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ABSTRACT

Dissertations are an important component of the effort to generate
knowledge. Thus, dissertation quality may be seen by accreditation
and coordinating-board reviewers as a noteworthy reflection on the
quality of doctoral programs themselves. The present study reviews
methodological errors within Ph.D. dissertations. The illustrative
errors are presented within the framework of seven analytic
principles, each of which is explored in some detail.
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Ruggiero & [sic] Enyart (1987) el:amined the
construct and discriminant validity of the CDI...."
(p. 17)

Nor does the practice of making "assumptions" regarding
critical design features fall within the present discussion. Some
students seem to feel that one can "assume away" a burden of proof
establishing that a study's design and measurement features were
sufficiently sound to inform meaningful result interpretation.
##Thurstone (1991) provides an example in a section of that study
titled "Assumptions Regarding the Study", and consisting of exactly
two sentences:

1. The two hundred and forty children selected as
participants in this study are representative of
Hispanic children in South Texas. 2. Testing was
conducted in the same manner with all the children
and their parents or guardians." (p. 7)

One wonders what import the study's results would have if
either of these assumptions writ as wishes were, in actuality,
unfulfilled. It is appropriate to offer assumptions or postulates
in studies, but only when one can present some theoretical or
empirical evidence that these'assumptions are at least likely to be
true.

Finally, the rampant tendency of these students in their
Discussion chapters to not cite the specific statistics (cr at
least the specific tables containing the statistics), upon wnich
their interpretations are based, will not be discussed in detail
here. ##Stephenson (1992) provides a compelling example of this
ilk.

##Stephenson (1992) reported in Chapter IV a series of
univariate one-way ANOVA F tests, a discriminant function analysis,
and a host of bivariate correlation coefficients. In Chapter V
##Stephenson did not directly address any of the statistics
evaluated by these various analyses, nor were there specific
references in the Chapter V to any of the tabled statistics in
Chapter IV. Thus, the reader is forced to guess the basis of these
Chapter V conclusions, or to presume that the analyses and the
conclusions were simply unrelated.

Princiole #1: Because tests are not reliable, scores are, the
data in hand must generally be evaluated for
measurement integrity.

Tests are Not Reliable or Unreliable. Too few researchers act
on a conscious recognition that reliability is a characteristic of
scores or the data in hand. Test booklets are not impregnated with
reliability during the printing process. The same WISC-R that
yields reliable scores for some adults on a given occasion of
measurement will not necessarily do so when the same test is
administered to first-graders.

Many researchers recognize these dynamics on some level, but
paradigm influences constrain some researchers from actively
integrating this presumption into their actual analytic practice.
The pernicious practice of saying, "the test is reliable", creates
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a language that predisposes researchers against acting on a
conscious realization that tests themselves are not reliable, and
acting accordingly (Thompson, 1994).

As Rowley (1976, p. 53, emphasis added) argued, "It needs to
be established that an instrument itself is neither reliable nor
unreliable.... A single instrument can produce scores which are
reliable, and other scores which are unreliable." Similarly,
Crocker and Algina (1986, p. 144, emphasis added) argued that,
...A test is not 'reliable' or 'unreliable.' Rather, reliability

is a property of the scores on a test for a particular group of
examinees."

In another widely respected text, Gronlund and Linn (1990, p.
78, emphasis in original) noted,

Reliability refers to the results obtained with an
evaluation instrument and not to the instrument
itself.... Thus, it is more appropriate to speak of
the reliability of the "test scores" or of the
"measurement" than of the "test" or the
"instrument."

And Eason (1991, P. 84, emphasis added) argued that:
Though some practitioners of the classical
measurement paradigm [incorrectly] speak of
reliability as a characteristic of tests, in fact
reliability is a characteristic of data, albeit data
generated on a given measure administered with a
given protocol to given subjects on given occasions.

The subjects themselves impact the reliability of scores, and
thus it becomes an oxymoron to speak of "the reliability of the
test" without considering to whom the test was administered, or
other facets of the measurement protocol. Reliability is driven by
variance--typically, greater score variance leads to greater score
reliability, and so more heterogeneous samples often lead to more
variable scores, and thus to higher reliability. Therefore, the
same measure, when administered to more heterogenous or to more
homogeneous sets of subjects, will yield scores with differing
reliability. As Dawis (1987, p. 486) observed, "...Because
reliability is a function of sample as well as of instrument, it
should be evaluated on a sample from the intended target
population--an obvious but sometimes overlooked point."

Our shorthand ways of speaking (e.g., language saying "the
test is reliable") can itself cause confusion and lead to bad
practice. As Pedhazur and Schmelkin (1991, P. 82, emphasis in
original) observed, "Statements about the reliability of a measure
are.., inappropriate and potentially misleading." These
telegraphic ways of speaking are not inherently problematic, but
they often later become so when we come unconsciously to ascribe
literal truth to our shorthand, rather than recognizing that our
jargon is sometimes telegraphic and is not literally true. As
noted elsewhere:

This is not just an issue of sloppy speaking--the
problem is that sometimes we unconsciously come to
think what we say or what we he. ..., so that sloppy
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speaking does sometimes lead to a more pernicious
outcome, sloppy thinking and sloppy practice.
Thompson (1992c, p. 436)

One sloppy practice is not calculating, reporting, and
interpreting the reliability of one's own scores for one's own
data. As Pedhazur and Schmelkin (1991, p. 86, emphasis in original)
argued:

Researchers who bother at all to report reliability
estimates for the instruments they use (many do not)
frequently report only reliability estimates
contained in the manuals of the instruments or
estimates reported by other researchers. Such
information may be useful for comparative purposes,
but it is imperative to recognize that the relevant
reliability estimate is the one obtained for the
sample used in the [present] study under
consideration.

Why Score Reliability in So Imoortant. In one book exploring
the intimate linkages between measurement error variance and our
attributions about the origins of variance in our substantive basic
or applied research, Pedhazur and Schmelkin (1991) noted,

Measurement error is the Achilles' heel of
sociobehavioral research. Although most programs in
sociobehavioral sciences, especially doctoral
programs, require a modicum of exposure to
statistics and research design, few seem to require
the same where measurement is concerned. Thus, many
students get the impression that no special
competencies are necessary for the development and
use of measures... (pp. 2-3)

Therefore, it should not be surprising that studies of
research reports in journals indicate insufficient attention is
paid to the impacts of measurement integrity on the integrity of
substantive research conclusions. For example, with respect to the
American Educational Research Journal, Willson (1980) reported
that:

...Only 37% of the AERJ studies explicitly reported
reliability coefficients for the data analyzed.
Another 18% reported only indirectly through
reference to earlier research.... That
reliability.., is unreported in almost half the
published research is... inexcusable at this late
date.... (pp. 8-9)

A more recent "perusal of contemporary psychology journals
demonstrates that quantitative reports of scale reliability and
validity estimates are often missing or incomplete" (Meier & Davis,
1990, p. 113); and that "the majority [95%, 85% and 60%] of the
scales described in the [three Journal of CounselincLasighplsay)
JCP volumes [1967, 1977 and 1987] were not accompanied by reports
of psychometric properties" (p. 115).

This state of affairs is surprising, given two related trends
within the literature. First, since the influential articles by
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Cohen (1968) and Knapp (1978) appeared, more researchers have
recognized that all parametric statistical analyses are
correlational (Thompson, 1991a), and that substantive variance-
accounted-for effect sizes expressed as r2 analogs can be
interpreted in all studies. Second, the importance of interpreting
effect sizes as against statistical significance tests has been
increasingly recognized (e.g., Thompson, 1993b), as reflected, for
example, in a recent procession of articles within the Anerican
Psychologist (cf. Cohen, 1990; Kupfersmid, 1988; Rosenthal, 1991;
Rosnow & Rosenthal, 1989).

Nevertheless, too few researchers act on the premise that
score reliability establishes a ceiling for substantive effect
sizes. These impacts can be readily illustrated in a concret:.
example using the bivariate correlation as an heuristic.

It has been recognized in textbooks dating back to the 1950s,
and in more recent books as well (e.g., Pedhazur & Schmelkin, 1991,
p. 114), that a correlationAcoefficient "corrected" for attenuation
due to measurement error (rxy) can be estimated as:

rxy = rxy / (rxx * ry-y) -5 ,
where rxy is the calculated bivariate relationship between scores
on variables X and Y, and rxx and ryy are respectively the
reliability coefficients for scores on X and Y. This algorithm can
be re-expressed in the more familiar metric of common variance, as
is often done in popular variance-accounted-for effect size
statistics (e.g. el 1-,21 eta2, omega2):

rxy2 = rxy2 / (rya, * ryy)
Through algebraic manipulation, the detectable effect size, given
knowledge of "true" relationship, rxy2, and the reliabilities of the
two sets of scores, is:r 2 = 2 * r * r

XY XY XX YY )
Even if the "true" relationshipjoetween perfectly reliable measures
of X and Y was perfect, i.e., rxy2 = 1.0, the detectable effect in
any study can never exceed the product of the reliability
coefficients for the two sets of scores:

rxx2 = 1 * (rxx * rre)
For example, even when rxy2 = 1.0, if both sets of scores have
reliability coefficients of .7, the detectable effect cannot exceed
.49. Clearly, measurement error prospectively impacts the effect
size that we can obtain in a planned study and also should be
retrospectively considered when interpreting calculated effects
once the study has been done.

The failure to consider score reliability in substantive
research may exact a toll on the interpretations within research
studies. -We may conduct studies that could not possibly yield
noteworthy effect sizes. Or we may not accurately interpret our
results if we do not :...onsider the reliability of the scores we are
actually analyzing.

These practices may be caused by misperceptions that tests can
be reliable or valid. These misperceptions themselves may be
caused, or are at least reinforced, by the use of telegraphic
language that comes to be unconsciously believed as literal truth,
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and then unconsciously incorporated into paradigms for behavior.
Examples of Bad Practice Within Dissertations. Some students

are to be commended for computing reliability coefficients for the
scores for their own data. For example, ##Eysenck (1992) reported
that:

A Chronbach [sic] alpha reliability coefficient for
thi:i measure was computed from the data for the
current study and found to be .71. (p. 60)

However, it is very unfortunate that almost all students used
bad language suggesting that they believed reliability iltuzes as a
characteristic to tests themselves. For example, ##Fisher (1992)
noted,

The scores of the entire research sample (N = 234)
was [sic] used in determining the reliability of the
scale [sic] which resulted in coefficient alpha
[sic] of .84. (pp. 106-107)

Still more troubling is the behavior of calculating the
reliability of one's own scores and then still conducting
substantive analyses with scores of acknowledged questionable
reliability (and thus questionable validity as well). ##Velicer
(1992) provides an example, prior to the substantive analyses
including scores on three scales:

The researcher of this study also conducted a
Cronbach alpha reliability analysis on the [three]
subscales. The reliability coefficients for each
subscale and total questionnaire [sic] are as
follows: Task Orientation, r = .93; Adaptability, r
= .66; and Reactivity r = .45. (pp. 44-45, emphasis
added)

Even more troubling is the tendency to not fully evaluate the
reliability of the scores that are actually being evaluated in
substantive analyses. This may occur even when the researchers
themselves suggest that there was, in fact, every reason to believe
that their own scores were not reliable. For example, ##McDonald
(1992) reported:

Catecholamines are notoriously variable both between
individuals and within the same individual under
varying conditions. Their production and excretion
can be affected by many physical, physiological and
psychological factors. Varia5les that may have
influenced catecholamine levels during the 24 hour
collection include: diet, temperature and season of
the year, mental activity or work, physical activity
or work, and emotional state (anxiety, aggression,
fear). (pp. 59-60)

It is especially intriguing when students (a) argue that
reliability analyses are needed, (b) have the data to conduct such
analyses in their own studies, but (c) do not conduct the analyses
that they themselves argue are needed. For example, ##Cattell
(1992) noted that:

Although reliability and validity data are
unavailable for the GDS/Amended, the differences in
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wording of the four changed items appear slight. It
is thought [i.e., assumed] that studies on the
original GDS give [sic] adequate reliability and
validity for the GDS/Amended. (p. 46)

Subsequently, ##Cattell (1992, p. 91) offered a recommendation for
future studies, correctly arguing that, "Reliability and validity
studies are needed on the amended assessments for nursing homes
and/or institutions..., as none were found in a review of the
literature."

Most troubling of all is a pattern where students do not
analyze the reliability of their scores, when their scores are
actually not very reliable, and these'problems are not considered
during analysis and/or interpretation. For example, though
##Huberty (1991, p. 63) did not report an alpha coefficient,
sufficient information was provided that this estimate could be
computed by the reader. The relevant calculations are:

ax = [v / (v-1)] (1 - ((ESDi2) / SD,c2)]

[4 / (4-1)] [1 - ((.322 +.372 +.502 +.332)11.042)]
[1.333333 ] [1 - ((.1024 +.1369 +.2500 + .1089)/1.0816)]
[1.333333 ] [1 ((.1024 +.1369 +.3589) / 1.0816)]
[1.333333 ] [1 - ((.1024 +.4958) / 1.0816)]
[1.333333 ] [1 - ( .5982 ) / 1.0816)]
[1.333333 ] [1 - .553069]
[1.33337J ] [ .446930]
+.595907

But ##Lawley (1992, p. 59) provides the most stunning example
of all! Though not computed, sufficient information was available
in the report to calculate a rough KR21 estimate of reliability for
one set of scores on PNID, an important variable in that study:

KR2/ = [v / (v -1)] (1 - (X (v - X))/(v (SD2))]
[13/(13-1)] [1 - (1.18 (13 - 1.18)) / (13 (0.72))]
[13 / 12] [1 - (1.18 ( 11.82 )) / (13 (0.49))]
[1.083333] [1 - ( 13.9476 ) / ( 6.37 ))

[1.083333] [1 - ( 2.189576)]
[1.083333 [ -1.18957]
-1.28870

Reinhardt (1991) provides an excellent review of reliability
coefficients, and the factors that impact score reliability.
Certainly, it would be difficult to be sanguine about ##Lawley's
(1992) conclusions, given an estimated reliability coefficient of
this magnitude.

Princirile #2: Statistical significance testing is of limited
importance, especially as regards measurement
characteristics statistics, and should be augmented
by other analyses.

What Statistical Significance Testing Is and Isn't. Science is
about the business of identifying relationships that recur under
stated conditions. Unfortunately, too many researchers,
consciously or unconsciously, incorrectly assume that the R values
calculated in statistical significance tests evaluate the
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probability that results will replicate (Carver, 1978, 1993). Such
researchers often explain what R calculated is by invoking vague
and embarrassing amorphisms such as, "2 calculated (or statistical
significance testing) evaluates whether results were 'due to
chance'".

It is true that statistical significance tests do focus on the
null hypothesis. It is also true that such tests evaluate sample
statistics (e.g., sample means, standard deviations, correlations
coefficients) in relation to unknowable population parameters
(e.g., popu/ation means, standard deviations, correlations
coefficients).

But far too many researchers incorrectly interpret statistical
significance tests as evaluating the probability that the null is
true in the population, given the sample statistics for the data in
hand. This would, in fact, be a very interesting issue to
evaluate.

If R calculated informed the researcher about the truth of the
null in the population, then this information would directly test
the replicability of results. Assuming the population itself
remained stable, future samples from the population, if
representative, should yield similar results. In this case,
results for which the null was found to not be true in the
population would therefore be likely to be replicated in future
samples from the same population where the null would also likely
be rejected. Unfortunately, this is not what statistical
significance tests, and not what the associated R calculated values
evaluate.

It is true that the R(robability) values calculated in
statistical significance testing, which range from 0 to 1 (or 0% to
100%), do require that a "given" regarding the population
parameters must be postulated. The characteristics of the
population(s) directly affect what the calculated p values will be,
and are considered as part of the calculations of R.

For example, if we draw two random samples from two
populations, both with equal means, then the single most likely
sample statistics (i.e., the sample statistics with the largest p
ca/culated value) will be two equal sample means. These sample
results are the most likely for these populations. But these exact
same sample statistics would be less likely (i.e., would yield a
smaller p calculated value) if the two populations had parameter
means that differed by one unit. And the sample statistics
involving exactly equal sample means would be still less likely
(i.e., would yield a still smaller p calculated value) if the two
population means differed by two units.

Indeed, specific population parameters must unavoidably be
assumed even to determine what the R calculated is for the sample
statistics. Given that population parameters directly affect the
calculated R(robability) of the sample statistics, one must assume
particular population parameters associated with the null
hypothesis being tested (e.g., specific means, medians, standard
deviations, correlation coefficients), because there are infinitely
many possibilities of what these parameters may be in the
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population(s).
Only by assuming specific population parameters can a single

answer be given to the question, "what is the R(robability) of the
sample statistics, assuming the population has certain parameters?"
Without the assumption of specific population parameters being true
in the population, there are infinitely many plausible estimates of
R, and the answers to the question actually posed by statistical
significance testing become mathematically indeterminate.

Classically, to get a single estimate of the R(robability) of
the sample statistics, the null hypothesis is posited to be exactly
true in the population. Thus, statistical significance testing
evaluates the probabiliZ.1 f the sample statistics for the data in
hand, ally= that null hypothesis is presumed to be exactly true as
regards the related parameters in the population.

Of course, this p. is a very different animal than one which
evaluates the probability of the population parameters themselves,
and the statistical significance testing logic itself means that R
evaluates something considerably less interesting than result
replicability. As Shaver (1993) recently argued so emphatically:

[A] test of statistical significance is not an
indication of the probability that a result would be
obtainrd upon replication of the study. A test of
statistical significance yields the probability of a
result occurring under [an assumption of the truth
of] the null hypothesis [in the population], not the
probability that the result will occur again if the
study is replicated. Carver's (1978) treatment
should have dealt a death blow co this fallacy....
(p. 304)

Furthermore, the requirement that statistical significance
testing presume an assumption that the null hypothesis is true in
the population is a requirement that an untruth be posited. As
Meehl (1978, p. 822) notes, "As I believe is generally recognized
by statisticians today and by thoughtful social scientists, the
null hypothesis, taken literally, is always false." Similarly,
Hays (1981, p. 293) points out that "[t]here is surely nothing on
earth that is completely independent of anything else [in the
population]. The strength of association may approach zero, but it
should seldom or never be exactly zero."

One logic explaining why the null cannot be true in the
population is mathematical. There are infinitely many possible
parameters (e.g., means, standard deviations) in the population(s).
Probability is the frequency of occurrence of an event divided by
the total number of possible events. Therefore, the "point
probability" of any single event (e.g., two populations with
exactly equal means, a population with the parameter correlation
coefficient exactly equal to zero) in the population is infinitely
small. Thus, the probability of the null hypothesis being exactly
or literally true in the population is infinitely small.

There is a very important implication of the realization that
the null is not literally true in the population. The most likely
sample statistics for samples drawn from populations in which the

9

1 1



null is not literally true are sample statistics which do not
correspond to the null hypothesis, e.g., there are some differences
in sample means, or K in the sample is not exactly 0. And wheneverthe null is not exactly true in the sample(s), then the null
hypothesis will Allgams, be rejected at some sample size. As Hays(1981, p. 293) emphasizes, "virtually any study can be made to show
significant results if one uses enough subjects."

Although statistical significance is a function of at least
seven interrelated features of a study (Schneider & Darcy, 1984),
sample size is a basic influence on significance. Thus, some
researchers (Thompson, 1989a, 1993b) have advocated interpreting
statistical significance tests only within the context of samplesize. In any case, all this means that:

Statistical significance testing can involve a
tautological logic in which tired researchers,
having collected data from hundreds of subjects,
then conduct a statistical test to evaluate whether
there were a lot of subjects, which the researchers
already know, because they collected the data and
know they're tired. This tautology has created
considerable damage as regards the cumulation of
knowledge... (Thompson, 1992c, p. 436)

Thus, statistical significance testing can be a circuitous
logic requiring us to invest energy to determine that which wealready know, i.e., our sample size. And this energy is not
invested in judging the noteworthiness of our effect sizes or thereplicability of our effect sizes, since statistical significancetesting does not evaluate these considerably more important issues.The recent Summer, 1993, special issue (Vol. 61, No. 4) of theJournal of Experimeptal Education provides a lucid and thorough
treatment of these and related matters. Decades of effort "to
exorcise the null hypothesis" (Cronbach, 1975, p. 124) continue.

.E.M.P1@g51.1actigs_aitt)in Dissertations. Five areas ofbad practice as regards statistical significance testing wereisolated within these dissertations. First, essentially allstudents in their dissertations always said "significant" when theymeant "statistically significant". Clearly, statisticalsignificance does not evaluate result importance, and always usingthe phrase "statistically significant" when referring toinferential tests helps at least a little to avoid confusingstatidcal significance with result importance. As Thompson(1993b) emphasizes:
Statistics can be employed to evaluate the -probability of an event. Hut importance is aquestion of human values, and math cannot be
employed as an atavistic escape (a la Fromme's
Esca e from Freedom) from the existential human
responsibility for making value judgments. If the
computer package did not ask you your values prior
to its analysis, it could not -lave considered your
value system in calculating g's, and so g's cannot
be blithely used to infer the value of research

10

12



results. Like it or not, empirical science in
inescapably a subjective business. (p. 365)

Thus, some researchers strongly admonish against the use of
only the words "significant" or "significance", when referring to
statistical significance (e.g., Carver, 1993, p. 288). Similarly,
Moore (1991), a doctoral student, argued in an AERA paper she
presented:

First, many times the word "statistically" is not
used in the description of the [statistically
significant] results. Researchers may report that "a
significant difference was obtained." This
statement does imply the word "statistically," but
many people may not understand the implication or
hint regarding what is being discussed. (p. 1)

In this vein, ##Mulaik (1992) presents a cascade of examples
of bad language practice, each and all ignoring Moore's (1991)
admonitions (perhaps these two doctoral students never met during
their concurrent enrollment):

The ANOVA yielded a significant [sic] result... (p.
59)

This significant [sic] result can be seen in Table
3... (p. 59)

The ANOVA yielded a significant [sic] result... (p.
59)

The significant [sic] result can be seen... (p. 61)

...rated the counselor significantly [sic] higher...
(p. 61)

The ANOVA failed to yield a significant [sic]
result.... (p. 61)

The ANOVA indicated that the interaction.., was
significant [sic)... (p. 61)

The ANOVA failed to yield significant [sic]
results... (p. 63)

The interaction.., also failed to yield a
significant [sic] effect... (p. 63)

The results indicated a significant [sic] positive
relationship... (p. 68)

Second, too few dissertation researchers reported and
interpreted effect sizes. With respect to effect sizes, very few
of the students calculated either uncorrected (e.g., r2, R2, eta2)
or corrected (e.g., adjusted R2, omega2) effect sizes (see Snyder &
Lawson, 1993, for a very useful discussion). One commendable
exception was ##Stephenson (1992), who employed the Wherry
correction to "adjust" R2:

Due to the high number of predictors (21) and the
low number of cases (48), an estimation of the
shrinkage of R2 =.45 was calculated.... (p. 54)
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Regrettably, when the correction to the calculated R2 of 45%
was applied, to take into account the large number of variables
relative to the small number of subjects, the variance-accounted-
for effect size "shrunk" by 44.55 to .45%, i.e., became virtually
zero. Then ##Stephenson (1992) offers two conclusions that are,
respectively, (a) true and (b) difficult to understand:

Therefore, the generalization of the predictor
variables [sic] in the population is virtually
impossible. However, it may be possible to
generalize prediction in a referred population. (p.
54)

Third, the dissertation researchers did not empirically
evaluate the likely replicability of their results. Since science
is about the business of identifying results that replicate under
stated conditions, and since statistical significance tests do not
evaluate result replicability, it is especially important to
evaluate the likely replicability of one's results. Identifying
effects such as cold fusion is fun, and makes one popular at
conventions, only until no one else can replicate your discovery.

Replicability can be evaluated best by actually replicating
results. Alternatively, so-called "internal" replicability analyses
can be conducted, using the data in hand in a single study, and
applying analyses such as (a) cross-validation, (b) the jackknife,
and (c) the bootstrap. Thompson (in press) and Reinhardt (1992)
provide readable treatments of these strategies.

Fourth, too few dissertation researchers consider the effects
of sample size on statistical significance tests, either
analytically or in subjective interpretations of results. As noted
previously, sample size is a basic influence on statistical
significance tests. These effects can be directly evaluated using
the so-called "what if" analyses recommended by Thompson (1989a,
1993b) and Snyder and Lawson (1993). Even when sample size is not
considered in an empirical evaluation of statistical tests, at
least these influences should be considered in subjective
interpretations of results.

No dissertation students in these cohorts reported "what if"
analyses for their tests of statistical significance. However, at
least ##Mosteller (1991) acknowledged that these influences may
account for differences in statistical significance tests of the
same hypotheses across studies with different sample sizes:

The larger sample size used by Ward and Meyers
(1984) may have _contributed to more statistically
significant differences between correlations that
were found with Rusk et al. (1979). Ward and Meyers
(1984) used a sample size of 100, while Rusk et al.
(1979) used a sample size of 32. (p. 70)

However, even ##Mosteller's (1991) subjective interpretation on
this issue would have been improved by conducting empirical "what
if" analyses to determine specifically whether differences in
sample sizes could plausibly have accounted for the contradictory
results in these two studies, given their actual specific effect
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sizes and their actual n's.
Fifth, dissertation students frequently conduct inappropriate

statistical significance tests of reliability and validity
coefficients. Huck and Cormier (in press) explain why testing the
statistical significance of reliability coefficients is not
sensible:

When statist!.cally testing reliability coefficients,
however, we question whether much is gained simply
by saying that a test-retest correlation (or any
other kind of reliability coefficient) is
significantly different from zero. We say this
because it is possible for a researcher to have a
very low reliability coefficient turn out to be
[statistically] significant, so long as the sample
size is large enough.

Yet, just such tests are common within the dissertations studied
here.

For example, it was commendable that ##Spearman computed
reliability coefficients for the scores in that study, and
especially commendable that analysis of an unreliable set of scores
was "abandoned":

...[W]hen it was found that the currently-used
ratio-of-change method of scoring the CAT (Probe
Phase score/Acquisition Phase score) was unstable
(test-retest reliability [for data in the present
study] r = .38, 2 < .004), this score was abandoned.
(p. 117)

But the statistical significance test of this reliability
coefficient was unnecessary and inappropriate in this study. Note
that the reliability coefficient was statistically significant at
conventional alpha levels, even though ##Spearman (correctly)
decided that the coefficient was unacceptably low.

##Cattell (1992) did not apparently make an equally incisive
judgment to abandon an unreliable set of scores, perhaps because
the "test-retest correlation" coefficient in that study was
statistically significant, even though the two sets of scores
shared only 28.09% (r2 = .532= .2809) of their variance in common:

[The t]est-retest [reliability] correlation
[involving a five week delay] for subjective Social
Resource items on the Community Survey Questionnaire
was r = .53, 2 < .001. (p. 51)

Especially intriguing is the study by ##Bartlett (1992), who
reported that:

This [null] hypothesis stated that the correlation
between the GDS and the GDS-SF [Short Form] was
zero. A Pearson correlation [concurrent validity]
coefficient between the two scales was .94, 2<.001.
(p. 76)

A one-tailed statistical significance test of an r of roughly .94,
even at the a=.01 level of statistical significance, will be
statistically significant with an n as small as 5! Statistical
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tests of such coefficients in a measurement context clearly make
little sense.

Principle #3: Multivariate methods are usually vital in
behavioral research.

Two Reasons Why Multivariate Methods are Usually Vital. There
are two reasons why multivariate methods are so important in
behavioral research. These are elaborated by Fish (1988), and
elsewhere, and are summarized here.

First, multivariate methods limit the inflation of Type I
"experimentwise" error rates. It is clear that, "Whenever multiple
statistical tests are carried out in inferential data analysis,
there is a potential problem of 'probability pyramiding'" (Huberty
& Morris, 1._489, p. 306). And as Morrow and Frankiewicz (1979)
emphasize, it is also clear that in some cases the inflation of
experimentwise error rates can be quite serious.

Most researchers are familiar with "testwise" alpha. But while
"testwise" alpha refers to the probability of making a Type I error
for a given hypothesis test, "experimentwise" error rate refers to
the probability of having made a Type I error anywhere within the
study. When only one hypothesis is tested for a given group of
people in a study, "experimentwise" error rate will exactly equal
the "testwise" error rate. But when more than one hypothesis is
tested in a given study with only one sample, the two error rates
may not be equal.

Given the presence of multiple hypothesis tests (e.g., two or
more dependent variables) in a single study with a single sample,
the testwise and the experimentwise error rates will still be equal
only if the hypotheses (or the dependent variables) are perfectly
correlated. Logically, the correlation of the dependent variables
will impact the experimentwise error rate, because, for example,
when one has perfectly correlated hypotheses, in actuality, one is
still only testing a single hypothesis. Thus, two factors impact
the inflation of experimentwise Type I error: (a) the number of
hypotheses tested using a single sample of data, and (b) the degree
of correlation among the dependent variables or the hypotheses
being tested.

When the dependent variables or hypotheses tested using a
single sample of data are perfectly uncorrelated, the
experimentwise error rate (am) can be calculated. This is done
using what is called the Bonferroni inequality (Love, 1988):a = 1 - (1 - arw)K,
where k is the number of perfectly uncorrelated hypotheses being
tested at a given testwise alpha level (anv).

For example, if three perfectly uncorrelated hypotheses (or
dependent variables) are testd using data from a single sample,
each at the arw=.05 level of statistical significance, the
experimentwise Type I error rate will be:

avw = 1 - (1 - arw)K
= 1 - (1 -
= 1 - ( .95 )3
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= 1 - (.95(.95)(.95))
= 1 ( .9025 (.95))
= 1 - .857375

aom = .142625
Thus, for a study testing three perfectly uncorrelated

dependent variables, each at the arw=.05 level of statistical
significance, the probability is .142625 (or 14.2625%) that one or
more null hypotheses will be incorrectly rejected within the study.
Most unfortunately, knowing this will not inform the researcher as
to which one or more of the statistically significant hypotheses
is, in fact, a Type I error. Table 1 presents these calculations
for several conventional arw levels and for various numbers of
perfectly uncorrelated dependent variables or hypotheses.

INSERT TABLE 1 ABOUT HERE.

But these concepts are too abstract to be readily grasped.
Happily, Witte (1985, p. 236) explains the two error rates using an
intuitively appealing example involving a coin toss. If the toss of
heads is equated with a Type I error, and if a coin is tossed only
once, then the probability of a head on the one toss (aTI,v), and of
at least one head within the set (aEw) of one toss, will both equal
50%.

If the coin is tossed three times, rather than only once, the
"testwise" probability of a head on each toss is still exactly 50%,
i.e., are.50 (not .05). The Bonferroni inequality is a literal
fit to this example situation (i.e., is a literal analogy rather
than a figurative analogy), because the coin's behavior on each
flip is literally uncorrelated with the coin's behavior on previous
flips. That is, a coin is not aware of its behavior on previous
flips and does not alter its behavior on any single flip given some
awareness of its previous behavior.

Thus, the "experimentwise" probability (aEw) that there will
be at least one head in the whole set of three flips will be
exactly:

am = 1 - (1 -
1 (1 -
1 ( .50 )3
1 - (.50(.50)(.50))
1 - ( .2500 (.50))
1 - .125000

clEW = .875000
Table 2 illustrates these concepts in a more concrete fashion.

There are eight equally likely outcomes for sets of three coin
flips. These are listed in the table. Seven of the eight equally
likely sets of three flips involves one or more Type I error,
defined in this example as a heads. And 7/8 equals .875000, as
expected, according to the Bonferroni ineluality.

INSERT TABLE 2 ABOUT HERE.
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Researchers control "testwise" error rates by picking small
values, usually 0.05, for the "testwise" alpha. "Experimentwise"
error rates can be limited by employing multivariate statistics to
test omnibus hypotheses as against lots of discrete univariate
hypotheses.

Paradoxically, although the use of s:7veral univariate tests in
a single study can lead to too many null hypotheses being
spuriously rejected, as reflected in inflation of the
"experimentwise" error rate, it is also possible that the failure
to employ multivariate methods can lead to a failure to identify
statistically significant results which actually exist. Fish (1988)
and Maxwell (1992) both provide data sets illustrating this equally
disturbing possibility. This means that the so-called "Bonferroni
correction" is not a satisfactory solution to this problem.

The "Bonferroni correction" involves using a new testwise
alpha level, ally*, computed, for example, by dividing arw by the
number of k hypotheses in the study. This approach attempts to
control the experimentwise Type I error rate by reducing the
testwise error rate level. However, the use of the "Bonferroni
correction" does not address the second (and more important) reason
why multivariate methods are so often vital, and so even with this
correction univariate methods usually still remain unsatisfactory.

Multivariate methods are also often vital in behavioral
research because, second, multivariate methods best honor the
rsality to which the researcher is purportedly trying to
generalize. As noted previously, since statistical significance
testing and error rates may not be the most important aspect of
research practice (Thompson, 1989a, 1993b), this second reason for
employing multivariate statistics is actually the more important of
the two grounds for using these methods.

Implicit within all analyses is an analytic model. Each
researcher also has a presumptive model of what reality is believed
to be like. It is critical that our analytic models and our models
of reality match, otherwise our conclusions will be invalid. It is
generally best to consciously reflect on the fit of these two
models whenever we do research. Of course, researchers with
different models of reality may make different analytic choices,
but this is not disturbing since analytic choices are
philosophically driven anyway (Cliff, 1987, p. 349).

But Thompson (1986, p. 9) notes that the reality about which
most researchers wish to generalize is usually one "in which the
researcher cares about multiple outcomes, in which most outcomes
have multiple causes, and in which most causes have multiple
effects." Given such a model of reality, it is critical that the
full network of all possible relationships be considered
simultaneously within the analysis.

Conceptually, dependent variables can interact in a
multivariate analysis, just as independent variables can interact
in a multi-way ANOVA. This means that one can obtain statistically
significant and large effect sizes in multivariate analyses of the
same data yielding no statistically significant or large effect
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sizes with univariate analyses, as Fish's (1988) example data
illustrate. Thus, Tatsuoka's (1973, P. 273) previous remarks remain
telling:

The often-heard argument, "I'm more interested in
seeing how each variable, in its own right, affects
the outcome" overlooks the fact that any variable
taken in isolation may affect the criterion
differently from the way it will act in the company
of other variables. It also overlooks the fact that
multivariate analysis--precisely by considering all
the variables simultaneously--can throw light on how
each one contributes to the relation.AriyarsiLjairgatacor. In

classical ANOVA, post hoc comparisons are necessary to determine
which groups differ if (a) a statistically significant omnibus test
is isolated and (b) there are more than two groups involved in the
effect. But in multivariate analyses, such as classical MANOVA,
when there is a statistically significant omnibus effect post hoc
tests will be necessary to address either or both of two questions:
(1) which groups differ?, and (2) on which dependent variables do
groups differ?. Thus, even when there are only two groups in a
multivariate analysis, a statistically significant omnibus result
will still require post hoc exploration to address the second
question, (2) on which dependent variables do groups differ?.

Too often researchers use MANOVA to test the full network of
variable relationships, and if they obtain statistically
significant results, then employ univariate ANOVAs or t-tests to do
the post hoc work. This is the so-called "protected F-test"
analytic approach.

The "protected F-test" analytic approach is inappropriate and
wrong-headed. The multivariate analysis evaluates multivariate
synthetic variables, while the univariate analysis only considers
univariate latent variables. Thus, univariate post hoc tests do
not inform the researcher about the differences in the multivariate
latent variables actually analyzed in the multivariate analysis.

Understandably, Borgen and Seling (1978) argue:
When data truly are multivariate, as implied by the
application of MANOVA, a multivariate follow-up
technique seems necessary to "discover" the
complexity of the data. Discriminant analysis is
multivariate; univariate ANOVA is not. (p. 696)

It is illogical to first declare interest in a multivariate omnibus
system of variables, and to then explore detected effects :I", this
multivariate world by conducting non-multivariate tests!

Examples of Bad Practice Within Dissertations. Three types of
bad practice emerged as regards multivariate-related analyses in
dissertations. First, some students incorrectly employed
univariate tests as post hoc tests following mu/tivariate analyses.
For example, ##Horst (1991) reported that:

The multivariate analysis of variance (MANOVA)
indicated a significant [sic] difference between
child molesters and the control qroup in family-of-
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origin characteristics (F(2,59)=5.69, R<0.0055,
using Wilks' criterion). Separate univariate [post
hoc] analyses indicated no significant [sic] effect
for the measure of adaptability (F(1,61)=1.58,
R<0.2142). (p. 30)

Secondly, some students incorrectly interpreted their
multivariate results. For example, a very common error is using
the multiva7ziate lambda value to derive a test statistic, and to
then incorrectly interpret the test as evaluating only a single
multivariate effect or function.

In fact, lambda is an omnibus effect that is sensitive to all
the effects or functions in a given analysis, and not to a single
effect or function (Thompson, 1984, pp. 19-20). For example, in
##Morris's (1992) study, two perfectly uncorrelated multivariate
effects or functions were computed across each of four groups of
subjects. Yet, Morris (1992, pp. 101-102) incorrectly
interpreted the test of lambda as only being a test of the first
multivariate effect (i.e., the first canonical correlation
coefficient) in each of four different sets of multivariate
analyses.

Morris (1992) also made a second, unrelated error. The
student presumed that the first function or equation in each of the
four sets of analyses were related to each other across the four
groups. There was no basis whatsoever for this assumption.

Multivariate functions or equations are akin to factors in
factor analysis. Across data sets the same functions, representing
given constructs, functions, or factors, may appear in a different
order within given analyses. One does not care that anxiety, for
example, defines Function I in one group, but defines Function II
in another group. What is generally important is that the same
constructs appear across analyses, regardless of ordering.

##Morris (1992) merely presumed that Function I in all four
analyses tapped the same construct. No evidence that these
functions were comparable was presented. It is just as likely that
across the four groups ##Morris (1992, pp. 101-102) was comparing
the canonical correlation coefficients of incongruent functions or
factors, i.e., comparing apples and prunes and tangerines rather
than apples, apples, and apples.

But by far the most common error in the dissertations that
were examined involved students using univariate methods when
multivariate methods were 're appropriate. The notions of Type I
experimentwise error rate 1.._lation, previously explored, bear upon
this discussion.

##Stephenson (1992, pp. 47-49) reported 28 one-way ANOVAs,
plus other statistical significance tests, all for a sample of n=60
cases of data. #iThurstone (1991) was more ambitious, and
conducted 60 t-tests. ##Burt (1991) was more ambitious still, and
conducted 60 chi-square tests and 15 t-tests, all at aTw=.05.

But the lifetime prize for inflating Type I experimentwise
error rate absolutely must go to ##Schmid (1991). ##Schmid's
dissertation consisted of 277 pages, 143 (51.2%) of which alone
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consisted of appended tables reporting univariate tests. ##Schmid's
analyses included many tests done on data at the item level, i.e.,
with dependent variables consisting of responses to a single
question (one wonders what the reliability of measures one item in
length might have been). ##Schmid reported multi-way factorial
ANOVAs and two multi-way factorial ANCOVAs for various single-item
dependent variables and other dependent varilbles, all for a grand
total of at least 1,017 univariate tests!

Principle #4: Result interpretations should not be based only on
standardized weights.

All classical parametric analyses are correlational and use
least squares weights, such as 0 weights, to optimize prediction
(cf. Thompson, 1991a). However, many researchers do not recognize
that such is the case, because most computer par:kages do not print
the least squares weights that are actually invoked in ANOVA, for
example, or when t-tests are conducted. Thus, some researchers
unconsciously presume that such methods do not invoke optimal
weighting systems.

Too many researchers presume that statistical packages only
print results that are necessary for correct interpretation. Too
many researchers presume that statistical packages print all the
results that are necessary for correct interpretation.

Notwithstanding misconceptions to the contrary, all parametric
analyses do invoke standardized weights similar to the beta (0)
weights generated in regression. As Thompson (1992a) noted,

These weights are all analogous, but are given
different names in different analyses (e.g., beta
weights in regression, pattern coefficients in
factor analysis, discriminant function coefficients
in discriminant analysis, and canonical function
coefficients in canonical correlation analysis),
mainly to obfuscate the commonalities of [all]
parametric methods, and to confuse graduate
students. (pp. 906-907)

If all standardized weights across analytic methods were called by
the same name (e.g., beta weights), then students and other
researchers might (correctly) conclude that all analyses are part
of the same general linear model (Baggaley, 1981, p. 129; Bagozzi,
1981; Fornell, 1978, p. 168; Fan, 1992; Knanp, 1978).

A variable given a standardized weight of zero is being
obliterated by the multiplicative weighting process, indicating
either that (a) the variable has zero capacity to explain
relationships among the variables or that (b) the variable has some
explanatory capacity, but one or more other variables yield the
same explanatory information and are arbitrarily (not wrongly, just
arbitrarily) receiving all the credit for the variable's predictive
power. On the other hand, as the standardized weights for
variables deviate more from zero, these variables have more power
to explain relationships among the variables.

Because a variable may be assigned a standardized
multiplicative weight of zero when (b) the variable has some
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explanatory capacity, but one or more other variables yield the
same explanatory information and are arbitrarily (not wrongly, just
arbitrarily) given all the credit for the variable's predictive
power, it is essential to evaluate other coefficients in addition
to standardized weights during interpretation, to determine the
specific basis for the weighting. Just as it would be incorrect to
evaluate predictor variables in a regression analysis only by
consulting beta weights (Cooley & Lohnes, 1971, p. 55; Thompson &
Borrello, 1985), it would be inappropriate in multivariate analyses
to only consult standardized weights during result interpretation
(Borgen & Seling, 1978, p. 692; Kerlinger & Pedhazur, 1973, p. 344;
Levine, 1977, p. 20; Meredith, 1964, p. 55).

Examples of Bad Practice Within Dissertations. ##Stephenson
(1992, p. 53) provides an example of bad practice in this area.
##Stephenson reported and interpreted only the standardized
discriminant function coefficients from a discriminant function
analysis. Absent the structure *coefficients, it is impossible to
know whether the variables in this study with smalle:: absolute
standardized function coefficients (a) were relatively poorer
predictors or (b) were arbitrarily deprived of credit for
predictive power shared with other predictor variables.

But ##Gorsuch (1992) represents the most dramatic example of
bad practice as regards misinterpreting only weights. In a
multiple regression analysis, ##Gorsuch predicted a single
dependent variable using scores on five predictor variables.

In Chapter IV ##Gorsuch (1992) incorrectly interpreted the
standardized weights in the analysis, i.e., the 0 weights, as
evaluating the relationship (i.e., the r) between the predictors
and the dependent variable:

Surprisingly, emotion script knowledge was
negatively related [0 = -.40] to sibling caregiving
behavior. (p. 67)

Again, in Chapter V, ##Gorsuch (1992) repeated the same error:
One of the most interesting findings of the study
was that affective perspective-taking ability [0 =
+.26] but not emotion script knowledge [0 = -.40]
was positively associated with sibling caregiving
behavior. (pp. 74-75)

The 0 weights in a regression analysis are the correlation
coefficients between the respective predictors and the dependent
variable only when those predictors that are correlated with the
dependent variable are perfectly uncorrelated with each other.
Such was not the case in this study.

Table 3 presents the regression coefficients in the manner in
which they should have been presented by ##Gorsuch (1992, p. 66).
The Table includes the structure coefficients so important in most
data analytic situations (Thompson & Borrello, 1985). In
regression analyses, to avoid result misinterpretation, both
standardized weights and structure coefficients, or both
standardized weights and correlation coefficients between the
predictor variables and the dependent variable, should always be
presented together.

20

22



INSERT TABLE 3 ABOUT HERE.

At a subsequent point, ##Gorsuch (1992) happily correctly
inferred that this emotion script predictor variable had (a) the
largest absolute value 0 weight and (b) the smallest absolute r
with the dependent variable, because the variable was a pure
suppressor:

The negative association between emotion script
knowledge and total sibling caregiving (0 = -.40]
should also be interpreted cautiously because it may
be a statistical artifact of the regression
analysis. Although emotion script knowledge was
correlated with the predictor variables (sic], the
zero-order correlation between emotion script
knowledge and caregiving .00] was not
significant. This suggests that emotion script
knowledge may have acted as a suppressor variable in
the regression equation. (p. 76)

Less happily, ##Gorsuch (1992) seemed to think that this
"statistical artifact" was peculiar, unusual, and perhaps therefore
less noteworthy. In fact, suppression occurs with some frequency,
and is an important and real dynamic within both reality and our
analytic models (see Horst, 1966, p. 355; Pedhazur, 1982, p. 104).

Principle #5: Intervally-scaled variables should generally not be
converted to the nominal level of scale.

In a seminal article, Cohen (1968, p. 426) noted that ANOVA
and ANCOVA are special cases of multiple .regression analysis, and
argued that in this realization "lie possibilities for more
relevant and therefore more powerful exploitation of research
data." Since that time researchers have increasingly recognized
that conventional multiple regression analysis of data as they were
initially collected (no conversion of intervally scaled independent
variables into dichotomies or trichotomies) does not discard
information or distort reality, and that the "general linear model"

...can be used equally well in experimental or non-
experimental research. It can handle continuous and
categorical variables. It can handle two, three,
four, or more independent variables... Finally, as
we will abundantly show, multiple regression
analysis can do anything the analysis of variance
does--sums of squares, mean squares, F ratios--and
more. (Kerlinger & Pedhazur, 1973, p. 3)

Discarding variance is not generally good research practice
(Thompson, 1988b). As Kerlinger (1986, p. 558) explains,

...partitioning a continuous variable into a
dichotomy or trichotomy throws information away...
To reduce a set of values with a relatively wide
range to a dichotomy is to reduce its variance and
thus its possible correlation with other variables.
A good rule of research data analysis, therefore,
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is: Do not reduce continuous variables to
partitioned variables (dichotomies, trichotomies,
etc.) unless compelled to do so by circumstances or
the nature of the data (seriously skewed, bimodal,
etc.).

Kerlinger (1986, P. 558) notes that variance is the "stuff" on
which all analysis is based. Discarding variance by categorizing
intervally-scaled variables amounts to the "squandering of
information" (Cohen, 1968, p. 441). As Pedhazur (1982, pp. 452-453)
notes,

Categorization of attribute variables is all too
frequently resorted to in the social sciences.... It
is possible that some of the conflicting evidence in
the research literature of a given area may be
attributed to the practice of categorization of
continuous variables.... Categorization leads to a
loss of information, and consequently to a less
sensitive analysis.

One reason why, researchers may be prone (a) to categorizing
continuous variables and also (b) to overuse of ANOVA is that some
researchers unconsciously and erroneously associate ANOVA with the
power of experimental designs. As Thompson (1993a) noted,

Even most experimental studies invoke intervally
scaled "aptitude" variables (e.g., IQ scores in a
study with academic achievement as a dependent
variable), to conduct the aptitude-treatment
interaction (ATI) analyses recommended so
persuasively by Cronbach (1957, 1975) in his 1957
APA Presidential address. (pp. 7-8)

Thus, many researchers employ interval predictor variables, even in
experimental designs, but these same researchers too often convert
their interval predictor variables to nominal scale merely to
conduct OVA analyses.

It is true that experimental designs allow causal inferences
and that ANOVA is appropriate for many experimental designs.
However, it is not therefore true that doing an ANOVA makes the
design experimental and thus allows causal inferences.

Humphreys (1978, p. 873, emphasis added) notes that:
The basic fact is that a measure of individual
differences is not an independent variable [in a
experimental design], and it does not become one by
categorizing the scores and treating the categories
as if they defined a variable under experimental
control in a factorially designed analysis of
variance.

Similarly, Humphreys and Fleishman (1974, p. 468) note that
categorizing variables in a nonexperimental design using an ANOVA
analysis "not infrequently produces in both the investigator and
his audience the illusion that he has experimental control over the
independent variable. Nothing could be more wrong." Since all
analyses are correlational, and it is the design and not the
analysis that yields the capacity to make causal inferences, the
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practice of converting intervally-scaled predictor variables to
nominal scale so that ANOVA and other OVAs (i.e., ANCOVA, MANOVA,
MANCOVA) can be conducted is inexcusable, at least in most cases.

As Cliff (1987, P. 130, emphasis added) notes, the practice of
discarding variancN on intervally scaled predictor variables to
perform OVA analyses creates problems in almost all cases:

Such divisions are not infallible; think of the
persons near the borders. Some who should be highs
are actually classified as lows, and vice versa. In
addition, the "barely highs" are classified the same
as the "very highs," even though they are different.
Therefore, reducing a reliable variable to a
dichotomy (or a trichotomy) makes the variable more
unreliable, not less.

In such cases, it is the reliability of the dichotomy that we
actually analyze, and not the reliability of the highly-reliable,
intervally-scaled data that we originally collected, which impact
the analysis we are actually con,ucting.

Examples of Bad Practice Within Dissertations. The seemingly
automated mutilation of intervally-scaled independent or predictor
variables was fairly common within the two cohorts of Ph.D.
dissertations examined here. Three patterns emerged within these
studies.

First, some students employed sample-specific centiles as
cutpoints to create equal-sized groups, and were apparently
oblivious to the fact that such practices /imit result
generalizability across studies. When researchers working within
an area all use their own sample-specific medians, for example, to
create balanced group sizes, then usually each and every researcher
is using a different cutoff score to define group membership.

Then the results across these studies are no longer directly
comparable. Where researchers obtain divergent restlts, the
divergence may be an artifact of using different cutoffs. Where
findings are similar across studies, again one does not know if the
similarities across results are artifactual or real. This makes the
cumulation of knowledge across such studies very difficult.

##Fisher (1992) provides an example of these bad practices:
For this analysis, low machismo scores were defined
as those at or below the 50th percentile; high
scores were those above the 50th percentile. (p.
113)

##Kaiser (1991) provides another example, noting that "Median
splits were performed on three of the hypotheses" (p. 98).

Second, where cutoffs other than centiles are employed, the
cutoffs should be explicitly justified on some empirical or
theoretical basis. ##Cattell (1992) provides an example of the
violation of this principle. Scores on the 30-item, dichotomously-
scored, Geriatric Depression Scale/Amended were used in the study,
and potentially ranged from 0 to 30. ##Cattell (1992) decided,
without any explicit justification, that "A score of 11 or above
placed subjects in the depressed group" (p. 45).

Perhaps other researchers have consistently used this score as
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a cutoff. Perhaps the score was the median in a normative sample
of the general population. Perhaps there was a theoretical
rational( for the choice. We simply don't know why this choice was
made, ana therefore what the implications of the choice may be.

Third, and most importantly, the impacts of converting scales
of measurement on the score reliability (and other features) of the
data are underrecognized within dissertation research. Some of
these impacts have been previously described.

##Mulaik (1992) provides an example. It was most commendable
that ##Mulaik (1992) computed some reliability estimate for the
scores in that sample:

A reliability analysis was computed for the total
scores from the Christian Religiosity Scale [in the
present study]. The standardized item alpha was
computed to be .945. (p. 58)

But then ##Mulaik converted these generally reliable scores
into a dichotomy for the purposes of substantive analyses.

This [present] study also used a [sample-specific]
median split to classify the students into high or
low Christian religiosity categories. (p. 51)

The reliability of the newly mutilated scores was no longer .945,
and the reliability of the scores actually analyzed, i.e., the
mutilated scores, was unreported by ##Mulaik (1992).

Systematic variance is what makes scores reliable. Scores
with more total variance :end to have more systematic variance.
Mutilating intervally-sci..ied scores into nominal categories usually
reduces total variance, usually by a lot, and thus also usually
mutilates the reliability of the scores that are actually analyzed.

But taking a variable with ,rery little total variance and
apparently little reliability, and then trichotomizing the
variable, makes the least sense of all. ##Lawley (1992) took
scores on a variable named PNID, with a mean of 1.18 and a standard
deviation of 0.70 (p. 59), and reported that:

PNID scores of .65 or below were included in the
bottom third while scores of 1.09 or above were
included in the top third. (p. 55)

It is especially interesting that the highest score on this
variable in ##Lawley's (1992) study was apparently 3.43 (p. 57).
As ##Lawley (1992) acknowledged, the PNID authors themselves
recommend a cutoff score of 4 for classifying subjects as being
severely depressed. Thus, the highest score in ##Lawley's (1992)
entire sample appeared to less than the minimum cutoff score
suggested by the test's cral authors!

An Ancillary Comment on till Value of Confession. Dissertation
authors apparently sometimes feel that confession of methodological
errors either absolves guilt or at least is emotionally cathartic.
For example, ##Kaiser (1991) noted that:

These [median splits for three hypotheses] are of
course less refined than other techniques.... Now
that significant [sic] relationships between social
anxiety and other constructs have been tIncovered for
children [using mutilated variables], use of

24

26



procedures such as regression analyses [in future
studies without mutilated variables] should increase
what is known about these re/ationships. (p. 98)

##Mulaik (1992) expressed similar sentiments:
There were no differences found between those who
rated high on the Christian Religiosity Scale and
those who rated low. This result was rather
surprising.... The failure to find significance
[sic] with this variable may be due to the fact that
in this study it was [measured at interval level but
then mutilated and] used as a dichotomous variable
and significance [sic] may have been found if the
variable was [kept] continuous. (p. 74)

While acknowledging what would be better practice is nice,
acknowledging one's errors while at the same time committing them
seems somewhat disingenuous. Confession during the act of
committing the error is not a reasonable substitute for avoiding
the error itself.

Principle #6: Covariance corrections are generally either
unnecessary or ineffective, and should therefore
usually be avoided.

Although ANCOVA is used by some researchers even in studies
lacking randomized assignments to groups, empirical studies of
research practice indicate that ANCOVA is not frequently employed.
This is partly because important ANCOVA methodological assumptions
are most likely to be met when researchers do random experimental
assignment, and random experimental assignment is rare (Welch &
Walberg, 1974, p. 113). Analysis of covariance (ANCOVA) has been
used in about four percent of the recently published research
(Elmore & Woehlke, 1988; Goodwin & Goodwin, 19135; Willson, 1980).

ANCOVA does accurately adjust for pretreatment group
differences, but only conditionally--when important methodological
assumptions are met. Huitema (1980) and Loftin and Madison (1991)
present accessible summaries of the relevant conditions.

what ANCOVA Actually Is. As explained elsewhere (Thompson,
1992b), conceptually, ANCOVA first "residualizes" the dependent
variable of all the variance that is linearly predictable with the
covariate variable(s). Then the resulting "error" or "e" scores
are used as the new dependent variable in an ANOVA.

The way the residualization is accomplished is by first using
regression to predict the dependent variable with the covariate (s) ,

completely ignoring, for the moment, the fact that subjects may be
in different groups or cells. Thus, Figure 1 portrays the
relationship between a dependent variable and a single covariate,
and the figure does not invoke the concept of groups.

INSERT FIGURE 1 ABOUT HERE

Regression analysis employs two types of weights: an additive
constant ("a") applied to every case and a multiplicative constant
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("b") applied to the predictor variable score (X) for each of the
i subjects. This yields a predicted variable score for each person,

that is the optimal prediction of each subject's actual score
on the dependent variable, Y1. Thus, the weighting system takes the
form of a regression equation:,,

Yi <---- Yi = a + b (X)
The error of the prediction forAeach person, e, is:

ei = Yi - Yi
As can be seen by examining Figure 1, since their areas do not
overlap, for a given data set the e and the scores aKe always
perfectly uncorrelated (r = 0), and so are the e and the Y scores.
Conceptually, ANCOVA is nothing more that an ANOVA done on these e
scores, i.e., on the residualized Y scores.

The "Homo eneit of Re ession" Assum tion. It would be
wonderful if this "statistical correction" for pre-existing group
differences could always be used. Some researchers incorrectly
believe that ANCOVA has just such magic, and

can "save" a shoddy experiment [with major, real,
pre-existing group differences]. So-ne researchers
overuse this method as in the instance of a person I
once overheard asking of a researcher, "Where is
your analysis of covariance?"--the understanding in
his department was that it is always used in
experimentation. (McGuigan, 1983, p. 231)

Unfortunately, there is no more magic in statistics than there
is other aspects of life. If the groups are different (e.g., a
compensatory education group and a group not eligible for
compensatory education) at the start of a study, ANCOVA cannot
always be used to statistically adjust for these pre-existing
differences.

As might be logically expected, what is required to use a
single regression equation to compute the e scores is that this
single equation is a reasonable one for the subjects in each of the
groups or cells in the study, considered separately. More
specifically, what is actually important is that the B weights for
the covariate, computed separately in each group, are reasonably
comparable. Statisticians call this the "homogeneity of
regression" assumption, because this phrase sounds fancier than
saying simply the "equality of the B weights" assumption. Quite
simply, for a single covariate situation it is only reasonable to
use a single B weight to compute e scores for the subjects in all
the groups if the B weights in each group are about the same and,
thus, about the same as the single B weight computed ignoring group
membership.

The consequences of failing to meet this assumption will be
discussed momentarily. However, it is worth noting that, unless
the groups were created through random assignment, the B weight
relationships between the covariate and the dependent variable
often are not equivalent across the groups.

For example, when the covariate is an achievement pretest
score, and the dependent variable is an achievement posttest, the
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regression equation drawn in the scattergram for a group of
subjects actually represents the learning curve for the group. If
one group consists of children eligible for a compensatory
intervention based on low pretest scores, and the comparison group
consists of children not eligible for the intervention, we would
not normally expect their pretest averages or their learning curves
to be comparable. Thus, when we most wish to have statistical
magic to equate divergent groups, that is exactly when the ANCOVA
correction is least likely to be useful.

ANCOVA uses a single equation that may differ from the
regression lines of All the groups in the analysis when the
assumption of homogeneity of regression is not met. For example,
if the regression line slopes upward at a 75 degree angle for one
group, and upward at a 25 degree angle for the other group, and an
average or 50 degree regression line (i.e., equation) is used for
both groups, both groups' dependent variables scores will be
"corrected" inappropriately, because a 50 degree regression line is
incorrect for both groups. Too few researchers understand the
consequences of such inappropriate ANCOVA corrections.

In the 1963 Handbook of Research on Teaching, Campbell and
Stanley wrote an influential chapter on experimental and quasi-
experimental design. Campbell and Stanley (1963, p. 193) suggested
that "the use of this more precise analysis (e.g., ANCOVA) would
seem highly desirable." They also argued that "covariance analysis
and blocking on 'subject variables' such as prior grades, test
scores, parental occupation, etc., can be used, thus increasing the
power of the significance test', (p. 196).

Campbell and a colleague subsequently issued what appeared to
be a recant noting that the decision to blithely use statistical
control when the homogeneity of regression assumption is not met
leads to "tragically misleading analyses" that actually "can
mistakenly make compensatory education look harmful" (Campbell &
Erlebacher, 1975, p. 597). Similarly, Cliff (1987, p. 273) argues
that, "It could be that the relationship between the dependent
variable and the covariate is different under different treatments.
Such occurrences tend to invalidate the interpretation of the
simple partial correlations described above."

The "Statistical Power" Issue. Some researchers argue that
ANCOVA increases statistical power against Type II error, by
reducing the "error" portion of the depending variable, without
changing the variance (sums-of-squares) attributable to the other
independent variables (i.e., the ways or factors in the study).
This happens, but only when the covariate is correlated with the
dependent variable and is uncorrelated (hopefully perfectly
uncorrelated) with the independent variables.

When the covariate is related to the treatment variable, use
of the covariance correction will alter the effects attributed to
the treatment itself. For example, one might have a very effective
intervention that looks completely ineffectual, because the
covariate is given credit for the variance that would correctly
otherwise be attributed to the treatment variable. Here the ANCOVA
correction actually destroys power against Type II error.
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siginalmuLUuLlIcarax_i±gs., Some researchers believe that using
multiple covariates is OK, or even desirable. This is classical
"more is always better" thinking. Unfortunately, there are problems
with this "thinking".

Actually, when there are multiple covariates, the regression
equation for the statistical adjustment simply has more predictors,
and associated B weights. But there is an inherent dilemma in
using covariance corrections, especially when multiple covariates
are used. The problem is conceptual, and is far too infrequently
recognized because sometimes researchers don't think reflectively
about their analytic choices, and miss the forest for seeing the
trees.

Put simply, covariance corrections may result in the analysis
of a dependent variable that is no longer interpretable. As
Thompson (1992b, pp. xiii-xiv) notes, "Statistical corrections
remove parts of the dependent variable, and then analyze whatever's
left [i.e., the e scores], even if whatever's left no longer makes
any sense. At some point we may no longer know what it is we're
analyzing". As Thompson (1991b, p. 508) suggests,

Consider an actual [reading] dissertation (see
Thompson, 1988[a]) in which the posttest achievement
variable was "corrected" using four pretest
achievement subtests. What was the posttest
achievement variable after this correction?...
[W]hatever it was, this student probably wasn't
analyzing achievement after this nuclear weapon
covariance correction.

ANCOVA analyzes e scores, "not observed Y scores. It becomes
increasingly hard to interpret the e scores we're analyzing as we
employ more covariates. As Cliff (1987, p. 278) explains, "since
this [statistical correction] is really a form of regression,
inferences become slipperier as the variables [covariates]
increase" in number. Here, more is usually not better, and even
one may be too much.

Examples of Bad Practice Within Dissertations. ANCOVA was
used in several of the Ph.D. dissertations examined here. For
example, ##Huberty (1991) reported that,

State anxiety was covaried in order to remove it's
[sic] influence. (p. 67)

Similarly, ##Kaiser (1991) reported that,
The social desirability by LOC [locus of control]
ANCOVA resulted in a significant [sic] main effect
on social anxiety for social desirability. (p. 78)

##Spearman (1991) went for the prize, and performed four MANCOVAs
and three ANCOVAs, one with two covariates.

##Lawley (1992), like most students, employed ANCOVA with
groups that were not created using random assignment. ##Lawley
(1992) explained,

To control for differences in academic ability,
multivariate analysis of covariance (MANCOVA) was
performed, with achievement variance removed. The
pattern of results was unchanged. (p. 61)
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##Schmid (1991) rationalized this analytic selection thusly:
The purpose of the covariates was to increase the
statistical power in analyzing the findings.... (p.
49)

The importance of the ANCOVA assumptions has been previously
explained. Neither ##Huberty (1991), not ##Kaiser (1991), nor
##Spearman (1991), nor ##Lawley (1992), nor ##Schmid (1991),
explicitly evaluated whether they meet this assumption.

Principle #7: Stepwise methods should not be used.
Stepwise methods are used with some frequency in behavioral

research, but perhaps mist frequently in Ph.D. dissertations.
Stepwise discriminant analysis, and especially stepwise multiple
regression analysis, both appear to be popular.

But there are serious problems with these methods, at least in
almost all applications. These are summarized in Snyder (1991), in
Huberty (1989), and in Thompson's (1989b) editorial titled, "Why
won't stepwise methods die?". Therefore, these problems are only
briefly summarized here. This summary is couched in the context of
a regression analysis, but the discussion fits equally well to
other stepwise applications.

Stepwise methods typically are implemented in a so-called
forward selection mechanism. A researcher has a set of Predictors.
The predictor that explains the most variance in the criterion
variable (i.e., has the largest r2 with the criterion variable
scores) is entered in the first step of the analysis.

In the next step of analysis, the predictor next entered is
not necessarily the predictor with the second largest r2 with the
criterion variable. Rather, the general question then addressed at
each step is, "which additional single predictor will explain the
largest portions of the criterion variable's variance, not counting
any variance already explained by previously entered predictors?".

For example, predictor X1 might have the largest r2 with Y,
i.e., r2 = 50%. Predictor X2 might have the second largest r2 with
Y, i.e., r2 = 49%. Predictor X3 might have the smallest r2 with Y,
i.e., r2 = 5%. Predictor X2 would definitely be entered in the
first step of the analysis. But if the 49% of the variance
explained by X2 is all within the 50% of the variance already
explained by XI, X2 will not be entered in the second step. If X3
explains any the Y variance that is unexplained by XI, then.; will
be entered in the second step of analysis.

There are three major problems with conventional applications
of these methods. First, stepwise methods do not correctly
identify the best set of predictors of a given predictor variable
set size, k. For example, if one has 30 predictors variables, and
does three steps of analysis, it is possible that the best
predictor set of size k=3 will include none of the three variables
selected after three steps of stepwise analysis of the same data.

This may seem counter-intuitive, but upon reflection, it
should be easy to see that in fact stepwise analysis does not seek
to identify the best predictor set of a certain size. Stepwise
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simply does not ask the question, "What is the best predictor set
of a given size?" This question requires simultaneously
considering all the combinations of the variables that are possible
for a given set size. Stepwise analysis never simultaneously
considers all the combinations of the predictor variables. Rather,
at each step stepwise analysis takes the previously entered
variables as a given, and then asks which one change in the
predictor set will most improve the prediction.

Second, stepwise methods tend to yield results that are
sample-specific and do not generalize well to future studies. This
is because stepwise requires a linear sequence of decisions, each
of which is contingent upon the previous decisions in the sequence.
This is very much like walking through a maze--an incorrect
decision at any point will then lead to a cascade of subsequent
decisions that each may themselves be wrong.

Stepwise considers all differences of any magnitudes between
variance explained by the predictor variables to be exact and true.
Since there are usually numerous combinations of the predictor
variables, and credit for variance explained for each partition of
the predictors may be influenced by sampling error, any small
amount of sampling error anywhere in a single predictor variable
can lead to disastrous choices in the linear sequence of stepwise
selection decisions.

In the previous example, perhaps even though all other results
in the sample are exactly true in the population, as reflected in
the true population parameters, perhaps X2 in the population
explains 50.000001% of the variance in Y. The variable that in the
sample won't be entered at all should have been entered first.
This may be why Cliff (1987, pp. 120-121) suggested that, "a large
proportion of the published research results using this method
probably present conclusions that are not supported by the data."

Third, most computer packages (and therefore most doctoral
students) employ the incorrect degrees of freedom in their
statistical significance tests for stepwise methods, thus
systematically always inflating the likelihood of obtaining
statistically significant results. Degrees of freedom are like
coins that we can spend to investigate what's going on within our
data, i.e., what explains or predicts the variability in the
dependent variable. The total number of coins we have to spend
within regression is called the degrees-of-freedom total, and
equals n-1.

Regression partitions these coins into two parts: the portion
we've spent to get answers to questions about what explainS the
dependent variable, and the portion that we haven't yet spent. The
first of these two partitions is called the degrees-of-freedom (df)
explained (or, to confuse graduate students, by any of the
synonymous terms, df regression, df model, or df between). The
second of these two partitions is called the degrees-of-freedom
(df) unexplained (or, to confuse graduate students, by any of the
synonymous terms, df residual, df error, or df within). The df
explained equals the number of predictor variables (R) "used". The
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df error equals n-1 - R.
The question becomes, what does "used" mean. The computer

packages define "used" as actually entered into the prediction
equation. Thus, if n was 100, and there were 50 predictors
variables, but only three steps of analysis done, df total would be
99, df explained according to the computer packages would be 3, and
df error would be 96.

However, in this example each and every one of the 50
predictor variables was "used" at each and every one of the three
steps, to decide which predictor to enter at each step. The 47
predictors may have been returned to cafeteria, but each one was
examined, and played with, eaten, and used, prior to the return to
the display case. The df explained at the third step (and at every
step) for this example should have been 50, while the df error
should have been 49.

It is instructive to see how using the wrong degrees of
freedom in the numerator of the statistical significance testing
calculations, and the wrong denominator df in the calculations,
both bias the tests in favor of getting statistical significance.
These dynamics are illustrated for this example within Table 4.

INSERT TABLE 4 ABOUT HERE.

Clearly, using the wrong degrees of freedom in both the
numerator and the denominator can outrageously affect statistical
significance tests. No wonder Cliff (1987, p. 185) says that, "most
computer programs for [stepwise] multiple regression are positively
satanic in their temptation toward Type I errors"!

Examles of Bad Practice Within Dissertations. Several Ph.D.
dissertations within these two cohorts employed stepwise methods.
Stepwise method's tendencies toward Type I errors are worse as the
number of variables is larger while the number of steps is smaller,
and/or as the number of subjects is smaller. Thus, ##Stephenson's
study is intriguing; #iStephenson (1992, p. 51) performed a
stepwise discriminant analysis involving 21 predictor variables and
48 cases.

Table 5 presents the incorrect degrees of freedom, the F
calculated, and the R calculated reported by ##Velicer (1992, p.
50) for a stepwise analysis. The R calculated value was <.00001,
so R calculated was less than arw, and the null hypothesis was
rejected. Table 5 also presents the correct statistics, not
reported in the dissertation, for this study. The R calculated
value actually was .09471, i.e., the results were not really
statistically significant at conventional alpha levels.

INSERT TABLE 5 ABOUT HERE.

But ##FishFlr's (1992, p. 128) results are also dramatic. Both
the reported incorrect results and the unreported correct results
are presented in Table 6. The reported R calculated value was
.00602, resulting in statistical significance, while the correct R
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calculated value was .19005, not resulting in statistical
significance.

INSERT TABLE 6 ABOUT HERE.

Discussion
It must be said that even a methodologically flawed

dissertation might still contribute to the literature. But the
problem with methodologically flawed studies is that these
methodological flaws are gratuitous. There is no excuse for bad
methodological practice in dissertations.

Maybe a student cannot afford to hire the Gallup organization
to draw a national probability sample, or maybe informed consent
will not be given by enough people to allow an ideally-designed
study to be done, or maybe an ideal piece of equipment to acquire
certain measurements cannot be afforded. But these practical
considerations do not bear upon analytic choices--the student is
fully in control. Of course, such gratuitous errors are especially
peculiar when students confess their errors, while committing them,
as against avoiding these errors.

Dissertations are a critical component of the knowledge
creation endeavor. Under the cruel-and-usual punishment clause of
the U.S. Constitution, people may only be subjected to writing a
dissertation once in their lives. Only this once is the expertise
of a doctoral candidate linked with the combined expertise of four
or five or six dissertation committee members, each with their own
terminal degree. Dissertations are also a relatively unique form
of scholarship in that page limits do not constrain depth of
exploration or breadth of coverage. Thus, scholars care about
dissertation quality, and it is unfortunate when academic integrity
is gratuitously compromised.
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Table 1
Formula for Estimating Experimentwise Type I Error Inflation

When Hypotheses are Perfectly Uncorrelated

TW Experimentwise
alpha Tests alpha

1 ( 1 - 0.05 ) ** 1 =
1 ( 0.95 ) ** 1 = a
1 0.95 = 0.05000

Range Over Testwise (TW) alpha = .01
1 - ( 1 - 0.01 ) ** 5 = 0.04901
1 - ( 1 - 0.01 ) ** 10 = 0.09562
1 - ( 1 - 0.01 ) ** 20 = 0.18209

Range Over Testwise (TW) alpha = .05
1 - ( 1 - 0.05 ) ** 5 = 0.22622
1 - ( 1 - 0.05 ) ** 10 = 0.40126
1 - ( 1 - 0.05 ) ** 20 = 0.64151

Range Over Testwise (TW) alpha = .10
1 - ( 1 - 0.10 ) ** 5 = 0.40951
1 - ( 1 - 0.10 ) ** 10 = 0.65132
1 - ( 1 - 0.10 ) ** 20 = 0.87842

Note. "**" = "raise to the power of".

'These calculations are presented (a) to illustrate the
implementation of the formula step by step and (b) to demonstrate
that when only one test is conducted, the experimentwise error rate
equals the testwise error rate, as should be expected if the
formula behaves properly.

Table 2
All Possible Families of Outcomes
for a Fair Coin Flipped Three Times

Flip #
1 2 3

1. T : T : T
2. H : T : p of 1 or more H's (TW error analog)T
3. T : H : T in set of 3 Flips = 7/8 = 87.5%
4. T : T : H
5. H : H : T or
6. H : T : H where TW error analog = 50,
7. T : H : H EW p = 1 - (1 - 5)3
8. ii : H : H = 1 - (.5)3

= 1 - .125 = .875
p of H on
each Flip 50% 50% 50%

Note. The probability of one or more occurrences of a given outcome
in a set of events is 1 - (1-p)k, where p, is the probability of the
given occurrence on each trial and k is the number of trials in a
set of perfectly independent events.
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Table 3
Regression Coefficients for the ##Gorsuch (1992) Example

Predictor a

cognition 0.15
emotion -0.40
affective 0.26
care 0.32
age 0.26

b
rs2 b

0.405 0.164
0.000 0.000
0.490 0.240
0.618 0.382
0.341 0.116

'Coefficients reported by ##Gorsuch (1992, p. 66).
bCoefficients not reported by ##Gorsuch (1992).

Table 4
Example Stepwise Results

Illustrating the Bias Toward Type I Error

Incorrect Computer Version
Sum of Mean

Source Squares df Squares Fcalc Rcalc
Explained 20 3 6.6667 8.0000 0.000125
Unexplained 80 96 0.8333
Total 100 99

Correct Version
Sum of Mean

Source Squares df Squares Fcalc Rcalc
Explained 20 50 0.4000 0.2300 0.999999
Unexplained 80 46 1.7391
Total 100 99
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Table 5
Correct and Incorrect Test Statistics for the ##Velicer Study

Incorrect Values Reported by ##Velicer
SOS df MS Fcalc pcalc
40
60

100

1

58
59

40
1.034482

38.66666 <.00000001

Correct Values Not Reported by ##Velicer
SuS df MS Fcalc pcalc
40
60

100

17
42
59

2.352941
1.428571

1.647058 =.09471154

Table 6
Correct and Incorrect Test Statistics for the ##Fisher Study

Incorrect Values Reported by ##Fisher
SOS df MS Fcalc pcalc
5.5
94.5
100

1
134
135

5.5
0.705223

7.798941 0.0060231686

Correct Values Not Reported by ##Fisher
SOS df MS Fcalc pcalc
5.5

94.5
100

5

130
135

1.1
0.726923

1.513227 0.1900507810
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Figure 1

How Dependent Variable (Y) and Covariate Relationships

Create Scores on Latent Synthetic Variables e and Y

Covariate
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Doctoral programs that wish to survive both accreditation and
coordinating board reviews can ill afford to ignore the quality of
their students' dissertations. Review teams invariably examine
dissertations as a key, if not the key, reflection of the
cumulative impacts of programs' doctoral training and mentorship.

Thus, various strategies for improving the methodological
quality in dissertations have been proposed (cf. Thompson, 1987).
And reviews of good and bad practices in a program's dissertations
may themselves be helpful to the program (Denton, Ciou-Yeuh &
Chevrette, 1988; Eason & Daniel, 1989).

The purpose of the present paper is to review common
methodology errors made within dissertations. Thus, the present
paper does something different than characterizing typical
practice. Reviews of typical analytic practice are already
available as regards both published research (Edgington, 1964,
1974; Elmore & Woehlke, 1988; Goodwin & Goodwin, 1985; Willson,
1980) and dissertation research (cf. Lagaccia, 1991; Wick & Dirkes,
1973). The present paper employs the same format of a previous
study within the same genre (Thompson, 1988a), and the previous
study could be examined to extrapolate some general trends.

To make the discussion of common methodology mistakes in
dissertations more concrete, specific actual examples of
methodology errors are cited. These examples were derived from
Ph.D. studies completed within one department at a large Research
I university during the calendar years, 1991 and 1992. The
department houses two APA-accredited psychology programs, in
addition to other programs.

However, to minimize embarrassment to these former students
(or perhaps to their dissertation committee members), pseudonyms
are employed as citations to these dissertations. The pseudonyms
are differentiated by the use of pound signs as part of these
citations (e.g., ##Lawley, 1992).

This discussion is organized within the framework of seven
analytic principles. Each principle is explained, and then
illustrative examples of violations of the principles from Ph.D.
dissertations are presented.

No effort has been made to cite all the errors within the
dissertations studied. Nor does the present paper cite errors that
fall outside the framework of the seven analytic principles.

For example, students within these two cohorts may have
experienced problems in following the APA style guide, especially
as regards (a) the use of ampersands in citations in narrative, as
against within parentheses, (b) the correct use of "et al.", and
(c) the correct ordering of multiple citations within a single
parenthetical list. ##Lawley (1992) provides one example involving
the first two considerations:

As a criterion measure, the CDI has been used in a
number of childhood depression research studies
(Hughes, [sic] et al., 1990; Kaslow, et al., 1984;
Lobovits & Handal, 1985; McCauley, et al., 1988;
Mullins, et al., 1985,; Scwartz, et al., 1982;
Worchel, Hughes, et al., 1990).... Carey, Faulstich,
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