td>-0.227</td>
</tr>
<tr>
<td>140</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td>Average</td>
<td>-0.320</td>
<td>-0.320</td>
<td>-0.320</td>
<td>-0.320</td>
<td>-0.320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-1.096</td>
<td>0.319</td>
<td>-0.416</td>
<td>-0.267</td>
<td>-0.365</td>
</tr>
<tr>
<td>100</td>
<td>1.177</td>
<td>0.986</td>
<td>0.021</td>
<td>-0.399</td>
<td>0.446</td>
</tr>
<tr>
<td>120</td>
<td>-0.859</td>
<td>-0.689</td>
<td>0.447</td>
<td>0.350</td>
<td>-0.188</td>
</tr>
<tr>
<td>140</td>
<td>0.636</td>
<td>-0.010</td>
<td>-0.341</td>
<td>-0.060</td>
<td>0.056</td>
</tr>
<tr>
<td>Average</td>
<td>-0.035</td>
<td>0.152</td>
<td>-0.072</td>
<td>-0.094</td>
<td>-0.013</td>
</tr>
</tbody>
</table>

Root Mean Square Error

0.619

43
Table 5
Residuals from Side Length Only Model

<table>
<thead>
<tr>
<th>Subject 1 (θ = -.40)</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>0.605</td>
</tr>
<tr>
<td>100</td>
<td>-0.174</td>
</tr>
<tr>
<td>120</td>
<td>-0.289</td>
</tr>
<tr>
<td>140</td>
<td>-0.234</td>
</tr>
<tr>
<td>Average</td>
<td>-0.023</td>
</tr>
</tbody>
</table>

Root Mean Square Error 0.426

<table>
<thead>
<tr>
<th>Subject 2 (θ = -.32)</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>-1.096</td>
</tr>
<tr>
<td>100</td>
<td>1.177</td>
</tr>
<tr>
<td>120</td>
<td>-0.859</td>
</tr>
<tr>
<td>140</td>
<td>0.636</td>
</tr>
<tr>
<td>Average</td>
<td>-0.035</td>
</tr>
</tbody>
</table>

Root Mean Square Error 0.619

<table>
<thead>
<tr>
<th>Subject 3 (θ = -.40)</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>0.269</td>
</tr>
<tr>
<td>100</td>
<td>-1.140</td>
</tr>
<tr>
<td>120</td>
<td>-0.877</td>
</tr>
<tr>
<td>140</td>
<td>-0.389</td>
</tr>
<tr>
<td>Average</td>
<td>-0.534</td>
</tr>
</tbody>
</table>

Root Mean Square Error 0.703
Table 6
Residuals from Rotation Only Model

Subject 1 (θ = -.39)

<table>
<thead>
<tr>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.487</td>
<td>0.507</td>
<td>-0.168</td>
<td>-0.444</td>
<td>0.095</td>
</tr>
<tr>
<td>100</td>
<td>-0.168</td>
<td>-0.035</td>
<td>0.098</td>
<td>-0.151</td>
<td>-0.064</td>
</tr>
<tr>
<td>120</td>
<td>-0.035</td>
<td>-0.380</td>
<td>0.746</td>
<td>-0.761</td>
<td>-0.108</td>
</tr>
<tr>
<td>140</td>
<td>0.268</td>
<td>0.162</td>
<td>-0.145</td>
<td>-0.251</td>
<td>0.009</td>
</tr>
<tr>
<td>Average</td>
<td>0.138</td>
<td>0.063</td>
<td>0.133</td>
<td>-0.402</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Root Mean Square Error: 0.374

Subject 2 (θ = -.32)

<table>
<thead>
<tr>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-1.215</td>
<td>0.093</td>
<td>-0.750</td>
<td>-0.710</td>
<td>-0.646</td>
</tr>
<tr>
<td>100</td>
<td>1.183</td>
<td>0.884</td>
<td>-0.189</td>
<td>-0.717</td>
<td>0.290</td>
</tr>
<tr>
<td>120</td>
<td>-0.605</td>
<td>-0.543</td>
<td>0.485</td>
<td>0.280</td>
<td>-0.096</td>
</tr>
<tr>
<td>140</td>
<td>1.138</td>
<td>0.384</td>
<td>-0.055</td>
<td>0.119</td>
<td>0.397</td>
</tr>
<tr>
<td>Average</td>
<td>0.125</td>
<td>0.205</td>
<td>-0.127</td>
<td>-0.257</td>
<td>-0.014</td>
</tr>
</tbody>
</table>

Root Mean Square Error: 0.694

Subject 3 (θ = -.40)

<table>
<thead>
<tr>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.150</td>
<td>-0.089</td>
<td>0.155</td>
<td>-0.064</td>
<td>0.038</td>
</tr>
<tr>
<td>100</td>
<td>-1.135</td>
<td>-1.394</td>
<td>0.240</td>
<td>0.462</td>
<td>-0.457</td>
</tr>
<tr>
<td>120</td>
<td>-0.623</td>
<td>0.436</td>
<td>0.159</td>
<td>1.206</td>
<td>0.294</td>
</tr>
<tr>
<td>140</td>
<td>0.113</td>
<td>-0.359</td>
<td>-0.177</td>
<td>0.644</td>
<td>0.055</td>
</tr>
<tr>
<td>Average</td>
<td>-0.374</td>
<td>-0.352</td>
<td>0.094</td>
<td>0.562</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Root Mean Square Error: 0.623

45
Table 7
Residuals from Side Length and Rotation Model

<table>
<thead>
<tr>
<th>Subject 1 (θ = -.40)</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>0.768</td>
</tr>
<tr>
<td>100</td>
<td>-0.012</td>
</tr>
<tr>
<td>120</td>
<td>-0.127</td>
</tr>
<tr>
<td>140</td>
<td>-0.072</td>
</tr>
<tr>
<td>Average</td>
<td>0.139</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject 2 (θ = -.32)</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>-0.934</td>
</tr>
<tr>
<td>100</td>
<td>1.339</td>
</tr>
<tr>
<td>120</td>
<td>-0.696</td>
</tr>
<tr>
<td>140</td>
<td>0.798</td>
</tr>
<tr>
<td>Average</td>
<td>0.127</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject 3 (θ = -.40)</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Length</td>
<td>40</td>
</tr>
<tr>
<td>80</td>
<td>0.432</td>
</tr>
<tr>
<td>100</td>
<td>-0.978</td>
</tr>
<tr>
<td>120</td>
<td>-0.714</td>
</tr>
<tr>
<td>140</td>
<td>-0.227</td>
</tr>
<tr>
<td>Average</td>
<td>-0.372</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td></td>
</tr>
</tbody>
</table>
Table 8
Residuals From Two Strategy Model

Subject 1 (P₁ = .98, θ₁ = -.40; P₂ = .02, θ₂ = -.39)

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>0.571</td>
<td>0.695</td>
<td>0.124</td>
<td>-0.049</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-0.188</td>
<td>0.048</td>
<td>0.285</td>
<td>0.140</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>-0.265</td>
<td>-0.506</td>
<td>0.723</td>
<td>-0.680</td>
<td>-0.182</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>-0.171</td>
<td>-0.174</td>
<td>-0.377</td>
<td>-0.380</td>
<td>-0.276</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>-0.013</td>
<td>0.016</td>
<td>0.189</td>
<td>-0.242</td>
<td>-0.013</td>
</tr>
</tbody>
</table>

Root Mean Square Error 0.405

Subject 2 (P₁ = .70, θ₁ = -.32; P₂ = .30, θ₂ = -.31)

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>-1.011</td>
<td>0.338</td>
<td>-0.462</td>
<td>-0.380</td>
<td>-0.379</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.268</td>
<td>1.011</td>
<td>-0.019</td>
<td>-0.505</td>
<td>0.439</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>-0.755</td>
<td>-0.651</td>
<td>0.419</td>
<td>0.256</td>
<td>-0.183</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>0.752</td>
<td>0.040</td>
<td>-0.357</td>
<td>-0.141</td>
<td>0.074</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.064</td>
<td>0.185</td>
<td>-0.105</td>
<td>-0.192</td>
<td>-0.012</td>
</tr>
</tbody>
</table>

Root Mean Square Error 0.629

Subject 3 (P₁ = .00, θ₁ = -.41; P₂ = 1.00, θ₂ = -.40)

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Side Length</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>0.650</td>
<td>0.300</td>
<td>0.433</td>
<td>0.103</td>
<td>0.371</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-0.786</td>
<td>-1.156</td>
<td>-0.367</td>
<td>0.479</td>
<td>-0.274</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>-0.575</td>
<td>0.373</td>
<td>-0.015</td>
<td>0.921</td>
<td>0.176</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>-0.140</td>
<td>-0.723</td>
<td>-0.652</td>
<td>0.058</td>
<td>-0.365</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>-0.213</td>
<td>-0.301</td>
<td>0.033</td>
<td>0.390</td>
<td>-0.023</td>
</tr>
</tbody>
</table>

Root Mean Square Error 0.577
Captions for Figures

1. A Sample Task

2. Median Standardized Log Response Time versus Rotation

3. Median Standardized Log Response Time versus Side Length

4. Posterior Probabilities of Use of Rule-Based Strategy

5. Posterior Probabilities of Component 1 Membership in a Mixture of Two Gaussian Components

6. Posterior Probabilities of Use of Rule-Based Strategy, Distinguishing Instructed and Noninstructed Subjects
Two-Strategy Mixture

Posterior Probabilities

Proportion of Sample

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Posterior Probability of Strategy 1
Two-Component Gaussian Mixture

Equal variances, d=2.2, p=.55

Probability of Component #1 Membership

Proportion of Sample

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Two Strategy Model - Trimmed Data

Probability of Using Strategy 1

- Not Instructed
- Instructed
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Terry Ackerman</td>
<td>Educational Psychology 210 Education Bldg.</td>
</tr>
<tr>
<td></td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Champaign, IL 61801</td>
</tr>
<tr>
<td>Dr. James Algina</td>
<td>1403 Norman Hall</td>
</tr>
<tr>
<td></td>
<td>University of Florida</td>
</tr>
<tr>
<td></td>
<td>Gainesville, FL 32605</td>
</tr>
<tr>
<td>Dr. Erling B. Andersen</td>
<td>Department of Statistics</td>
</tr>
<tr>
<td></td>
<td>Studiestraede 6</td>
</tr>
<tr>
<td></td>
<td>1455 Copenhagen</td>
</tr>
<tr>
<td></td>
<td>DENMARK</td>
</tr>
<tr>
<td>Dr. Ronald Armstrong</td>
<td>Rutgers University</td>
</tr>
<tr>
<td></td>
<td>Graduate School of Management</td>
</tr>
<tr>
<td></td>
<td>Newark, NJ 07102</td>
</tr>
<tr>
<td>Dr. Eva L. Baker</td>
<td>UCLA Center for the Study of Evaluation</td>
</tr>
<tr>
<td></td>
<td>145 Moore Hall</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90024</td>
</tr>
<tr>
<td>Dr. Laura L. Barnes</td>
<td>College of Education</td>
</tr>
<tr>
<td></td>
<td>University of Toledo</td>
</tr>
<tr>
<td></td>
<td>2801 W. Bancroft Street</td>
</tr>
<tr>
<td></td>
<td>Toledo, OH 43606</td>
</tr>
<tr>
<td>Dr. William M. Bart</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td></td>
<td>Dept. of Educ. Psychology</td>
</tr>
<tr>
<td></td>
<td>330 Burton Hall</td>
</tr>
<tr>
<td></td>
<td>178 Pillsbury Dr., S.E.</td>
</tr>
<tr>
<td></td>
<td>Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Dr. Isaac Bejar</td>
<td>Mail Stop: 10-R</td>
</tr>
<tr>
<td></td>
<td>Educational Testing Service</td>
</tr>
<tr>
<td></td>
<td>Rosedale Road</td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ 08541</td>
</tr>
<tr>
<td>Dr. Menucha Birenbaum</td>
<td>School of Education</td>
</tr>
<tr>
<td></td>
<td>Tel Aviv University</td>
</tr>
<tr>
<td></td>
<td>Ramat Aviv 69978</td>
</tr>
<tr>
<td></td>
<td>ISRAEL</td>
</tr>
<tr>
<td>Dr. Arthur S. Blaiwes</td>
<td>Code N712</td>
</tr>
<tr>
<td></td>
<td>Naval Training Systems Center</td>
</tr>
<tr>
<td></td>
<td>Orlando, FL 32813-7100</td>
</tr>
<tr>
<td>Dr. Bruce Bloxom</td>
<td>Defense Manpower Data Center</td>
</tr>
<tr>
<td></td>
<td>99 Pacific St.</td>
</tr>
<tr>
<td></td>
<td>Suite 155A</td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943-3231</td>
</tr>
<tr>
<td>Cdt. Arnold Bohrer</td>
<td>Sectie Psychologisch Onderzoek</td>
</tr>
<tr>
<td></td>
<td>Rekruterings-En Selectiecentrum</td>
</tr>
<tr>
<td></td>
<td>Kwartier Koningen Astrid</td>
</tr>
<tr>
<td></td>
<td>Bruijnstraat</td>
</tr>
<tr>
<td></td>
<td>1120 Brussels, BELGIUM</td>
</tr>
<tr>
<td>Dr. Robert Breaux</td>
<td>Code 281</td>
</tr>
<tr>
<td></td>
<td>Naval Training Systems Center</td>
</tr>
<tr>
<td></td>
<td>Orlando, FL 32826-3224</td>
</tr>
<tr>
<td>Dr. Robert Brennan</td>
<td>American College Testing</td>
</tr>
<tr>
<td></td>
<td>Programs</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 168</td>
</tr>
<tr>
<td></td>
<td>Iowa City, IA 52243</td>
</tr>
</tbody>
</table>
Dr. John B. Carroll
409 Elliott Rd., North
Chapel Hill, NC 27514

Dr. John M. Carroll
IBM Watson Research Center
User Interface Institute
P.O. Box 704
Yorktown Heights, NY 10598

Dr. Robert M. Carroll
Chief of Naval Operations
OP-01B2
Washington, DC 20350

Dr. Raymond E. Christal
UES LAMP Science Advisor
AFHRL/MOEL
Brooks AFB, TX 78235

Mr. Hua Hua Chung
University of Illinois
Department of Statistics
101 Illini Hall
725 South Wright St.
Champaign, IL 61820

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
Los Angeles, CA 90089-1061

Dr. John B. Carroll
409 Elliott Rd., North
Chapel Hill, NC 27514

Dr. John M. Carroll
IBM Watson Research Center
User Interface Institute
P.O. Box 704
Yorktown Heights, NY 10598

Dr. Robert M. Carroll
Chief of Naval Operations
OP-01B2
Washington, DC 20350

Dr. Raymond E. Christal
UES LAMP Science Advisor
AFHRL/MOEL
Brooks AFB, TX 78235

Mr. Hua Hua Chung
University of Illinois
Department of Statistics
101 Illini Hall
725 South Wright St.
Champaign, IL 61820

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
Los Angeles, CA 90089-1061

Director, Manpower Program
Center for Naval Analyses
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Director,
Manpower Support and Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Hans F. Crombag
Faculty of Law
University of Limburg
P.O. Box 616
Maastricht
The NETHERLANDS 6200 MD

Ms. Carolyn R. Crone
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. Timothy Davey
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. C. M. Dayton
Department of Measurement
Statistics & Evaluation
College of Education
University of Maryland
College Park, MD 20742
Educational Testing Service/Mislevy

Dr. Ralph J. De Ayala
Measurement, Statistics, and Evaluation
Benjamin Bldg., Rm. 4112
University of Maryland
College Park, MD 20742

Dr. Lou DiBello
CERL
University of Illinois
103 South Mathews Avenue
Urbana, IL 61801

Dr. Dattprasad Divgi
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Hei-Ki Dong
Bell Communications Research
6 Corporate Place
PYA-1K226
Piscataway, NJ 08854

Dr. Fritz Drasgow
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Dr. Stephen Dunbar
224B Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. James A. Earles
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser
Lawrence, KS 66045

Dr. George Englehard, Jr.
Division of Educational Studies
Emory University
210 Fishburne Bldg.
Atlanta, GA 30322

Dr. Benjamin A. Fairbank
Operational Technologies Corp.
5825 Callaghan, Suite 225
San Antonio, TX 78228

Dr. P-A. Federico
Code 51
NPRDC
San Diego, CA 92152-6800

Dr. Leonard Feldt
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing
P.O. Box 168
Iowa City, IA 52243

Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Myron Fishl
U.S. Army Headquarters
DAPE-MRR
The Pentagon
Washington, DC 20310-0300
Educational Testing Service/Mislevy

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSR/NL, Bldg. 410
Bolling AFB, DC 20332-6448

Dr. Robert D. Gibbons
Illinois State Psychiatric Inst.
Rm 529W
1601 W. Taylor Street
Chicago, IL 60612

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Drew Gitomer
Educational Testing Service
Princeton, NJ 08541

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Michael Habon
DORNIER GMBH
P.O. Box 1420
D-7990 Friedrichshafen 1
WEST GERMANY

Prof. Edward Haertel
School of Education
Stanford University
Stanford, CA 94305

Dr. Ronald K. Hambleton
University of Massachusetts
Laboratory of Psychometric
and Evaluative Research
Hills' South, Room 152
Amherst, MA 01003

Dr. Delwyn Harnisch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Dr. Grant Henning
Senior Research Scientist
Division of Measurement
Research and Services
Educational Testing Service
Princeton, NJ 08541

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 63
San Diego, CA 92152-6800

Dr. Thomas M. Hirsch
ACT
P. O. Box 168
Iowa City, IA 52243

05/24/90
Dr. Paul W. Holland
Educational Testing Service, 21-T
Rosedale Road
Princeton, NJ 08541

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 92010

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
3-104 Educ. N.
University of Alberta
Edmonton, Alberta
CANADA T6G 2G5

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
University of South Carolina
Columbia, SC 29208

Dr. Kumar Joag-dev
University of Illinois
Department of Statistics
101 Illini Hall
725 South Wright Street
Champaign, IL 61820

Dr. Douglas H. Jones
1280 Woodfern Court
Toms River, NJ 08753

Dr. Brian Junker
University of Illinois
Department of Statistics
101 Illini Hall
725 South Wright St.
Champaign, IL 61820

Dr. Milton S. Katz
European Science Coordination Office
U.S. Army Research Institute
Box 65
FPO New York 09510-1500

Prof. John A. Keats
Department of Psychology
University of Newcastle
N.S.W. 2308
AUSTRALIA

Dr. Jwa-keun Kim
Department of Psychology
Middle Tennessee State University
P.O. Box 522
Murfreesboro, TN 37132

Mr. Soon-Hoon Kim
Computer-based Education Research Laboratory
University of Illinois
Urbana, IL 61801

Dr. G. Gage Kingsbury
Portland Public Schools
Research and Evaluation Department
501 North Dixon Street
P. O. Box 3107
Portland, OR 97209-3107
Dr. James R. McBride
The Psychological Corporation
1250 Sixth Avenue
San Diego, CA 92101

Dr. Clarence C. McCormick
HQ, USMEPCOM/MEPCT
2500 Green Bay Road
North Chicago, IL 60064

Mr. Christopher McCusker
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Dr. Robert McKinley
Educational Testing Service
Princeton, NJ 08541

Mr. Alan Mead
c/o Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Timothy Miller
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Ms. Kathleen Moreno
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Headquarters Marine Corps
Code MPI-20
Washington, DC 20380

Dr. Ratna Nandakumar
Educational Studies
Willard Hall, Room 213E
University of Delaware
Newark, DE 19716

Dr. Harold F. O’Neil, Jr.
School of Education - WPH 801
Department of Educational Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

Dr. James B. Olsen
WICAT Systems
1875 South State Street
Orem, UT 84058

Dr. Judith Orasanu
Basic Research Office
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Dr. Peter J. Pashley
Educational Testing Service
Rosedale Road
Princeton, NJ 08541
Dr. Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Malcolm Ree
AFHRL/MAA
Brooks AFB, TX 78235

Mr. Steve Reiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455-0344

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
310B Austin Peay Bldg.
Knoxville, TN 37916-0900

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152-6800

Lowell Schoer
Psychological & Quantitative Foundations
College of Education
University of Iowa
Iowa City, IA 52242

Dr. Mary Schratz
905 Orchid Way
Carlsbad, CA 92009

Dr. Dan Segall
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Robin Shealy
University of Illinois
Department of Statistics
101 Illini Hall
725 South Wright St.
Champaign, IL 61820

Dr. Kazuo Shigematsu
7-9-24 Kugenuma-Kaigan
Fujisawa 251
JAPAN

Dr. Richard E. Snow
School of Education
Stanford University
Stanford, CA 94305

Dr. Richard C. Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800
Educational Testing Service/Mislevy

Dr. Howard Wainer
Educational Testing Service
Princeton, NJ 08541

Dr. Michael T. Waller
University of Wisconsin-Milwaukee
Educational Psychology Department
Box 413
Milwaukee, WI 53201

Dr. Ming-Mei Wang
Educational Testing Service
Mail Stop 03-T
Princeton, NJ 08541

Dr. Thomas A. Warm
FAA Academy AAC934D
P.O. Box 25082
Oklahoma City, OK 73125

Dr. Brian Waters
HumRRO
1100 S. Washington
Alexandria, VA 22314

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455-0344

Dr. Ronald A. Weitzman
Box 146
Carmel, CA 93921

Major John Welsh
AFHRL/MOAN
Brooks AFB, TX 78223

Dr. Douglas Wetzel
Code 51
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90089-1061

German Military Representative
ATTN: Wolfgang Wildgrube
Streitkraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Federal Aviation Administration
800 Independence Ave, SW
Washington, DC 20591

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6800
Educational Testing Service/Mislevy

Dr. Kentaro Yamamoto
02-T
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
National Science Foundation
Room 320
1800 G Street, N.W.
Washington, DC 20550

Mr. Anthony R. Zara
National Council of State
Boards of Nursing, Inc.
625 North Michigan Avenue
Suite 1544
Chicago, IL 60611