
DOCUMENT RESUME

ED 382 014 FL 022 912

AUTHOR Ruhlmann, Felicitas
TITLE Designing Templates for Interactive Tasks in CALL

Tutorials.
PUB DATE 94
NOTE 17p.; Paper presented at the Meeting of EUROCALL

(Karlsruhe, Germany, 1994). Figures may not reproduce
well.

PUB TYPE Guides Non-Classroom Use (055)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; *Computer Software;

Courseware; Foreign Countries; Higher Education;
*Instructional Design; Multimedia Instruction;
Multiple Choice Tests; Problem Solving; *Records
(Forms); Second Language Instruction; *Second
Languages; Task Analysis; Test Items; Tutorial
Programs

ABSTRACT
The development of templates for computer-assisted

language learning (CALL) is discussed, based on experiences with
primaray linear multimedia tutorial programs. Design of templates
for multiple-choice questions and interactive tasks in a prototype
module is described. Posiibilities of enhancing interactivity by
introducing problem-oriented elements into multiple-choice questions,
and by designing multi-layered tasks, are also examined. The
prototype was integrated as a model into a final year undergraduate
course that aimed at the production of low-cost courseware by
students with a view to counterbalancing reduced lecture time with
tailor-made CALL modules. The question is raised as to what extent
students themselves can be expected to design sophisticated
innovative tasks and which pitfalls should be avoided. (MSE)

Reproductions supplied by EDRS are the best that can be made
from the original document.

DESIGNING TEMPLATES FOR INTERACTIVE TASKS IN CALL TUTORIALS
"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

ce.-\
Z.1\\ 4,r4".Q./rNe

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

__J

Abstract

Felicitas Riihlmann

University of the West of England, Bristol

U.S. DEPARTMENT Off EDUCATION
Offrm of Edircssonst Rissarrh and Improvement
EDUCATIONAL RESOURCES INFORMATION

CENTERIC)a Wais document Ms n reoioduesd as
, awed from Ifs mom Or OrDimMhon
oromms L
Moor changes have been made to enreowe
moroduChOrt Quality

PfzentS of vet* of OtervOhe Meted in MO &Cu*
most do not necessarily represent *MGM
OERI memos 01 pOltcy

This paper is based on experiences with CALL template development for mainly linear

multimedia tutorials. The design of templates for multiple choice questions and interactive

tasks in a prototype module is described. Possibilities of enhancing interactivity by

introducing problem-oriented elements into multiple choice questions, and by designing

multi-layered tasks, are also examined. The prototype was integrated as a model into a final

year undergraduate course which aimed at the production of low-cost courseware by

students with a view to counterbalancing reduced lecture time with tailor-made CALL

modules. The question is raised as to what extent students can themselves be expected to

design sophisticated interactive tasks and which pitfalls should be avoided.

Introduction

Against the background of increasing student numbers and reductions in class contact time

for lecturers, the Faculty of Languages and European Studies at the University of the West

of England decided to adopt new approaches to teaching and learning. In line with this

initiative, a CAL option was offered to final year undergraduate students in German with

Information Systems. The option was set up as a starting point to explore. the possibilities

of in-house cc u-seware design and development. The n was to overcome a lack of

off-the-shelf CAL materials suitable for integrating into the curriculum and the hurdle of

2

up- front investment of time and money into professional courseware production. The CAL

option concentrated on the design of self-study multimedia CAL tutorials that could add to

or substitute parts of our current undergraduate teaching. Students were encouraged to

reflect on concepts and principles of CAL design, as well as on the content of their own

studies and on teaching methods, so that they could apply an improved methodology in

their own design projects. Each group of students produced a design specification and

programmable-ready material, i.e. a storyboard, graphics design sheets and flow diagrams

for interactive tasks for the development of a short CAL module. In order to provide

students with some guidelines and examples for screen design and interactive tasks,

different existing programs were compared with a template and prototype module that had

been produced by the author of this paper. The template was produced with the aim of

achieving a certain amount of unity between modules designed by different teams. It was

felt that it was important to develop a house style which ensured standardization and

consistency of the user interface in all future modules. The design of customisable "shells"

for learner activities within this general module template and their reflection in students'

design projects will be the core discussion of this paper.

Learner interaction in template and prototype

The prototype is a flexible but guided self-study tutorial designed to impart factual

knowledge through audio sequences which are accompanied by on-screen graphics. At the

same time, key points are displayed on screen in a fixed textbox. At irregular intervals

learning sequences which last between 'five and ten minutes are broken up by different types

of interaction and appropriate feedback. A variety of fixed screen types are employed, such

as pause screens, menu screens, information screens, presentation screens, interaction

screens. Screens were designed for the user to form a conceptual model, with the templates,

the human-computer interaction techniques and the terminology being consistent across all

sections and chapters in the same course.

Two forms of structured learner interaction were included in the prototype: multiple choice

questions and interactive tasks. Activities were classified in three main categories:

1. Multiple choice with one or more correct answers;

2. Matching or sequencing tasks;

3. Free text entry.

N

A major design consideration was to maintain learners' attention and to enhance problem

solving skills through the given tasks. To achieve this, exercises from different categories

were combined into more complex tasks, and text in instruction lines or help windows was

phrased carefully in order to avoid typical sentences like "Click the buttons below in turn"

.c, (Soper and MacDonald, 1994).

Multiple choice questions

Two different shells for the development of multiple choice questions were set up. In shell

one the courseware developer, editor or tutor is requested to input a number of variables

and strings: respective field numbers that indicate the correct answer(s), a maximum of

three lines of question text, between two and four possible answers to the question (i.e.

student choices), feedback text for each possible answer, and up to eight lines of text for

a global feedback explaining the correct answer, possibly including some further

4
it

information on the subject. Shell two is essentially the same but with an additional feature.

For a multiple choice question to become more complex, various on-screen graphics

components with underlying hot-spots can be added and a correct final screen display can

be assigned within the shell (figure 1).

figure 1

(template for multiple choice question with additional hot-spots)

The aim was to encourage learners to use their own initiative and imagination whilst

attempting to answer a question. For instance, learners may be given a statement indicating

the outcome of an operation for which several mouse clicks or key presses were required.

To be able to verify the statement, they m. y need to retrace the steps leading to the result,

i.e. operate a simulated device on screen in order to find the answer to the given question.

In the prototype which teaches basic knowledge of computers together with German

terminology, an example for this would be the question:

"Auf der Festplatte des Computers auf diesem Bildschirm ist das Programm WordPerfect

installiert.

Ja

Nein."

The learner may now either click on the answer buttons at random, or click on the

"advance" icon to get the final feedback with the correct answer, or input the appropriate

commands on the simulated computer on screen until the correct setup is displayed which,

provides the answer to the question. An inquisitive learner is expected to opt for the third

5

possibility.

Another possibility for extending multiple choice questions is embedded in the structure and

routing of the prototype module. To find the correct answer to a question, learners may

need to retrieve information located elsewhere in the program. For example, in "Computer

auf Deutsch" Konrad Zuse is mentioned in connection with the introduction of relays and

the binary system. A more detailed explanation of how the binary system works is given

in a different chapter and the learner is prompted to explore this route. Therefore, if the

learner has difficulties answering the foll6wing question:

"1 Bit ist die kleinste Informationseinheit. 1 Bit hat

den Wert 1,

den Wert 0,

den Wert 0 oder 1,

die Werte 0 and I."

he/she may get a prompt, then set a bookmark at this particular screen, go to the prompted

section in the tutorial (i.e. section 2, chapter 3), find some additional information about the

binary system, return to the question via the bookmark and then confidently complete the

task (figure 2).

figure 2

(screen with multiple choice question)

In multiple choice questions, the learner is given feedback immediately after he/she has

made his/her choice. If the answer given by the learner is judged as correct, a beige

touch-sensitive square in the answer box is displayed in green. If the answer given is judged

to be wrong, the square turns red. At the same time, differentiated feedback concerning

each respective answer given by the learner is displayed in a feedback box on screen below

the question and answers field. If the learner chooses to avoid dealing with the question,

advancing through the program will nevertheless provide him/her with the correct answer:

This final feedback can either be the same as the feedback for the correct choice or it can

be an additional reinforcement, perhaps containing more explanations. In the template

students will get the additional global feedback after individual feedback for a particular

choice.

Interactive tasks

Other examples for more complex interaction are tasks that involve simulation. They are

particularly appropriate for operating complicated machinery, but also applicable for

problem solving. Here, the learner may be allowed to find the solution to a problem via

various different routes, each route including a number of possible key presses or mouse

clicks.

In interactive tasks, the problem of feedback is more difficult to deal with than in multiple

choice questions. If the student is supposed to learn by discovery, there is no point in giving

feedback after every single learner input. The problem was addressed as follows. On

entering an interaction screen, the learner will be given text and graphic with a task and an

operating instruction. This structure is applied for both straightforward and more complex.

tasks. The following example shows a less complex task:

"Erinnern Sie sick an die Entwicklungsstufen des Computers. Setzen Sie die richtigen

Begriffe in die richtigen Stufen von 1 bis 6."

Operating instruction:

"Ihre Eingaben bitte. Dann auf WELTER klicken."

After completion of the task the learner clicks on the "advance" icon. Only then does the

program judge the learner's activity and give appropriate feedback. That is, the learner has

complete freedom of changing his or her setup until he/she confirms the final setup by

clicking on "advance". If then the setup is judged to be wrong, the learner is given another

chance without any particular interference of the program. The instruction line reads:

"Bitte weitere Eingaben."

and the learner may choose to re-try the task or to proceed by clicking on the "advance"

icon. On completion of an incorrect attempt, however, the setup is not reversed to the

starting point. If for a new try a starting point has to be indicated, the learner will be

advised of what the starting scenario was, e.g. "Start from X and explore another route."

If the second try turns out to be wrong, a help message is displayed which points the

learner in the right direction. If after the third attempt the result is wrong again, the program

provides the correct screen setup together with a detailed explanation of how to get there.

The learner may click on the "help" icon any time within an interactive task. Help messages

are carefully phrased in order to point the learner in the right direction, but they are not to

be confused with operating instructions (figure 3).

figure 3

(screen with help message in interactive task)

Within this structure it is left to the learner's discretion simply to advance through the task

or to go through the complete learning experience. In this form of interaction it is important

that the learner's efforts are not judged until a certain setup is complete. It remains to be

proven, however, that the experience of getting a complex setup right is more satisfying for

learners than getting detailed feedback on every single input. In the structure of tasks as

described above, a certain amount of anticipated wrong setups could of course be addressed

in a more detailed feedback after completion of the task With an increasing complexity of

tasks it has to be carefully judged whether the programming effort for this can be justified.

This becomes obvious when we look at the programming shell for an interactive task,

bearing in mind that courseware development is meant to be done by students or tutors with

very little or no programming skills (figure 4).

figure 4

(template for interactive task)

In this shell, courseware developers, editors or tutors are required to input variables, text

and graphic displays. For a sequencing or matching exercise a set of numbered hot spots

(I) must be paired with their respective counterparts (II) to indicate the correct screen setup.

Unlike in multiple choice templates, the editor need not enter any feedback text on each

step the learner takes, a number of prompts are employed instead which suggest that the

learner has not yet completed the task correctly. Text input, however, is required in the

template for feedback after the learner's successful completion of the task, also for a help

9

1

message and for the global feedback at the end of the interaction. Matching graphic

displays for each learner input and for the correct screen setup may be assigned by their

outline number according to their position in the relevant graphics file, the editing of

graphic objects, however, may only be done within the graphics file itself.

Questions and tasks designed by students

Although students' CAL projects showed thoughtfulness and creativity in terms of content

and screen design, details concerning lesson flow, routing and interactive tasks proved to

be particularly weak in all projects. Particularly the flow diagrams had not been thought

through accurately, and they were largely unsuitable for programming. Moreover, students

tended to avoid feedback or reduce it to a minimum in the design of exercises or they

omitted exit and/or help facilities. The restriction to pure courseware design without any

chance for hands-on implementation prevented students from checking the feasibility of

their designs. The development of prototypes would have helped discover design errors.

Given the time constraints in which the projects had to be completed (two class contact

hours per week over 10 weeks were allocated for this course), students would have

benefitted from a given range of prepared templates for interactive tasks which they could

have used or adapted to fit into their own projects.

Time constraints were not the only problem reflected in students' design documents.

Another drawback was the lack of appropriate model CAL tutorials with a more complex

interactive approach rather than just a repetition of drill and prat' ice exercises or pure

databases of information. During the design process, students explored ideas taken from

computer games (project one: "European monuments"), traditional multiple choice tests

10

1

i.

(project 2: "German driving regulations") and pattern drills (project 3: "German political

system") ana incorporated them into their presentation of factual materials on screen. All

interaction was put forward in question and answer form, serving for testing purposes after

a series of instruction screens. Rather than venture into new forms of interactive tasks,

students adopted established models of programmed instruction.

Conclusion

I believe that interactive tasks in a computer-based tutorial are crucial for its success as a

medium of self-instruction. Interactive tasks are not just a means of self-checking or testing

newly acquired knowledge, but generally enhance learner participation. A variety of types

of interaction may be employed in a tutorial to add to learner motivation. Tasks may range

from the repetition of factual knowledge to the use of intellectual abilities for

problem-solving. An appropriate form for doing the latter may be designing the interaction

in the form of a gradual :eduction of the problem through increasing additional information

and help facilities in each task and throughout the course. The careful selection of playful

elements such as fun graphics, competitive elements such as time limits to solve a problem,

and the creation of situative contexts for interactive tasks are equally important to enhance

the learning process. However, the desired complexity of interaction must be considered

against the time and cost involved in the in-house production of a self-study tutorial, and

the result can only be a compromise.

References

Andre, T. and Phye, G. (1986) (eds), Cognition and Classroom Learning , San Diego CA,

11 _

Academic Press.

Carroll, J.M. (1991) (ed), Designing Interaction, Cambridge, Cambridge University Press.

Cates, W.M., Fontana, L.A. and White, C.S. (1993), 'Designing an interactive multimedia
instructional environment: The Civil War Interactive', Association for Learning Technology
Journal, 1, 2, 5-16.

Jonassen, D. (1988) (ed), Instructional Designs for Microcomputer Courseware, Hillsdale
NJ, Lawrence Erlbaum.

Kulik, J.A. and Kulik C.C. (1988), 'Timing of feedback and verbal learning', Review of
Educational Research, 58, 1, 79-97.

Scott, D. (1991), Human-Computer Interaction: A Cognitive Ergonomics Approach,
Chichester, Ellis Horwood.

Soper, J.B. and MacDonald, A.B. (1994), 'An interactive approach to learning economics:
the WinEcon package Association for Learning Technology Journal, 2, 1, 14-29.

Sutcliffe, A. (1988), Human-Computer Interface De n, London, Macmillar.

12
11

figure I

Only items in bold print need to be edited by the tutor.

Component: MC 5, dir command (PC)

Object list: (50 objects)

I. content *DEFAULT* GRI: ALL HOT SPOTS ACTIVE
2. * *" ASSIGN CORRECT FINAL SCREEN
3. assign:right_page[1] 416
4. *
5. * *** ASSIGN CORRECT ANSWER NO.
6. assign:answer4-1
7. *
8. * *" QUESTION
9. assign:question[1]."WordPerfeet is installed"
10. assign:question[2]."on the hard disk "
11. assign:question[3]4"of your PC on this screen."
12.
13. * *** CHOICE 1
14. assign:choice A[I] 4 "True"
15. assign:choice_A[2] 4"
16.
17. * *** CHOICE 2
18. assign:choice_B[1] "False"
19. assign:choice_B[2] 4"
20. *
21. * *** FEEDBACK FOR CHOICE 1
22. assign:feedback_A[1]4"Well spotted!"
23. assign:feedback_A[2] ""
24. assign:feedback_A[3] ""
25. assign:feedback_A[4] 4 ""
26. assign:feedback_A[S] ""
27. *
28. * *** FEEDBACK FOR CHOICE 2
29. assign:feedbackB[11"Have you paged your directory"
30. assign:feedback_B[2]4"on e: drive?"
31. assign:feedbackB[3]""
32. assign:feedback_B[4] ""
33. assign:feedback B[5].""
34 *
35 . a *** GLOBAL FEEDBACK
36. assign:globalfeedback[1]4"Correct operation:"
37. assign:global_feedback[2].""
38. assign:global_feedback[3]4" To find WordPerfect"
39. assign:global_feedback[4]4" you had to enter the command"
40. assign:global_feedback[5]4" c:Idlr. This gives you"
41. assign:global_feedback[6]." a list of all files "
42. assign:global_feedback[7]4" in this directory."
43. assign:global_feedback[8]."
44.
45. **" GRAPHICS FILE NAME
46. assign:Gr_file_name4"compgri.cd3"
47. * **** GRAPHIC COMPONENT
48. assign:component "2.2.1"
49.
50. content *DEFAULT* MC LOGIC (2 CHOICES) + HOT SPOTS

3
10

1 a I

"'Int-vir our uoutwal. Modisi i 12,1 Welsch Ichte

die riohtiaan Morin* itanii)
ridhtigen.filtuters (steps) -'reit 1 Ms

_amen is eleiirogaschanischem. I
ie'rechanivehen Recliner

PRII7

Elektromechonik 026hren)

Microchip

Triinsiotor

c=02ftruk

Integierter Schaltkreio

ElektrCaechanxk Olel-etel I

-r;

,TA;'-:;

I.

1.5

BEST COPY AVAILABLE

figure 4

Only items in bold print were edited by the tutor.

Component: IT Template TYPE 1 (correct order)

Object list: (61 objects)

1. * *5* EDIT THE FOLLOWING LINES
2. *

3. * **** CORRECT HOT SPOTS (-999 if not required)
4. assign:anskeys[1] -19
5. assign: an skeys[2] 4-21
6. assign:anskeys[3] 4-16
7. assigmanskeys[4] 4-18
8. assign:anskeys[5] 4-20
9. assign:anskeys[6] -17
10. assign:anskeys[7] -999
11. assign:anskeys[8] 4-999
12. assign : anskeys[9] -999
13. assign:anskeys[10] 4-999
14. *
15. * **** MATCHING HOT SPOTS (-999 if not required)
16. assign:anskey_match[1] -22
17. assign:anskey_match[2] -23
18. assign:anskey_match[3] -24
19. assign : anskey_match[4] -25
20. assign: anskeymatch[5] 4 -26
21. assign:anskey_match[6] -27
22. assign:anskey_match[7] -999
23. assign: anskey_match[8] -999
24. assign: anskey_match[9] 4 -999
25. assign:anskey_match[10] -999
26. *
27. content PROMPTS AFTER WRONG ANSWERS
28. *
29. * **** FEEDBACK FOR CORRECT ANSWER (enter text)
30. assign:feedback_D[1]."Genau die ricbtige Reihenfoige."
31. assign:feedback_D[2] ""
32. assigm feedback_D[3] ""
33.
34. **** HELP MESSAGE (enter text)
35. assign:question[1] 4 "Die mechanischen Rechner"
36. assign :question[2] 4"ka men zuerst."
37. assign:question[3] "Dann kamen die elektromechanischen."
38.
39. **** GLOBAL FEEDBACK (enter text)
40. assign:globalfeedback[1]."Der Abakus kam als erstes. "
41. assign:globalfeedback[2]."Viel spiter folgten die "
42. assign:globalfeedback[3] "mechanischen Rechner."
43. assign:globalfeedback[4]."Danach folgen die Stufen "
44. assign:globalfeedback[5] "wie auf dem Bildschirm gezeigt."
45. assign:globalfeedback[6].""

. 46. assign:globalfeedback[7] ""
47.
48. content GRAPHICS FILE COMPGR1.CD3
49. *** GRAPHIC COMPONENT outline number (1.1.1 if not required)
50. assign:graph_componeent[1]."1.1.3.1"

16

51. assign: graph_component [2] 4 "1.1.3.2"
52. assign:graph_component[3]"1.1.3.3"
53. assign: graph_component[4] 4 "1.1.3.4"
54. assign:graph_component [5] "1.1.3.5"
55. assign : graph_component[6] 4 "1.1.3.6"
56. assign:graph_component[7] 4 "1.1.1"
57. assign: graph_component[8] 4 "1.1.1"
58. assign:graphcomponent[9]"1.1.1"
59. assign :graph_component[10] "1.1.3.7"
60. *
61. content DEFAULT' IT LOGIC TYPE 1 Right Order 6x

17

