A Meta-Analysis of the Effects of Developmental Studies Programs on College Student Achievement, Attitude, and Persistence

by

Hansel E. Burley, Ph.D.
Institutional Effectiveness/Research
McLennan Community College
Waco, TX

Study Presented at
The Annual Meeting of
The American Educational Research Association
April 4-8, 1994
Abstract

With the advent of open-door admissions, the time-honored solution for the underprepared college student is to admit and remediate. Because of the tremendous growth in college populations in the last thirty years, the number of programs designed to help underprepared students has grown significantly. In fact, nearly all senior colleges and all community colleges have these programs. Whether or not these programs work or not is still in question. In 1968, Roueche reported that college developmental studies program failed the students they served. However, a Kulik, Kulik, and Shwalb (1983) meta-analysis found these programs to be moderately successful.

This study used the meta-analysis techniques of Glass (1976) and of Hedges (1985) in order to study a subset of developmental studies programs that did not specify the subject matter taught. Twenty-seven (27) studies produced 40 effect sizes. The overall effect size was small (ES = .20). The effect size for achievement effects was smaller (ES = .134, K = 23); larger for attitude effects (ES = .27, K = 5); and larger still for persistence effects (ES = .30, K = 12). However these averaged effect sizes are all small.

In these studies where the theoretical underpinnings of the program were unknown or unreported, college developmental studies programs perform as well as controls but not necessarily consistently better than controls. The cause of the poor performance of these programs probably is rooted in their nondescript nature. More study is needed.
A Meta-Analysis of the Effects of Developmental Studies Programs on College Student Achievement, Attitude, and Persistence

Study Objectives

It was the purpose of this study to integrate studies of college developmental programs to determine their effectiveness on student achievement, attitude, and persistence. Specifically, it was the purpose of this study to answer the following questions: What are the effects of developmental studies programs on college student achievement? What are the effects of developmental studies programs on college student attitude? What are the effects of developmental studies programs on college student persistence? The studies chosen for this analysis examined only the effects of the total developmental studies program against a non-treatment comparison group. The studies selected did not themselves differentiate between the subject matter taught.

Rapid Growth of Developmental Studies Programs and Rationale for Study

Do college developmental studies programs increase the chances of underprepared college students' success in college? This question is vital when one considers the increasing numbers of students entering these programs and the increasing proportion of college budgets that these programs absorb. Moore (1970) reported that 95% of all institutions of higher learning had some sort of remedial program. Also, nearly 100% of all community colleges had (and still have) these programs (Friedlander, 1980). These numbers represent phenomenal growth. A survey on
remedial reading found that under 10% of the nation's colleges offered reading in 1960 (Bullock, Madden, & Mallery, 1990). By 1984, nearly 84% offered reading (Bullock, Madden, & Mallery, 1990). Also, by 1980, over 90% of the nation's colleges offered learning skills programs (Henry, 1986; Wright & Cahalan, 1985). Finally, between 1975 and 1980 remedial enrollment at four year institutions increased 72% while total student population increased only 7% (Chang, 1983). In one specific instance, one-third of Texas community colleges reported having 75% or more students enrolled in remedial mathematics courses (Grable, 1988).

The most cited research on developmental studies programs is survey research, notably the series of Cross studies and series of Roueche et al. studies. Notably, Roueche (1968) reported that 90% of students in remedial programs either failed or withdrew from the remedial programs. However, a Kulik, Kulik, and Shwalb (1983) meta-analysis of sixty evaluation studies (published between 1935 and 1979) of high risk college students reported modest positive effects for programs serving high-risk students. This analysis, however, included only nine studies that specifically addressed remedial or developmental studies, and only three of these reported positive effects on GPA. None of these studies included data from the 1980s.

Alfred and Lum (1988) noted that the research on developmental studies has been deficient in the examination of multiple effects of selected student and institutional variables on academic achievement. They called for research that included multiple institutions and examined the combined effects of student and institutional variables on academic achievement (Alfred & Lum, 1988). Innovative teaching strategies, new classroom management techniques, and new classroom technologies have generated a body of research (Schonberger, 1985) that needs to be examined, reviewed, and integrated.
Limitations of the Study

This study is limited by the following:

First, this study is limited to the studies collected by the researcher. Though the researcher attempted to gather the entire population of studies, such a population is realistically unknowable. The inability to obtain some studies because of unavailability or prohibitive costs further hampered collection of the population of studies. Finally, these studies did not indicate the subject matter taught.

Second, this study is limited by the accuracy of the reporting of the studies used.

Third, this study used only one coder, thus subjecting the study to possible bias in the coding of each selected study. To lessen this bias, three months after the coding, each observation was checked for accuracy. This check was later followed by a reliability check of a sample of studies. This check showed no coding problems.

Definitions of both independent and dependent variables, subjects, instruments, and experimental designs varied from study to study. This coder used certain global generalizations to unify the studies as to definitions, meanings, and characteristics. For example, usually students are placed in DSPs because they failed to satisfy the particular requirements for entrance into a particular institution's regular curriculum. Finding some objective equalizing factor for the differing entrance requirements for all post secondary institutions included in the study would have been impossible. Therefore, any study of college programs designed to help students prepare for the regular curriculum was included in this meta-analysis. The reader should note that the differences between "precollege" students at the Air Force Academy may be very different from "precollege" students at an urban community college. Differences in institutions were noted.
in the coding; however, these results were not included in this study because of the small subgroup sizes that developed. These results will be included in a reanalysis of these data.

Fourth, this study used in its population both weak and strong reports of experiments. Weak studies tend to be flawed in some manner, thus lowering the validity and reliability of their reported outcomes. The rationale for including these studies is found in the Procedure portion of this paper.

Definitions

Developmental, remedial, special studies, compensatory, or opportunities programs. For the purposes of this study, any program designed to enhance the knowledge, skills, and attitudes of students so that they may meet entrance requirement and successfully complete a course of study at that institution were classed as developmental. Institutions of higher learning have designated these programs to provide instruction in basic reading, writing, and mathematics skills for those students who perform below college standards. A more global definition describes these programs as "... any program, course, or other activity for students lacking the necessary skills to perform college work required by the institution" (Cahalan, 1986). Many variables that affect the underprepared student qualify this definition including: The kind of high school preparation, choice of college, level of college entrance standards, rigor of entry level courses, and availability of remedial courses. Varying institutional quality, mission, and definition of "remedial" can further complicate a researcher's quest for precise definitions (Cahalan, 1986). In most minds, "remedial" has come to mean corrective or curative education that attempts to help students learn something that was not previously learned or that has been forgotten (Clowes, 1980).
Developmental studies. Developmental studies education emphasizes the building of new strengths (Cross, 1976). This includes the enhancement of skills, knowledge, and attitudes that may not necessarily be needed to qualify students for more advanced study. Developmental services focus on attitude and persistence, and include counseling, advisement, placement, tutoring, special classes, and learning labs.

For the purposes of this project, "remedial studies programs" denotes no difference from "developmental studies programs." However, "remediation" and "remedial services" will refer to corrective acts of remedial mathematics, English composition, and reading/study skills courses. These remedial courses can be housed in one division or department of the college, usually called "developmental services," or they may be found in traditional departments at colleges that have no courses or divisions listed as "developmental." In both cases these courses are often interchangeably called "basic," "remedial," or "developmental."

Compensatory. Compensatory education seeks to overcome deprivations associated with the home, family, and earlier study (Levine, 1978). Special studies and opportunities programs tend to fall under this definition. These programs tend to be funded by other than the normal funding entities. In the literature, all the above terms are used interchangeably (Henry, 1986).

Methodology

Glass, McGaw, and Smith (1981) outline the characteristics of meta-analysis as follows: First, meta-analysis is quantitative. It uses numbers and statistical methods for organizing and extracting information from large masses of data that are nearly incomprehensible by other means. Second, meta-analysis does not prejudge research findings in terms of research quality. The findings of studies are not ignored a priori by imposing what may be arbitrary and non-empirical
criteria of research quality. The influence of study quality on findings is regarded as an a posteriori question. Finally, meta-analysis integrates different studies so that general conclusions will emerge.

Procedure

This study is a quantitative analysis of a sample of studies that address the effects of DSPs on students enrolled in higher education. That sample of studies includes articles published in journals, dissertations, unpublished works found in ERIC, and published and unpublished proceedings of conferences, or yearbooks.

This section describes procedures for locating studies, quantifying study outcomes, and describing study features. The procedure was as follows:

1. The literature search. First, several indexes to documents and bibliographies were searched. The first and most fruitful database was the Educational Resources Information Center (ERIC) index. ERIC provides abstracts of published and unpublished studies, including abstracts of papers presented at conferences, progress reports of ongoing research studies, studies sponsored by federal research programs, and final reports of educational projects. The second database searched was Dissertations Abstracts International (DAI). DAI is an index of doctoral dissertations submitted from nearly 400 universities. The third was Psycit. Psycit is a database on CD-ROM that abstracts articles found in psychology journals. The fourth was Sociofile, a CD-ROM database that abstracts sociology journals. Fifth, several databases were searched using DIALOG Information Services, an on-line database search service. These databases included Academic Index, (indexes education journals designed to reach practitioners), Social Sciences Citation Index, (indexes articles and lists the citations used in the articles), and Social Science
Index, an index of articles in sociology journals. Finally, reference sections of studies selected yielded other studies not listed in any of the above databases.

The descriptors for the various computer searches were as follows: (1) "Higher education," (2) "Developmental," "remedial," "underprepared," "high-risk," "at-risk," (3) "composition," "reading," "mathematics," "special services," "study skills," and (4) many variations of "computer assisted instruction", "audio-tutorials," "auto-tutorials," "Personalized System of Instruction (PSI)" and "Keller Plan."

These searches yielded more than 3000 citations that addressed college DSPs. A reading of the abstracts of these studies or the studies themselves, revealed that only about 300 reported on quasi-experimental and experimental studies, and the pool was reduced accordingly. Copies of these studies were acquired. No predictive or correlational studies with control groups were found.

2. Selection of the studies. The studies were described, classified, and coded. The criteria for selecting the studies were borrowed from Kulik, Kulik, and Shwalb, (1983) and modified and enhanced for the requirements of this study. The criteria for selection of the studies were as follows: (1) studies must have involved students enrolled in college DSPs, (2) studies must have reported on measured outcomes for groups of students in "special" programs or groups of students being taught using "innovative" teaching methods and must have reported on groups of students in comparison programs or in comparison groups receiving traditional instruction, (3) when several different articles described the same study, that study was counted only once, using the most complete report, (4) when a single article gave results for several semesters, only the results for the last semester were included, (5) when a single paper reported only the results for
subgroups of students, these results were combined into a composite tally, (6) the study must not have made obvious reporting errors.

3. **Coding of the studies.** The point of measuring and coding study characteristics to correlate study findings with properties of the study. Since the goals of this study were quite broad, the coding needed to be comprehensive. Besides the recording of study outcomes, coding involved the recording of the "mediating effects" like instructional strategy or study quality.

Many of the studies reported multiple summary results. Only those deemed most important by the coder were entered into the data base. For example, a composition intervention may have reported results on three achievement dependent variables--a final writing sample grade, number of words produced on the final writing sample, and number of errors produced on the final writing sample. The researcher would have chosen the final writing sample grade. This decision is based on the heuristic that reported grades and test scores best describe a study's conclusion about a treatment.

The mediating effects, program characteristics, and summary results were first recorded in a data base program called Paradox. This computer program allowed the raw data to be recorded directly to a notebook computer via an on-screen form that looked like a paper coding sheet. The use of this computer program avoided the need to use perhaps over a thousand sheets of paper for coding. Paradox allowed for the sorting and manipulation the data in various ways. For example, in studies with multiple effect sizes, recopying program characteristics that did not change was an easy affair. This on-line coding sheet helped reduce noise in the data by skipping the steps of coding onto a sheet of paper, then entering the data into the computer. After recorded in Paradox and checked for accuracy, the data were transferred to a computer spreadsheet called
QuattroPro which converted the data into American Standard Code for Information Interchange (ASCII), a format readable by SAS. QuattroPro also provided an excellent environment for making sure the spacing was correct and for checking the details of data set. For example, QuattroPro was used to insure that blank spaces that represented missing data were converted to dots.

Since this study used only one coder, what Glass, McGaw, and Smith (1981) called the "principal source of measurement unreliability" (p. 75) (different coders not seeing or judging characteristics of a study in the same way) was not a problem. However, to ensure that the coding was reliable and that the report is stable, a reliability check was conducted. First, all of the studies used were checked for accurate coding. In the check, the coder compared each study to the printed output. Changes were made as necessary. Because of missing data in the study reports and failure to meet selection criteria, three studies and several observations from other studies were omitted. This check was followed by a formal reliability check of 10% of the studies. The results indicated no differences with the checked data. Therefore, it was concluded that the coding process was reliable.

4. Measuring study findings. The dependent variables for this statistical analysis were the outcomes of the developmental studies program, namely, achievement, attitude, or persistence. After the data were recorded, classified, and coded, the summary results were mathematically standardized, using effect size as the point estimate.

5. Analysis. The standard formula for estimating effect size was

\[
\frac{\bar{X}_T - \bar{X}_C}{\sigma^*} \frac{s_i}{s}.
\]
where \(\bar{X}_T \) is the treatment mean,
\(\bar{X}_C \) is the control mean, and
\(s_* \) is either the control standard deviation or a pooled standard deviation (Hedges & Olkin, 1985).

Glass (1976) and Glass, McGaw, and Smith (1981) used the control standard deviation. It has the advantage of being uncontaminated by treatment effects (Hedges & Olkin, 1985; Hedges, Shymansky, & Woodworth, 1989).

However, Hedges and Olkin (1985) argued that the most precise estimate of the population variance is obtained by pooling, because the assumption of equal population variances is reasonable. Hedges and Olkin's (1985) modification of effect size is the same as above except in computing the standard deviation with the following formula

\[
s = \sqrt{\frac{(n_T-1) s_T^2 + (n_C-1) s_C^2}{n_T + n_C - 2}}
\]

Since \((g)\) has a small sample bias, it is removed by using the (Hedges & Olkin, 1985) unbiased estimator of effect size

\[
d = \left(1 - \frac{3}{4N-9} \right) g,
\]

where

\[
N = n_T + n_C.
\]

13
a. Both (g) and (d) (with pooled standard deviations) were calculated when both means and standard deviations were reported.

b. Some studies did not provide complete information. If possible, effect sizes were reported using alternate methods as discussed by Glass, McGaw, and Smith, (1981). For example, exact effect sizes were calculated as follows:

If (t) was reported and standard deviations are not reported then,

\[
g = t \sqrt{\left(\frac{1}{n_e} + \frac{1}{n_c} \right)}
\]

However, this formula was not used for studies using matched pairs and where separate standard deviations are not reported (Hedges, Shymansky, & Woodworth, 1989).

If (F) was reported then,

\[
\sqrt{F} = \frac{t}{x}
\]

Many other reported statistics were transformed into effect size estimates via a conversion of the reported statistic to a Pearson's (r) (Glass, McGaw, & Smith, 1981).

The conversion of Person's (r) to (t) is as follows:

\[
t = r \sqrt{\frac{n-2}{1-r^2}}
\]

as noted in Hinkle, Wiersma, and Jurs (1988).

c. Next, these effect sizes were then pooled (averaged) to create a common effect size

\[
\bar{d} = \sum_{k} \frac{d_k}{K}
\]
where K is the number of effect sizes.

(3) If the sample sizes differ from study to study, then the effect size estimate from large studies will be more precise than the estimates from smaller studies. This was controlled by weighting the more precise estimates when pooling (Hedges & Olkin, 1985). An approximate weight was given by

$$w_i = \frac{n_i}{n_i + n_c}$$

where the pooled weighted estimator is

$$d_w = w_1 d_1 + \ldots + w_k d_k.$$

(4) An ANOVA analog (Hedges & Olkin, 1985) was performed to determine if all studies and the primary groups (reading, mathematics, composition, and total program) shared a common effect size for the dependent variables of achievement, persistence, and attitude. The formula for the homogeneity statistic (Q_{total}) is

$$Q_{\text{total}} = \sum_{i=1}^{k} \frac{d^2}{\sigma_d^2} - \frac{\left(\sum_{i=1}^{k} \frac{d^2}{\sigma_d^2} \right)^2}{\sum_{i=1}^{k} \frac{1}{\sigma_d^2}}.$$
The Hedges and Olkin (1985) process for determining the homogeneity of effect sizes is as follows (using the Chi-square table):

(a) If \((Q_{\text{total}})\) is not large or is statistically non-significant at the alpha .05 level, the process should be stopped, and it can be concluded that the single effect size fits the data adequately. (Note: This analysis adapted a generic SAS meta-analysis program provided by Hedges, Shymansky, and Woodworth (1989). In it they use the weighted mean effects in the SAS general linear model procedure to produce an \((F)\) statistic. This statistic can be used just as \((Q_{\text{total}})\) would be used.)

(b) A significant value of \((Q_{\text{total}})\) indicates that the effect sizes are not homogenous. The studies are then partitioned into groups by a particularly important dimension or characteristic. Since

\[
Q_T = Q_B + Q_W
\]

the within-class statistics was calculated. If \((Q_{\text{within}})\) is nonsignificant, then for class \((p)\) the class effect size was an estimate of the effect size of that group.

(c) A significant \((Q_{\text{within}})\) indicates that the effect sizes were not homogenous within classes. The values were examined to help identify classes with especially poor fit. This suggested other classifications to observe.

(d) Thus steps (b and c) are to be repeated until an acceptable level of within class fit is obtained or the possible classes are exhausted.
In accordance with the process noted above, (a) an overall \(F \) was computed. After that (b) the studies were divided into obvious and naturally occurring classes. For example, the studies were classified first by instructional methodology, then by subject content taught and instructional. The \(F \) for these subcategories was calculated. Those non-homogenous subcategories of the studies were divided into those with randomized designs and those without randomized designs. If non-randomized studies caused significance, they were removed from further study.

Two of the above analyses were done. The first used averaged effects within the study so that no matter how many effects sizes were coded, only one achievement, attitude, and/or persistence effect size from each study would be analyzed. This method protects the independence of the data.
Results

Forty effect sizes were produced from the 27 studies collected. These the overall effect for developmental studies programs was positive; the overall effect size was a small .20. Even though 60% of these effect sizes were positive, strong negative effects of remedial programs' achievement effects significantly moderated the overall effect size (See Figure 1 and Table 1).

When achievement effects were considered, the percentage of positive effect sizes dropped to 52% of the total. Studies that reported achievement results, post tests, final course grades, next course grades, or GPA, had the majority of negative effect sizes. The overall effect size for student achievement was .134. The majority of these studies did not specify a particular methodology other than a developmental studies program; therefore, they were categorized as simply "remediation" (See Table 1). The overall effect size for student achievement-remediation was .07. Other classes include individualized (ES = -.50), learning assistance center (ES = -.07), block (.33), and a group of studies that examined counseling (ES = .75).

Only five studies considered student attitude for total remedial programs. The overall effect size was .27 (See Table 2). Twelve studies considered student persistence (See Table 3); the overall effect size for these studies was .36. The persistence statistics are all effect size estimates that are derived from percentages of students who returned to the college the final semester of the treatment included in the respective studies. These percentages were converted to Chi-square then transformed as noted in the procedure section of this paper. About 75% of the studies report positive return rates for students.

Finally, the weighted ANOVA analogue did not show any statistical significance.
Stem-and-Leaf Display of Effect Sizes from Studies of Developmental Studies Programs

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>248</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>160079</td>
</tr>
<tr>
<td>2</td>
<td>25803469</td>
</tr>
<tr>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>-0</td>
<td>588772</td>
</tr>
<tr>
<td>-2</td>
<td>20073</td>
</tr>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>3</td>
</tr>
<tr>
<td>-8</td>
<td>10</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
</tr>
</tbody>
</table>

K = 40
Unit = .01
Mean = .20
60% = positive

Figure 1. Stem-and-leaf display of effect sizes from studies of developmental studies programs that did not report differences by the subject matter taught. These studies reported the effect of the total developmental studies program on the student.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>IA</th>
<th>N</th>
<th>ES</th>
<th>K</th>
<th>ES_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayburn & Hayes (1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. vin, Hogrebe, Dwinell,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, S.L. (1985)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopes (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parrish & Haitt (1989)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landward (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitts (1987)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muehl & Muehl (1972)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swiger (1987)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voien (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown & Ervin (1978)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pace (1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald (1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finch (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosella (1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spindell & Dembo (1976)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller (1982)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baylis (1983)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skidmore (1979)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver (1978)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelson (1989)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Classification of Studies

Student Achievement for Total Program
Table 2
Classification of Studies
Student Attitude for Total Program

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>IA</th>
<th>N</th>
<th>ES</th>
<th>K</th>
<th>ES_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayburn & Hayes (1975)</td>
<td>Individualized, mastery, self-paced</td>
<td>321</td>
<td>-.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitts (1987)</td>
<td>Remedial program</td>
<td>100</td>
<td>-.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudson (1976)</td>
<td></td>
<td>259</td>
<td>.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skidmore (1979)</td>
<td>Counseling</td>
<td>52</td>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baylis (1983)</td>
<td>Block</td>
<td>48</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>IA</td>
<td>N</td>
<td>ES</td>
<td>K</td>
<td>ES_k</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Remedial Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riggs, Davis, & Wilson (1990)</td>
<td></td>
<td>2686</td>
<td>-.81</td>
<td></td>
<td>.28</td>
</tr>
<tr>
<td>McCormack, Dukes, & McLeod (1985)</td>
<td></td>
<td>10836</td>
<td>-.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, S.L. (1985)</td>
<td></td>
<td>353</td>
<td>-.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swiger (1987)</td>
<td></td>
<td>310</td>
<td>.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopes (1980)</td>
<td></td>
<td>138</td>
<td>.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson (1983)</td>
<td></td>
<td>348</td>
<td>.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald (1981)</td>
<td></td>
<td>413</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosella (1975)</td>
<td></td>
<td>183</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning assistance center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent (1983)</td>
<td></td>
<td>2687</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td>117</td>
<td>.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counseling</td>
<td></td>
<td>1516</td>
<td>.30</td>
<td>2</td>
<td>.31</td>
</tr>
<tr>
<td>Skidmore (1979)</td>
<td></td>
<td>54</td>
<td>.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver (1978)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion and Conclusions

The statistic used for comparison purposes was effect size. Effect size is a quantitative way of describing how well the average student who received the intervention performed relative to the average student who did not receive the intervention (Borg & Gall, 1989). A 0 effect size means that an average student receiving the innovative instructional methodology did no better or worse that an average student not receiving the innovative methodology, while a positive effect size means that the average student receiving the intervention did better than the average student not receiving the intervention. For example, an effect size of .20 means that the average student in the experimental methodology scored one-fifth of a standard deviation higher than the average student in the control group. This would place that student at the 58th percentile in the control group. "Researchers, " according to Borg and Gall (1989), "consider effect sizes larger than .33 to have practical significance, that is, the effect is large enough to make a worthwhile difference in the outcome" (p. 7). However, Hinkle, Wiersma, and Jurs (1988), contrast Cohen's statement that an effect size of .25 was small with Feldt's conclusion that an effect size of .20 was small. They conclude, along with Cook and Campbell (cited in Hinkle, Wiersma, & Jurs, 1988), that consciousness of an appropriate effect size magnitude is a complex and perplexing issue. For the broad purposes of this study, determining practical significance of effect size involved considerations of the number of effects in the subcategory of studies, the nature of the subcategory itself, and mediating factors that may be in the studies. Therefore, effect sizes were compared directly--with caution. For instance, this researcher saw an instructional methodology requiring the latest technology, extra personnel, and extra staff development as having to have a higher mean effect size in order to have equal practical significance with programs, for example,
that only require student scheduling changes. Practical significance requires an understanding of the fact that the context of the effect size is just as important as the magnitude of the effect size.

With that in mind, it is difficult to conclude that developmental programs are a cure-all for the problems that underprepared freshman face. This researcher would conclude that the small effect size for achievement (ES = .134) indicates no practically significant difference between the students in developmental programs and similar students in control groups--using the above discussion as a guide. However, these studies are a subset of all of the studies of developmental studies programs. Before the fact, these studies are homogenous in that these studies do not delineate the different subjects taught in the remedial program. For example, these studies basically average together English, reading, and math course scores. Average English and reading scores were no doubt severely moderated by lower math scores. This conclusion is partially supported by the larger effect size for persistence studies. Students may be failing math but may also be finding success in English and reading courses, and that fact is keeping them enrolled.

The problem then appears to be partly in the selection of the studies. What needs to follow this study is a series of studies that collect and integrate studies that are classified by subject area taught. Four such meta-analyses are currently works in progress by this author.

The rest of the problem seems to be in the developmental studies programs themselves. Of the 23 studies that reported effects on student achievement, 15 had effects sizes that ranged from -.32 to .57. Quite a few studies reported small and moderate effects for their programs.

Clearly there is a need for these programs. There is an even clearer need that these programs ground what it is they do in something other than providing watered-down versions of regular courses; that is, to simply provide remediation is not enough to help underprepared
college students. Programs should have strong theoretical bases, like counseling and the block programs, which seemed to consistently produce moderate to strong positive effect sizes. Because of the changing demographics of the college student and because of ever-increasing percentages of underprepared students, these programs simply must work better.
References

Studies Used In Meta-Analysis

VITA

HANSEL ERIC BURLEY

1400 College Ave.
McLennan Community College
Waco, TX 76708
(817) 756-6551
(817) 750-3425 office
(817) 754-8310 home
Internet: HAB@MCC.CC.TX.US

Educational Background

<table>
<thead>
<tr>
<th>Degree</th>
<th>Year</th>
<th>Field</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D.</td>
<td>1993</td>
<td>Curriculum and Instruction</td>
<td>Texas A&M University</td>
</tr>
<tr>
<td>M.A.</td>
<td>1985</td>
<td>English</td>
<td>Stephen F. Austin State University</td>
</tr>
<tr>
<td>B.A.</td>
<td>1982</td>
<td>English Communication Arts</td>
<td>St. Mary's University of San Antonio</td>
</tr>
</tbody>
</table>

Professional Experience in Higher Education

Instructor, Developmental English and freshman composition

Research Associate, Institutional research

McLennan Community College
1400 College Ave.
Waco, TX
Supervisors: Dr. Lissette Carpenter, Director of Humanities and Dr. David England, Vice President, Institutional Research.
January 1993 -- present

Responsibilities: I taught composition courses and Developmental composition courses. I help generate statistical reports for the office of institutional research.

Major Accomplishments: I participated in MCC's Future Leaders's Project and served on two hiring committees. Also, I served as an assistant to the Vice President for Institutional Research. I used two different computer labs in order to teach freshman composition, and I helped to develop a computer assisted writing lab. Currently, I work...
ABSTRACT

Because of the tremendous growth in college populations in the last 30 years, the number of programs designed to help underprepared students has grown significantly. Whether or not these programs work is still in question. This study used the meta-analysis techniques of Glas (1976) and Hedges (1985) to study a subset of developmental studies programs that did not specify the subject matter taught. Twenty-seven studies produced 40 effect sizes. The overall effect size was small (ES=.20). The effect size for achievement effects was smaller (ES=.14, K=23); larger for attitude effects (ES=.27, K=5); and larger still for persistence effects (ES=.30, K=12). However, the averaged effect sizes are all small. In these studies, for which the theoretical underpinnings of the program were unknown or unreported, college developmental studies programs perform as well as controls, but not necessarily better than controls. The cause of the poor performance of these programs probably is rooted in their nondescript nature. More study is needed. One figure and three tables are included. (Contains 19 references and a list of the 27 studies examined.) (Author/SLD)