DOCIMENT RESUME

AUTHOR Brosnan, Patricia A.; And Others

An Exploration of Change in Teacher's Beliefs and Practices during Implementation of Mathematics Standards.

IDENTIFIERS
[g4] State Univ., Columbus.
PUB DATE [94]
NOTE 54p.
PUB TYPQ Reports - Research/Technical (143)

ABSTRACT
The purpose of this two-year study was to document and examine changes in four teachers' beliefs and practices while implementing National Council of Tea =hers of Mathematics' (NCTM) mathematics standards. Qualitative research methodology was used to develop multiple case studies, which were analyzed individually and across cases. Data came from interviews, observations, journals, attitude and belief surveys, and videotapes. The participants were four elementary-certified teachers in a suburb of a large urban area in a midwestern state who volunteered to teach 6th grade mathematics full-time. The teachers were supported during implementation by colleagues. administrators, professional development resources, and availabil:ty of materials. Problems reported included limited knowledge of: (1) NCTM's mathematics standards, (2) current mathematics teaching methodologies; and (3) mathematics content. Documented changes included an increase in student-centered activities, the use of manipulatives and calculators, and good questioning techniques. There were also increases in student participation, teacher and student attitudes toward mathematics, use of alternative assessment, and a change in the beliefs of teachers about mathematics teaching and learning. Conlains 34 references. (Author/MKR)

[^0]An Exploration of Change in Teachers' Beliefs and Practices
During Implementation of Mathematics Standards

Patricia A. Brosnan

Thomas Edwards
David Erickson

The Ohio Statc University

An Exploration of Change in Teachers' Beliefs and Practices

Abstract

During Implementation of Mathematics Standards

Theppurpose of this two-year study was to document and examinc changes in four At aghers' belicfs and pracuces while implementing NCTM's mathematics Standards. Qualitative rescarch methodology was used to develop multiple case studies which were ana: I individually and across cases. Data came from intersicws, obscriations, joumals, attitude and belief surveys, and rideotapes. The partucipants were four elementary-cerufied teachers who voluntered to teach 6th grade mathemalucs fuit-time. The teachers were supported dunng implementation by colleapucs, administrators, prolessional development, and atalability ol matenals. Problems reporied included Imated knowledge of (a) NCTM's mathemalics Standards, (b) current mathematics teaching methodologics, and (c) mathematics content. Ducumented changes included an increase in (a) student-centered actustles, (b) the use of manipulatives and calculators, and (c) good questioning techniques. There were ulse increases in student participation, teacher and student attutudes toward mathemathes, use ol alternutise assessment, and a change in the belicis of teachers about mathematuss teaching and learming.

During Implementation of Mathematics Standards

A growing number of teachers are implementing the National Council of Tcachers of Mathematics' (NCTM) Curriculum and Evaluation Standards for School Mathemanics (1989) and NCTM's Professional Standards for Teaching Mathematics (1991). This requires a significant shitt in teachers' behcl's and practices about mathematics teaching and learning (Wood, Cobb, and Yackel, 1991). The purpose of this two-ycar study was to dectument and examine changes 1.a four teachers' beliefs and pracuces while a transition from traditenal to a cleser approximation of NCTM's Standards mathematies program "as being implemented. Qualitallse rescarch methodelogs was uscd to der clop multuple case studics which were analy yed inds idually' and aceross cascs.

Data came from interviens, observations, joumals, allitude and belict surveys, and videntapes. The partucipants were fisur elementily-cortlicd teachers who volunteced to teach oth grade mathematics full-time. The teachers were supporied during implementatum by interactuins with colleagues, admunstrators. and rescarchers, professional der elopment opportunities, prolessional mectings and conierences, and ataulability of books, equipment, and materials.

Problems reported by teachers included limited kinomiledge ol' (a) NCTM's mathematics Standards, (b) current mathematics icaching methodologes. and (c) malhematics sonient. Documented changes included an increase in studentsentered acturties, an merease in the use ot manipulatives and calculaters, and an increase in geod questonning techniques. There were also increases in student
phation paitions teacher and student altutudes toward mathensatics, use of alternatuve assessment, and a change in the belicis of teachers about mathematics teaching and dieatming. Although many belicis remaned constant throughoul the study, teacher beliclis did not always match their practices.

Theoretical Framework

Rescarch suggests that cluldren's mathematical experience in school results in learming rules and procedures without developing essential conceptual understanding (Conlicey, 1985; Clements \& Battista, 1990; Heibert \& Carpenter, 1992; Skemp, 1976; Stellc, Cobb, \& von Glasersfeld, 1988). Low mathematics pertormance of students, in national and international studies, is usually assoctated wath poor tcaching (Ball, 1988; dos Santos, 1993). In particular, in the United States and Canada there is a strong call for school mathematics relorm and for dericloping mathematical literacy and mathematical power in all students (National Council of Teastars of Mathematics, 1989, 1991; National Rescarch Councll (NRC), 1989). Relorm adrocates stress that students should be actively engaged in dorng mathematics; in solving routine and non-routine prablems; in c.xploring, testung, and making conjectures about mathematical ideas; and in beıng responsible for their own learning. Morcover, teachers themselves need c.perience in doing mathematics - in exploring, guessing, tcsung, arguing, and prowing - to derelop conlidenee with which to respond constructively to unexpected inquines that emerge as students follow their own approach to mathematical problem solving.
lf retiom in learning mathematics is to be successlul, altention must be given to cxisting practuces of mathematics teachers. As the view of learning
 a, b; NRC, 1989). Thus it is necessarj to understand the process involved as teachers make changes in their previous ways of teaching mathematics to accommodate the transformation advocated.

The manner in which practuctng teachers learn and change is crucial. The refonm requires a substantial change in what is termed "iradition of school mathematics" to a practice that emphastzes inquiry mathematics (Cobb, Wood, Yackel, \& McNeal, in press). The few rescarch siudies that exist on the leaming of practicing teachers suggest that change is difficult to achieve and sustain (Richardson, 1990).

Although a constructivist's vew of learning malhematic has been commonly accepted by' researchers and mathematies educators alke (NCTM, 1989a; NCR, 1989), learning mathematics in school sull contunues to be dominated by the traditional transmission view of knowledge. Because so many current teachers of school mathematics are themselves products of the "transmission of knowledge" perspective, there is a need to effect what Richardson (1990) has called "significant and worthwhile change" in mathematics :caching practice. Facilitating meaningful change in instruction will ental helping teachers rethink and learn new mathematics content and stances towards teaching and leaming (Cobb \& Steffc, 1983; Cobb, Wood, \& YackcI, 1990; Noddings, 1986; Putnam, Heaton, Prawal, Remillard, 1992). Any altempt to improte the quality of mathematics teaching must begin with an understanding of the conceptions held by teachers and how these are related to their instructional practice. Falure to recognize the role that teachers' beliel's might play in shaping their behavior is

Changes in school mathematics can occur only i? it is also recognized that
43 teachers are key figures in the reform process. Everybody Counts (Nx:C, 1989b) calls our attention to the fact that curriculum and instruction in our schools and colleges are years behind the times; they reflect neither increased demand for higher thinking skills, nor greally expanded uses of mathumatical sciences, nor what we know about the best ways for students to learn mathematics.

Cooney (1990) provides a perspective in which success of the current reform effort is seen as contingent upon teachers' abilitites to shape classroom events and 10 ercate learning ensironments companble with the present state of knowledge of the Iearming and teaching ol' mathematics. Rescarch on teachers' beiiefs about the teaching and learming of mathematics shows that epistemological shifts must occur for significant change to transpire (Wood, Cobb, and Yackel, 1991). Benbow (1993) clams that belicis about the nature of mathematics and alltudes towards mathematics have tremendous effects on mathematical performance. Morcover, subject malter belicis have been shown to be significant factors in the learning of mathematics (Anderson, Anderson, Marlin, and Romagnano, 1993; Hollingsworth, 1989).

The nexi stage for research as recommended by Cobb, Wood, and Yackel (1991) is to rescarch means of implementation and determine which change agents facilitate or debilitate teachers in transition. Through case studics, it will be shown how indsuidual teachers with different levels of experienec are implementing reform. These fïndings may assist other researehers in determening lcarning of mathematics.

Purpose

The purpose was to desinbe how teachers and classrooms in one cducational setting changed as use of mathemaucs Standards was increased as a central component in a sixith grade mathematics program. The following questions organized the study a) What moturated teachers to increase use of mathemalics Standards in their classrooms?; b) How were leachers supported during implementation of student-centered mathematics instructinn?; c) What difficultics did teachers experience dunng implementation?; and d) What changes occurred in teachers and classrooms as use ol mathematies Standards increased? Results regarding tcachers' difficultics and accomplishments may be usciul to other teachers and rescarehers and contubutes to our understanding of the process of teacher change.

Method

Setting

The communty selected for study is a suburb of a large urban environment in a mudwestern state. This community has a small-city atmosphere. The middle school selected for study compnses Grades 6 and 7 with 845 students and 6 ? teachers. The children who allend this school include both sociocconomic extremes, although the number of low SES children are insulfieient to qualify for Chapier One funds for gowemment-sponsored mathematics programs. However, enght percent ol the students are considered under academic hardship and 65 students quallity for free or refuced lunch through the Disadrantaged Pupl

Perishritel Fund (DPPF). The middic school structure at the sixth grade level inciudes teams of teachers assigned to approximately 125 students.

This school was selected because it has been involved in a comprehensise restructunng program, now in its fourth year. The sixth grade teachers have spent the last three years focusing on developing a strong whole language literature program but to the exclusion of appropriate teaching procedures for promoting mathematics skills and reasoning. Perhaps because of this, teachers in this study relied too heavily on textbooks and paper and peneil tasks while ignoring handson exploration of objects that would allow pupils to better conceptualize basic mathematucs principles. It was this sixith grade staff who requested uniscrsity assistance in their mathematics reform effor and subsequenty agreed to make this effort a research project.

Process of Change

This study was conducted orer a two-year period across three disunct phases of ume: Ycar One--planning year; Summer--intensise professional derelopment; and Year Two--first year of implementation. Year One was spent dereloping a shared riston of what sixth grade mathematics should comprise. This was done by conducting a self-assessment, visiting exemplary middle schools, attending professional meetings and conferences, partucipating in inservice workshops, designing a summer instutute, reading current literature, and purchasing appropriate books, equipment, and matcrials.

By January of Y̌ear One, the sixth grade teachers, along with their pnncipal, decided to make math, wmates a prionty in their school. This meant that arailable funding would be targeted toward mathemaucs in the coming year. The teachers instructional materials, and supplies. Towards the end of Year One, it was decided that grade six should have lull-time mathematics teachers--four teachers volunteered for the job. They knew this commitment would require extra time and effort on there part.

Cooperation between the school and university enabled participants to develop a well-needed summer institute. Dung the same year, a newly developed Model Mathematics Program (1990) was being mandated for implementation statewide. This Model Program was based upon the NCTM Standards. Each school district in the state was to interpret the model in a way that would match their distinct environment and needs. The summer institute used the inudel mathematics program as a basis and used student-centered acurillies, inquiry-based methodologies, manipulatises, and technology:

After the summer institute, a support system was engendered through the use el graduate students from the university, along with field work pre-serice teachers. The graduate students were parred with the four sixth grade teachers who volunteered to teach mathematics full-ume. Their job was simply to offer help implementing the new curriculum and assist in any way the teachers needed during Y car Two.

Data Gathering

A cyclical process of questioning, observing, and hypothesis generating occurred throughout the three phases of this study (Spindle \& Spindle, 1987). There were four major data sources (sec Table 1), including interviews (2 per teacher, 30-60 minutes each); observations (20 per teacher, 60-90 minutes cach--2 each); and surveys (2 per teacher and student). There were two types of interiew questions used during mual intericws including "grand tour" questions suggested by Spradley ($19^{\prime \prime} ;$) and more specific prompts. For example, questions such as "Tcll me your lile story as it pertans to mathematics", "Tell me about your mathematics program," or "How have jou used mathematics in jour classroom?" were used. Thesc "grand tour" questions were followed by spectic qucstions about teachers' challenges, support systems, and reasons for changes in their belicis and practices.

Inscrt Table 1 About Herc

Classroonl were observed to (a) provide a shared experience between the rescarcher and the teacher to be used as subsequent topies in interviews and project mectings and to (b) enable the development of questions for luture intericus that were based specifically on each individual teacher's classroom experience. Large group discussions provided upportunities to document teacher perceptons within the context of a group discussion (Bogdan \& Biklen, 1982; Goctz \& LeCompte, 1984; Kirk \& Miller, 1986) and provided a source oll data lior triangulation of multiple sources.

Topics for large group discusstons were selected by the participating teachers in adsance of cach mecting. Topics included discussions for professional

Mathematics Teacher Change the process of change. After-school mecungs assisted the teachers with on-Site teghtical and immediate fecdback lor their concerns. Other teachers in the school were encouraged to attend. In addition, the middle school teachers' belict and allitude suricys were administered to each participating teacher in Junc of Ycar Onc and again in May of Ycar Two.

This study was divided into three disunct blocks of lime. The divisions were: Year One--the planning ycar, Summer--intensive prolessional det clopment, and Year Two-the lirst year of implementation. This was done to lacilitate analysis and secure approprate datia. These divisions were not predetermined and were heavily influenced by the data-gathering process and on-going analysis. Data collection methods were unhized as appropnate throughout the two ycars and were adjusted as data analysis informed the study: For example, the idea of cstablishing a summer institute emerged from Ycar One planning sessions wath the participating teachers.

Other adjusiments resulted from on-going analysis. During Ycar Onc, interview que tions were determined belore the study began. Other adjustments wece made in response to specific situations. For example, one of the four participating teachers was unable to attend the summer instlute beciluse she gave birth to her first son that same summer. Dunng the first year of implenentation, Year Two of the project, two of the teachers were unable to participate in the Seminar mectings. Onc of those teachers was involved in the imelementation of an inçury-ipproach, interconnections, and interdisciplinary team of sisth grade. Because of the time consuming nature of that program, our work with Linda took ptianfing, the summer institute, the professional conferences, and purchasing so many new materials, she felt too overwhelmed to continue attending meetings. However, both teachers were included in :ideotaping, audio interviews, and observations.

Y car Two was the first year of implementation. Data were gathered en many ways. Weekly visitations included observations, field notes, tape-recorded interviews, videotapes, teacher journals, and researcher journals. Data were gathered from teachers, students, and administrators. The student data collected included achievement test data from grades five and sIS and mathematics altitude and confidence questionnaires that were administered at the beginning and end of Year Two. Data collected from administrators included interviews and unsolicited comments and letters.

There were also benchinark activities collected such as tests, grades, lessons, and conversations with the students. Artifacts were collected from the teachers and the students. These included lesson plans from Year One and Year Two, assessment strategies, and student projects also from both years. There were monthly meetings held after school with teachers, the mathematics coordinator. and university personnel. Multiple sources of data were necessary to provide for the richest description possible of the teachers' environments, behaviors, interactions, and meanings, as they related to mathematics. The sources were tapped into a constint-comparatice process of collection, analysis, and focusing.

Mathemalics Teacher Change

 that liould best desenbe the changes that were oceurning in belicls and practices. Gomsrquenty, in-depth intervicws were used in an attempt to discern patterns in the way teachers taltixa aucul the process of change. Observations howerer, rentaned important opporitunties to document icacher and student behaviors Whinin the classroom seting. to document potential discrepancies between interisew data and obscriations and to triangulate interview and Seminar data. An attempt was made through a member cheek to make sure that data colleeted were a true retlection of what the teachers meant to say: This would further seric as a vahdity check (Kırk \& Miller, 1986). Finally, there were peer debricting sessions among the rescarch icam using relicxive joumals to document anecdotal comments, summatise ugnetics observed to further clanfy observations, and icam Fideo viewing to build consensus among the rescarchers as to what changes were occunning.

Teaching and Learning Environments

The intial condution ol the sixti grade mathenatics program was undentably the traditumal, transmission-of-knowledge type program. This may. indeed hate been a consequence of their focus on their restructuring program in other diseiplines. Each of the fourieen sixth grade teachers taught mathematics to their own homeroom class, because none of them wanted to teach mathematues as a spectatly: The fourteen teachers were divided into four teams. Three teams had four icachers cach. the lasis had wo. Each team was permitted to develop their an thass schedule for the sear. The indsudual icams did not need to have amman sthedules anong the teams. All icachers chose to teach there mathematies for mathematics in their entire day:
mathematics. Each classroom was arranged with desks or tables in rows. A typical day included reviewing homework from the precious lesson followed by a ten-minute introduction to the new lesson which was usually leaching another procedure, then students were assigned to work practiong that procedure from problems arranged on a worksheet or from textbook pages. The textbooks they used were seven years old, and most of the pages were of problems for practicing skills. The homework assignment was to finish the exercise from the textbook or additional problems from the worksheet.

Students were not allowed to talk or work together. The atmosphere in earth mattemalucs class toned from room to room. In some classes, there was a relaxed atmosphere where students felt they could ash there teacher for help on their problems. In two of the classes obscene ed. there appeared to be at routine strongly grounded in regimen. Students were made whollon strive procedures for how they behaved and moved around the elassrom. It with noted that whenever students completed a worksheet, they would hand in that worksheet, sign al lam. move directly to another area of the classroom, and pret up another work sheet. Alice class, the teacher informed me that there were 130 such worksheets. The students had the fear to complete them. He noted a bullet beard that publicly displayed the progress each student was making on these extra worh.lieets. The teacher was proud of his disciplined class.

 Role and Cbmposition of the Research Team

This rescarch project was partially funded through the Dwight D. Eischtiower Mathematics and Science Program sponsored by the Ohio Board of Regents. Sludy participants consisted of rescarchers, respondents, and informants. The rescarchers used the traditional collaborative approach to this cthnography as an attempt to gain more sources ol data (Becker ct al., 1961; Bogdan \& Biklen, 1982; Guetz \& LeComptc, 1984; Kirk \& Miller, 1986). Members of the research team varied in the degree to which they were identified with the interests of specific participants and informants in the school. The intent was to ensure that interests of all partics were addressed and that the account Incorporated perspectures of diverse groups (Hochschild, 1989; Oakley 1984; Rollins, 1985).

The research team consisted of a project director, wo rescarch associates, and four rescarch assistants. The role of the project director was to conduct planimge sessions, Seminar mectings, and debrecling sessions; design and conduct the summer institute; and organize inservice workshops. The role of the rescarch assoctates was to conduct weekly ubservations, take ficld notes, make weckty joumal entrics, present aetivilics in assigned classrooms and at monthly workshops, and to participute in regular debricling sessions. The research assistants conducted audiontericws, obscriations, and videotaped lessons by parnctpathy leachers.

Data Allalysis

Althongh the iescarch questions provided a focus for the study, specitic categortes used in analysis were not predetermined. Categorics emerged through

Nhitprouckstor ongoing analysis (Bugdan \& Biklen, 1982; Goctz \& LeCompte, 1984) and likewise shaped the design of the study. As transeriptions of interview's and hield notes were gathered, a list of potential coding categories emerged.

Categories were also oblained from vewing the videotapes of lessons and of the Seminar meeting discussions.

The Project Teachers

To secure confidentiality, the lour sixith grade teacher participants (referred to as Project teachers) have been given pscudonyms. They varied in years of experience and specially areas, but were comparable in areas ol' ecrification and mathematics background (sec Table 2). Eutly observalions (ring Year Onc) indicated that these four Projeet teachers were very traditional mathematics teachers. They arranged their classroom desks in rows, reviewed homework, presented how to solve the new type of problem for the day', then assigned seatwork which was to be done independently. The textbooks they used we e old and woin. There was no risible use of manipulatives or technology: Nor was there any indication ol group work, student-centered activities, or mathematical project assignments.

Insert Table 2 About Here

Constraints of length prohibit a lull description of the four teachers in this study: Instead, a briel description is olfered ol each teacher based on an analy'sis of the interview data.

Mathematics Teacher Change and loved children. When Linda started teaching mathematics, she was placed with a group of learning disabled children, and quickly learned how to work with students in small groups and use mathematical models. She saw how disabled students could learn mathematics be seeing it, and tried to implement these new ideas in regular classes, but struggled with large numbers of students. Upon committing herself to L coming a full-time mathematics teacher, Linda became excited about learning how to teach mathematics for understanding and signed up for every workshop or inservice program offered. About her recent mathematics teaching experience, Linda explained, Histoncally, all teachers were centered around one subject except math -math is the extra and so we all did it and I think it was done very haphazardly: Most people, including myself to a degree, just followed the book step by step. Whatever you got through you did. All sixth grade teams were grouped for math, so then you had those who really succeeded and did well, those who didn't do as well. For so long wave spent the first half of the year going back through adding and subtracting and multiplying and di siding. And li's the same old thing and they' (the students) all hated to go to math.

Linda's team was to enter their first year of implementing a student-centered, student-drisen curriculum program and she was concerned about how mathematics could be connected to other disciplines. She also wondered how she could tie in all that she had learned dung the summer institute. mathematics because slice hated English and science and knew that social studies wo ufa not be a lull-load assignment this year. She had very limited selfconfidence in mathematics. About her mathematics teaching, Carrie says, But it's amazing when foul have the answers in the book how it's real case to teach math. And at that time it was still... here's how you do it, practice, here's a worksheet, pracuce -- kill and drill, kill and drill, kill and drill. This is the formula, this is the way you do it, okay? Here's a test, and now well go on. You know, over and over and over again. Math is the only class I're always been frustrated in that not every single kid gets it because it, of all the other classes, that is a building block class throughout their entire school career. They have to get certain things to go on and be successful the next year. Social studies an I science stull, if they didn't lean something there, that's not a big problem, You know? But with math it is. And so that responsibility weighs very hoary on mc. I'm very limstrated with it sometimes and very orembelmed that they're just not getting all of it. Caustic was very wormed about not being organized enough to begin the first year of' implementation. She felt as though she was so confused at times that she did net know what questions to ask nor what assistance to request. Carrie sard that to teach mathematics she needed a road map. She was most comfortable teaching from a textbook or an explicit curriculum guide.

Sherry. Sherry was happy to try anything that would help her students learn mathematics better. She too was a social studies teacher, but did not like the way she taught mathematics. Rel erring to her carly school years, Sherry sard, "I Sherry excitedly reported how she was able to conduct such a pleaSant mathematics class. She said:

I want you to know that I started the year off differently this year. You want to know what 1 did? Well, I walked into class, got them (the students) quiet and sand, "I know you all hate math, but 1 want you to know that 1 hate it tor. And thin's OK. Somehow we will work together and somehow get through this year together." You know, l think it worked. It seemed to put them at case and now we can just get on with it and not feel so pressured.

In the classroom, I was a very traditional math teacher in terms of demonstrating and having the kids do some sample problems and then do the drill alliterwards. Um -- we did the basic story problems, but not a whole lot of extension. In terms of working with hands-on things we probably worked with rulers and did some measuring.

Sherry was thrilled with the prospect of leaning how to teach mathematics for understanding. She was uncomfortable with the way she taught mathematics and was relieved to lind that help was on its way:

Sally. Sally always loved mathematics. For the past two years, she taught wo groups of the higher-achicring students for mathematics. Her classes were completely self-paced where the students worked on individual packets while she spent most of her time sitting all her desk tutoring individual students. When she did go to the board, she reported feeling as though she only had about 10% of the students' attention. Sally noted that when she did the individual tutoring she knew she had 100\% of that student's attention and thought that was good.
Bectause I started off teaching developmentally handicapped and with kids like that -- they were fourth and fifth graders, you had to use concrete examples. And then went into sixth grade and teach more self-contained -taught a lot of different subjects. Math was always kind of my farorite because -- I don't know -- there just wasn't a lot of memory work. It was almost like you learn it and you practice it in different ways and it was kind of something that sticks with you -- not some history date.
Because Sally enjoyed mathematics, she was interested in becoming a part of the study, but was rery skeptical as to whether what was being proposed would be any belter than what she was already doing. Sally considered manipulatives as toys and activities that used mantpulatives were games and not real mathematics.

Results

The results of the cross-casc analysis will be organized by: (a) types of support during implementation; (b) difficultics encountered durng implementation; and (c) changes in the beliels and practices of the Project tcachers.

Types of Support During Implementation

Interaction with Administrators.
Moral and monetary support from the sehool admınistrators were important to the suceess of this project. Alter interacting with the teachers and observing therr commited allitude towards the derelopment of a nech new mathematies program, the group decided to make mathematics a t_{1}) prionty for resources for the commeng school ycar - the lirst ycar of implementation. Linda, Sherry, and Sally were all pleased with the generous support provided by the admimstration.

Whate benthe other hand, thought that the suppor was limited to outside assistance. That meant that she was not gelling the type of support she felt she neged in her classroom, but would not expound on what it was she felt she was missing.

Professional Development Opportunities:

The culmination of the Year of Planning was a summer institute designed by and for the Project leachers with the assistance of university faculty. This institute would seric as a simulation of what they delined sixth grade mathematics to be. In this case, 11 was deended that the curriculum would be one based upon the nationa! Standards, the inethodology would become studentcontered and inquiry-based, and that manipulatires and calculators would be used Whenever appropriate. The Project leachers would be the students and they would work through all the activatics, identily the applicable learning theory, then refleel upon them from both student and leacher perspectives. This would later prove to be an important professional det elopment stralegy because the student-centered activites that actually were taught in the classrooms were exaclly those with Which the teachers interacted.

Opportumities to talk with icachers outside of ther sehool building provided teachers with ideas for improving implementation and whth confinnation of their emerging program. At a regional mathematics conlerence held in Seplember of Year Two and allended by all Project leachers, al liequent comment was that there was insulfietent time to allend all of the sessions in which they were interested as woll ats how exciling it was to mect so many other educators who were doing the same types of thongs. Carric sadd being there made her feel a litle more at case attended were similar to the direction she was taking in her classroom. She cxemmed, "We're doing it right! Now, I know we're in the right direction. Erer;body says so!"

While the teachers agreed that conferences were very important to their professional growth, it was the summer institute that seemed to be the place where the most Jearning was internalized. Linda explained that,

I've become a stronger math teacher through this extra course work that we've donc. I'm more cxested about math and the need to teach it from our experiences...lrom the summer class that we did... as it relates to students .the activitics that we did and actually experienced are the ones that I thank most of us are doing in the classroom -- cause I know what it was like and can do that.

Carric said,
Because then you really get in there cier; day all day and you are really working with manipulatives and you are really, ...in there, doing it and not just scallered.

Interactions with Colleagtues.

The importance of interacung with collcagues at their school was consistently recognized by the Project leachers. The teachers gathered specific idcas tor mathennatics lessons by talking with other teachers, by obscrving displays of children's work, and by visiting other teachers' classrooms. Sally, for cxample, found through her conversations with other muthemalies teachers, that the students in the other classes had more opportunities tor learning because they

Cepruna
afratiged in group sellings. She was also more casily swayed to use calculators after she saw a colleaguc achicve success with them. The Project teachers agreed that intcractions with colleagues supported their professional growth. Sally, for example, discussed how Scminar discussions helped her leam more about the activities in other classrooms in other schools. Similarly, Sherry described the Scminar discussions as "very' supportive" and expressed a desire for the mectings to continue on a regular basis beyond the scope of the project.

Interactions with Researchers.

As previously discussed, the researchers' roles were interactive with the entire staff and particularly with the Project Teachers. Intervicws and Seminar mectungs were ciled by Sherry as helping because
...without those kinds of programs, and without the support we've had from the university, I don't think any of us could be at the point we are. Carric Icarned that her students were able to learn sophsucated mathematical concepts through an inquiry approach. Ths was amazing to her since some of the topics presented included the same concepls with which she struggled in high school and college.

Not only were the interactions with rescarchers important, but the continuous presence of members of the rescarch team seemed to ensure that tcachers considered changing on a much more frequent basis. Several teachers said that because they knew that somcone would be in their classroom, that they felt compelled to continue to experiment and practice things they had learned in

Replidichausipricesional development activities. Thus, the 'hanging around' theory secmed to play an important role as a catalyst for change.

Obtaining Materials.

Teachers in this study were also supported by rarious opportuntics to purchase books, manipulatives, and calculators. Most ol the funding came from bullding funds which were targeted for mathematics this year--a decision made by the entire school staff. Grant monies, use of public librarics, and teacher-shared manipulatives provided additional mathematics materials. Of the availability of funding for malerials and such, Linda said,
... if we didn't have all the materials that we were able to putchase this summer, it wouldn't be as sucecssful as it is because that's what's making the program do a fow things.

Sally was particularly impressed with the faculty as a whole giving up therr wants and needs during a school year for the gond of an improved mathematics program in sixth grade.

Difficulties Encountered During Implementation

Difficulties in Instruxional Planning.
Sherry said,
Hindering, as always, is when you're trying to put in place new things, it's tral and crior. Just about everything I have done this year -- the way I have presented it -- the materials I've worked with -- have been totally new. And so when you go through those lessons, you're immediately thinking this worked well and I need to do this again or this was a disaster and we have to come up with something clse.

Mathematics Teacher Change

As the Project teachers shilied from following lessons laid out in then maglyemalles texibooks to creating student-centered activilics with inquiry-based
\qquad mathematics strategies, some began to doubt their knowledge about mathematics and the new methodologics advocated by the NCTM Standards. Sherry began the year not only doubung her own ability to use inquiry-based mathematics but also concerned about the Iarger question, "Will they' Icarn basic computation skills if I don't use all the drill and practice activitics?" Sally felt that the use of studentcentered acllsities would be more enjoyable for her slath-grade students but wondered about the skills she should teach. She was partucularly concerned about the children in her room who were having difiiculty' wth the basies and was uncertan that they would progress whon the specific skill work provided by therr texibooks.

I haven't been able to spend a lot of tume on goong ahead, I think, with problein solving, because they have -- they're weak in some of the basics. Carne added.
-I have trouble understanding concepts.--
The teachers' lack of knowledge about current methodologics made choosing matenals difilicult for some. Activity selection was particularly difficult lor Cartic, who was overwhelmed by all the new ideas regarding content, curticulum, and methodologies she had learned. She was not familiar with student-centered activitues and felt awkward not being al the front of the room all the time.

The Project teachers found that instructional planneng for inquiry-bised mantiomatics was quite different lrom planning for procedure-driven mathematiss. Sherry had used the same mathematics plans for many years while using the mathematics textbook as the curriculum. Now it was her responsibility to select the appropriate sequence of materials, to decide how the materials would be used. and to detine both her role and the role of her students. Although she found some assistance in the teaching guides that of ten accompanied the new materials, the tcaching pounts were usually limited, learing her to make many decisions about the organizalton ol each lesson. She was excited about using her own tideas to teach; hew ever, she was also annious that her plans would prowide optimum educatuonal expenences for her students.

The teachers were consistently conecrned about how to use inampulatives and technology wath the new curnculum to foster enthustasm for mathematics With their stludents but al the same tume support their students' growth in mathematics learning. At a Seminar session, Sherty wondered how she would Facilatate a lesson without providing too much information. She found it difficult to decide which student questions to inswer, what types of responses to provide, and how she would assess student progress.

Citric demonstrated her anxicty towards not being organnzed by saying I want help, but I don't know what help I need. I don't know eren what to ask you to do. ... I have no idea. Organize me. You know, do something...

Limdal rately used tevtbuoks at all bocause their net program included a shater-ditisen curnculuin, sothey used textboks as an added resource rather than carriculum. Both Caric and Sally used ther textbooks far more exiensively than Sherty. They cach began leachong lirom the beginning of the lext and proceded pretty much page by puge. Carrie satid she needed a road map from which to teach and Sally thought that she would miss somethng important if she did not proced page by page.

When the school ordered new lextbooks, they' were only able to alford a classroom sel for cach Project leacher. Sherry explanned

Our kids do not have textbooks assigned to them. They're on tine tables. They have been used very infrequently. They -- we might look at them -- we might use thas a reterence. We go to the glossary occasionally: There may hate been -- a lew occasions where there was a problem solving -- problem situation or something maybe that we would go orer together in class. But. no, I do not use them. Well, when they were told at the beginning of the ycar that they would not be giten a math book, some of them checred. And again, nut having a math book for some parents has been the biggest problem we've had to deal with and we did have extras so we'l just send a book home with those parents. They are telling me they have used them. I hupe they have in some way.

Difficulties in Evaluation,

When using workshects, textbooks, and iests, the leachers found il casy to assign grades. But when they used cooperative learning groups, for example, they

Hatred farsulde how to evaluate student progress. Issues of assessment were among the greatest of teachers' concerns. Their constant wornes included: (a) meeting the herb statc-mandated course of study; (b) providing for students' success on mandated competency tests; (c) grading student progress; and (d) idenufying student needs to navigate instruction.

For the Project teachers, satisfying the new state-mandated course of study and ensuring appropriate student achievement on mandated tests became sources of pressure that increased dung implementation of the new mathematics program. These pressures forced several teachers to have a methodological relapse the weeks prior to mandated testing where they felt they had to "teach to the test" so that their students would have a chance al success. These concerns continued unis the results of some of the tests came back dunne the summer alter Year Two where all Project teachers agreed that the test scores reflected sufficient games to decrease pressures they had fell during the previous year. The pnneipal was also pleased once he saw the standardized test scores, he said, "rive never seen so many sixes. We are accustomed to $2 \mathrm{~s}, 3 \mathrm{~s}$, and ts around here." The numbers he refers to are the stanine scores reported on the mathematics achievement lest result forms.

Difficulties remained however, regarding how to conduct alternative assessment. Sherry was the only Project teacher who was ready to handle the assessment issue. In fact, she screed on the statewide commillece to build assessment tasks to support and Inform the new curnculum. Carne and Linda wanted to move to a new grading system when would reflect a posture attire towards grading. For example, instead of grading A through E, they would grade

INC
Ilo and Pempancit

Chinning angikethe I would stand for "In-Progress". This way, they would not fall a student, but would ask the student to continue working on the project until it was a least B level. Sally wondered when she would nave time to do all this $44_{3} 3$ n alternative stuff."

The Project teachers each were concerned about how to grade students for their contributions to group activities, how much of the grade should be on groups, and how much grading should happen on an individual basis. They each roiled concerns about how easy it was to grade mathematics before the new program, but they were so impressed by the improved atmosphere and altitudes of their students, that they were willing to learn.

Changes in Beliefs and Practices

From the data that emerged lion the study; six categones were identified and used to organize the findings. The categones and the findings summanzing th: changes noted From Year I to Year 2 in the Project Teachers' belief's and pracuces may be found in Tables 3 and 4 respectively.

Insert Table 3 About Here

Insert Table 4 About Here
an
Changes in Beliefs and Practices in Classroom Organization
From the very beginning, Linda believed that a combination old classroom organization strategies worked best for her. She thought that students should experience whole class, individual, and small group instructor. Her practice showed that Linda always arranged her classroom tables for small group work and she ended up believing in using small group activities to the exclusion of the other pes.

The other three teachers began from a more tradiuonal perspective, they all had their classroom desks or tables arranged in rows and columns to begin, which lit with their belief in the use of whole class instruction. After the summer insutute, where the teachers expenenced small group work on a regular basis, doth Sherry and Carrie began Year 2 by rearranging their classrooms to accommodate more small group work although they believed in maintaining some whole class and individual work. Sally was a little hesitant at first to make such a dramatic physical change to her classroom, probably because she missed the summer institute and had not achieved the level of confidence the others acquired from practice.

Changes in Beliefs ana Practices About Mathematics

All Project teachers believed that mathematics was a subject that il learned would help you to think better. While Came and Sherry reported no changes in belief's about mathematics, Linda and Carrie had several abrupt changes in their thinking. Linda thought that she did not have the type off mind that was needed to do advanced mathematics. She thought that mathematics was one of those subjects that you cither could or could not do. By the end of the second year old
the Projeet teachers that models and visual aids were necessary for students to

But the neatest thing this year -- shows me still that through guided discovery the kids can find out those things and it docsn't have to be shown -- here this is the way you find the area of a triangle and that sort of thing.

Carric reported

They have learned a lot more than any sixth grade class of mine has cier Icarned, because we didn't review--I think we never did this with them years beiore because we thought it was too hard for them -- they didn't know enough. ... to be able to do more than add, subtract, divide, multiply and do some fraction work and geometry -- carly geometry. I don't think we thought they could handle it -- that it was too intricate -- too beyond them -and they are proving that they can handle it.

Sherry sald:
...what licel best about is that with the partucipation of the students. diselpline problems have been at a true minımum in the classroum.--They walk in the room asking what do we get to do today --Because they know we're gerng to do some fun things and I think because of that the kids have lealmed morc.

Sally saded:
We're aneorporating things we've learned at the beginming of the year all year so that they aren't forgetting, where we're not just doing a untt, having a lest, lour wecks later we've forgotten because we're not using it anymore.

Linda's major changes in the teaching of mathemalues stem from following thetextbook step by step to altowing the students to explore new concepts and new ideas through guided discotery: She also believed that if she required students to communicate their ideas, she could learn far more about what her students knew and were able to do.

Carnc's changes were important, but not as cxitensive as hoped: Dunne Year l, Carric described her teaching as, "...here's how you do it, practice...kill and drill." By the end of Year 2, Carric's approach still followed the textbook, but she made an effort to include all of the extra activities that she used to skip orer. She reported also adding the use of more tisuals in her teaching, but only if she had learned it first.

Sherry hardly ever uses her texibook anymore and stated about her teaching: I think when you're working with manıpulatives I have a hundred percent of the kuds doing something..-as long as there's something there in front of them that they can put their hands on and try and demonstrate with and iry working with, I think that they are getung more math than they ever got betore when they were just being talked to. --those have been new toptes of math, which have gencrated more interest on their part.
Sally described her changes as follows:
I'm never at my desk anymore. I used to be at my desk a little bit more-- I taught a completely self-paced class for two years ol high math kids, where the kids all did their own thing. We had packets and they worked at their own pace, so I was doing one on one instruction all the lime. That way, I

Refonduchonharing attention.-- lice like 1 have more of the kids' attention than I used
to. --Sometimes it's a little boring tor me, so I can see what it's like for them when I did all the fun stuff.--Next year there are some things I'm going to not spend as much time on, like addition, subtraction, multiplication, and division.

Changes in Beliefs and Practices Regarding the Use of Technology

Linda reported allowing her students to use calculators for everything except concept development before our project, and now she has learned how concepts can also be taught and has added that to her teaching. About the use of calculators Linda stated:

I used calculators a lot this year. Those students who don't know their multiplying and dividing facts by now aren't going to learn them in sixth grade and it's silly to make them struggle through those again right now, I sec my students doing higher le vel math this year than they wouldn't have been able to do without the use of the calculator.

Carrie and Sherry' both belie' ed that calculators should not be used for doing homework of taking tests. Carrie onginally thought that using calculators was cheating and stull does not allow her students to use them until they know the facts. Sherry used to use them on Fridays for fun activities, but now has them available at all fumes on the student tables and allows them to be used for anyichıng.

Sally reports having changed her philosophy a little bit about calculators and that she never had a serious problem with calculators. In practice, she does not
 on tests.

Changes in Beliefs and Practices Regarding Use of Tinte
The beliets of the Project teachers regarding use of time in the classtoom changed wholesale from reviewing homework, demonstrating new material, and starting the new homework, to an increased use of small group instruction, increased use of manipulatives, calculators, and guided practice, and increased use of student explanations. These beliefs transferred into practice in that the students were engaged in small group exploratory activities on a far more frequent basis, and a decrease in the use of the textbook page by page.

Discussion

The results of this sludy begin to reveal the process of change in teachers and classrooms as they begin to implement the NCTM Curriculum, Evaluation, and Teaching Standards. The teachers in this study' were motivated to increase the use of student-centered mathematics instruction in their mathematics programs by a dissatisfaction with what they were teaching, how they were teaching, and therr pritor mathematues text and materials, and through obseriations of positive student response to the new ideas. They were supported during implementation by collcagucs, admınıstrators, by participating in this study, by attending inservice opportunities, and by purchasing textbooks, manipulatives, calculators, and supplementary materials. Problems reported by teachers included a limited knowledge of mathematics content, methods, and evaluation techniques, limited organizational strategies, and difficultics documenung student progress in ways that would inform both grading decisions and instructional planning. In lour procedures and assigning drill and practice work, and an inerease in the use of stugent-centered acurtics, manipulatives, and calculators. There were also increases in small group work, student communication of mathematical idcas, and the use ol' alternatu'c assessment such as obser'ations, student projects, joumals, and portiolios.

Summary

The results presented hercin, are limited by the fact that the focus was on a small number of participants who all worked at the same site, al the same grade level, and who voluntecred to be in this study. The characteristics of the school scling were similarly unique: the principal at the rescarch sate was consistently supporture throughout the two years; the entire staff cooperated fully; and the teachers were provided with unusual professional development expenenecs. Morcorer, all video-taped observations were pre-arranged with the teachers at their convenience. Consequently, the rideo data collected was somewhat controlled by the teachers' perecptions of their situations. Although mulluple data sources were used to strengthen the credibility of the data, triangulation was not always possible. The examination of the impact on classrooms and teachers was limited to observable changes in classroom management and teachers' practices. Future rescarch might focus on the relationship between changes in classrooms and teachers and student achicrement.

In the future as well, changes might be examined in schools where there is less support by either the administration, parents, or members of the faculty; in schools of a different socio-economic status; or in different grade levels.

Mathematics Tcacher Change

Lotigiuetinal studics might documented changes through classroom obscriations that exitend over longer penosds el iame. In addition, rescarch surrounding teachers' pressures of ctaluation, the impact of the NCTM Standards on curriculum and instruction, the influence ol changing teacher belicis on instructional planning, and the impact of the organizational changes such as small group instruction, use of manipulatives and calculators on student altitude and achievement.

The results of this study support Guskey's $(1986,1989)$ argument that the teachers' most immediale need during implementation of a new approach is for intormation dealing specifically with classroom pracuce. Teachers struggled darly duc to limited knowledge conceming mathematics, mathematics methods, and altemative assessment tools. Because of theses difficulties, prolessional development programs might begin with specific, practical ideas that readily may. be used in the classroom. In-service scssions could include learnirg theory as well as demonstrations of how to use student-centered activitics, discussions of how to increase the use of manipulatives and calculators, sessions on organizing and proitlizing content to be taught, and specific suggestions about classroum organization, Iesson planning, and craluation. The students' enthusiasm towatds the changes in classroom practice energized the Project teachers to orercome '. e dificulties they had in documenting student achierement. Professtonal devclopment sessions focusing on assessment alternatives might include topics such as performance objectives, interviewing, project presentations, rellective joumal writung, and portfolios. Knowledge of such assessment practuces may changing teachers' belief's and altitudes about mathematics instruction.
should attempt implementation slowly by first identifying a few interested teachers to pilot the innovation, supporting those teachers in significant ways, and providing for long-term commitments to change through professional development. Successes may then be shared to encourage the participation of other teachers. Support for interested teachers might include shifting monies from buying workbooks to buying student-centered activity books, providing financial support lir teachers to attend professional conferences, inservice programs, or adjust schedules so that interested teachers might meet dung school hours to discuss mutual concerns.

References

Anderson, R. D., Anderson, B. L., Marun, M. A. V., \& Romagnano, L. S. (1993).申onducting case studies of curriculum reform in science and mathematics education.

Ball, D. (1988, A pni) Prospective teachers' understanding of mathematics: What do they bring with them to teacher education? Paper presented at the annual meeting of the Amencan Educational Research Association, New Orleans.

Becker, H. S., Gecr, B,. Hughes, E., and Strauss, A. (1961). Boys in white: Student culture in medical school. Chicago: University of Chicago press.

Benbow, Ronald. (1993). Tracing mathematical beliefs of preservice leachers through integrated content-methods courses. Upland, IN.

Bogdan, R. C. \& Biklen, S. K. (1982). Qualitative research for education: An introduction to theory, and methods. Boston: Allyn \& Bacon.

Clements, D., \& Battista, M. (1990). Constructivisi learnıng and teachıng. Arithmetic Teacher, 38 (1), 34-35.

Cobb, P., \& Steffe, L.P. (1983). The constructisist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14, 83-94.

Cobb, P., Wood, T., \& Yackel, E. (1990). Classrooms as learming envionments for teachess and researchers. In R. B. Daiss, C. A. Maher, \& N. Noddings (Eds.), Constructivist views on teaching and learning mathematics (Jomal for Rescarch in Mathematics Education Monograph No. 4, pp. 125-146). Reston, VA: National Council of Teachers of Malhematics.

Cobb, P., Wood, T., \& Yackel , E. (1991). A constructivist's approach to second grade mathematics. In E. son Glaserfeld (Ed.), Radical constructivism in

Mathematics Teacher Change

MRChaneill pandminime

 Academic Publishers. ACubid. P., Wcod, T., Yackel, E., \& McNeal, B. (in press). Mathematics as procedural instructions and mathematics as meaningful activity: the reality of teachıng for understanding. In C, Maher \& R. Davis (Eds.), Relating schools to the reality of mathesnatics learning. Englewood Cliffs, NJ: Prentice Hall. Conirey, J. (1985). Towards a framework for constructivist instruction. In L. Strectland(Ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (vol. 1, pp. 477-483).

Noorlwijkerhout: Psjchology of Mathematics Education.
Cooncy, T. J. (Ed.). (1990). Teaching and learning mathematic's in the 199(). (1990 Y carbook). Reston, VA: National Counct of Teachers of the Mathematics.
dos Santos, Vanıa Mana Percıra (1993). The impact of an innovative content course on the beliefs of prospective elementary teachers. The American Educational Rescarch Association. The Annual Mecung, Allantia, GA.

Goetz. J. P. \& LeCompte, M. D. (1984). Ethnographỵ and qualitative design in educational research. Orlando, FL: Academic Press.

Guskey, T. R. (1986). Staff development and the process of teacher change. Educational Researcher, 42, 5-11.

Guskey, T. R. (1989). Allutude and perecptual change in teachers. Journal of Educational Research, 13, 439-453.

Hart, L. C. (1987). Assesstng teacher change in the Atlanta math project. In R. G. Underhill (Ed,), Proceedings of the Thirteenth Amuthl Meeting of the Mathematics Education, 2(pp. 78-84).

Bhacksburg, VA: Virginia Tech.
Heibert, J., \& Carpenter, T.P. (1992). Learning with understanding. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan.

Hochschild, A. R., with Machung, A. (1989). The second shift: Working parents and the revolution in the home. New York: Viking.

Hollingsworth, S. (1989). Pnor belicis and cogntive change in learming to teach. American Educational Research Journal, 26, 160-190.

Kirk, J. \& Miller, M. L. (1986). Reliability andvalidity in qualitative research. Beverly Hills, CA: Sagc.

National Council of Teachers of Mathematics. (1989). Curriculum and Evaluafioil Standards for School Mathematics. Reston VA: Author.

Nattonal Council of Teachers of Mathematics. (1991), Professional Standards for Teaching Mathematics. Reston VA: Author.

National Rescarch Council. (1989). Everybody counts. Washingtou, DC: National Academy Press.

OakJcy, A. (1984), The captured womb: A history of the medical care of pregnant women. New York: Oxford.

Pulnam, R. T., Heaton, A. M., Prawat, R. S., \& Remillard, J. (1992). Teachung mathematues for under-standing: Discussing case studies of four filith.-grade teachers. The Elementar: School Journal, 93(2), 213-228.

Remandichardsong. (1990). Significant and worthwhile change in tcaching practice. Educational Researciier, 19, 10-18.

Rofins, J. (1985). Between women: Domestics and their employers. Phıladelphia: Temple University Press.

Skimp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teacher, 77, 20-26.

Spindler, G., and Spindler, L. (1987). Interpretive ethnography of education at home and abroad. (pp. 143-163) Hillsdale, NJ: Lawrence Erlbaum.

Spradley; J. (1979). The ethnographic interview. New York: Holt, Rinct:art \& Winston.

Thompson, A. (1984). The relationship of teachers' conceptions of mathematucs teaching to instructional practice. Educational Sudies in Mathematics, 15, 105-127.
von Glasersfeld, E. (1988). The reluclance to change a way of thinking. The Irish Journal of Psyciology', 9 (1), 83-90.

Wood, T., Cobb, P., \& Yackel, E (1991). Change in teaching mathematucs: A case study. American Educational Research Journal. 28(3), 587-616.

Table $1 *$

lable 2

$443)^{n}$	Lunda	Carric	Sherty	Sally
Y cars Teaching	13	15	21	12
Certilicalion	Lilementary 1-k	1:Iementary 1.8	tememary 1.8	Elementary 1-8
	Reading K-12	Readiup K-12		Spactial \|xal K-12
	Special fill K-12			
Speceally Areas	Physical Edue.	Scrial Studies	Sowial Surdes	Special liducallom
Mathematics Buckground				
High School	Algebra I\&:I	Algubra	Mgetria	Mgetra
	Gicomery	Guonelis	cieumers_	cicumery:
College	Elementary	Hementary	1:lementary	Elementary
	Content and	Conlent and	(${ }^{\text {minlent }}$ and	Content and
	Mrthuds	Meihurs	Nathods	Methosis

「.able 3

＇T＇able 3 commued

 dy

		I Andia		Camic		Shery		Sally	
		leirl	Year 2	Year 1	Year 2	lear 1	Year 2	Year！	lear 2
	Teadnan	Hasic skills allid pallente ale Jisl sufficicial for teaclilig ntallematies． Correct allswers are not as important as student explanations	Hasic skills allul palletice alle lull sufficicit for teachusg matlematies． Correct answers are not as imporitanl as sludenl explallations．	lhasic skills and patience all mot sufficient for tcaching Imathematics． Teachers ned rot to know all the answers to student questions．	Masic skills andil pillience alle int sufficient for leaching nathenaties． Teachers need hol to kiow all the answers to stidenil queslivis．	＇I＇eachars slould itot allwass allswer sludent questions．but lei thelly purale it ollt． Studenls should sometimes be conlfused．		Coryet allswers are htulas importanl as stodent cxplatiations Teachers should follow their math lextbook．	Currect answers are not as important as sludent explanalions． Tuachers should nol always follow their math textbook．
	l＇se of Technology	L＇se calculators for everythint excepl eoncept development．	L＇se of calculaturs inchudes collcepl derelophient．	｜ 11101 allow calculatols for libllewalk or lesls．	i） r Itol ulluw calculators lur longewnik ulf lusia．	｜ 41100 allaw calculators for In innework．	Dotiol allow calculators for Honnwork．	Do not allow calculators for colicepts． homework， or tests．	Do mul allow calculalors for humework or lests．
	（＇se o） Tline	sure simall groups 104T calculatur aclivitics 201＇7 sludent explatialions	l保 groups 40\％ calc．Jatur activilies －（0）．＂stident explatialions			254＊using nillipulatsers 2．54．sinall grouj） 1s秀 calculatid aclivilies．	75年 usilug manilpulatives cy＇r small group IN名 catculator netivilies	10 \％using manlu pulalives $1{ }^{\prime} \%$ using calculators 25% small groups 1orm guidud practice	20\％usillg manipllalives 15% using calculators 30% small groups 20\％gilded practice

190

Practices	Landa		Came		Sherrs		Sally	
	Tear 1	lear 2	Year 1	Icar 2	Yuar 1	lear 2	Year 1	Year 2
AT Whassoom	Desks atrimped in sumill gropups	Desks arramged in small groupr	1) Jesks in riws alld colmumis fir indivilizil work	Desks arrimend in smatl Hioups	Tables in rows and colmume for individual work	Tables arrmeded for smiall grulus wilh mamiputalives	Desks in rows and columis far individual work	Desks arranged in small groups
Btathematics	Something you have to do to know	if you call see it, joul cand do it.	l.uts ull rulus and prosedures to menterize.	(billepts that are larid (1) understand.	I ats of rules and procedures to memorize	Mathematics is so mueh nore than figures. It's ideas, in's everywhere around us.	A bag of tricks. Its like a Torcign language.	It's fullnot just a lol of micmory work.
Leatning	(ielting actively intolved. motivated. inlerested.	Studellts need to conteptualize things and work with others and explaill things. They can learn higher lerel meth than 「irst thought-even nore with calculators	Practice work hard kill \& drill. Follow procedures step by step memorice rules.	【lands on activities that force you to think alld ask questians. 1 ned a road map.	Try some problems. memorize them, then feed it back. Watching and memoriāing.	llands-on activitics where sludents can Iry different things. I carn more because they like it better. 1'ay more altention when they are doing something	Must know the basics first. Must work at their own pace. Must be ready for higher concepts-can't just jump in to it.	Students should know the basics by now-time to learn liey things-learn by using more ballds.oll. Learll hy domig the fun pari themselves rather thall watching me doit.

Tiable 4 Continuad

	Practicer	lirkln		Camie		Sherry		Sally	
		Year 1	Year 2						
	$A D S \text { rachung }$	Try lo get students illuolved. I dilciwed the butok-ster b) step. litst half year spent ull whole number operations.	Try to get students involved. Allany students to explare new concepls new ideas through guided discovery.	Almazing whell you hilve the anlswers in tur backmakes it real easy to leach math. Here's how you do it, praclice-kill \& drill. Very structured inced book.	Follow the tentbook. hut do all the "extra" actisities rather than the old ones. Usc visuals if I've leartied it first.	lresent a demonstration have kids do s:iriple problems. then drill aftervards. Follow the texibook.	Coniputation is secondary to whalever cise you'te duing. I'rescit new topics rather than just review. Do not use the book' Let sludents do the fum part.	Self-paced class-- everyont did their own thing. Sit at desk and help individuals. Follow the testbook do sample problems at the board.	Get the students involved working in small groups. Ife them do the fun part. Do not sit at desk hardly at all.
	(se o) T'echuology	1) Idint have II, didit need it-thought students were hetur of without il.	t'se thein all the time. learned how to use for concept development.	Using calculators is like chealing. They must pruve they know basics	W'e use thein more now. but not until they know the facts.	We use calculators on 1:ridays for fun activitics.	They are always available on their tatbes. Fliey call use them at any litne.	Kıds still need to learil basic racts in 6th grade. ('alculators cantl tench that	We arc using them more, but never on a test.
	Fie of Thme	linded praches	Siuders. centered activiluesalwass. Studelits - - himionicale ideas.	Teiclive directed. lollow textlowok stricily	Sludentcentered actrities. sometimes. Still follow texbouk most ulten	Tene Iner directed. Idllow textbook mostly Sup\|lememt will 「unt	Studeril- centered activitues. must oftet	'Jeather direcled. liollow fexthook strictly:	studemcentered activities. more ofich. follow textbook often.

[^0]:

 * Reproductions supplied by EDRS are the best that can be made *
 * from the original document. \%

