This resource is designed to assist rural adult literacy students. It deals with chemicals on the farm and aims to help students understand the technical language, concepts, and operations associated with spraying safely and effectively. The kit proceeds step-by-step from purchase to disposal. Material is divided into two sections. Section 1 covers understanding chemical labels and meanings of many technical and special words that deal with chemicals. Section 2 looks at measuring length, measuring perimeter, measuring area, measuring liquids, and meanings of metric terms. The kit contains a wide range of reading and writing activities, discussion topics, self-help exercises, tests and quizzes, vocabulary exercises, and case studies. (YLB)
The Spray–Rite Kit

A guide to using chemicals on the farm

Written by
Nick Stevens
Joanne Campbell
Karen Manwaring
John Fenwick

Illustrations
Jennifer Gibney

Produced by
Distance Learning Centre
Victorian College of Agriculture and Horticulture Ltd

For
The Adult, Community and Further Education Board, Victoria

BEST COPY AVAILABLE
The Spray-Rite Kit

A guide to using chemicals on the farm

Written by
Nick Stevens
Joanne Campbell
Karen Manwaring
John Fenwick

Illustrations
Jennifer Gibney

Produced by
Distance Learning Centre
Victorian College of Agriculture and Horticulture Ltd

For
The Adult, Community and Further Education Board, Victoria
The Spray-Rite Kit

First published 1991
This reprint 1993

Writing and Design
Nick Stevens, Literacy Project Officer, Distance Learning Centre, VCAH
Joanne Campbell, Rural Education Officer, VCAH - McMillan
Karen Manwaring, Adult Literacy Facilitator, Yallourn TAFE College
John Fenwick, Distance Learning Centre, VCAH

Assisted by
Neil Hauxwell and Ann Yeates

Project Manager
John Fenwick, Distance Learning Centre, VCAH

Assisted by
Bronwyn Penna (word processing)
Jennifer Gibney (graphics)

Produced by the Distance Learning Centre
Victorian College of Agriculture and Horticulture Ltd. (ACN 053 408 101)
PO Box 938, Warragul, Victoria 3820
for the Adult, Community and Further Education Board

Nick Stevens, The Spray-Rite Kit.
ISBN 1 86285 301 0
ISBN 1 86285 309 6
ISBN 1 86285 293 6
ISBN 1 86285 317 7 (set)

© State of Victoria, 1993. Published by the Adult, Community and Further Education Division, Department of Education, Victoria. Copyright in this document is owned by the State of Victoria. The worksheets in this publication are able to be photocopied for classroom use only. Otherwise no parts may be reproduced by any process except with the express written permission of the Attorney-General for the State of Victoria or a person acting under her authority or in accordance with the provisions of the Copyright Act.

All enquiries in relation to this publication should be addressed to:

Adult, Community and Further Education Division
Office of Training and Further Education
Rialto South Tower
525 Collins Street
MELBOURNE 3000

This project was developed through a Grant provided by the Division of Further Education, now the Adult, Community and Further Education Division, Department of Education, Victoria.

Important Note
Disclaimer
The rates and instructions given on the product label should always be checked before use, and followed exactly. The publisher accepts no responsibility for any loss or damage howsoever caused arising out of the use of any product referred to in this kit.
Acknowledgements

Acknowledgement and thanks are due to numerous organisations and individuals for their assistance during development of *The Spray-Rite Kit* and for permission to use certain materials.

In particular, thanks to:

Kraft Foods Limited
Vegemite label

Cadbury Schweppes Pty. Ltd.
Schweppes Lime Juice Cordial Label.

Monsanto Australia Limited
Roundup label and booklet
Ramrod 650 label

Consolidated Fertilizer Sales Pty. Ltd.
Shirweed 80 label

Ceiba-Geigy Aust. Ltd.
Zero label

Hoechst Australia Ltd.
Systhane

Peter Newgreen
Rural Education Officer
VCAH McMillan Campus

Greg Brinsmead
Senior Lecturer
VCAH McMillan Campus

Evelyn Schoenberger
Regional Adult Literacy and Basic Education Officer
Gippsland Regional Council of Adult Community and Further Education.

Thelma Smith
Regional Adult Literacy and Basic Education Officer
Gippsland Regional Council of Adult Community and Further Education

Adult Literacy Students
Yallourn TAFE
The Spray-Rite Kit

1. Understanding Labels

(i) Understanding labels
This part of the kit looks at chemical labels. It looks at all the information you can get from reading the label.

(ii) Glossary: Chemicals on the farm
This part of the kit explains the meanings of many technical and special words.

2. Measuring for Spraying

(i) Measuring Length
This part of the kit looks at how to estimate and how to measure accurately.

(ii) Measuring Perimeter
This part of the kit looks at how to work out the perimeters of different shapes.

(iii) Measuring Area
This part of the kit looks at how to work out the areas of different shapes.

(iv) Measuring Liquids
This part of the kit looks at common liquid measurements.

(v) Glossary: Measuring with metrics
This part of the kit looks at metric terms and what they mean.
The Spray–Rite Kit

1. Understanding Labels
The Spray-Rite Kit

(i) Understanding Labels

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome to the Spray-Rite Kit</td>
<td>1</td>
</tr>
<tr>
<td>Tutor notes</td>
<td>2</td>
</tr>
<tr>
<td>Understanding labels</td>
<td>3</td>
</tr>
<tr>
<td>Chemical labels</td>
<td>5</td>
</tr>
<tr>
<td>The schedule</td>
<td>9</td>
</tr>
<tr>
<td>Trade name</td>
<td>11</td>
</tr>
<tr>
<td>Manufacturer and manufacturer's address</td>
<td>13</td>
</tr>
<tr>
<td>Guide to further instructions, warranty and liability</td>
<td>15</td>
</tr>
<tr>
<td>The label on the back</td>
<td>15</td>
</tr>
<tr>
<td>Safety directions</td>
<td>17</td>
</tr>
<tr>
<td>First aid</td>
<td>19</td>
</tr>
<tr>
<td>Protection of livestock, wildlife and environment</td>
<td>20</td>
</tr>
<tr>
<td>Storage, disposal and protection of others</td>
<td>21</td>
</tr>
<tr>
<td>Read the label before</td>
<td>22</td>
</tr>
<tr>
<td>Limit of warranty and liability</td>
<td>23</td>
</tr>
<tr>
<td>Pesticide type</td>
<td>24</td>
</tr>
<tr>
<td>Active constituent and concentration</td>
<td>25</td>
</tr>
<tr>
<td>Registered target</td>
<td>28</td>
</tr>
<tr>
<td>Amount of contents</td>
<td>30</td>
</tr>
<tr>
<td>Quiz activities</td>
<td>31</td>
</tr>
<tr>
<td>Other ways to control pests</td>
<td>34</td>
</tr>
</tbody>
</table>

(ii) Glossary: Chemicals on the farm

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>
Welcome to the Spray-Rite Kit

Do you use sprays around your farm?

YES NO

Have you ever been confused by labels or spray instructions?

YES NO

If you answered YES to these questions you need the Spray-Rite Kit.

The Spray-Rite Kit is a step-by-step look at using chemicals on the farm.

The Spray-Rite Kit looks at practical, real-life problems.

The Spray-Rite Kit will help you to understand labels.

The Spray-Rite Kit will help you to understand metrics.

Sprays contain poisons. You want to protect yourself, your family, your neighbours, your land, stock and crops.

Sprays are expensive. You don't want to waste them by using too much or too little.

The Spray-Rite Kit will help you spray safely and effectively.
THE SPRAY-RITE KIT

TUTOR NOTES

The Spray-Rite Kit is designed for rural adult literacy students.

The Kit deals with chemical use on the farm using the herbicide Roundup as a case study.

The Kit aims to help students understand the technical language, concepts and operations, associated with spraying safely and effectively.

The Kit proceeds step-by-step from purchase to disposal and includes material on:

- Understanding labels
- Using booklets
- Metrics
- Measuring, mixing and application
- Safety and First Aid
- Storage
- Clean-up and disposal

The Kit contains a wide range of reading and writing activities, discussion topics, self-help exercises, tests and quizzes, vocabulary exercises and case studies.

The Kit deals with practical, real-life rural situations, and has been specially developed for use in the rural community.

Use the Kit as a kit, choosing and adapting those items that will be most relevant and useful to your student.

Like most kits, Spray-Rite is really only a springboard into a whole world of adult literacy activities.

Welcome to the Spray-Rite Kit
Here are some common Australian labels.

They all look different, but they are similar in many ways.

Each label gives us information about the product.

The labels tell us the product's name.
The labels tell us who made the product.
The labels say how much of the product is in the container.
The labels tell us what is in the product.
Look at the labels and answer the following questions:

1. How many grams of Vegemite in the jar?

2. What is the name of the company that makes White Crow Tomato Sauce?

3. Does White Crow Tomato Sauce contain sugar?

4. What is the name of the company that makes Vegemite?

5. How many millilitres (ml) of cordial in the Lime Juice Cordial bottle?

ACTIVITY

Labels are all around us. Every room in your house probably has something with a label on it.

Don't just take our word for it. Go and have a look.

Collect a number of different jars, packets or containers. What information is written on these labels?
UNDERSTANDING LABELS

Now let's look at chemical labels.

ACTIVE CONSTITUENT:
360 g/l GLYPHOSATE
(present as the isopropylamine salt)

WARNING
KEEP OUT OF REACH OF CHILDREN
READ SAFETY DIRECTIONS BEFORE OPENING

READ THE ATTACHED BOOKLET BEFORE USING THIS PRODUCT.
Read 'Limit of Warranty and Liability' before buying or using.

Water soluble herbicide for non-selective control of many annual and perennial weeds in certain situations.

20 LITRES NET

Monanto Australia Limited (Incorporated in Victoria)
600 St. Kilda Road, Melbourne 3004.

Chemical labels are similar to other kinds of labels.
The label tells us the product's name.
The label tells us who made the product.
The label tells us what is in the container.
The label tells us what the chemical is used for.
If you are going to use a chemical, you will need to understand the information on the label.

The time spent reading and understanding the label may mean the difference between

SUCCESS

| ![Image of successful crops] |
| ![Image of successful land] |
| ![Image of satisfied farmer and children] |

or

FAILURE

| ![Image of failed crops] |
| ![Image of failed land] |
| ![Image of distressed farmer and children] |

Remember:

Sprays are expensive. You don't want to waste them by using too much or too little.

Sprays contain poisons. You want to protect yourself, your family, your neighbours, your land, stock and crops.
DISCUSSION TOPIC

Carol said to Ron, "We always plan everything else that we do. Why don't we plan our spraying program too? After all, we don't go out and use any old fertilizer or any sort of stockfeed."

What are the advantages of reading the label and planning your spraying program?

Are there any disadvantages?
UNDERSTANDING LABELS

Chemical labels give you the information you will need to make decisions. The label gives you the information you will need to spray safely and effectively.

Let's look at a typical chemical label.

WARNING
KEEP OUT OF REACH OF CHILDREN
READ SAFETY DIRECTIONS BEFORE OPENING

1. The Schedule

2. Trade Name

3. Manufacturer

4. Manufacturer's Address

5. Guide to Further Instructions

6. Pesticide Type

7. Active Constituent

ACTIVE CONSTITUENT:
360 g/L GLYPHOSATE
(present as the isopropylamine salt)

8. Concentration

9. Registered Target

10. Amount of Contents

11. The Schedule

Water soluble herbicide for non-selective control of many annual and perennial weeds in certain situations.

READ THE ATTACHED BOOKLET BEFORE USING THIS PRODUCT.
Read 'Limit of Warranty and Liability' before buying or using.

Monsanto Australia Limited (Incorporated in Victoria)
600 St. Kilda Road, Melbourne 3004.

20 LITRES NET
A chemical label has ten main parts. Let's look at the ten main parts of a typical chemical label.

1. The Schedule

Warnings help us to avoid dangerous situations.

Signs warning us about possible dangers are all around us.

What could happen if we ignored the following warning signs?

NO PARKING

WARNING: DO NOT DELIBERATELY SNIFF THIS PRODUCT SNIFFING MIGHT HARM OR KILL YOU

CAUTION S2
TO BE USED STRICTLY AS DIRECTED
KEEP OUT OF REACH OF CHILDREN

Fluoride Dietary Supplement
Each tablet contains.
2.2 mg SODIUM FLUORIDE
100 TABLETS 2.2mg

All chemical labels carry warnings. These warnings are called Schedules.

This is a Schedule from a chemical label.

DANGEROUS POISON S7
NOT TO BE TAKEN
KEEP OUT OF REACH OF CHILDREN
READ SAFETY DIRECTIONS BEFORE OPENING

The Schedule tells you the level of danger of that chemical.

It tells you how toxic or poisonous the chemical is.
There are three different levels of danger so there are three different Schedules.

The three different Schedules are:

Schedule 5

WARNING
KEEP OUT OF REACH OF CHILDREN
READ SAFETY DIRECTIONS BEFORE OPENING

Schedule 6

POISON
NOT TO BE TAKEN
KEEP OUT OF REACH OF CHILDREN

Schedule 7

DANGEROUS POISON S7
NOT TO BE TAKEN
KEEP OUT OF REACH OF CHILDREN

DISCUSSION TOPIC

There is one sentence that is used in all three Schedules. What is that sentence? Why is it so important?

QUESTIONS

Find the Schedule on the Roundup label.

Which level of danger does it belong to?

What does the Schedule tell us about storage?

What should we do before opening the container?

Look at page 9 of the Ron and Carol story. How safe was Ron's storage of his chemicals?
ACTIVITY

How safely are your chemicals stored?
Draw a plan of your shed area. Mark where you have your chemicals stored.

Indicate any possible hazards.

Indicate any special safety precautions you have set up.

On a scale of 1 to 10 give your shed a chemical safety rating.

How would you rate your laundry?

How would you rate your kitchen?

2. Trade Name

Every product has a trade name.

Cars have trade names. (Nissan Patrol, Honda Civic...)
Biscuits have trade names (Butternut Snap, Sao...)
And chemicals have trade names (Roundup, Zero...)

A trade name is simply the name used when the product is traded.

Some chemicals have very strange trade names. For example:

Gesaprim
Vorax AA
Amoxone

Some chemicals have trade names that are a bit more catchy. For example:

Avenge
Stomp
Weedoben
Weedazol Total
Stampede

Lane Railway Special
Ramrod
Erase
Zero
Roundup is a catchy sort of trade name. What does the name Roundup suggest to you?

ACTIVITY

A lot of trade names that you see are spelt the wrong way. For example:

- **Weet-Bix**

Find three labels with trade names that are spelt the wrong way.

Have the manufacturers made a mistake or is there a reason for spelling the words the wrong way?

SELF-HELP EXERCISE

A lot of trade names are made up of two words joined together. For example:

- **Round + up = Roundup.**

A lot of words are made up of two words joined together.

Look at any page from a newspaper or magazine.

Underline any words that are made up of two words joined together.

Discuss your list of words with your tutor. Discuss spelling hints or rules for joining words together.
3. Manufacturer

The manufacturer is the company that makes or manufactures the product.

Monsanto manufactures Roundup. Monsanto is the manufacturer.

ACTIVITY

Look at the labels on page 3.

Who manufactures the following products?

1. Vegemite is manufactured by

2. Schweppes Lime Juice Cordial
 is manufactured by

4. Manufacturer's Address

Labels should always show the name and address of the company that makes
the product.

If you know the manufacturer's address you can contact them if you have any
problems.

If you know the manufacturer's address you can contact them if you have any
questions.

If you know the manufacturer's address you can contact them if you want to
praise their product.

ACTIVITY

Write down one problem, complaint or compliment for any product that you have used.

Write a letter to the company that manufactured that product outlining your problem, complaint, question or praise.
Product Manager
Seed Tree Co-op
18 Forwick Street
Forestville, 2087

Dear Madam,

Just a note to tell you how pleased we are with the very high quality of your plastic tree guards.

We have used them for the past two years with very good results. The flexible mesh guards are particularly good - quick to use, very strong and easily seen.

Our seedlings have shown good survival and growth rates.

Looking forward to dealing with you again in the future.

Yours faithfully,

S. Hall

30 April, 1991

The Manager
Dyers Furniture Co. Pty. Ltd.
10 Crooked Lane
Warragul, 3820

Dear Sir,

I bought a brand new kitchen table from your store on 26 April, 1991. It was a "Royal Breakline" model and cost me $395.

Using it for the first time last Sunday, I noticed one of the legs seemed a bit wobbly. While I was looking at this wobbly leg, two of the drawers dropped out. Then the leg fell off. Then the top cracked open revealing the boiler holes. Now I notice that the "Genuine marble cutting board" is in fact a plastic imitation.

I would be grateful if you could arrange for this "table" to be taken away as soon as possible. I will certainly require a full refund.

I trust that you will give this matter your urgent attention.

Yours faithfully,

J. Parker

30 April, 1991

Make sure you copy the manufacturer's address from the label onto the top left hand corner of your letter. Include your own address on the top right hand corner of your letter.

If you have any problems or questions about using a chemical product you may need to contact the manufacturer.

However, you may be able to work out the answer for yourself by reading the Guide To Further Instructions, Warranty and Liability.
5. Guide to Further Instructions, Warranty and Liability

The label on the front of the Roundup container says that there is more information on the back of the Roundup container.

The label on the back of the Roundup container says that there is more information in the little label booklet.

So much information! So many details!

Like Ron, you might be fed up with all this information. You might just want to get out there and spray any old way.

BUT REMEMBER

Sprays contain poisons. You want to protect yourself, your family, your neighbours, your land, stock and crops.

Sprays are expensive. You don't want to waste them by using too much or too little.

Let's look at the label on the back of the container.

DIRECTIONS FOR USE

FOR SPECIFIC RATES OF APPLICATION AND COMPLETE DIRECTIONS FOR USE READ ATTACHED LABEL BOOKLET.

NOTE: Use of this product in any manner not consistent with this label may result in injury to persons, animals or crops, or other unintended consequences.

NOT TO BE USED FOR ANY PURPOSE OR IN ANY MANNER CONTRARY TO THIS LABEL UNTIL AUTHORIZED UNDER APPROPRIATE LEGISLATION.

SAFETY DIRECTIONS

- Avoid contact with eyes and skin.
- When preparing product for use, wear elbow-length PVC gloves and face shield or goggles.
- After use, before eating, drinking or smoking, wash hands, arms and face thoroughly with soap and water.
- After each day's use wash contaminated clothing, gloves and face shield or goggles.
- When using controlled droplet applicator, wear protective waterproof clothing and impervious footwear.

FIRST AID

- If poisoning occurs: contact a doctor or Poison Information Centre.
- If swallowed, do NOT induce vomiting. Give a glass of water.
- If skin contact occurs, remove contaminated clothing and wash skin thoroughly.
- If in eyes, hold eyes open, flush with water for at least 15 minutes and see a doctor.

PROTECTION OF CROP, Native and Other Non-Target Plants

- Avoid contact with foliage, green stems or fruit of crops, desirable plants and trees, since severe injury or destruction may result.

PROTECTION OF WILDLIFE, FISH, CRUSTACEANS AND ENVIRONMENT

- Do not contaminate dams, inlets or streams with the product or used container.

STORAGE, DISPOSAL AND PROTECTION OF OTHERS

- Store in the closed original container. Avoid prolonged storage in direct sunlight. Do not contaminate steel, feed or foodstuff.
- Store sprays or other application equipment and containers in a dry place away from children, pets and livestock.
- Do not mix, store, or apply this product or spray solutions of this product in galvanized steel or unlined steel (except stainless steel) containers or spray tanks. This product, or spray solutions of this product react with such containers and tanks to produce hydrogen gas which may form a highly combustible gas mixture that can flash or explode if ignited by open flame, spark, welder's torch, lit cigarette or other ignition source.
- Spray tanks, pumps, lines and nozzles should be thoroughly rinsed with clean water following application to prevent corrosion.
- Do not re-use container for any purpose. Destroy when empty.

LIMIT OF LIABILITY AND IMMUNITY

Monsanto Australia Limited ("Monsanto") warrants that this material conforms to the chemical description on the label and further warrants that it is of merchantable quality. Subject thereto, Monsanto makes no representation or warranty of any kind as to fitness for any particular purpose or any other matter with respect to these goods whether used alone or in conjunction with other substances and all conditions and warranties, expressed or implied by law, are hereby expressly excluded to the maximum extent permitted by law. To the extent permitted by law, Monsanto's liability for any alleged damage or defective goods or any other cause whatsoever, including alleged negligence, shall be limited (at Monsanto's election) to the replacement of the goods or the repair of the goods or the cost of repair or replacement of the goods in respect of which the claim is made.

Not for re-packaging or re-formulation. No licence, under any Australian patent is granted or implied by purchase of this container.

SPECIALIST ADVICE IN EMERGENCY ONLY: PHONE 009 033111

All hours, Australia wide

BEST COPY AVAILABLE
Roundup
Herbicide by Monsanto

DIRECTIONS FOR USE
FOR SPECIFIC RATES OF APPLICATION AND COMPLETE DIRECTIONS FOR USE READ ATTACHED LABEL BOOKLET.

Tells you that many more important details are in the little ROUNDUP booklet.

NOTE: Use of this product in any manner not consistent with this label may result in injury to persons, animals or crops, or other unintended consequences.

Roundup is non-selective. If you are not careful it could damage more than just the weeds. It could also damage your shrubs, fruits and vegetables. It could harm you. It could harm your animals.

This is a reminder to follow all the label instructions. When it comes to using poisons, the time spent reading the label is the most important time.
Safety Directions

Sprays contain poisons. You want to protect yourself, your family, your neighbours, your land, stock and crops.

Here are some of the most important safety directions.

SAFETY DIRECTIONS
- Avoid contact with eyes and skin.
- When preparing product for use, wear elbow-length PVC gloves and face shield or goggles.
- After use, and before eating, drinking or smoking, wash hands, arms and face thoroughly with soap and water.
- After each day's use wash contaminated clothing, gloves and face shield or goggles.
- When using controlled droplet applicator, wear protective waterproof clothing and impervious footwear.
Poisoning Symptoms

- headache
- dizziness
- perspiration
- shortness of breath
- vomiting
- fainting
- coma
First Aid
Here are some basic first aid instructions.

FIRST AID
- If poisoning occurs, contact a doctor or Poisons Information Centre.
- If swallowed, do NOT induce vomiting. Give a glass of water.
- If skin contact occurs, remove contaminated clothing and wash skin thoroughly.
- If in eyes, hold eyes open, flood with water for at least 15 minutes and see a doctor.

POISONS INFORMATION NUMBER
008 133890

Can you remember these first aid instructions? Will you remember them after ...

one hour?
one day?
one week?

Put a note on your calendar to test yourself in one week.

Can you remember the five safety directions on page ()?
Protection of Livestock, Wildlife and Environment

PROTECTION OF CROP, NATIVE AND OTHER NON-TARGET PLANTS

- Avoid contact with foliage, green stems or fruit of crops, desirable plants and trees, since severe injury or destruction may result.

PROTECTION OF WILDLIFE, FISH, CRUSTACEA AND ENVIRONMENT

- Do not contaminate dams, rivers or streams with the product or used container.
Storage, disposal and protection of others

Here are some important facts about storage and disposal.

STORAGE, DISPOSAL AND PROTECTION OF OTHERS

- Store in the closed original container. Avoid prolonged storage in direct sunlight. Do not contaminate seed, feed or foodstuff.
- Spray solutions of this product should be mixed, stored and applied only in stainless steel, aluminium, brass, copper, fibreglass, plastic or plastic lined containers.
- Do not mix, store or apply this product or spray solutions of this product in galvanized steel or unlined steel (except stainless steel) containers or spray tanks. This product, or spray solutions of this product react with such containers and tanks to produce hydrogen gas which may form a highly combustible gas mixture that can flash or explode if ignited by open flame, spark, welder's torch, lighted cigarette or other ignition source.
- Spray tanks, pumps, lines and nozzles should be thoroughly rinsed with clean water following application to prevent corrosion.
- Do not re-use container for any purpose. Destroy when empty.
Read the label before:

Purchasing

Opening

Mixing and applying

Storing
Limit of Warranty and Liability

A warranty is a bit like a promise.

In this case it is a legal promise. The warranty tells you that the poison inside the container is the poison described on the label.

The warranty also promises that the product is fit for use.

Liability is legal responsibility.

How legally responsible is a company if a product doesn't work properly? Monsanto is saying here that they are legally responsible 'to the extent permitted by law'.

Questions about liability are complex and technical. So are the answers.

Check with the company or a solicitor if you require detailed information on liability.
6. Pesticide Type

A pesticide is any chemical that controls pests.

Look at the word pesticide.

It is made up of two words, pest + cide.

cide is a French word. It means "to cut or kill".

So a pest-i-cide is something that attacks or kills pests.

An insect-i-cide is something that kills insects.

A herb-i-cide is something that kills plants.

QUESTIONS

A fungicide is something that kills

A miticide is something that kills

Now try these tricky ones.

Infanticide means to kill an

Homicide means to kill

Regicide means to kill

Suicide means to kill

Look at the Roundup label. What type of pesticide is Roundup?

What kinds of pests does it control?
7. Active Constituent

Pesticides are made up of many different chemicals.

The most important chemical in any pesticide is called the active constituent.

The active constituent is the chemical which works to control the pest.

It's the active bit.

Without the active constituent there would be no cide in your pest–l–cide.

QUESTION

Look at the Roundup label.

The active constituent in Roundup is

..

8. Concentration

Pesticides are made up of many different chemicals.

The concentration figure tells you how much of the active constituent is mixed in with the other chemicals.

QUESTION

Look at the Roundup label.

What is the active constituent?

..

There are grams of Glyphosphate in every litre of Roundup.
WARNING
KEEP OUT OF REACH OF CHILDREN
READ SAFETY DIRECTIONS BEFORE OPENING

WEEDSPRAY

ACTIVE CONSTITUENT
100g/L GLYPHOSATE PRESENT AS THE f3-PROPYLAMINE SALT

Oxalis Species
Kikuyu
Paspalum
Lantana
Bamboo
Onion Weed

Kills weeds and grasses as indicated in Directions for use, Roots and All

1 LITRE NET

QUESTION

Look at the Zero label.

The active constituent in Zero is ...

There are grams of ... in every of Zero.
WARNING
KEEP OUT OF REACH OF CHILDREN
READ SAFETY DIRECTIONS BEFORE OPENING

Systhane®
WP FUNGICIDE
Active Constituent: 400 g/kg 2-(4-CHLOROPHENYL)-2-(1H-1,2,4-TRIAZOL-1-YLMETHYL)HEXANEMTRILE
For the control of black spot on apples and pears and powdery mildew on apples

Hoechst
Hoechst Australia Limited (Inc. in A.C.T.) Agvet Division, Horticultural Section
606 St. Kilda Road, Melbourne 3004. Phone: (03) 522 1212
*Systhane is a registered trade mark of Rohm & Haas Company, Philadelphia U.S.A.

QUESTION
Look at the Systhane label.
The active constituent in Systhane is
..
There are grams of ..
in every .. of Systhane.
9. Registered target

Before you buy a chemical product you want to make sure it is the right product for the pest you want to control.

First of all you must know what the pest is.

Ron and Carol knew they had a weed problem, but they didn't know exactly what the weed was.

They asked their neighbour Bill. Carol took some of the weed to the Stock Agent.

Bill said the weed was Bent Grass. The Stock Agent agreed.

Bent Grass was the target.
Ron wanted to blast the weeds with any old poison.

He didn't stop to think if the poisons would work on Bent Grass.

He didn't stop to think if they needed special safety precautions.

He didn't stop to think how much to use.

He didn't stop to think if the chemicals would also kill other grasses or useful bugs.

He didn't stop to think if the chemicals would stay active in the soil.

Ron knew his target. But he didn't stop to think about his chemical weapon.

If you want to choose the right chemical you should know about the Registered Target. The Registered Target tells you which pest or pests the chemical will control.

Here is Roundup's Registered Target:

Water soluble herbicide for non-selective control of many annual and perennial weeds in certain situations.
Clear as mud isn’t it?

Don’t give up. Look in the Glossary: Chemicals on the Farm and copy down the meanings of the following words.

soluble ..
non-selective ..
annual ...
perennial ...

Do you know more about the weeds that Roundup will control now?

ACTIVITY

Collect two examples of a perennial weed from your farm.

Can you identify them positively using a field guide or weed chart?

...

Will Roundup control these weeds?

...

The Roundup label says that Roundup will control many annual and perennial weeds “in certain situations”.

What kind of situations might stop Roundup controlling weeds?

...

...

10. Amount of Contents

This tells you how much the Roundup container has in it.

Look at the label on page 5.

Roundup contains litres.
QUIZ ACTIVITIES

1. Straighten out the jumbled letters to make the right word.

(a) A warning on a chemical label

sudhelec ...

(b) The company that manufactures the product.

tcafurseunma ...

(c) The most important chemical in a pesticide.

atcvel contitsneut ..

(d) The part of the label that tells you which pest or pests the chemical will control.

regsitdere ratteg ..

2. Using the metropolitan phone book, find the addresses and phone numbers of the following companies.

Monsanto Australia Ltd.
...
...

Nufarm Chemicals Ltd.
...
...

Agricultural & Veterinary Chemicals Association of Australia.
...
In your own words, briefly describe the different parts of this chemical label.

POISON

NOT TO BE TAKEN

KEEP OUT OF REACH OF CHILDREN

READ SAFETY DIRECTIONS BEFORE OPENING

Ramrod 650

SELECTIVE PRE-EMERGENCE HERBICIDE BY Monsanto

Active constituent: 650g/kg PROPACHLOR

for control of annual grasses and certain broad-leafed weeds in sorghum and selected vegetable crops

Read 'Limit of Warranty and Liability' before buying or using

PRIMARY PACK—CONTAINS 2×5 kg MEASURE PACKS WHICH IT IS ILLEGAL TO SELL SEPARATELY

NET CONTENTS: 10 kg
Spraying with Bob

One day Bob decided to spray some weeds.

After a quick look at the chemical label, he got to work.

He sloshed about a bucketful of pesticide into an empty spray tank, spilling a bit down the outside of the tank onto the ground.

He put the container back inside the woolshed, on the floor this time, instead of in the cupboard behind the wool press. He then drove down to the creek to fill up since the tank by the woolshed was empty. The creek was in flood, but he managed to fill the tank without spilling too much.

He wiped his wet hands on his shorts and had a cigarette.

"Better get started before it gets even windier," said Bob, hanging onto his hat.

When he finished spraying, Bob went straight in for afternoon tea.

That night he didn't feel too hungry, gave tea a miss, went to bed early, complaining of a headache.

Did Bob spray safely and effectively?

List some of the precautions for the safe handling of a dangerous spray that Bob should have taken.
Other ways to control pests.

Chemical sprays are only one method of controlling pests.

Chemical sprays should be used as part of your total pest management strategy.

Other methods of pest control you may use include:

- cultivation
- grazing/mowing/burning/drainage
- hand weeding
- mulching and composting
- companion planting/crop rotation
- green manure crops
- biological control by predators and parasites
- non-toxic sprays (eg. pyrethrum, garlic)

More information on these methods of pest control can be obtained from:

National Association for Sustainable Agriculture in Australia
C/- Tim Marshall
PO Box A366
South Sydney 2000

ORGAV
PO Box 124
Upper Ferntree Gully 3156

Department of Agriculture
Organic Farming Unit
Attention: Ross Clarke
PO Box 174
Ferntree Gully 3156

Total Environment Centre
18 Argyle Street
The Rocks 2000

Australian Consumers Association
Food Working Group
57 Carrington Road
Marrickville 2204

Conservation Council of Victoria
247 Flinders Lane
Melbourne 3000

(ii) Glossary:

Chemicals on the Farm
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorbed</td>
<td>Taken in. Sucked up. Pesticides can be absorbed into the body through the skin, the mouth and the lungs.</td>
</tr>
<tr>
<td>acaricide</td>
<td>A chemical that kills mites, ticks and spiders.</td>
</tr>
<tr>
<td>active constituent</td>
<td>The chemical in a herbicide that causes it to kill pests (for example, Glyphosate in Roundup).</td>
</tr>
<tr>
<td>adhesives</td>
<td>Adhesives are added to sprays to help the spray stick on leaves and fruit.</td>
</tr>
<tr>
<td>adjuvant</td>
<td>Any substance that improves the performance of a mixture of sprays (for example, surface active agents, adhesives).</td>
</tr>
<tr>
<td>adulticides</td>
<td>Chemicals that attack the adult insect.</td>
</tr>
<tr>
<td>agitation</td>
<td>Mixing, stirring.</td>
</tr>
<tr>
<td>annual</td>
<td>A plant that lives for only one year or season (for example, tomatoes, Paterson's Curse, peas). See also perennial.</td>
</tr>
<tr>
<td>antidote</td>
<td>A substance used to counteract the effects of a poison.</td>
</tr>
<tr>
<td>aphicide</td>
<td>A chemical that kills aphids.</td>
</tr>
<tr>
<td>application</td>
<td>Putting one thing onto another. The application of pesticides might involve: boom equipment, knapsack or handgun equipment, wiper equipment, controlled droplet application equipment, or aerial equipment.</td>
</tr>
<tr>
<td>artificial respiration</td>
<td>A first aid method used when breathing has stopped or is weak.</td>
</tr>
<tr>
<td>aquatic</td>
<td>To do with water. An aquatic area might be a dam or swamp.</td>
</tr>
<tr>
<td>authorised</td>
<td>Permitted, allowed.</td>
</tr>
</tbody>
</table>
avoid Keep away from. Do not touch.

back-siphoning When liquid flows back up the siphon.

biological control Control of pests without using chemicals. Biological control involves the use of natural enemies (for example, rust fungus to control weeds).

broadleaf weeds Weeds with wide leaves.

combustible Explosive. Will catch fire easily.

companion plants Plants which help crops to grow, usually by controlling pests (for example, the roots of marigolds give off a substance with drives away the eel-worm. They are therefore good companion plants for potatoes, tomatoes and roses).

compatibility Chemicals are compatible if they can be mixed together without reducing their performance.

compound A substance made up of two or more elements.

consequences Results.

consistent In agreement. Not being different.

contact herbicide A chemical that kills those parts of the plant that grow above the ground (for example, leaves and flowers).

contact insecticide A chemical that kills insects when it comes into direct contact with the insect.

contaminate To poison. Incorrect use of pesticides may contaminate dams, soil, clothing, etc.

contrary Opposite.

corrosion The eating away of metal or other substances.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>crop establishment</td>
<td>When the crop is planted and has begun to grow.</td>
</tr>
<tr>
<td>cultivation</td>
<td>To prepare land for growing crops. Cultivation (using hand hoes, rotary hoes, ploughs, discs and various forms of minimum tillage) is the traditional, mechanical method of weed control.</td>
</tr>
<tr>
<td>defoliant</td>
<td>A chemical that makes leaves drop off.</td>
</tr>
<tr>
<td>delayed</td>
<td>To take longer than expected.</td>
</tr>
<tr>
<td>desirable plants and trees</td>
<td>The plants and trees that you don't want to poison.</td>
</tr>
<tr>
<td>dessicant</td>
<td>A dessicant dries up plant leaves and stems.</td>
</tr>
<tr>
<td>deteriorate</td>
<td>To get worse.</td>
</tr>
<tr>
<td>dilute</td>
<td>To make weaker by adding water or other liquids.</td>
</tr>
<tr>
<td>drift</td>
<td>When spray or dust is carried away from the area being treated. Visible spray may drift as far as 100 metres, while vapour may drift several kilometres.</td>
</tr>
<tr>
<td>edible</td>
<td>Fit for animals to eat. (See also non-edible).</td>
</tr>
<tr>
<td>element</td>
<td>A basic chemical substance (for example, oxygen, carbon).</td>
</tr>
<tr>
<td>emerged</td>
<td>Appeared above the ground.</td>
</tr>
<tr>
<td>ensure</td>
<td>Make sure that ...</td>
</tr>
<tr>
<td>evaporation</td>
<td>When water changes into a vapour.</td>
</tr>
<tr>
<td>excessive</td>
<td>Too much.</td>
</tr>
<tr>
<td>Word</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>fallow</td>
<td>To leave land in an uncropped state for a period of time prior to sowing another crop.</td>
</tr>
<tr>
<td>flash</td>
<td>Sudden explosion.</td>
</tr>
<tr>
<td>foliage</td>
<td>The leaves of a plant.</td>
</tr>
<tr>
<td>friable</td>
<td>Crumbly soil.</td>
</tr>
<tr>
<td>fumigant</td>
<td>Any liquid or solid substance that forms vapours that destroy insects, bacteria, vermin, etc.</td>
</tr>
<tr>
<td>fungicide</td>
<td>A chemical to control fungi (for example, Bordeaux mixture).</td>
</tr>
<tr>
<td>germination</td>
<td>When a seed begins to grow shoots and roots.</td>
</tr>
<tr>
<td>green manure crops</td>
<td>A crop which is not harvested, but ploughed under green to improve the soil.</td>
</tr>
<tr>
<td>herbage</td>
<td>Non-woody plants (for example, grasses).</td>
</tr>
<tr>
<td>herbicide</td>
<td>A chemical to control weeds. A herbicide may be either selective (ie. killing the weeds only and not harming the crop), or non-selective (ie. killing all vegetation).</td>
</tr>
<tr>
<td>ignite</td>
<td>To light. Set fire to. Burn.</td>
</tr>
<tr>
<td>impervious</td>
<td>Won't let water or anything else in.</td>
</tr>
<tr>
<td>inactivated</td>
<td>Stops being effective. Doesn't work any more.</td>
</tr>
<tr>
<td>incompatible</td>
<td>Chemicals that will not mix together safely or effectively.</td>
</tr>
<tr>
<td>incorporate</td>
<td>To include.</td>
</tr>
<tr>
<td>induce</td>
<td>To make something happen. To "induce vomiting" means to make a person or animal vomit.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>infestation</td>
<td>An infestation of pests means a great number of pests – an invasion!</td>
</tr>
<tr>
<td>Insecticide</td>
<td>A chemical to control insects. Insecticides may kill insects through direct contact (contact insecticide), by being eaten (stomach poisons), or by gassing (fumigants).</td>
</tr>
<tr>
<td>larvicides</td>
<td>Chemicals that attack the insect when it appears as a grub, worm or larva.</td>
</tr>
<tr>
<td>legislation</td>
<td>Law.</td>
</tr>
<tr>
<td>marginal seedbed conditions</td>
<td>When the state of the earth is only just good enough to grow plants.</td>
</tr>
<tr>
<td>maturity</td>
<td>Full growth or development.</td>
</tr>
<tr>
<td>meteorological conditions</td>
<td>The weather conditions.</td>
</tr>
<tr>
<td>miticide</td>
<td>A chemical to control mites.</td>
</tr>
<tr>
<td>molluscide</td>
<td>A chemical to control snails.</td>
</tr>
<tr>
<td>mulch</td>
<td>Soil, straw, peat or any other loose material placed on the ground to prevent erosion, reduce moisture loss and prevent weed growth.</td>
</tr>
<tr>
<td>nematicide</td>
<td>A chemical to control nematodes (for example, roundworms, hookworms, etc.).</td>
</tr>
<tr>
<td>non-edible</td>
<td>Not fit for animals to eat.</td>
</tr>
<tr>
<td>non-selective herbicide</td>
<td>Kills all plants (including crops) with which it comes into contact. (See also selective herbicide).</td>
</tr>
<tr>
<td>non volatile</td>
<td>Does not evaporate easily.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>ovicide</td>
<td>Chemicals that attack the egg stage of insects.</td>
</tr>
<tr>
<td>perennial</td>
<td>A plant which continues growth from year to year. (See also annual).</td>
</tr>
<tr>
<td>pesticide</td>
<td>A chemical to control insect, plant or animal pests. Pesticides can be liquids, powders, dusts, granules, baits or gases.</td>
</tr>
<tr>
<td>post-emergent</td>
<td>Spraying a crop after the plants' shoots have appeared. (See also pre-emergent and pre-sowing).</td>
</tr>
<tr>
<td>pre-emergent</td>
<td>Spraying a crop after sowing but before the plants' shoots appear. (See also post-emergent and pre-sowing).</td>
</tr>
<tr>
<td>pre-sowing</td>
<td>Spraying a seedbed before the crop is sown. (See also pre-emergent and post-emergent).</td>
</tr>
<tr>
<td>prior</td>
<td>Earlier. Before.</td>
</tr>
<tr>
<td>protectant</td>
<td></td>
</tr>
<tr>
<td>fungicide</td>
<td>A chemical that stops fungal spores infecting a plant (for example, copper spray).</td>
</tr>
<tr>
<td>readily</td>
<td>Easily.</td>
</tr>
<tr>
<td>reduced</td>
<td>Made less.</td>
</tr>
<tr>
<td>residue</td>
<td>Something that is left behind. A pesticide residue is an amount of any chemical used for the control of pests that remains in the soil or in plant or animal tissues.</td>
</tr>
<tr>
<td>retarded</td>
<td>Slowed down. Delayed.</td>
</tr>
<tr>
<td>rhizome</td>
<td>A root-like stem that grows underground producing both roots and shoots.</td>
</tr>
<tr>
<td>rodenticides</td>
<td>A chemical to control rodents.</td>
</tr>
<tr>
<td>schedule</td>
<td>The schedule on a pesticide label tells you how toxic the pesticide is.</td>
</tr>
</tbody>
</table>
seedbed: An area of land where seeds are sown.

selective herbicide: Kills certain weeds without harming other types of plants. Such herbicides select their target. (See also non-selective herbicide).

severe: Harsh, serious, extreme.

soluble: Able to be dissolved.

surfactants: Chemicals that help the pesticide spread more evenly over the entire leaf. Often called a wetting agent.

swath: A strip of grass or crop.

systemic chemical: A chemical that moves through the plant's sap stream.

thoroughly: Completely. From top to bottom. To "wash skin thoroughly" means to wash with clean water for at least 15 minutes until the skin is completely clear of the chemical.

toxic: Poisonous or harmful.

toxicity: A measure of how poisonous a chemical is.

translocated herbicide: A herbicide which is sprayed on one part of a plant then moves to another part of the plant (for example, from the leaves to the roots).

vapour: Like a gas.

visible: Can be seen easily.

volatile: *Evaporates* easily and quickly. Changes easily into a *vapour*. (See also non-volatile).
water soluble Able to be dissolved in water.

weed canopy The top layer of the weeds.

withholding period The number of days you must wait between spraying and harvest, or spraying and grazing.
The Spray–Rite Kit

2. Measuring for Spraying
(i) Measuring Length
Have you ever stopped to think about the **measuring** you do every day?

- How much cough mixture will I need to soothe my throat?
- How much Roundup will I need to kill the weeds?
- How much wire will I need to fix the fence?
- How long do I have to cut the logs to fit in the stove?
- How much water will I need to mix this jelly?
- How much petrol will I need to get into town?
- How much fertiliser will I need to cover this paddock?
You probably measure a number of things every day. Some things are simple to measure. It's pretty easy to roughly measure logs for your stove.

But other things – like using chemical sprays – require a bit more practise.

The Measuring for Spraying booklets will help you develop and practise your measuring skills. They will also help you understand metric measurements.
People on the land use measuring to solve problems that crop up every day.

To be a good problem solver you need to develop and practise two important measuring skills.

1. Measuring accurately
2. Estimating or measuring roughly.

1. Measuring accurately

Sometimes you need to measure accurately. Measuring accurately makes sure you use exactly the right amount.

Always measure accurately when you don't want to waste things by using too much or too little.

Using too much can be expensive.
Using too little can be ineffective.

If you use too little or too much Roundup the weeds won't die. If you use too much you may damage other areas.

Fertilisers are expensive. Using too much will cost you money.

If you don't use enough jelly crystals the jelly won't set.
2. Estimating or measuring roughly

Sometimes you only need to measure roughly. Measuring roughly means *estimating* the amount you will need.

Estimate when you don't have measuring equipment handy.

Estimate when you want a rough idea of how much you will need or how much something will cost.

I'll probably need about 10 metres of twine to tie up a dozen tomato plants.

I'll need about 20 packets of chips for tonight's party. (Or 25 if John turns up!)
Look at these examples of measuring.

Tick the ones you would measure accurately.

Cross the ones you would measure roughly.

(a) cough mixture: I need 100 ml of cough mixture

(b) logs: I need medium-sized logs

(c) twine: I need enough twine to tie up the tomatoes

(d) nails: I need the 3cm nails

(e) polypipe: I need exactly 46.5 metres of polypipe

(f) chemicals: I need to mix 75ml of Roundup with 15 litres of water

(g) wire: I need about 3 metres to patch the hole in the gate
WORKING WITH LENGTH

Have you ever been caught in the back paddock without your ruler or tape measure handy?

It's times like this that you need to be able to estimate.
To work out the length of an object you need to be able to estimate some basic metric measures.

You need to be able to estimate 1 centimetre (1cm)
You need to be able to estimate 10 centimetres (10cm)
You need to be able to estimate 1 metre (1m)

Can you estimate 1 centimetre (1cm)?
Draw a line you estimate is 1cm long.
Don't use a ruler.

Can you estimate 10 centimetres (10cm)?
Draw a line you estimate is 10cm long.

Can you estimate 1 metre (1m)?
Mark out a distance you estimate is 1 metre long.

Now measure your lines with a ruler or tape measure. How accurate were you?

Did you under-estimate? Yes No
Did you over-estimate? Yes No
Were you spot-on? Yes No
The more you estimate, the easier estimating becomes. Practise your estimating skills and you'll be surprised how accurate you become.

Try estimating with Body Metrics.

Estimating length is easy using parts of the body. Use body metrics for estimating whenever you don't have access to a ruler or tape measure.

Find a fingernail which is about 1cm across.

Now use your finger to measure some common items.

eg.

- a matchbox
- a cigarette
- a paperclip
- a door handle

Start on the dot and estimate the lengths

5cm
3cm
6cm

Use a ruler to check your accuracy.

You should be able to estimate 1cm easily in future.
Now find a point on your hand which is 10cm across.

Use your hand to measure such items as:

- a pencil
- a screwdriver
- the pages in this book

Start on the dot and estimate these lengths.

11cm
15cm
9cm

Use a ruler to check your accuracy.

You should be able to estimate 10cm easily in future.
There are many other useful body measures that can help solve estimating problems.

Find out what your handspan measures.

Find a point on your body which is 1 metre high.

Here are some other body metres.

From right shoulder to the tip of your left hand.

Back of your left foot to the tip of your right foot.
Use a body metre to measure the height of a door knob.

The door knob is approximately ... cm.

You should be able to estimate 1m easily in future.
Now you have a chance to put your **body metrics** and estimating skills to the test.

Use your body metrics to estimate these lengths.

Check your accuracy using a ruler or a tape measure.

Using body metrics I estimate the door to be approximately wide.

Using my tape measure I found the door to be exactly wide.

My estimate was

- a long way off
- pretty close
- spot on

Using body metrics I estimate the post to be approximately high.

Using my tape measure I found the post to be exactly high.

My estimate was

- a long way off
- pretty close
- spot on
My estimate was

- a long way off
- pretty close
- spot-on

Using body metrics I estimate the gate to be approximately long.

Using my tape measure I found the gate to be exactly long.

My estimate was

- a long way off
- pretty close
- spot-on

Using body metrics I estimate the weed to be approximately high.

Using my tape measure I found the weed to be exactly high.
After all that estimating, how did you go?

Did you usually under-estimate or over-estimate?

Did you find it easier to estimate large or small objects.

Estimating is a very useful skill. You should be well on the way to being a good estimator now. Keep practising. The more you estimate, the easier it becomes.
(ii) Measuring Perimeter
In the last section we concentrated on length. You practised estimating lengths using body metrics and measuring lengths accurately using rulers or tape measures.

In this section we concentrate on using your length measuring skills to work out perimeter problems.

Perimeter is the total length around the outside of a shape.

If you can find out the perimeter of a shape you will be able to solve some problems quickly.

The perimeter of this paddock is 100 metres. I will need 100 metres of wire to fence the boundary with one strand.

The perimeter of the sandpit is 8 metres. I will need 8 metres of plant to go around the edge.

The perimeter of the vegie garden is 12 metres. I will need 12 metres of mesh to fence it off.

How do you calculate perimeter?
Calculations

Finding the perimeter of a shape is dead easy!

Using a ruler, measure each side of this square and write the answers in the boxes below.

Now simply add up each side.

\[A + B + C + D = \]

You have just worked out the perimeter of this square.

The perimeter is simply the *Sum of all the Sides*. Remember it like this:

\[P = \text{S.O.S.} \quad (\text{Perimeter} = \text{Sum of all the Sides}) \]

Measure the shapes below and write the perimeter inside.

\[P = \]

\[P = \]

\[P = \]

\[P = \]
Look at the aerial photograph of Ron and Carol's farm. There are two paddocks that need fencing.

The length of each side of the paddocks are marked in metres.

Find the perimeter of each paddock.
(iii) Measuring Area
Knowing how to calculate the perimeter of a shape is a very useful measuring skill. But being able to work out perimeter won’t solve all your farm measuring problems.

Sometimes you will need to work out the area of a shape.

If you can find out the area of a shape you will be able to solve some problems quickly.

What is the area of the back yard so I can cover it with lawn seed?

What is the area of the paddock so I can work out how much spray to use to control the weeds.

If you get these calculations right you will use exactly the right amount of seed or spray. This will save you time and money.

Using too much can be expensive.

Using too little can be ineffective.
So how do you calculate area?

To calculate the area of a square, measure two sides and write the answers in the boxes below.

Now simply multiply these together.

\[A \times B = \ldots \ldots \text{cm}^2 \]

You have found the area of this square. Now count each small square. Your answer should be the same.

Notice that your answer has cm\(^2\) written after it.

This symbol indicates you have measured the area of the square in square centimetres.

There is a simple rule for finding the area of a square.

\[A = S \times S \]

\[\text{Area} = \text{Side multiplied by Side} \]

Multiply the two sides together and you have calculated the area of a square.
To calculate the area of a rectangle you need to measure two sides, just like you did for the square.

BUT, you need to measure one long side and you need to measure one wide side.

Measure the length and width of this rectangle and write the answers in the boxes below.

![Rectangle](image)

Now simply multiply these together.

\[A \times B = \ldots \text{ cm}^2 \]

Congratulations! You have found the area of this rectangle. Now count each small square. Your answer should be the same.

The rule for calculating the area of a rectangle is simple.

\[A = L \times W \]

\[\text{Area} = \text{Length multiplied by Width} \]

Simply multiply the length of a rectangle with its width and you have calculated its area.
Measure the squares and rectangles below and calculate their areas.

Don't forget to include cm² after your answers.

Count the small squares inside each shape to check your answers.
So far you have calculated the area of several squares and rectangles using square centimetres (cm²).

But is it always appropriate to use square centimetres?

Very large areas and very small areas need to be calculated in appropriate square measurements.

These are the other common metric square measures.

- square millimetres (mm²)
- square metres (m²)
- hectares (ha)

Square millimetres (mm²) are used by
- engineers
- draftspeople
- electricians
- fitters and turners
- watchmakers

A watchmaker needs to leave an area empty to fit the tiny battery into. This area would be calculated in square millimetres (mm²).
Square metres (m²) are used by

builders
landscape gardeners
carpet layers
house renovators

A carpet layer needs to know the area and shape of a room. They have to calculate the amount of carpet required to minimise waste. This area would be calculated in square metres (m²).

Hectares (ha) are used for land measurements. They are used by

property developers
surveyors
lands department officers
real estate agents
farmers
A farmer needs to know the area of each paddock to stock it correctly. This area would be calculated in hectares (ha).

It is important to calculate area using the appropriate square measure.

To get a better idea of the area covered by a square millimetre (1mm²) try drawing one.

* Draw your 1mm² here.

* Now try drawing a square centimetre. Draw your 1cm here.

* Go outside and try drawing a square metre (m²) in the dirt. Measure it to check your accuracy.

* To get a better idea of the area covered by a hectare (ha) try stepping one out.

One hectare (ha) equals 100m x 100m

Go outside to a corner of a paddock.

Start in the corner and step out 100 metres along the fence line.

Mark this point so you can easily see where 100m ends.

Now go back to the corner and step out 100 metres of fence line in the other direction.

Mark this spot clearly too.

Do you have an idea now of how big a hectare is?
Which square measure would you choose to measure these areas?

For example, I would use cm² to calculate the area of a 50 cent piece.

1. I would use _____ to calculate the area of this booklet.

2. I would use _____ to calculate the area of a house block.

3. I would use _____ to calculate the area of a watch winder.

4. I would use _____ to calculate the area of a housing estate.

5. I would use _____ to calculate the area of glass in a window.

6. I would use _____ to calculate the area of a postage stamp.

7. I would use _____ to calculate the area of a shed's wall.

8. I would use _____ to calculate the area of 2 large paddocks.
People on the land usually solve farm area problems using square metres (m²) or hectares (ha).

Look at the aerial photograph of Ron and Carol's farm. Calculate the area of the two bottom paddocks using square metres (m²).

Remember – use the rule for calculating area.

\[A = L \times W \]

Area = Length multiplied by Width.
These paddocks sound pretty big!

But are they really?

Remember you have calculated the number of square metres that would fit side by side, row by row on the surface area of these paddocks. This explains why there are thousands of them.

To make the numbers a little easier to picture, try converting them to hectares.

A hectare has an area of 10,000m²

![Hectare Diagram]

It is quite difficult to imagine tens of thousands of square metres, so when things get too big it is much easier to think in hectares.
Converting or changing square metres into hectares is fairly easy. Just follow these steps.

Step one:
Calculate the area using the L x W = A rule.

Step Two:
Divide the area by 10,000. 10,000 is the number of square metres you need to make up one hectare.

11 000 m²!
Those paddocks didn’t seem that big last time I looked.

1.1ha. That sounds more like it!
Calculate the area of these shapes and convert to hectares.

Don't forget to follow the steps above.

Write the area in hectares (ha) inside each shape.
So far we have calculated the area of square and rectangular shapes. But as every farmer knows, not all paddocks are perfect squares or rectangles.

Life wasn't meant to be that easy!

Look carefully at the aerial photograph again.

How many perfectly square or rectangular paddocks can you count?

How many irregular shaped paddocks can you count?
Calculating the area of odd shapes is fairly easy.

You need to attack the problem step by step.

Here is a simple example to work through.

This is the floor plan of Ron and Carol's lounge room.

![Floor Plan of Lounge Room](image)

To calculate the area of this lounge room, you need to complete 4 steps.

Step one:

Look at the L shape.
Find the smaller squares or rectangles that make up the whole shape.

In this case, the L shape is made up of two rectangles of different sizes.
Step two:
Calculate the area of the largest rectangle.

\[
\text{3m} \\
\text{4m} \\
\text{3m}
\]

Count the squares in this rectangle to check your accuracy.

Step three:
Calculate the area of the smaller rectangle.

\[
\text{2m} \\
\text{4m}
\]

Step four:
Add the area of the large rectangle to the area of the small rectangle.
This will give you the total area.

\[
\text{The total area of the living room is 20m}^2. \\
\text{Count the squares to check your accuracy.}
\]
Unfortunately, following these 4 steps wont solve all of your problems all of the time. What happens if your paddocks are very odd shapes?!

The aerial map of Ron and Carol's farm shows that many of their paddocks have odd angles.

Look at this one for example.

In this case the shape of the paddock is made up of a rectangle and a triangle, instead of another rectangle or square.

Attack these problem paddocks in the following way.

Step one:
Look at the shape of the paddock.
Find the triangle in the shape and mark it in.

Step two:
Measure the length and width of the rectangle.
Step three:

Calculate the area of the rectangle.

\[90 \text{m} \times 80 \text{m} = \ldots \ldots \text{m}^2 \]

At this point, you know the area of most of the shape, but what about the triangular part of the paddock?

You will need to calculate the area of the triangular part of the paddock too to find the total area of the shape.

How do you calculate the area of a triangle?

Just apply another rule!

The rule for calculating the area of a triangle is quite simple.

\[B \times H \times 0.5 = A \]

\[\text{Base} \times \text{Height} \times 0.5 = \text{Area} \]

Below is a simple example.

Use the rule to calculate the area of the triangle.

\[10 \text{m} \times 8 \text{m} \times 0.5 = \ldots \ldots \text{m}^2 \]

Well done! You have calculated the area of this triangle.
Now let's get back to our paddock problem.

Step four:

Measure the base and height of the triangle.

![Diagram of a triangle with base 60m and height 80m]

Step five:

Calculate the area of the triangle.
Don't forget to use the rule.

\[
\text{Base} \times \text{Height} \times 0.5 = \text{Area}
\]

\[
60 \times 80 \times 0.5 = \ldots \ldots \text{ m}^2
\]

Step six:

Add the area of the rectangle to the area of the triangle to find the total area of the shape.

\[
7,200 \text{ m}^2 + 2,400 \text{ m}^2 = 9,600 \text{ m}^2
\]

Step seven:

To convert this to hectares, divide the answer by 10,000. Remember one hectare equals 100m x 100m = 10,000m^2.

\[
9,600 \text{ divided by } 10,000 = 0.96 \text{ hectares}
\]
Here are those steps again.

Step one: Find the triangle in the shape and mark it in.
Step two: Measure length and width of the rectangle.
Step three: Calculate the area of rectangle.
Step four: Measure the base and height of the triangle.
Step five: Calculate the area of the triangle using the rule $B \times H \times 0.5 = A$.
Step six: Add the two areas together to find the total area of the shape.
Step seven: Divide your answer by 10,000 to convert to hectares.
Calculate the area of these irregular shapes.

Don't forget to follow the steps.

Write the total area in each shape.
In this section you have learnt to calculate the area of squares.

\[S \times S = A \]

Side x Side = Area

In this section you have learnt to calculate the area of rectangles.

\[L \times W = A \]

Length x width = Area

In this section you have learnt to calculate the area of triangles.

\[B \times H \times 0.5 = A \]

Base x Height x 0.5 = Area

In this section you have learnt to calculate the area of odd shapes.
(iv) Measuring Liquids
Think about your home and your farm.
Think of all the things around the place that you can fill with liquids.

Sometimes you need to fill things up accurately. You need to measure exactly.
Sometimes you can guess.
When mixing chemicals it is important to measure very accurately.

REMEMBER
Sprays are expensive. You don't want to waste them by using too much or too little.
Sprays contain poisons. You want to protect yourself, your family, your neighbours, your land, stock and crops.
Liquids are usually measured in litres or millilitres.

1 litre (l) = 1000 millilitres (ml)
1. How many millilitres in 2 cups?

2. How many litres in 12 cups?

3. Name some items usually measured in millilitres.

4. Name some items usually measured in litres.

5. Convert to litres:
 (a) 5000ml
 (b) 24260ml
 (c) 35ml

6. Convert to millilitres:
 (a) 1.50l
 (b) 65l
 (c) 0.84l

7. A chemical label might say: "Clean equipment by flushing with water and detergent, flush with plain water, then wash with washing soda (1 part to 500 parts water)"

 How would you measure this mixture?

Practise your maths and measuring skills, and you will soon get the hang of litres and millilitres.
Look at the table below. It comes from the Roundup label booklet.

The table tells you how much Roundup to use for different weeds.

For example, if you are using knapsack equipment to spray Bent grass, you will need to add 75 millilitres of Roundup to every 15 litres of water in your knapsack.

If you are using Boom equipment to spray carpet grass you will need 3 litres of Roundup for every hectare you are going to spray.

<table>
<thead>
<tr>
<th>WEEDS CONTROLLED</th>
<th>RATE*</th>
<th>BOOM</th>
<th>VOL.</th>
<th>HAND</th>
<th>VOL.</th>
<th>KNAPSECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent grass</td>
<td>VIC</td>
<td>2.5L</td>
<td>500ml</td>
<td>75ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrostis tenuis</td>
<td>TAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blady grass</td>
<td>QLD</td>
<td>9L</td>
<td>1.3L</td>
<td>200ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperata cylindrica</td>
<td>NSW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracken</td>
<td>All States</td>
<td>9L</td>
<td>1.5L</td>
<td>225ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennisetum setaceum</td>
<td>NSW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200ml</td>
<td>per</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100L</td>
<td>spray</td>
<td></td>
</tr>
<tr>
<td>Carpet grass</td>
<td>All States</td>
<td>3L</td>
<td>500ml</td>
<td>75ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afonopus spp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocksfot</td>
<td>All States</td>
<td>3L</td>
<td>700ml</td>
<td>100ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couch</td>
<td>All States</td>
<td>9L</td>
<td>1.3L</td>
<td>200ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the information given in the table, solve the following problems.

1. Using your Boom equipment you want to treat 6 hectares of pasture. The area is infested with Bent grass. Using the recommended rate, how many litres of Roundup will you require.

2. You want to spray a hillside covered in Couch. Your knapsack holds 10 litres. Using the recommended rate and a full knapsack, how many millilitres of Roundup will you require.

3. You want to treat an area infested with Bracken. You will use Handgun equipment and a spray tank containing 50 litres of water. Using the recommended rate, how many millilitres of Roundup will you require.
(v) Glossary:

Measuring with Metrics
Glossary: Measuring with Metrics

millimetre
Is 1/10 of a centimetre. It has the symbol mm.

centimetre
Is 10 millimetres. It has the symbol cm.

metre
Is the basic unit of length. It is 1,000mm or 100cm. It has the symbol m.

kilometre
Is 1,000 metres. It has the symbol km.

square millimetre
1mm x 1mm. It has the symbol mm².

square metre
1m x 1m or 1,000mm x 1,000mm. It has the symbol m².

square centimetre
1cm x 1cm or 10mm x 10mm. It has the symbol cm².

hectare
100m x 100m. It has the symbol ha. It is 10,000 square metres.

AREA
Is length x breadth. Its basic unit is the square metre.

PERIMETER
Is the total length around the outside of a shape.

VOLUME
Is the length x breadth x depth.

cubic centimetre
Is 1/1,000 of a cubic metre. It has the symbol cm³.

cubic metre
Is 1m x 1m x 1m equal to 1,000 cubic decimetres or 1,000 litres of volume. It has the symbol m³. There are 1,000ml in a litre.

millilitre
Is the smallest unit of capacity. It has the symbol ml. There are 1,000ml in a litre.

litre
Is 1,000 millilitres or 1 cubic decimetre. It has the symbol l. It is a measure of capacity.
milli is one thousandth. It has the symbol m.
centi is one hundredth. It has the symbol c.
deca is ten times. It has the symbol da.
deci is one tenth. It has the symbol d.
hecto is one hundred times. It has the symbol h.
kilo is one thousand times. It has the symbol k.
mega is one million times. It has the symbol M.

These symbols are often combined with other symbols to make metric terms. For example –

ml = millilitre
mm = millimetre
kg = kilogram
km = kilometre