This document contains 20 competency-based examinations with student and instructor manuals for electronics and instrumentation occupations. For each of the examinations, the student manual contains the following: the competency, the performance objective, directions, the materials and equipment needed, a space to note time started and time finished, and the competency examination, which consists of tasks to perform. The instructor's manual includes the same materials as the student manual, with specific instructions to the examiner and a competency examination rating sheet. The 20 examinations cover the following material: (1) constructing a direct current series circuit; (2) constructing a direct current parallel series circuit; (3) constructing a series-parallel resistive circuit and measuring voltage drops, current, resistance, and computer power; (4) constructing and analyzing a direct current series resistive capacitive circuit; (5) determining alternating current time-frequency voltage measurement; (6) identification of opens in overcurrent protection; (7) troubleshooting and repairing fluorescent lighting; (8) troubleshooting high pressure sodium lighting fixtures; (9) installing and testing a transformer circuit; (10) using AC test equipment to locate opens and shorts in a motor controller; (11) testing semiconductor diodes and bipolar junction transistor, to identify defects; (12) troubleshooting cascaded C/E (Common Emitter) amplifiers; (13) troubleshooting cascaded C/E amplifiers using the signal tracing method; (14) calibration and operation of a temperature bridge; (15) calibration and operational check of an instrumentation summing amplifier; (16) performing alignment of an A.M. superheterodyne receiver; (17) receiver troubleshooting; (18) verification of correct operation of a seven-segment display driven by a decoder driver and a decade counter; (19) performing minimum performance check of an eight trace logic analyzer; and (20) verifying proper operation of a frequency counter. (KC)
COMPETENCY EXAMS
STUDENT AND INSTRUCTOR MANUALS

ELECTRONICS / INSTRUMENTATION OCCUPATIONS

JUNE, 1993

PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

S. Calvert

BEST COPY AVAILABLE

2
Competency Exams
for
Electronics / Instrumentation Occupations

Prepared by
Mr. James Matson, Instructor
Victoria Independent School District
and
Mr. Tad Stokes, Instructor
Victoria College

Edited by
David Ingram, Project Director
For
Texas Higher Education Coordinating Board
Community and Technical Colleges Division

June, 1993
FUNDING INFORMATION

Project Title: A Model Procedure for Developing and Administering Occupational Competency Examinations

Project Number: 33110005

Funding Source: Carl D. Perkins Vocational Education Act, Title II B.

Coordinating Board
Staff Advisor: Dr. Gloria Ann Lopez
Community and Technical Colleges Division
Texas Higher Education Coordinating Board
Austin, Texas

Contractor: Paris Junior College
Paris, Texas

Project Staff: Vicki Oglesby, Project Administrator
David Ingram, Principal Investigator
Bill E. Lovelace, Project Researcher

Disclaimer: This publication was prepared pursuant to a contract with the Texas Higher Education Coordinating Board. Contractors undertaking such projects under government sponsorship are encouraged to express freely their judgement in professional and technical matters. Points of view or opinions of the contractors, therefore, do not necessarily represent official position or policy of Texas Higher Education Coordinating Board.
ACKNOWLEDGEMENTS

The project involved the participation of a number of individuals to whom the project staff is very grateful. The success of the project would not have been possible without the input and expertise provided the advisory committee. Special credit and gratitude is extended to the members of the project advisory committee.

Mr. John Denison, Instructor
Drafting Technology
Paris Junior College
Paris, Texas

Ms. Georgia Hankins, Director
Permian Basin Quality Workforce Planning Commission
Midland, Texas

Dr. Jerry King, Dean
Vocational/Technical Education
Trinity Valley Community College
Athens, Texas

Ms. Brenda Lovett, Manager
Workforce Development Division
Texas Department of Commerce
Austin, Texas

Dr. Douglas Pickle, Division Chairman
Industrial Technology
Amarillo College
Amarillo, Texas

Mr. Al Pollard, Dean
Technical Education
McLennan Community College
Waco, Texas

Ms. Linda Rife, Executive Director
Texas Council of Vocational Education
Austin, Texas

Dr. Barry Russell, Director
Central Texas Tech-Prep Consortium
Temple Junior College
Temple, Texas
A very important "thank you" is extended to the program consultants who devoted many evenings and weekends developing the occupational exams in their program area.

Consultants who contributed to the project results are as follows:

Dr. Harley Davis
Liaison of Business and Industry
Paris Junior College
Paris, Texas

Mr. John Denison
Drafting Technology Instructor
Paris Junior College
Paris, Texas

Dr. Vanessa Evans Huse
Computer Science Instructor
Kilgore College
Kilgore, Texas

Mr. Bill Kammerer
Food Production Instructor
Central Texas College
Killeen, Texas

Ms. Maribeth King
Chairperson of Computer Science
Kilgore College
Kilgore, Texas

Mr. James Matson
Tech Prep Electronics Instructor
Victoria I.S.D.
Victoria, Texas

Ms. Julie Southworth
Food Production Teacher
Temple High School
Temple, Texas

Mr. Tad Stokes
Electronics/Instrumentation Instructor
Victoria College
Victoria, Texas

A special "thank you" to Ms. Mary Carolyn Chambers, project secretary, for her work and efforts in compiling all the information.
TABLE OF CONTENTS

Funding Information ... i
Acknowledgements ... ii
Table of Contents ... iii

Student and Examiner’s Manual for Electronics/Instrumentation Examination

Examinations

1. Construct a Direct Current Series Circuit 1
2. Construct a Direct Current Parallel Series Circuit 12
4. Construct an Analyze a Direct Current Series Resistive Capacitive Circuit ... 34
5. Determining Alternating Current Time-Frequency Voltage Measurement .. 45
6. Identification of Opens in Overcurrent Protection 52
7. Troubleshooting and Repairing Fluorescent Lighting 59
8. Troubleshooting High Pressure Sodium Lighting Fixtures ... 68
9. Install and Test a Transformer Circuit 75
10. Use A.C. Test Equipment To Locate Opens and Shorts in a Motor Controller ... 82
11. Test Semiconductor Diodes and Bipolar Junction Transistor, To Identify Defects ... 89
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Troubleshooting Cascaded C/E Amplifiers</td>
<td>98</td>
</tr>
<tr>
<td>13</td>
<td>Troubleshooting Cascaded C/E Amplifiers Using The Signal Tracing Method</td>
<td>107</td>
</tr>
<tr>
<td>14</td>
<td>Calibration and Operation of a Temperature Bridge</td>
<td>116</td>
</tr>
<tr>
<td>15</td>
<td>Calibration and Operational Check of an Instrumentation Summing Amplifier</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>Perform Alignment of an A. M. Superhetrocyne Receiver</td>
<td>138</td>
</tr>
<tr>
<td>17</td>
<td>Receiver Troubleshooting</td>
<td>147</td>
</tr>
<tr>
<td>18</td>
<td>Verification of Correct Operation of a Seven-Segment Display Driven By a Decoder Driver and a Decade Counter</td>
<td>154</td>
</tr>
<tr>
<td>19</td>
<td>Perform Minimum Performance Check of an Eight Trace Logic Analyzer</td>
<td>163</td>
</tr>
<tr>
<td>20</td>
<td>Verify Proper Operation of a Frequency Counter</td>
<td>178</td>
</tr>
</tbody>
</table>
COMPETENCY EXAMINATION

COMPETENCY:

CONSTRUCT A DIRECT CURRENT SERIES CIRCUIT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #1

Competency: Construct a Direct Current Series Circuit.

Performance Objective: Given the proper tools and equipment the student will demonstrate the ability to construct a direct current series circuit to current industry standards, achieving 100% mastery on the performance exam.

1) This exam consists of nine tasks.

2) You will be rated on your ability to perform each of the tasks to current I.S.A. standards.

3) The maximum time allowed for this exam is 1 hour.

4) When instructed by the examiner, return the work station to its pre-exam condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- Schematic Diagram
- Assorted Resistors
- Job Sheet
- Scientific Calculator
- Pencil
- Digital Multi-Meter
- Breadboard
- Variable Power Supply
- Jumper Wire

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

TO CONSTRUCT A DIRECT CURRENT SERIES CIRCUIT

PERFORMANCE EXAM:

TASK 1 USE SCHEMATIC TO SELECT RESISTORS FOR A DIRECT CURRENT SERIES CIRCUIT
 1) Refer to figure 1 and select R1, R2, and R3 from assorted resistors.

TASK 2 UTILIZE RESISTOR COLOR CODE VALUES TO DETERMINE VALUE FOR RESISTANCE, CURRENT AND VOLTAGE
 1) Using color code values and Ohms Law, calculate the value for:
 a) Total resistance = ______________
 b) Total current = ______________
 c) Voltage drop for
 resistor 1 = ______________
 d) Voltage drop for
 resistor 2 = ______________
 e) Voltage drop for
 resistor 3 = ______________

TASK 3 USE A DIGITAL MULTI-METER FOR MEASURING RESISTANCE
 1) Using a digital multi-meter measure and record the actual values for:
 a) Resistor 1 = ______________
 b) Resistor 2 = ______________
 c) Resistor 3 = ______________

TASK 4 CONSTRUCT A CIRCUIT AND MEASURE RESISTANCE
 1) Construct the circuit in Figure 1 and measure the total resistance:
 a) Total resistance = ______________

TASK 5 MEASURE VOLTAGE AND CURRENT
 1) Apply power to the breadboard and adjust the power supply for 10 volts D.C.
 2) Measure and record current values at:
 a) point a = ______________
 b) point b = ______________
 c) point c = ______________
 d) point d = ______________
TASK 6 MEASURE VOLTAGE DROPS
1) Energize the circuit and measure:
 a) Voltage drop across resistor 1 =
 b) Voltage drop across resistor 2 =
 c) Voltage drop across resistor 3 =

TASK 7 MEASURE CURRENT
1) Increase the total voltage to 15 volts and measure the new value of current:
 a) Total current at 15 volts =
2) Decrease the total voltage to 5 volts and measure the new value of current:
 a) Total current at 5 volts =

TASK 8 DIFFERENTIATE BETWEEN TWO CURRENT READINGS
1) Explain the difference between the two current readings obtained in TASK 7.

TASK 9 USE THE MEASURED VALUES OF VOLTAGE AND CURRENT TO DETERMINE POWER
1) Calculate power using the measured values of voltage and current for the circuit:
 a) Power across resistor 1 =
 b) Power across resistor 2 =
 c) Power across resistor 3 =
 d) Total power
FIGURE 1

10 VOLS

RESISTOR 1
10 K OHMS

RESISTOR 3
220 K OHMS

RESISTOR 2
100 K OHM
EXAMINER MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

CONSTRUCT A DIRECT CURRENT SERIES CIRCUIT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #1

Competency: Construct a Direct Current Series Circuit.

Performance Objective: Given the proper tools, equipment and materials the student will demonstrate the ability to construct a direct circuit series to current industry standards, achieving 100% mastery on the performance exam.

1) Maximum time for exam is 1 hour.

2) There are nine tasks that the student must perform.

3) Documentation of ratings should be made on individual competency exam rating sheet.

4) Upon completion of the exam, verify that all testing materials and equipment are in your possession.

Material/Equipment Needed:

- Schematic Diagram
- Assorted Resistors
- Job Sheet
- Scientific Calculator
- Pencil
- Digital Multi-Meter
- Breadboard
- Variable Power Supply
- Jumper Wire

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION
TO CONSTRUCT A DIRECT CURRENT SERIES CIRCUIT

PERFORMANCE EXAM:

TASK 1 USE SCHEMATIC TO SELECT RESISTORS FOR A DIRECT CURRENT SERIES CIRCUIT
1) Refer to figure 1 and select R1, R2, and R3 from assorted resistors.

TASK 2 UTILIZE RESISTOR COLOR CODE VALUES TO DETERMINE VALUE FOR RESISTANCE, CURRENT AND VOLTAGE
1) Using color code values and Ohms Law, calculate the value for:
 a) Total resistance = _______________
 b) Total current = _______________
 c) Voltage drop for
 resistor 1 = _______________
 d) Voltage drop for
 resistor 2 = _______________
 c) Voltage drop for
 resistor 3 = _______________

TASK 3 USE A DIGITAL MULTI-METER FOR MEASURING RESISTANCE
1) Using a digital multi-meter measure and record the actual values for:
 a) Resistor 1 = _______________
 b) Resistor 2 = _______________
 c) Resistor 3 = _______________

TASK 4 CONSTRUCT A CIRCUIT AND MEASURE RESISTANCE
1) Construct the circuit in Figure 1 and measure the total resistance:
 a) Total resistance = _______________

TASK 5 MEASURE VOLTAGE AND CURRENT
1) Apply power to the breadboard and adjust the power supply for 10 volts D.C.
2) Measure and record current values at:
 a) point a = _______________
 b) point b = _______________
 c) point c = _______________
 d) point d = _______________

8 16
TASK 6 MEASURE VOLTAGE DROPS
1) Energize the circuit and measure:
 a) Voltage drop across resistor 1 =
 b) Voltage drop across resistor 2 =
 c) Voltage drop across resistor 3 =

TASK 7 MEASURE CURRENT
1) Increase the total voltage to 15 volts and measure the new value of current:
 a) Total current at 15 volts =
2) Decrease the total voltage to 5 volts and measure the new value of current:
 a) Total current at 5 volts =

TASK 8 DIFFERENTIATE BETWEEN TWO CURRENT READINGS
1) Explain the difference between the two current readings obtained in TASK 7.

TASK 9 USE THE MEASURED VALUES OF VOLTAGE AND CURRENT TO DETERMINE POWER
1) Calculate power using the measured values of voltage and current for the circuit:
 a) Power across resistor 1 =
 b) Power across resistor 2 =
 c) Power across resistor 3 =
 d) Total power
FIGURE 1

A
RESISTOR 1
10 K OHMS

10 VOLTS

RESISTOR 2
100 K OHM

C
RESISTOR 3
220 K OHMS
COMPETENCY EXAMINATION RATING SHEET

Competency: Construct a Direct Current Series Circuit.

Performance Objective: Given the proper tools and equipment the student will demonstrate the ability to construct a direct current series circuit to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE CRITERIA

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Identified schematics and selected resistors.</td>
<td></td>
</tr>
<tr>
<td>2. Utilized color code values to determine value for resistance, current and voltage.</td>
<td></td>
</tr>
<tr>
<td>3. Used a digital multi-meter for measuring resistance.</td>
<td></td>
</tr>
<tr>
<td>4. Constructed a circuit and measured resistance.</td>
<td></td>
</tr>
<tr>
<td>5. Measured voltage and current.</td>
<td></td>
</tr>
<tr>
<td>7. Measured current.</td>
<td></td>
</tr>
<tr>
<td>8. Differentiated between two current readings.</td>
<td></td>
</tr>
<tr>
<td>9. Used the measured values of voltage and current to determine power.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

CONSTRUCT A DIRECT CURRENT
PARALLEL SERIES CIRCUIT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #2

Competency: Construct a Direct Current Parallel Series Circuit.

Performance Objective: Given the proper tools, equipment and materials, the student will demonstrate the ability to construct a direct current parallel circuit, to current industry standards, achieving 100% mastery on the performance exam.

1) This exam consists of nine tasks.

2) You will be rated on your ability to perform each of the tasks, to current I.S.A. standards.

3) The maximum time allowed for this exam is 1 hour.

4) When instructed by the examiner, return the work station to its pretest condition.

5) The student exam booklet, any scrap worksheets, and all equipment and materials must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- Schematic Diagram
- Assorted Resistors
- Job Sheet
- Scientific Calculator
- Pencil
- Digital Multi-Meter
- Breadboard
- Variable Power Supply
- Jumper Wire

Time started: _________
Time finished: _________
COMPETENCY EXAMINATION
TO CONSTRUCT A DIRECT CURRENT PARALLEL SERIES CIRCUIT

PERFORMANCE EXAM:

TASK 1 USE SCHEMATIC TO SELECT RESISTORS FOR A DIRECT CURRENT PARALLEL CIRCUIT
1) Refer to Figure 1 and select R1, R2, and R3 from assorted resistors.

TASK 2 USE RESISTOR COLOR CODE VALUES TO DETERMINE VALUE FOR RESISTANCE, CURRENT AND VOLTAGE
1) Using color code values and Ohms Law, calculate the value for:
 a) Total resistance = ____________
 b) Total current = ____________
 c) Voltage drop for resistor 1 = _______
 d) Voltage drop for resistor 2 = _______
 e) Voltage drop for resistor 3 = _______

TASK 3 USE A DIGITAL MULTI-METER FOR MEASURING RESISTANCE
1) Using a digital multi-meter measure and record the actual values for:
 a) Resistor 1 = _______
 b) Resistor 2 = _______
 c) Resistor 3 = _______

TASK 4 CONSTRUCT A CIRCUIT AND MEASURE FOR TOTAL RESISTANCE
1) Construct the circuit in Figure 1 and measure the total resistance:
 a) Total resistance = __________

TASK 5 USING THE BREADBOARD TO MEASURE THE POWER SUPPLY FOR VOLTS D.C.
1) Apply power to the breadboard and adjust the power supply for volts D.C.
2) Measure and record current values at:
 a) point a = _______
 b) point b = _______
 c) point c = _______
 d) point d = _______
 e) point e = _______
3) Does IC + ID + IE = IA = IB? YES NO
TASK 6 MEASURE VOLTAGE DROPS
1) Measure and record the voltage drops across:
 a) resistor 1 =
 b) resistor 2 =
 c) resistor 3 =

TASK 7 MEASURE CURRENT
1) Increase the total voltage to 15 volts and record the value of current:
 a) Total current at 15 volts =
2) Decrease the total voltage to 5 volts and record the value
 of current:
 a) Total current at 5 volts =

TASK 8 DIFFERENTIATE BETWEEN TWO CURRENT READINGS
1) Explain the difference between the two current readings.

2) Does total resistance change?

TASK 9 USE THE MEASURED VALUES OF VOLTAGE AND CURRENT TO
DETERMINE POWER
1) Calculate power using the measured values of voltage and current
 for the circuit:
 a) Power across resistor 1 =
 b) Power across resistor 2 =
 c) Power across resistor 3 =
 d) Total power
FIGURE 1

A

R1 20 K OHMS
R2 100 K OHMS
R3 220 K OHMS

C D E

B

24
COMPETENCY:

CONSTRUCT A DIRECT CURRENT PARALLEL SERIES CIRCUIT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #2

Competency: Construct a Direct Current Parallel Series Circuit.

Performance Objective: Given the proper tools, equipment and materials the student will demonstrate the ability to construct a direct current parallel series circuit to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is 1 hour.
2) There are nine tasks that the student must perform.
3) Documentation of ratings should be made on individual competency exam rating sheet.
4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

- Schematic Diagram
- Assorted Resistors
- Job Sheet
- Scientific Calculator
- Pencil
- Digital Multi-Meter
- Breadboard
- Variable Power Supply
- Jumper Wire

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION

TO CONSTRUCT A DIRECT CURRENT PARALLEL SERIES CIRCUIT

PERFORMANCE EXAM:

TASK 1 USE SCHEMATIC TO SELECT RESISTORS FOR A DIRECT CURRENT PARALLEL CIRCUIT
1) Refer to Figure 1 and select R1, R2, and R3 from assorted resistors.

TASK 2 USE RESISTOR COLOR CODE VALUES TO DETERMINE VALUE FOR RESISTANCE, CURRENT AND VOLTAGE
1) Using color code values and Ohms Law, calculate the value for:
 a) Total resistance = ________________
 b) Total current = ________________
 c) Voltage drop for resistor 1 = ___________
 d) Voltage drop for resistor 2 = ___________
 e) Voltage drop for resistor 3 = ___________

TASK 3 USE A DIGITAL MULTI-METER FOR MEASURING RESISTANCE
1) Using a digital multi-meter measure and record the actual values for:
 a) Resistor 1 = ___________
 b) Resistor 2 = ___________
 c) Resistor 3 = ___________

TASK 4 CONSTRUCT A CIRCUIT AND MEASURE FOR TOTAL RESISTANCE
1) Construct the circuit in Figure 1 and measure the total resistance:
 a) Total resistance = ________________

TASK 5 USING THE BREADBOARD TO MEASURE THE POWER SUPPLY FOR VOLTS D.C.
1) Apply power to the breadboard and adjust the power supply for volts D.C.
2) Measure and record current values at:
 a) point a = ___________
 b) point b = ___________
 c) point c = ___________
 d) point d = ___________
 e) point e = ___________
3) Does IC + ID + IE = IA = IB? YES NO
TASK 6 MEASURE VOLTAGE DROPS
1) Measure and record the voltage drops across:
 a) resistor 1 = __________
 b) resistor 2 = __________
 c) resistor 3 = __________

TASK 7 MEASURE CURRENT
1) Increase the total voltage to 15 volts and record the value of current:
 a) Total current at 15 volts = __________
2) Decrease the total voltage to 5 volts and record the value of current:
 a) Total current at 5 volts = __________

TASK 8 DIFFERENTIATE BETWEEN TWO CURRENT READINGS
1) Explain the difference between the two current readings.

2) Does total resistance change?

TASK 9 USE THE MEASURED VALUES OF VOLTAGE AND CURRENT TO DETERMINE POWER
1) Calculate power using the measured values of voltage and current for the circuit:
 a) Power across resistor 1 = __________
 b) Power across resistor 2 = __________
 c) Power across resistor 3 = __________
 d) Total power
COMPETENCY EXAMINATION RATING SHEET

Competency: Construct a Direct Current Parallel Series Circuit.

Performance Objective: Given the proper tools, equipment and materials the student will demonstrate the ability to construct a direct current parallel circuit to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Used schematic and selected resistors for a direct current.</td>
<td></td>
</tr>
<tr>
<td>2. Used resistor color code values to determine value for resistance current and voltage.</td>
<td></td>
</tr>
<tr>
<td>4. Constructed a circuit and measured for total resistance.</td>
<td></td>
</tr>
<tr>
<td>5. Used the breadboard to measure the power supply for volts D.C.</td>
<td></td>
</tr>
<tr>
<td>7. Measured current.</td>
<td></td>
</tr>
<tr>
<td>8. Differentiated between two correct readings.</td>
<td></td>
</tr>
<tr>
<td>9. Used the measured values of voltage and current to determine power.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

CONSTRUCT A SERIES-PARALLEL RESISTIVE CIRCUIT
AND MEASURE VOLTAGE DROPS, CURRENT, RESISTANCE
AND COMPUTE POWER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #3

Competency: Construct a Series Parallel Resistive Circuit and Measure Voltage Drops, Current, Resistance and Compute Power.

Performance Objective: Given appropriate tools and equipment, the student will demonstrate the ability to construct a series parallel resistive circuit and measure voltage drops, current, resistance and compute power to current industry standards, achieving 100% mastery on the performance exam.

1) The exam will consist of nine tasks.
2) You will be rated on your ability to perform each of the tasks, to current I.S.A. standards.
3) The maximum time allowed for this exam is 1 hour and 45 minutes.
4) When instructed by the examiner, return the work station to its pretest condition.
5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- Schematic diagram
- Assorted resistors
- Job sheet
- Scientific calculator
- Pencil
- Digital multi-meter
- Breadboard
- Variable power supply
- Jumper wire

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

CONSTRUCT A SERIES-PARALLEL RESISTIVE CIRCUIT AND MEASURING, VOLTAGE DROPS, CURRENT RESISTANCE AND COMPUTE POWER

PERFORMANCE EXAM:

TASK 1 SELECTING SCHEMATICS
1) Refer to figure 1 and select R1, R2, R3, R4, and R5 from assorted resistors.

TASK 2 USE RESISTOR COLOR CODE VALUES FOR RESISTORS
1) Using color code values for resistors and Ohms Law calculate the value for:
 a) Total resistance = __________
 b) Total current = __________
 c) Voltage drop for resistor 1 = __________
 d) Voltage drop for resistor 2 = __________
 e) Voltage drop for resistor 3 = __________
 f) Voltage drop for resistor 4 = __________
 g) Voltage drop for resistor 5 = __________
 h) Current at Point A = __________
 i) Current at Point B = __________
 j) Current at Point C = __________
 k) Current at Point D = __________
 l) Current at Point E = __________

TASK 3 MEASURING RESISTANCE
1) Using a digital multi-meter measure and record the actual values for:
 a) Resistor 1 = __________
 b) Resistor 2 = __________
 c) Resistor 3 = __________
 d) Resistor 4 = __________
 e) Resistor 5 = __________

TASK 4 CONSTRUCT A CIRCUIT AND MEASURE TOTAL RESISTANCE
1) Construct the circuit in figure 1 and measure total resistance:
 a) Total resistance = __________

TASK 5 APPLY AND ADJUST POWER
1) Apply power to the breadboard and adjust the power supply for 10 volts D.C.
2) Measure and record current values at:
 a) Point A =
 b) Point B =
 c) Point C =
 d) Point D =
 e) Point E =

3) Does IB + IC + ID = IE ?
 YES NO

TASK 6 MEASURING VOLTAGE DROPS
1) Measure and record the voltage drops across:
 a) Resistor 1 =
 b) Resistor 2 =
 c) Resistor 3 =
 d) Resistor 4 =
 e) Resistor 5 =

TASK 7 MEASURING CURRENT
1) Replace Resistor 1 with a 10 K Ohm resistor and record the value of total current.
 a) Total current =
2) Replace Resistor 5 with a 500 Ohm resistor and record the value of total current.
 a) Total current =

TASK 8 VERIFICATION OF OHMS LAW
1) Explain the difference between the two current readings.

2) Does total resistance change?

TASK 9 USE THE MEASURED VALUES OF VOLTAGE AND CURRENT TO DETERMINE POWER FOR THE CIRCUIT
1) Calculate power using the measured values of voltage and current for the circuit.
 a) Power across resistor 1 =
 b) Power across resistor 2 =
 c) Power across resistor 3 =
 d) Power across resistor 4 =
 e) Power across resistor 5 =
 f) Total power =
COMPETENCY:

CONSTRUCT A SERIES-PARALLEL RESISTIVE CIRCUIT
AND MEASURE VOLTAGE DROPS, CURRENT, RESISTANCE
AND COMPUTE POWER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #3

Competency: Construct a Series Parallel Resistive Circuit and Measure Voltage Drops, Current, Resistance and Compute Power.

Performance Objective: Given appropriate tools and equipment, the student will demonstrate the ability to construct a series parallel resistive circuit and measure voltage drops, current, resistance and compute power to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is one hour and 45 minutes.

2) There are nine tasks that the student must perform.

3) Documentation of ratings should be made on individual competency exam rating sheet.

4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

- Schematic diagram
- Assorted resistors
- Job sheet
- Scientific calculator
- Pencil
- Digital multi-meter
- Breadboard
- Variable power supply
- Jumper wire

Time started:_______
Time finished:_______
COMPETENCY EXAMINATION

CONSTRUCT A SERIES-PARALLEL RESISTIVE CIRCUIT
AND MEASURING VOLTAGE DROPS, CURRENT,
RESISTANCE AND COMPUTE POWER

PERFORMANCE EXAM:

TASK 1 SELECTING SCHEMATICS
1) Refer to figure 1 and select R1, R2, R3, R4, and R5 from assorted resistors.

TASK 2 USE RESISTOR COLOR CODE VALUES FOR RESISTORS
1) Using color code values for resistors and Ohms Law calculate the value for:
 a) Total resistance
 b) Total current
 c) Voltage drop for resistor 1 =
 d) Voltage drop for resistor 2 =
 e) Voltage drop for resistor 3 =
 f) Voltage drop for resistor 4 =
 g) Voltage drop for resistor 5 =
 h) Current at Point A
 i) Current at Point B
 j) Current at Point C
 k) Current at Point D
 l) Current at Point E

TASK 3 MEASURING RESISTANCE
1) Using a digital multi-meter measure and record the actual values for:
 a) Resistor 1 =
 b) Resistor 2 =
 c) Resistor 3 =
 d) Resistor 4 =
 e) Resistor 5 =

TASK 4 CONSTRUCT A CIRCUIT AND MEASURE TOTAL RESISTANCE
1) Construct the circuit in figure 1 and measure total resistance:
 a) Total resistance =

TASK 5 APPLY AND ADJUST POWER
1) Apply power to the breadboard and adjust the power supply for 10 volts D.C.
2) Measure and record current values at:
 a) Point A =
 b) Point B =
 c) Point C =
 d) Point D =
 e) Point E =
3) Does IB + IC + ID = IE? YES NO

TASK 6 MEASURING VOLTAGE DROPS
1) Measure and record the voltage drops across:
 a) Resistor 1 =
 b) Resistor 2 =
 c) Resistor 3 =
 d) Resistor 4 =
 e) Resistor 5 =

TASK 7 MEASURING CURRENT
1) Replace Resistor 1 with a 10 K Ohm resistor and record the value of total current.
 a) Total current =
2) Replace Resistor 5 with a 500 Ohm resistor and record the value of total current.
 a) Total current =

TASK 8 VERIFICATION OF OHMS LAW
1) Explain the difference between the two current readings.

2) Does total resistance change?

TASK 9 USE THE MEASURED VALUES OF VOLTAGE AND CURRENT TO DETERMINE POWER FOR THE CIRCUIT
1) Calculate power using the measured values of voltage and current for the circuit.
 a) Power across resistor 1 =
 b) Power across resistor 2 =
 c) Power across resistor 3 =
 d) Power across resistor 4 =
 e) Power across resistor 5 =
 f) Total power =
FIGURE 1

10 VOLTS

R1
1 K OHM

R2
1.2
K OHM

B

C

D

R3
4.7
K OHM

R4
5.6
K OHM

R5
5.6
K OHM
COMPETENCY EXAMINATION RATING SHEET

Competency: Construct a Series Parallel Resistive Circuit and Measure Voltage Drops, Current, Resistance and Compute Power.

Performance Objective: Given appropriate tools and equipment, the student will demonstrate the ability to construct a series parallel resistive circuit and measure voltage drops, current, resistance and compute power to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Read schematics.</td>
<td></td>
</tr>
<tr>
<td>2. Identified resistors color code value.</td>
<td></td>
</tr>
<tr>
<td>3. Measured resistance with DMM.</td>
<td></td>
</tr>
<tr>
<td>5. Measured voltage and current.</td>
<td></td>
</tr>
<tr>
<td>7. Measured current.</td>
<td></td>
</tr>
<tr>
<td>8. Verified Ohms Law.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

CONSTRUCT AN ANALYZE A DIRECT CURRENT SERIES RESISTIVE CAPACITIVE CIRCUIT

ELECTRONICS/ INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #4

Competency: Construct and Analyze a Direct Current Series Resistive Capacitive Circuit.

Performance Objective: Given proper equipment and supplies, the student will demonstrate the ability to construct and analyze a direct current, series resistive capacitive circuit to current industry standards, achieving 100% mastery on the performance exam.

1) The exam will consist of five tasks.

2) You will be rated on your ability to perform each of the tasks, to current I.S.A. standards.

3) The maximum time allowed for this exam is 1 hour.

4) When instructed by the examiner, return the work station to its pretest condition.

5) The Student Exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- Schematic diagram
- Assorted resistors
- Job sheet
- Scientific calculator
- Pencil
- Digital multi-meter
- Breadboard
- Variable power supply
- Jumper wire
- Assorted capacitors
- Stock watch
- Single pole double throw switch

Time started:

Time finished:

35
COMPETENCY EXAMINATION

CONSTRUCT AND ANALYZE A DIRECT CURRENT SERIES RESISTIVE CAPACITIVE CIRCUIT

PERFORMANCE EXAM:

TASK 1 CAPACITOR SELECTION
1) Refer to figure 1 and select a capacitor to build a Series RC circuit with.
 a) Capacitor (C) value =

TASK 2 CALCULATE RESISTANCE
1) Calculate the circuit resistance needed to provide a tau (time constant) value of ten seconds.
 a) Time constant (tau) =
 b) Resistor (R1) =

TASK 3 CIRCUIT CONSTRUCTION
1) Refer to figure 1 and build a Series RC circuit on the breadboard.
2) Set variable voltage source at a value less than or equal to the capacitor rating and record.
 a) Total voltage =
3) Observe polarity with the capacitor.

TASK 4 VALUES FOR CAPACITOR CHARGE AND DISCHARGE
1) Calculate and record the values for voltage across the resistor (VR), voltage across the capacitor (VC), and current across the resistor (IR), for 5 time constants during capacitor charge and discharge after attaining full charge.

<table>
<thead>
<tr>
<th>TIME</th>
<th>VR</th>
<th>VC</th>
<th>IR</th>
<th>VR</th>
<th>VC</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TASK 5 MEASURE THE VALUES OF VOLTAGE
1) With the circuit constructed as shown in figure 1, measure the values of voltage across the resistor (VR), and voltage across the capacitor (VC), during capacitor charge and discharge.

2) Safely discharge the capacitor before starting to assure accurate readings.
3) Record the readings in the table.

<table>
<thead>
<tr>
<th>TIME</th>
<th>CHARGE VR</th>
<th>CHARGE VC</th>
<th>DISCHARGE VR</th>
<th>DISCHARGE VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPETENCY:
CONSTRUCT AN ANALYZE A DIRECT CURRENT SERIES RESISTIVE CAPACITIVE CIRCUIT

ELECTRONICS/ INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #4

Competency: Construct and Analyze a Direct Current Series Resistive Capacitive Circuit.

Performance Objective: Given proper equipment and supplies, the student will demonstrate the ability to construct and analyze a direct current, series resistive capacitive circuit to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam will is one hour.

2) There are five tasks that the student must perform.

3) Documentation of ratings should be made on individual competency exam rating sheet.

4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

- Schematic diagram
- Assorted resistors
- Job sheet
- Scientific calculator
- Pencil
- Digital multi-meter
- Breadboard
- Variable power supply
- Jumper wire
- Assorted capacitors
- Stock watch
- Single pole double throw switch

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION
CONSTRUCT AND ANALYZE A DIRECT CURRENT SERIES RESISTIVE CAPACITIVE CIRCUIT

PERFORMANCE EXAM:

TASK 1 CAPACITOR SELECTION
1) Refer to figure 1 and select a capacitor to build a Series RC circuit with.
 a) Capacitor (C) value = __________

TASK 2 CALCULATE RESISTANCE
1) Calculate the circuit resistance needed to provide a tau (time constant) value of ten seconds.
 a) Time constant (tau) = __________
 b) Resistor (R1) = __________

TASK 3 CIRCUIT CONSTRUCTION
1) Refer to figure 1 and build a Series RC circuit on the breadboard.
2) Set variable voltage source at a value less than or equal to the capacitor rating and record.
 a) Total voltage = __________
3) Observe polarity with the capacitor.

TASK 4 VALUES FOR CAPACITOR CHARGE AND DISCHARGE
1) Calculate and record the values for voltage across the resistor (VR), voltage across the capacitor (VC), and current across the resistor (IR), for 5 time constants during capacitor charge and discharge after attaining full charge.

<table>
<thead>
<tr>
<th>TIME</th>
<th>CHARGE</th>
<th>DISCHARGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*TAU</td>
<td>VR</td>
<td>VR</td>
</tr>
<tr>
<td>2*TAU</td>
<td>VC</td>
<td>VC</td>
</tr>
<tr>
<td>3*TAU</td>
<td>IR</td>
<td>IR</td>
</tr>
<tr>
<td>4*TAU</td>
<td>VR</td>
<td>VR</td>
</tr>
<tr>
<td>5*TAU</td>
<td>VC</td>
<td>VC</td>
</tr>
</tbody>
</table>

TASK 5 MEASURE THE VALUES OF VOLTAGE
1) With the circuit constructed as shown in figure 1, measure the values of voltage across the resistor (VR), and voltage across the capacitor (VC), during capacitor charge and discharge.
2) Safely discharge the capacitor before starting to assure accurate readings.
3) Record the readings in the table.
<table>
<thead>
<tr>
<th>TIME</th>
<th>CHARGE VR</th>
<th>CHARGE VC</th>
<th>DISCHARGE VR</th>
<th>DISCHARGE VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5*TAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 1
STUDENT EXAMINATION RATING SHEET

Competency: Construct and Analyze a Direct Current Series Resistive Capacitive Circuit.

Performance Objective: Given proper equipment and supplies, the student will demonstrate the ability to construct and analyze a direct current, series resistive capacitive circuit to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Resistor selected.</td>
<td></td>
</tr>
<tr>
<td>2. Circuit constructed.</td>
<td></td>
</tr>
<tr>
<td>3. Variable calculations.</td>
<td></td>
</tr>
<tr>
<td>4. Variable measurements.</td>
<td></td>
</tr>
<tr>
<td>5. Capacitor selection.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

DETERMINING ALTERNATING CURRENT

TIME-FREQUENCY VOLTAGE MEASUREMENT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #5

Competency: Determining Alternating Current Time-Frequency-Voltage Measurement.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to measure the time, frequency, and voltage from an oscilloscope display to current I.S.A. standards, achieving 100% mastery on the performance test.

1) The exam consists of five tasks.

2) You will be rated on your ability to perform each of the tasks, to current I.S.A. standards.

3) The maximum time allowed for the exam is 20 minutes.

4) When instructed by the examiner, return the work station to its pretest condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials Needed:

Variable A.C. generator
Oscilloscope
Calculator

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION

DETERMINING ALTERNATING CURRENT
TIME-FREQUENCY-VOLTAGE MEASUREMENT

PERFORMANCE EXAM:

TASK 1 PERIOD MEASUREMENT
1) Randomly set the generator value.
2) Attach the oscilloscope leads.
3) Adjust the Time/Division controls until a useable sine wave appears on
 screen.
4) Measure and record the period.

TASK 2 FREQUENCY MEASUREMENT
1) Using the sine wave displayed for TASK 1 measure and record the
 frequency of the sine wave.

TASK 3 PEAK TO PEAK VOLTAGE MEASUREMENT
1) Using the sine wave displayed and the VOLTS/DIVISION controls,
 measure and record the PEAK TO PEAK voltage displayed.

TASK 4 PEAK VOLTAGE MEASUREMENT
1) Using the sine wave displayed and the VOLTS/DIVISION controls,
 measure and record the PEAK VOLTAGE.

TASK 5 RMS VOLTAGE CALCULATIONS
1) Using the value measured in TASK 4 calculate and record the RMS
 voltage the sine wave represents.
COMPETENCY:

DETERMINING ALTERNATING CURRENT

TIME-FREQUENCY VOLTAGE MEASUREMENT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #5

Competency: Determining Alternating Current Time-Frequency-Voltage Measurement.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to measure the time, frequency, and voltage from an oscilloscope display to current I.S.A. standards, achieving 100% mastery on the performance test.

1) The maximum time allowed for the exam is 20 minutes.

2) There are five tasks that the student must perform.

3) Prepare according to given instruction or formula.

4) Upon completion of the exam, verify that all testing materials and equipment have been returned to pretest condition.

5) Clarify any questions before the exam begins.

6) Record all ratings on the individual student competency rating sheet.

Materials Needed:

Variable A.C. generator
Oscilloscope
Calculator

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

DETERMINING ALTERTNATING CURRENT
TIME-FREQUENCY-VOLTAGE MEASUREMENT

PERFORMANCE EXAM:

TASK 1 PERIOD MEASUREMENT
1) Randomly set the generator value.
2) Attach the oscilloscope leads.
3) Adjust the Time/Division controls until a useable sine wave appears on screen.
4) Measure and record the period.

TASK 2 FREQUENCY MEASUREMENT
1) Using the sine wave displayed for TASK 1 measure and record the frequency of the sine wave.

TASK 3 PEAK TO PEAK VOLTAGE MEASUREMENT
1) Using the sine wave displayed and the VOLTS/DIVISION controls, measure and record the PEAK TO PEAK voltage displayed.

TASK 4 PEAK VOLTAGE MEASUREMENT
1) Using the sine wave displayed and the VOLTS/DIVISION controls, measure and record the PEAK VOLTAGE.

TASK 5 RMS VOLTAGE CALCULATIONS
1) Using the value measured in TASK 4 calculate and record the RMS voltage the sine wave represents.
COMPETENCY EXAMINATION RATING SHEET

Competency: Determining Alternating Current Time-Frequency-Voltage Measurement.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to measure the time, frequency, and voltage from an oscilloscope display to current I.S.A. standards, achieving 100% mastery on the performance test.

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Period measurement.</td>
<td></td>
</tr>
<tr>
<td>2. Frequency measurement.</td>
<td></td>
</tr>
<tr>
<td>3. Peak to peak voltage measurement.</td>
<td></td>
</tr>
<tr>
<td>4. Peak voltage measurement.</td>
<td></td>
</tr>
<tr>
<td>5. RMS voltage calculation.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

STUDENT _________________________ Competency Mastered YES ____ NO ____
EXAMINER ______________________ Date of Rating ______________________
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

IDENTIFICATION OF OPENS IN

OVERCURRENT PROTECTION

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #6

Competency: Identification of Opens in Overcurrent Protection.

Performance Objective: Given the proper tools and equipment the student will demonstrate the ability to identify opens in a circuits overcurrent protection device to current industry standards, achieving 100% mastery on the performance exam.

1) The exam consists of five tasks.

2) You will be rated on your ability to perform each of the tasks, to current industry standards.

3) The maximum time allowed for the exam is 10 minutes.

4) When instructed by the examiner, return the work station to its pre-exam condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

Voltmeter
Three phase fuseable disconnect switch
Fuses

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

IDENTIFICATION OF OPENS IN OVERCURRENT PROTECTION

PERFORMANCE EXAM:

TASK 1 MEASURE LINE SIDE VOLTAGE
1) Measure and record the voltage between each phase and ground.
2) Measure and record the voltage between phases.

TASK 2 MEASURE LOAD SIDE VOLTAGE
1) Measure and record the voltage between each phase and ground.
2) Measure and record the voltage between phases.

TASK 3 COMPARE MEASURED VOLTAGES AND IDENTIFY WHICH OVERCURRENT DEVISE IS OPEN.

TASK 4 DISCONNECT THE CIRCUIT LOAD.

TASK 5 REPLACE THE OPEN FUSE.
EXAMINER MANUAL
COMPETENCY EXAMINATION

COMPETENCY:
IDENTIFICATION OF OPENS IN
OVERCURRENT PROTECTION

ELECTRONICS/INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #6

Competency: Identification of Opens in Overcurrent Protection.

Performance Objective: Given the proper tools and equipment the student will demonstrate the ability to identify opens in a circuits overcurrent protection device to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is 10 minutes.

2) There are five tasks that the student must perform.

3) Documentation of ratings should be made on individual competency exam rating sheet.

4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

- Voltmeter
- Three phase fuseable disconnect switch
- Fuses

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION
IDENTIFICATION OF OPENS IN OVERCURRENT PROTECTION

PERFORMANCE EXAM:

TASK 1 MEASURE LINE SIDE VOLTAGE
1) Measure and record the voltage between each phase and ground.
2) Measure and record the voltage between phases.

TASK 2 MEASURE LOAD SIDE VOLTAGE
1) Measure and record the voltage between each phase and ground.
2) Measure and record the voltage between phases.

TASK 3 COMPARE MEASURED VOLTAGES AND IDENTIFY WHICH OVERCURRENT DEVICE IS OPEN.

TASK 4 DISCONNECT THE CIRCUIT LOAD.

TASK 5 REPLACE THE OPEN FUSE.
COMPETENCY EXAMINATION RATING SHEET

Competency: Identification of Opens in Overcurrent Protection.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to identify opens in a circuits overcurrent protection device to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Measured line voltage.</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>2. Measured load voltage.</td>
<td></td>
</tr>
<tr>
<td>3. Identified opening.</td>
<td></td>
</tr>
<tr>
<td>4. Disconnected load.</td>
<td></td>
</tr>
<tr>
<td>5. Replaced fuse.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

STUDENT ___________________________ Competency Mastered YES ____ NO ____
EXAMINER ___________________________ Date of Rating ___________
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:
TROUBLESHOOTING AND REPAIRING
FLUORESCENT LIGHTING

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #7

Competency: Troubleshooting and Repairing Fluorescent Lighting.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to identify and repair problems in a fluorescent light fixture to National Electric Code standards, achieving 100% mastery on the performance exam.

1) The exam consists of seven tasks.

2) You will be rated on your ability to perform each of the tasks, to current National Electric Code standards.

3) The maximum time allowed for the exam is 30 minutes.

4) When instructed by the examiner, return the work station to its pre-exam condition.

5) The Student Exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- Fluorescent lamps
- Lampholders
- Ballast
- Solderless connectors
- Voltmeter
- Standard screwdriver
- Phillips screwdriver
- Adjustable wrench
- Nut driver set
- Wire stripper

Time started: __________

Time finished: __________
COMPETENCY EXAMINATION

TROUBLESHOOTING AND REPAIRING FLUORESCENT LIGHTING

** WARNING CONTACT WITH LIVE ELECTRICAL PARTS WILL BE FATAL**
USE CAUTION

PERFORMANCE EXAM:

TASK 1 CHECK FLUORESCENT FIXTURE FOR DAMAGE
1) Check the fixture for exterior damage such as broken, lamps, broken lampholders, separation from power circuit, leaking ballast fluids, etc. If any of these are present then proceed to the appropriate job.

TASK 2 CHECK SOURCE VOLTAGE
1) Remove the ballast cover and test the switch leg, and ground for appropriate voltage and continuity. If either is missing repair and test the fixture, otherwise continue to the next test.

TASK 3 CHECK LAMPS
1) Remove the lamps, and check for cracks or burn marks (discoloration). Replace with new lamps. Test the fixture.

TASK 4 CHECK OVERCURRENT PROTECTION DEVICE IN FIXTURE
1) If the fixture is equipped with an overcurrent device in series with the lampholders, check for a blown fuse, or burned out starter. Replace as needed. Test the fixture.

TASK 5 CHECK LAMPHOLDERS
1) Visually inspect the lampholders for impact marks, replace if cracked or chipped.

2) Inspect the conductor connections to the lampholders for loose wires or improper connections, reconnect or rewire as needed.

3) Test the fixture.
TASK 6 REPLACE BALLAST
1) Disconnect the ballast line side.
2) Disconnect the ballast load side.
3) Remove ballast from fixture.
4) Select appropriate replacement ballast.
5) Attach new ballast to fixture.
6) Splice on load side.
7) Splice on line side.
8) Dispose of old ballast according to appropriate environmental regulations.
9) Test the fixture.

TASK 7 TEST THE FIXTURE
1) Check splices for exposed wire and correct as needed.
2) Check to see any overcurrent device is functional.
3) Check to see all covers are in place.
4) Check to see all lamps are properly installed.
5) Check to see all lampholders are in working order.
6) Apply power to fixture.
EXAMINER MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

TROUBLESHOOTING AND REPAIRING

FLUORESCENT LIGHTING

ELECTRONICS/ INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #7

Competency: Troubleshooting and Repairing Fluorescent Lighting.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to identify and repair problems in a fluorescent light fixture to National Electric Code standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is 30 minutes.

2) There are seven tasks that the student must perform.

3) Documentation of ratings should be made on individual competency exam rating sheet.

4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

Fluorescent lamps
Lampholders
Ballast
Solderless connectors
Voltmeter
Standard screwdriver
Phillips screwdriver
Adjustable wrench
Nut driver set
Wire stripper

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

TROUBLESHOOTING AND REPAIRING FLUORESCENT LIGHTING

** WARNING CONTACT WITH LIVE ELECTRICAL PARTS WILL BE FATAL**
USE CAUTION

PERFORMANCE EXAM:

TASK 1 CHECK FLUORESCENT FIXTURE FOR DAMAGE
1) Check the fixture for exterior damage such as broken, lamps, broken lampholders, separation from power circuit, leaking ballast fluids, etc. If any of these are present then proceed to the appropriate job.

TASK 2 CHECK SOURCE VOLTAGE
1) Remove the ballast cover and test the switch leg, and ground for appropriate voltage and continuity. If either is missing repair a.d test the fixture, otherwise continue to the next test.

TASK 3 CHECK LAMPS
1) Remove the lamps, and check for cracks or burn marks (discoloration). Replace with new lamps. Test the fixture.

TASK 4 CHECK OVERCURRENT PROTECTION DEVICE IN FIXTURE
1) If the fixture is equipped with an overcurrent device in series with the lampholders, check for a blown fuse, or burned out starter. Replace as needed. Test the fixture.

TASK 5 CHECK LAMPHOLDERS
1) Visually inspect the lampholders for impact marks, replace if cracked or chipped.

2) Expect the conductor connections to the lampholders for loose wires or improper connections, reconnect or rewire as needed.

3) Test the fixture.
TASK 6 REPLACE BALLAST
1) Disconnect the ballast line side.
2) Disconnect the ballast load side.
3) Remove ballast from fixture.
4) Select appropriate replacement ballast.
5) Attach new ballast to fixture.
6) Splice on load side.
7) Splice on line side.
8) Dispose of old ballast according to appropriate environmental regulations.
9) Test the fixture.

TASK 7 TEST THE FIXTURE
1) Check splices for exposed wire and correct as needed.
2) Check to see any overcurrent device is functional.
3) Check to see all covers are in place.
4) Check to see all lamps are properly installed.
5) Check to see all lampholders are in working order.
6) Apply power to fixture.
COMPETENCY EXAMINATION RATING SHEET

Competency: Troubleshooting and Repairing Fluorescent Lighting.

Performance Objective: Given the proper tools and equipment, the student will demonstrate the ability to identify and repair problems in a fluorescent light fixture to National Electric Code standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT ___________________________</th>
<th>Competency Mastered YES ____ NO ____</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER __________________________</td>
<td>Date of Rating ______________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Visually identified potential trouble spots.</td>
<td></td>
</tr>
<tr>
<td>2. Properly checked power supply for problems.</td>
<td></td>
</tr>
<tr>
<td>3. Replaced lamps if necessary.</td>
<td></td>
</tr>
<tr>
<td>5. Identified damage and/or improper connections to lampholders.</td>
<td></td>
</tr>
<tr>
<td>6. Replaced ballast.</td>
<td></td>
</tr>
<tr>
<td>7. Tested fixture.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL
COMPETENCY EXAMINATION

COMPETENCY:
TROUBLESHOOTING HIGH PRESSURE SODIUM LIGHTING FIXTURES

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #8

Competency: Troubleshooting High Pressure Sodium Lighting Fixtures.

Performance Objective: Given the proper equipment and supplies, the student will demonstrate the ability to troubleshoot and repair a high pressure sodium lighting fixture, to current industry standards, achieving 100% mastery on the performance exam.

1) The test consists of five tasks.
2) You will be rated on your ability to perform each of the tasks, to current industry standard.
3) The maximum time allowed for the exam is 30 minutes.
4) When instructed by the examiner, return the work station to its pre-exam condition.
5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- Lamps
- Starter
- Capacitor
- Ballast
- Photocell
- Multi-meter
- Screwdriver
- Multi-purpose tool

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION
TROUBLESHOOTING HIGH PRESSURE SODIUM LIGHT FIXTURES

PERFORMANCE EXAM:

TASK 1 THE LAMP WILL NOT LIGHT
1) Check for broken or loose electrical connections, and burned or damaged components.
2) Check for faulty lamp. Replace lamp.
 a) broken electrodes
 b) poor connections
 c) Misaligned arc tube
3) Check supply voltage
4) Check photocell

TASK 2 THE FIXTURE BURNS NIGHT AND DAY
1) Replace photocell

TASK 3 FIXTURE OUTPUT TOO DIM
1) Check ballast for proper connections
2) Check supply voltage
3) Incorrect capacitor or capacitor not correctly wired.
4) Incorrect lamp

TASK 4 FIXTURE GOES OFF AND COMES BACK ON REPEATEDLY (CYCLING).
1) Replace lamp
2) Poor wiring connections
3) Faulty or misaligned photocell
4) Ballast failure
5) Capacitor failure
6) Excess vibration effecting fixture

TASK 5 FIXTURE GOES OFF SHORTLY AFTER BEING ENERGIZED
1) Faulty ballast or ballast connections
2) Faculty capacitor or capacitor connections
3) Faculty fixture wiring
COMPETENCY:
TROUBLESHOOTING HIGH PRESSURE SODIUM LIGHTING FIXTURES

ELECTRONICS/INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #8

Competency: Troubleshooting High Pressure Sodium Lighting Fixtures.

Performance Objective: Given the proper equipment and supplies, the student will demonstrate the ability to troubleshoot and repair a high pressure sodium lighting fixture, to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is 30 minutes.
2) There are five tasks that the student must perform.
3) Documentation of ratings should be made on individual competency exam rating sheet.
4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

Lamps
Starter
Capacitor
Ballast
Photocell
Multi-meter
Screwdriver
Multi-purpose tool

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION
TROUBLESHOOTING HIGH PRESSURE SODIUM LIGHT FIXTURES

PERFORMANCE EXAM:

TASK 1 THE LAMP WILL NOT LIGHT
1) Check for broken or loose electrical connections, and burned or damaged components.
2) Check for faulty lamp. Replace lamp.
 a) broken electrodes
 b) poor connections
 c) Misaligned arc tube
3) Check supply voltage
4) Check photocell

TASK 2 THE FIXTURE BURNS NIGHT AND DAY
1) Replace photocell

TASK 3 FIXTURE OUTPUT TOO DIM
1) Check ballast for proper connections
2) Check supply voltage
3) Incorrect capacitor or capacitor not correctly wired.
4) Incorrect lamp

TASK 4 FIXTURE GOES OFF AND COMES BACK ON REPEATEDLY (CYCLING).
1) Replace lamp
2) Poor wiring connections
3) Faulty or misaligned photocell
4) Ballast failure
5) Capacitor failure
6) Excess vibration effecting fixture

TASK 5 FIXTURE GOES OFF SHORTLY AFTER BEING ENERGIZED
1) Faulty ballast or ballast connections
2) Faulty capacitor or capacitor connections
3) Faculty fixture wiring
COMPETENCY EXAMINATION RATING SHEET

Competency: Troubleshooting High Pressure Sodium Lighting Fixtures.

Performance Objective: Given the proper equipment and supplies, the student will demonstrate the ability to troubleshoot and repair a high pressure sodium lighting fixture, to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Identified shorts or opens in lamp.</td>
<td></td>
</tr>
<tr>
<td>2. Identified shorts or opens in photocell.</td>
<td></td>
</tr>
<tr>
<td>3. Properly installed a step up transformer.</td>
<td></td>
</tr>
<tr>
<td>4. Properly installed a capacitor.</td>
<td></td>
</tr>
<tr>
<td>5. Properly installed a starter.</td>
<td></td>
</tr>
<tr>
<td>6. Properly terminated conductors.</td>
<td></td>
</tr>
<tr>
<td>7. Properly identified problem.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

STUDENT ______________ Competency Mastered YES ____ NO ____
EXAMINER ______________ Date of Rating ______________
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

INSTALL AND TEST A TRANSFORMER CIRCUIT

ELECTRONICS/INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #9

Competency: Install and Test a Transformer Circuit.

Performance Objective: Given proper tools and equipment, the student will demonstrate the ability to install and test a transformer circuit to current industry standards, achieving 100% mastery on the performance exam.

1) The test consists of five tasks.

2) You will be rated on your ability to perform each of the tasks, to current I.S.A. standards.

3) The maximum time allowed for the exam is 20 minutes.

4) When instructed by the examiner, return the work station to its pre-exam condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

- 120 V/16 VA step down transformer
- Dual bell chime
- Bell wire
- 2-single pole pushbutton switches
- Junction box containing 120 V power supply
- Mounting screws
- Multi-meter
- Screwdrivers
- Pliers
- Wrenches
- Solderless connectors
- Wire strippers

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

INSTALL AND TEST A TRANSFORMER CIRCUIT

PERFORMANCE EXAM:

TASK 1 MOUNT TRANSFORMER
1) Install the 120 V/16 VA stepdown transformer at the junction box containing the 120 V power supply.
2) Connect the line side of the transformer.

TASK 2 MOUNT DUAL BELL CHIME
1) Mount the chimes.
2) Install bell wire from the chime to the transformer.
3) Connect 1 bell wire lead to the common terminal of the chimes.

TASK 3 MOUNT FRONT DOOR PUSHBUTTON
1) Install bell wire from chimes to pushbutton.
2) Attach bell wire conductors to pushbutton terminals.
3) Attach bell wire conductor to front door terminal on chimes.
4) Mount front door pushbutton.

TASK 4 MOUNT BACK DOOR PUSHBUTTON
1) Install bell wire from chimes to pushbutton.
2) Attach bell wire conductors to pushbutton terminals.
3) Attach bell wire conductors to back door terminal on chimes.
4) Mount back door pushbutton.

TASK 5 TEST SIGNALING CIRCUIT
1) Attach remaining lead from front and rear pushbutton conductor to common hot lead off of transformer.
2) Apply power to system.
3) Test.
EXAMINER MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

INSTALL AND TEST A TRANSFORMER CIRCUIT

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #9

Competency: Install and Test a Transformer Circuit.

Performance Objective: Given proper tools and equipment, the student will demonstrate the ability to install and test a transformer circuit to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is 20 minutes.

2) There are five tasks that the student must perform.

3) Documentation of ratings should be made on individual competency exam rating sheet.

4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:

120 V/16 VA step down transformer
Dual bell chime
Bell wire
2-single pole pushbutton switches
Junction box containing 120 V power supply
Mounting screws
Multi-meter
Screwdrivers
Pliers
Wrenches
Solderless connectors
Wire strippers

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION

INSTALL AND TEST A TRANSFORMER CIRCUIT

PERFORMANCE EXAM:

TASK 1 MOUNT TRANSFORMER
1) Install the 120 V/16 VA stepdown transformer at the junction box containing the 120 V power supply.
2) Connect the line side of the transformer.

TASK 2 MOUNT DUAL BELL CHIME
1) Mount the chimes.
2) Install bell wire from the chime to the transformer.
3) Connect 1 bell wire lead to the common terminal of the chimes.

TASK 3 MOUNT FRONT DOOR PUSHBUTTON
1) Install bell wire from chimes to pushbutton.
2) Attach bell wire conductors to pushbutton terminals.
3) Attach bell wire conductor to front door terminal on chimes.
4) Mount front door pushbutton.

TASK 4 MOUNT BACK DOOR PUSHBUTTON
1) Install bell wire from chimes to pushbutton.
2) Attach bell wire conductors to pushbutton terminals.
3) Attach bell wire conductors to back door terminal on chimes.
4) Mount back door pushbutton.

TASK 5 TEST SIGNALING CIRCUIT
1) Attach remaining lead from front and rear pushbutton conductor to common hot lead off of transformer.
2) Apply power to system.
3) Test.
COMPETENCY EXAMINATION RATING SHEET

Competency: Install and Test a Transformer Circuit.

Performance Objective: Given proper tools and equipment, the student will demonstrate the ability to install and test a transformer circuit to current industry standards, achieving 100% mastery on the performance exam.

| STUDENT __________________________ Competency Mastered | YES _____ NO _____ |
| EXAMINER __________________________ Date of Rating ____________________ |

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Transformer installed.</td>
<td></td>
</tr>
<tr>
<td>2. Bell installed.</td>
<td></td>
</tr>
<tr>
<td>3. Front pushbutton installed.</td>
<td></td>
</tr>
<tr>
<td>4. Rear pushbutton installed.</td>
<td></td>
</tr>
<tr>
<td>5. Tested transformer circuit.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

81 89
STUDENT MANUAL
COMPETENCY EXAMINATION

COMPETENCY:

USE A.C. TEST EQUIPMENT TO LOCATE
OPENS AND SHORTS IN A MOTOR CONTROLLER

ELECTRONICS/ INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #19

Competency: Use A.C. Test Equipment to Locate Opens and Shorts in a Motor Controller.

Performance Objective: Given proper tools and equipment, the student will demonstrate the ability to use test equipment to find opens and shorts in a motor controller to current industry standards, achieving 100% mastery on the performance exam.

1) The test will consist of seven tasks.

2) You will be rated on your ability to perform each of the tasks, to current I.S.A. standards.

3) The maximum time allowed for the exam is one hour.

4) When instructed by the examiner, return the work station to its pre-exam condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be turned in to the examiner and checked before you are given permission to leave the exam area.

Materials/Equipment Needed:

Motor circuit
Motor controller
Motor
Multi-meter
Screwdrivers
Pliers
Wrenches
Electrical cleaner
Heating elements
Holding coils
Contacts

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

USE A.C. TEST EQUIPMENT TO LOCATE OPENS AND SHORTS IN A MOTOR CONTROLLER

PERFORMANCE EXAM:

TASK 1 DETERMINE WHETHER THE FAULT IS IN THE MOTOR OR THE CONTROLLER.
1) Connect the multi-meter to the motor leads and energize the circuit, if there is no current, the trouble lies in the controller.

TASK 2 CHECK FOR GROUNDS OR SHORTS
1) If overcurrent protection is activated when the START button is pressed, check for shorts or grounds in the contacts or coils.

TASK 3 IS THE COIL SHORTED?
1) Check for overcurrent due to mechanical problems.
2) Check for excess voltage.

TASK 4 IF THE MAGNET IS NOISY
1) Clean the core.
2) Check for a broken shaded pole.

TASK 5 IF THE CONTACTS DO NOT CLOSE WHEN THE START BUTTON IS PRESSED.
1) Check open terminal connections.
2) Check open overload relay.
3) Check for low voltage.
4) Check for control button opens.
5) Check for open coil.
6) Check for shorted coil.

TASK 6 IF THE CONTACTS OPEN AFTER THE START BUTTON HAS BEEN RELEASED.
1) Check axillary contacts for mechanical dependability.
2) Check for proper connections of axillary contacts.

TASK 7 IF THE MOTOR DOES NOT START WHEN THE MAIN CONTACTS CLOSE.
1) Check heaters.
2) Check contact points.
3) Check loose connections and splices.
4) Check mechanical trouble such as dirt of worn springs.
5) Check for opens in the transformer.
EXAMINER MANUAL
COMPETENCY EXAMINATION

COMPETENCY:
USE A.C. TEST EQUIPMENT TO LOCATE OPENS AND SHORTS IN A MOTOR CONTROLLER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #10

Competency: Use A.C. Test Equipment to Locate Opens and Shorts in a Motor Controller.

Performance Objective: Given proper tools and equipment, the student will demonstrate the ability to use test equipment to find opens and shorts in a motor controller to current industry standards, achieving 100% mastery on the performance exam.

1) The maximum time for exam is one hour.
2) There are seven tasks that the student must perform.
3) Documentation of ratings should be made on individual competency exam rating sheet.
4) Upon completion of the exam, verify that all testing materials are in your possession.

Materials/Equipment Needed:
- Motor circuit
- Motor controller
- Motor
- Multi-meter
- Screwdrivers
- Pliers
- Wrenches
- Electrical cleaner
- Heating elements
- Holding coils
- Contacts

Time started:
Time finished:

86 94
COMPETENCY EXAMINATION

USE A.C. TEST EQUIPMENT TO LOCATE OPENS AND SHORTS IN A MOTOR CONTROLLER

PERFORMANCE EXAM:

TASK 1 DETERMINE WHETHER THE FAULT IS IN THE MOTOR OR THE CONTROLLER.
1) Connect the multi-meter to the motor leads and energize the circuit, if there is no current, the trouble lies in the controller.

TASK 2 CHECK FOR GROUNDS OR SHORTS
1) If overcurrent protection is activated when the START button is pressed, check for shorts or grounds in the contacts or coils.

TASK 3 IS THE COIL SHORTED?
1) Check for overcurrent due to mechanical problems.
2) Check for excess voltage.

TASK 4 IF THE MAGNET IS NOISY
1) Clean the core.
2) Check for a broken shaded pole.

TASK 5 IF THE CONTACTS DO NOT CLOSE WHEN THE START BUTTON IS Pressed.
1) Check open terminal connections.
2) Check open overload relay.
3) Check for low voltage.
4) Check for control button opens.
5) Check for open coil.
6) Check for shorted coil.

TASK 6 IF THE CONTACTS OPEN AFTER THE START BUTTON HAS BEEN RELEASED.
1) Check axillary contacts for mechanical dependability.
2) Check for proper connections of axillary contacts.

TASK 7 IF THE MOTOR DOES NOT START WHEN THE MAIN CONTACTS CLOSE.
1) Check heaters.
2) Check contact points.
3) Check loose connections and splices.
4) Check mechanical trouble such as dirt of worn springs.
5) Check for opens in the transformer.
COMPETENCY EXAMINATION RATING SHEET

Competency: Use A.C. Test Equipment to Locate Opens and Shorts in a Motor Controller.

Performance Objective: Given proper tools and equipment, the student will demonstrate the ability to use test equipment to find opens and shorts in a motor controller to current industry standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE CRITERIA</td>
<td>STUDENT PERFORMANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satisfactory</td>
<td>No. of Attempts</td>
<td>Completion Date</td>
</tr>
<tr>
<td>1. Determined whether a motor or controller fault exist.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identified grounds or shorts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Checked coil operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Checked magnet operation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Checked mechanical functions of contractor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Checked electro-mechanical operation of auxiliary contacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Checked electrical functions of contractor.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

TEST SEMICONDUCTOR DIODES AND BIPOLAR JUNCTION TRANSISTORS, TO IDENTIFY DEFECTS

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #11

Competency: Test Semiconductor Diodes and Bipolar Junction Transistor, to Identify Defects.

Performance Objective: Demonstrate the ability to test semiconductor diodes and bipolar junction transistor, to identify defects according to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of three tasks:
 a. General Knowledge of Semiconductors
 b. Testing Semiconductor Diodes
 c. Testing Bipolar Junction Transistors

2) You will be rated on your ability to perform each of the tasks to established departmental standards.

3) The maximum time allowed for the exam is 1 hour.

4) When instructed by the examiner, return the work station to its pre-exam condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be returned to the examiner before you are allowed to leave the exam area. The results of the exam will be discussed at the conclusion of the exam.

6) After you have read these instructions, inform the examiner that you are ready to begin the exam.

Equipment/Materials Needed:

1 DMM
3 General purpose diodes
3 Bipolar junction transistors

Time started: ________
Time finished: ________
COMPETENCY EXAMINATION

SEMICONDUCTOR DIODES AND BIPOLAR JUNCTION TRANSISTORS TO IDENTIFY DEFECTS

PERFORMANCE EXAM:

TASK 1

ANSWER THE FOLLOWING QUESTIONS TO TEST YOUR GENERAL KNOWLEDGE OF SEMICONDUCTORS: How Do You:
1) Identify the cathode end of a diode.

2) Identify the emitter lead of a transistor on a schematic diagram.

3) T F zener diodes can be identified just by looking at them.

4) How many resistance measurements must be made to test a transistor?

TASK 2

TEST EACH DIODE AT THE WORK STATION, INDICATE THE CONDITION OF THE DEVICE AS GOOD OR BAD IN THE SPACE PROVIDED.

1) Diode #1: Forward Resistance _________ Reverse Resistance _______

 Condition of Component Good Bad

 If the component checks bad, what type of defect is indicated?

2) Diode #2: Forward Resistance _________ Reverse Resistance _______

 Condition of Component Good Bad

 If the component checks bad, what type of defect is indicated?

3) Diode #3: Forward Resistance _________ Reverse Resistance _______

 If the component checks bad, what type of defect is indicated?
TASK 3

Test each transistor at the work station. Record the readings in the space provided. Indicate the condition of the component as good or bad. If the device is defective, indicate the nature of the defect.

TRANSISTOR #1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Forward Resistance</td>
<td></td>
</tr>
<tr>
<td>EB-Reverse Resistance</td>
<td></td>
</tr>
<tr>
<td>CB-Forward Resistance</td>
<td></td>
</tr>
<tr>
<td>CB-Reverse Resistance</td>
<td></td>
</tr>
<tr>
<td>CE-Resistance</td>
<td></td>
</tr>
</tbody>
</table>

Component Condition: Good Bad Nature of Defect if Bad:

TRANSISTOR #2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Forward Resistance</td>
<td></td>
</tr>
<tr>
<td>EB-Reverse Resistance</td>
<td></td>
</tr>
<tr>
<td>CB-Forward Resistance</td>
<td></td>
</tr>
<tr>
<td>CB-Reverse Resistance</td>
<td></td>
</tr>
<tr>
<td>CE-Resistance</td>
<td></td>
</tr>
</tbody>
</table>

Component Condition: Good Bad Nature of Defect if Bad:

TRANSISTOR #3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Forward Resistance</td>
<td></td>
</tr>
<tr>
<td>EB-Reverse Resistance</td>
<td></td>
</tr>
<tr>
<td>CB-Forward Resistance</td>
<td></td>
</tr>
<tr>
<td>CB-Reverse Resistance</td>
<td></td>
</tr>
<tr>
<td>CE-Resistance</td>
<td></td>
</tr>
</tbody>
</table>

Component Condition: Good Bad Nature of Defect if Bad:

92
EXAMINER MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

TEST SEMICONDUCTOR DIODES AND BIPOLAR JUNCTION TRANSISTOR, TO IDENTIFY DEFECTS

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #11

Competency: Test Semiconductor Diodes and Bipolar Junction Transistors, to Identify Defects.

Performance Objective: Demonstrate the ability to test semiconductor diodes and bipolar junction transistor, to identify defects according to departmental standards, achieving 100% mastery on the performance exam.

1) Maximum time for the exam is 1 hour.

2) This exam consists of three tasks:
 a. General Knowledge of Semiconductors
 b. Testing Semiconductor Diodes
 c. Testing Bipolar Junction Transistors

3) Documentation of ratings should be made on individual competency exam rating sheet and transferred to the student's competency profile.

4) Examiner must initial the worksheet at the completion of each task.

5) When the student notifies you that she/he has read their instructions, you will record the starting time.

6) For each task, rate the student performance as satisfactory or unsatisfactory on the exam rating sheet. Rating information should be shared with the student upon completion of all parts of the exam.

7) Upon completion of the exam, verify that all testing materials are in your possession.

Equipment/Materials Needed:

1 DMM
3 General purpose diodes
3 Bipolar junction transistors

Time started __________
Time finished __________
COMPETENCY EXAMINATION

SEMICONDUCTOR DIODES AND BIPOLAR JUNCTION TRANSISTOR, TO IDENTIFY DEFECTS

PERFORMANCE EXAM:

TASK 1

ANSWER THE FOLLOWING QUESTIONS TO TEST YOUR GENERAL KNOWLEDGE OF SEMICONDUCTORS: How do you:

1) Identify the cathode end of a diode.

2) Identify the emitter lead of a transistor on a schematic diagram.

3) T F zener diodes can identified just by looking at them.

4) How many resistance measurements must be made to test a transistor?

TASK 2

TEST EACH DIODE AT THE WORK STATION, INDICATE THE CONDITION OF THE DEVICE AS GOOD OR BAD IN THE SPACE PROVIDED.

1) Diode #1: Forward Resistance _________ Reverse Resistance _________

Condition of Component Good Bad

If the component checks bad, what type of defect is indicated?

2) Diode #2: Forward Resistance _________ Reverse Resistance _________

Condition of Component Good Bad

If the component checks bad, what type of defect is indicated?

3) Diode #3: Forward Resistance _________ Reverse Resistance _________

If the component checks bad, what type of defect is indicated?
TASK 3

TRANSISTOR #1

<table>
<thead>
<tr>
<th>Component</th>
<th>Good</th>
<th>Bad</th>
<th>Nature of Defect if Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Forward Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB-Reverse Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-Forward Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-Reverse Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE -Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSISTOR #2

<table>
<thead>
<tr>
<th>Component</th>
<th>Good</th>
<th>Bad</th>
<th>Nature of Defect if Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Forward Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB-Reverse Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-Forward Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-Reverse Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE -Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSISTOR #3

<table>
<thead>
<tr>
<th>Component</th>
<th>Good</th>
<th>Bad</th>
<th>Nature of Defect if Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-Forward Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB-Reverse Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-Forward Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-Reverse Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE -Resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPETENCY EXAMINATION RATING SHEET

Competency: Test Semiconductor Diodes and Bipolar Junction Transistor, to Identify Defects.

Performance Objective: Demonstrate the ability to test semiconductor diodes and bipolar junction transistor, to identify defects according to departmental standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE CRITERIA

<table>
<thead>
<tr>
<th>Performance Criteria</th>
<th>Satisfactory</th>
<th>No. of Attempts</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identified the cathode end of a diode, the emitter lead of a transistor and zener diodes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tested semiconductor diodes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tested bipolar junction transistors.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

97 105
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

TROUBLESHOOTING CASCADED C/E AMPLIFIERS

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #12

Competency: Troubleshoot Cascaded Common Emitter Amplifiers.

Performance Objective: Demonstrate the ability to perform a preliminary trouble shooting of a cascaded C/E amplifiers by analyzing D.C. voltage measurements to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of three tasks.

2) You will be rated on your ability to perform each of the three tasks to established departmental standards.

3) The maximum time allowed for this exam is thirty minutes.

4) When instructed by the examiner return the workstation to its pretest conduction.

5) This student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area. The results of the exam will be discussed at its conclusion.

6) After you have read these instructions, inform the examiner you are ready to begin the exam.

Equipment/Materials Needed:

1 DMM
1 0 to 15 VDC Power Supply
1 Set of Cascaded C/E Amplifiers

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION
TROUBLESHOOTING CASCADED C/E AMPLIFIERS

PERFORMANCE EXAM:

TASK 1 Measure the following voltages of Q1.

A) VC ____________
B) VB ____________
C) VE ____________
D) VCE ____________

Analyze the voltage readings and select one of the following:

A) Cut Off
B) Active Region
C) Saturation Region

TASK 2 Measure the following voltages of Q2.

A) VC ____________
B) VB ____________
C) VE ____________
D) VCE ____________

Analyze the voltage readings and select one of the following:

A) Cut Off
B) Active Region
C) Saturation Region

TASK 3 Measure the following voltages of Q3.

A) VC ____________
B) VB ____________
C) VE ____________
D) VCE ____________

Analyze the voltage readings and select one of the following:

A) Cut Off
B) Active Region
C) Saturation Region

THIS CONCLUDES THIS PERFORMANCE EXAM
RETURN THIS EXAM BOOKLET TO THE INSTRUCTOR
EXAMINER MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

TROUBLESHOOTING CASCADED

C/E AMPLIFIERS

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #12

Competency: Troubleshoot Cascaded Common Emitter Amplifiers.

Performance Objective: Demonstrate the ability to perform a preliminary trouble shooting of a cascaded C/E amplifiers by analyzing D.C. voltage measurements to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of three tasks.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time allowed for this exam is thirty minutes.

4) This student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area. The results of the exam will be discussed at its conclusion.

5) Upon completion of the exam, verify that all testing materials are in your possession.

Equipment/Materials Needed:

1 DMM
1 0 to 15 VDC Power Supply
1 Set of Cascaded C/E Amplifiers

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

TROUBLESHOOTING CASCADED C/E AMPLIFIERS

PERFORMANCE EXAM:

TASK 1 Measure the following voltages of Q1.

A) VC ____________
B) VB ____________
C) VE ____________
D) VCE ____________

Analyze the voltage readings and select one of the following:

A) Cut Off
B) Active Region
C) Saturation Region

TASK 2 Measure the following voltages of Q2.

A) VC ____________
B) VB ____________
C) VE ____________
D) VCE ____________

Analyze the voltage readings and select one of the following:

A) Cut Off
B) Active Region
C) Saturation Region

TASK 3 Measure the following voltages of Q3.

A) VC ____________
B) VB ____________
C) VE ____________
D) VCE ____________

Analyze the voltage readings and select one of the following:

A) Cut Off
B) Active Region
C) Saturation Region

THIS CONCLUDES THIS PERFORMANCE EXAM
RETURN THIS EXAM BOOKLET TO THE INSTRUCTOR
COMPETENCY EXAMINATION RATING SHEET

Competency: Troubleshooting Cascaded C/E Amplifiers.

Performance Objective: Demonstrate the ability to perform preliminary trouble shooting of a cascaded c/e amplifier by analyzing D. C. voltage measurements to departmental standards, achieving 100% mastery on the performance exam.

| STUDENT ___________________________ | Competency Mastered YES NO |
| EXAMINER ___________________________ | Date of Rating ___________________________ |

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Identification of a stage operating in the active region.</td>
<td></td>
</tr>
<tr>
<td>2. Identification of a stage operating in the cut off region.</td>
<td></td>
</tr>
<tr>
<td>3. Identification of a stage operating in the saturation region.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL
COMPETENCY EXAMINATION

COMPETENCY:
TROUBLESHOOTING CASCADED C/E AMPLIFIERS
USING THE SIGNAL TRACING METHOD

ELECTRONICS/INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #13

Competency: Troubleshooting Cascaded C/E Amplifiers Using the Signal Tracing Method.

Performance Objective: Demonstrate the ability to identify a defective amplifier in a cascaded configuration using the signal tracing method to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of one task:

2) You will be rated on your ability to identify a defective stage by signal tracing.

3) The maximum time allowed for the exam is 15 minutes.

4) When instructed by the examiner, return the work station to its pretext condition.

5) The student exam booklet, any scrap worksheets, and all equipment must be returned to the examiner before you are allowed to leave the exam area. The results of the exam will be discussed at the conclusion.

6) After you have read these instructions, inform the examiner that you are ready to begin the exam.

Equipment/Materials Needed:

1 DMM
1 0 to 15 VDC power supply
1 Dual trace oscilloscope
1 Audio signal generator
1 Set of cascaded c/E amplifiers

Time started:
Time finished:

108
116
COMPETENCY EXAMINATION

TROUBLESHOOTING CASCADED C/E AMPLIFIERS
USING THE SIGNAL TRACING METHOD

PERFORMANCE EXAM:

TASK 1 Set your audio signal generator for a 1 KHZ, 10mV P/P output and connect the output to C1 on the schematic diagram.

Using established procedures use the oscilloscope to identify the defective stage.

Defective Stage Q1 Q2 Q3

This completes this performance test. Inform the examiner so that your finish time can be recorded.
COMPETENCY:
TROUBLESHOOTING CASCADED C/E AMPLIFIERS
USING THE SIGNAL TRACING METHOD

ELECTRONICS/ INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #13

Competency: Troubleshooting Cascaded C/E Amplifiers Using the Signal Tracing Method.

Performance Objective: Demonstrate the ability to identify a defective amplifier in a cascaded configuration using the signal tracing method to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of one task:

2) Documentation of ratings should be made on individual competency exam rating sheet.

3) The maximum time allowed for the exam is 15 minutes.

4) When instructed by the examiner, return the workstation to its pretest condition.

5) This student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area. The results of the exam will be discussed at its conclusion.

6) Upon completion of the exam, verify that all testing materials are in your possession.

Equipment/Materials Needed:

1 DMM
1 0 to 15 VDC power supply
1 Set of cascaded C/E amplifiers

Time started __________
Time finished __________
COMPETENCY EXAMINATION

TROUBLESHOOTING CASCADED C/E AMPLIFIERS
USING THE SIGNAL TRACING METHOD

PERFORMANCE EXAM:

TASK 1 Set your audio signal generator for a 1 KHZ, 10mV P/P output and connect the output to C1. on the schematic diagram.

Using established procedures use the oscilloscope to identify the defective stage.

Defective Stage Q1 Q2 Q3

This completes this performance test. Inform the examiner so that your finish time can be recorded.
COMPETENCY EXAMINATION RATING SHEET

Competency: Troubleshooting Cascaded C/E Amplifiers Using the Signal Tracing Method.

Performance Objective: Demonstrate the ability to identify a defective amplifier in a cascaded configuration using the signal tracing method to departmental standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT ___________________________</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER __________________________</td>
<td>Date of Rating ______</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Identified defective amplifier using signal tracing.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL
COMPETENCY EXAMINATION

COMPETENCY:
CALIBRATION AND OPERAT:ON OF
A TEMPERATURE BRIDGE

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #14

Competency: Calibration and Operation of a Temperature Bridge.

Performance Objective: Demonstrate the ability to calibrate and perform an operation/check of a temperature bridge to performance standards, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) You will be rated on your ability to perform this job according to departmental standards and the specification sheet accompanying this exam.

3) The maximum time allowed for this exam is one hour.

4) When instructed by the examiner, return the workstation to its pretest conduction.

5) This student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area.

6) After you have read these instructions, inform the examiner you are ready to begin the exam.

Equipment/Materials Needed:

1 DMM
1 Thermometer
1 ± 12VDC Power Supply
1 Variable D. C. Power Supply
1 Temperature Bridge and Associated Circuitry
Specification sheet for the temperature bridge circuit

Time started: _____________
Time finished: ___________
SPECIFICATION SHEET FOR THE TEMPERATURE BRIDGE

1. All resistors are $\pm 2\%$ tolerance.
2. 1 KΩ Thermistor.
3. Temperature compensated operational amplifier.
4. The bridge circuit is to be calibrated at room temperature.
COMPETENCY EXAMINATION

CALIBRATION AND OPERATION OF A TEMPERATURE BRIDGE

PERFORMANCE EXAM:

TASK 1 Check the calibration and operation of a temperature bridge circuit.

1. Measure Vout of the opamp. Vout _______

2. If the output is not ØVDC Go To Step 3. If the output is normal proceed to step 4.

3. Adjust RW until a ØVDC is obtained.

4. Apply heat to the thermistor and observe the output of the opamp. Does the output go in a positive direction. yes no If the voltage does not change, replace the opamp and repeat step 4. If the voltage does change, let the bridge cool and observe that the opamp output returns toØVDC. This completes the calibration procedure.

This Concludes The Performance Exam
Difference amplifier connected to thermistor bridge.
EXAMINER MANUAL
COMPETENCY EXAMINATION

COMPETENCY:
CALIBRATION AND OPERATION OF
A TEMPERATURE BRIDGE

ELECTRONICS/INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #14

Competency: Calibration and Operation of a Temperature Bridge.

Performance Objective: Demonstrate the ability to calibrate and perform an operational check of a temperature bridge to departmental standards, achieving 100% mastery on the performance exam.

1) This performance exam consists of one task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time for this exam is one hour.

4) When the student notifies you that he/she has read their instructions, you will record the start time.

5) Upon completion of the exam, verify that all testing materials are in your possession.

Materials Needed:

1 DMM
1 Thermometer
1 ±12 VDC power supply
1 Variable D.C. power supply
1 Temperature bridge and associated circuitry
Specification sheet for the temperature bridge circuit.

Time started:
Time finished:

122
130
SPECIFICATION SHEET FOR THE TEMPERATURE BRIDGE

1. All resistors are \(\pm 2\% \) tolerance.
2. 1 K \(\Omega \) Thermistor.
3. Temperature compensated operational amplifier.
4. The bridge circuit is to be calibrated at room temperature.
COMPETENCY EXAMINATION

CALIBRATION AND OPERATION OF A TEMPERATURE BRIDGE

PERFORMANCE EXAM:

TASK 1 Check the calibration and operation of a temperature bridge circuit.

1. Measure Vout of the opamp. Vout ________.
2. If the output is not 0VDC Go To Step 3. If the output is normal proceed to step 4.
3. Adjust RW until a 0VDC is obtained.
4. Apply heat to the thermistor and observe the output of the opamp. Does the output go in a positive direction. yes or no. If the voltage does not change, replace the opamp and repeat step 4. If the voltage does change, let the bridge cool and observe that the opamp output returns to 0VDC. This completes the calibration procedure.

This Concludes The Performance Exam.
8-14 Difference amplifier connected to thermistor bridge.
COMPETENCY EXAMINATION RATING SHEET

Competency: Calibration and Operation of a Temperature Bridge.

Performance Objective: Demonstrate the ability to calibrate and perform an operational check of temperature bridge to departmental standards, achieving 100% mastery on the performance exam.

| STUDENT ___________________________ | Competency Mastered YES NO |
| EXAMINER ___________________________ | Date of Rating ____________ |

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>1. Demonstrated ability to calibrate the temperature bridge.</td>
<td></td>
</tr>
<tr>
<td>2. Demonstrated the ability to perform an operational check of the circuit.</td>
<td></td>
</tr>
</tbody>
</table>

Comments: 126 134
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

CALIBRATION AND OPERATIONAL CHECK

OF AN INSTRUMENTATION SUMMING AMPLIFIER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #15

Competency: Calibration and Operational Check of an Instrumentation Summing Amplifier.

Performance Objective: Demonstrate the ability to calibrate and perform an operational check of an instrumentation summing amplifier to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) You will be rated on your ability to perform this job according to departmental standards and the specifications accompanying this exam.

3) The maximum time for this exam is one hour.

4) When instructed by the examiner, return the workstation to its pretest condition.

5) The student exam booklet, any scrape paper, and all equipment must be returned before you are allowed to leave the area.

6) After you have read these instructions, inform the examiner that you are ready to began the exam.

Equipment/Materials Required:

1 3 1/2 Digit DMM
1 ± 12 VDC Power Supply
1 Variable Power Supply 0-15VDC.
Summing amplifier and specification sheet

Time started:
Time finished:

128
136
SPECIFICATIONS FOR THE SUMMING AMPLIFIER

1. All resistors are ±1% tolerance.
2. Power supply voltages ±12VDC.
3. Vout measured with 10MΩ input Z DMM and ±10mVS of calculated values.
4. Opamp UA741C or equivalent.
COMPETENCY EXAMINATION

CALIBRATION AND OPERATIONAL CHECK
OF AN INSTRUMENTATION SUMMING AMPLIFIER

PERFORMANCE EXAM:

TASK 1 Check the calibration of the summing amplifier in Fig. 1.

1. Measure and record the values of the following resistors. Each should measure within ± 1% of normal value.

<table>
<thead>
<tr>
<th>RESISTOR</th>
<th>WITHIN</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R1</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R2</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R4</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

If the resistance values check good, perform the procedures in Step 2.

2. Apply 1VDC to each input V1 thru V4. Use a 3 1/2 digit DMM to verify proper output.

<table>
<thead>
<tr>
<th>INPUT</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 IN</td>
<td></td>
</tr>
<tr>
<td>V2 IN</td>
<td></td>
</tr>
<tr>
<td>V3 IN</td>
<td></td>
</tr>
<tr>
<td>V4 IN</td>
<td></td>
</tr>
</tbody>
</table>

If correct vout cannot be obtained, check power supply ± voltage.
If the power supply is normal, replace the opamp and red step two.
If vout is good, the unit is calibrated. This concludes the performance exam.
Fig. 1
COMPETENCY:

CALIBRATION AND OPERATIONAL CHECK

OF AN INSTRUMENTATION SUMMING AMPLIFIER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #15

Competency: Calibration and Operational Check on an Instrumentation Summing Amplifier

Performance Objective: Demonstrate the ability to calibrate and perform an operational check of an instrumentation summing amplifier to departmental standards, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time allowed for this exam is one hour.

4) The student exam booklet, scrap paper and all equipment must be accounted for before the student is allowed to leave the area.

5) When the student notifies you that he/she has read their instruction, you will record the starting time.

6) Upon completion of the exam, verify that all testing materials are in your possession.

Equipment/Materials Required:

1 3 1/2 Digit DMIN
1 ± 12 VDC Power Supply
1 Variable Power Supply 0-15VDC.
Summing amplifier and specification sheet

Time started:
Time finished:

133
141
SPECIFICATIONS FOR THE SUMMING AMPLIFIER

1. All resistors are +1% tolerance.
2. Power supply voltages +12VDC.
3. Vout measured with 10MΩ input Z DMM and ±10mV of calculated values.
4. Opamp UA741C or equivalent.
PERFORMANCE EXAM:

TASK 1 Check the calibration of the summing amplifier in Fig. 1.

1. Measure and record the values of the following resistors. Each should measure within ± 1% of normal value.

<table>
<thead>
<tr>
<th></th>
<th>WITHIN</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R1</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R2</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R3</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>R4</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

If the resistance values check good, perform the procedures in Step 2.

2. Apply 1VDC to each input V1 thru V4. Use a 3 1/2 digit DMM to verify proper output.

<table>
<thead>
<tr>
<th>V1 IN</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2 IN</td>
<td>VOUT</td>
</tr>
<tr>
<td>V3 IN</td>
<td>VOUT</td>
</tr>
<tr>
<td>V4 IN</td>
<td>VOUT</td>
</tr>
</tbody>
</table>

If correct vout cannot be obtained, check power supply ± voltage. If the power supply is normal, replace the opamp and red step two. If vout is good, the unit is calibrated. This concludes the performance exam.
Fig. 1
COMPETENCY EXAMINATION RATING SHEET

Competency: Calibration and Operational Check of an Instrumentation Summing Amplifier

Performance Objective: Demonstrate the ability to calibrate and perform a operational check of an instrumentation summing amplifier to departmental standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE CRITERIA

1. Demonstrated ability to verify proper operation of the summing amplifier.

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>

Comments:
COMPETENCY:

PERFORM ALIGNMENT OF AN

A.M. SUPERHETEROODYNE RECEIVER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #16

Competency: Perform Alignment of an A.M. Superhetrodyne Receiver

Performance Objective: Given the proper materials, equipment and service manual the student will demonstrate the ability to perform a complete alignment of an A.M. superhetrodyne receiver using manufactures specifications, achieving 100% mastery on the performance exam.

1) This exam consists of one tasks.

2) You will be rated on your ability to perform to manufactures specifications in the service manual.

3) The maximum time allowed for this exam is one hour.

4) When instructed by the examiner, return the workstation to its pretest conduction.

5) This student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area.

6) After you have read these instructions, inform the examiner you are ready to begin the exam.

Equipment/Materials Needed:

1 Dual Trace Oscilloscope
1 R. F. Signal Generator Capable Of Supplying Modulated R. F.
1 Audio Signal Generator
1 Frequency Counter
1 Service Manual
1 Set Non-Inductive Turning Tools

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION

PERFORM ALIGNMENT OF AN A.M. SUPERHETROCYNE RECEIVER

PERFORMANCE EXAM:

TASK 1 Using the service manual provided perform a complete alignment of the A.M. superhetrodyne receiver at the work station.

1) Alignment of I.F. strip

2) Tuning of mixer circuit for proper output.

3) Tracking of local oscillator and R.F. Amplifier.
Figure 3-9
Standard AM broadcast superheterodyne receiver.
COMPETENCY:

PERFORM ALIGNMENT OF AN

A. M. SUPERHETEROODYNE RECEIVER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #16

Competency: Perform Alignment of an A.M. Superheterodyne Receiver.

Performance Objective: Given the proper materials, equipment and service manual the student will demonstrate the ability to perform a complete alignment of an A.M. superheterodyne receiver using manufactures specifications, achieving 100% mastery on the performance exam.

1) This performance exam consists of one task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time for this exam is one hour.

4) When the student notifies you that he/she has read their instructions, you will record the start time.

5) Upon completion of the exam verify that all testing materials are in your possession.

Equipment/Materials Needed:

1 Dual Trace Oscilloscope
1 R. F. Signal Generator Capable Of Supplying Modulated R. F.
1 Audio Signal Generator
1 Frequency Counter
1 Service Manual
1 Set Non-Inductive Turning Tools

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION

PERFORM ALIGNMENT OF AN A. M. SUPERHETRODYNE RECEIVER

PERFORMANCE EXAM:

TASK 1 Using the service manual provided perform a complete alignment of the A.M. superhetrodyne receiver at the work station.

1) Alignment of I.F. strip

2) Tuning of mixer circuit for proper output.

3) Tracking of local oscillator and R.F. Amplifier.
Figure 3-9
Standard AM broadcast superheterodyne receiver.
COMPETENCY EXAMINATION RATING SHEET

Competency: Perform Alignment of an A.M. Superhetrodyne Receiver.

Performance Objective: Given the proper materials, equipment and service manual the student will demonstrate the ability to perform a complete alignment of an A. M. superhetrodyne receiver using manufactures specifications, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Demonstrated ability to align I.F. amplifiers.</td>
<td></td>
</tr>
<tr>
<td>2. Demonstrated the ability to tune mixer stage to the difference frequency.</td>
<td></td>
</tr>
<tr>
<td>3. Demonstrated the ability to track the local oscillator and R. F. Amplifier.</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
STUDENT MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

RECEIVER TROUBLESHOOTING

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #17

Competency: Receiver Troubleshooting.

Performance Objective: Demonstrate the ability to troubleshoot an A. M. superheterodyne receiver using signal injection to isolate the detective stage and a DMM and transistor checker to determine the defective component, achieving 100% mastery on the performance exam.

1) This exam consists of two tasks.

2) You will be rated on your ability to perform each tasks to departmental procedures.

3) The maximum time allowed for this exam is one hour and thirty minutes.

4) When instructed by the examiner, return the workstation to its pretest conduction.

5) The student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area.

6) After you have read these instructions, inform the examiner you are ready to begin the exam.

Equipment/Materials Needed:

1 Dual Trace Oscilloscope
1 R. F. Signal Generator Capable Of Supplying Modulated R. F.
1 Audio Signal Generator
1 Frequency Counter
1 Service Manual for the Specific Receiver.

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION
RECEIVER TROUBLESHOOTING

PERFORMANCE EXAM:

TASK 1
A) Check Power Supply (DMM) Good Bad
B) Isolate the defective stage using signal injection. Good Bad
C) Audio Amps Good Bad
D) Detector Good Bad
E) Second I.F.Amp Good Bad
F) First I.F. Amp Good Bad
G) Mixer Stage Good Bad
H) Local Oscillator Good Bad
I) First R. F. Amp Good Bad

TASK 2
Isolate defective stage to a defective component.
A) Measure the following Voltages of the Defective Stage.
The Defective Stage
1) VC- Normal Abnormal
2) VB- Normal Abnormal
3) VE- Normal Abnormal
B) Check transistor with either an in circuit transistor checker or if not available a DMM to verify condition of the transistor.
Good Bad
C) Using Established Procedures use the DMM to locate defective part by making resistance measurements
Defective Part is ___________________________
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #17

Competency: Receiver Troubleshooting.

Performance Objective: Demonstrate the ability to troubleshoot an A.M. superheterodyne receiver using signal injection to isolate the defective stage and a DMM and transistor checker to determine the defective component achieving 100% mastery on the performance exam.

1) This performance exam consists of two task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time for this exam is one hour and thirty minutes.

4) When the student notifies you that he/she has read their instructions, you will record the start time.

5) Upon completion of the exam verify that all testing materials are in your possession.

Equipment/Materials Needed:

1 Dual Trace Oscilloscope
1 R. F. Signal Generator Capable Of Supplying Modulated R. F.
1 Audio Signal Generator
1 Frequency Counter
1 Service Manual for the Specific Receiver.

Time started:
Time finished:

151 159
COMPETENCY EXAMINATION
RECEIVER TROUBLESHOOTING

PERFORMANCE EXAM:

TASK 1
A) Check Power Supply (DMM) Good Bad
B) Isolate the defective stage using signal injection. Good Bad
C) Audio Amps Good Bad
D) Detector Good Bad
E) Second I.F.Amp Good Bad
F) First I.F. Amp Good Bad
G) Mixer Stage Good Bad
H) Local Oscillator Good Bad
I) First R. F. Amp Good Bad

TASK 2
Isolate defective stage to a defective component.

A) Measure the following Voltages of the Defective Stage.

 The Defective Stage

 1) VC- Normal Abnormal
 2) VB- Normal Abnormal
 3) VE- Normal Abnormal

B) Check transistor with either an in circuit transistor checker or if not available a DMM to verify condition of the transistor.

 Good Bad

C) Using Established Procedures use the DMM to locate defective part by making resistance measurements

 Defective Part is ____________________________

152

COMPETENCY EXAMINATION RATING SHEET

Competency: Receiver Troubleshooting.

Performance Objective: Demonstrate the ability to troubleshoot an A.M. superhetrodyne receiver using signal injection to isolate the defective stage and a DMM and transistor checker to determine the defective component, achieving 100% mastery on the performance exam.

| STUDENT ___________________________ | Competency Mastered | YES ____ NO ____ |
| EXAMINER ___________________________ | Date of Rating ______ |

PERFORMANCE CRITERIA

<table>
<thead>
<tr>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
</tr>
</tbody>
</table>

1. Demonstrated the ability to isolate the defective stage.

2. Demonstrated the ability to determine the defective component.

Comments: 153 161
COMPETENCY:

VERIFICATION OF CORRECT OPERATION OF A SEVEN-SEGMENT DISPLAY DRIVEN BY A DECODER DRIVER AND A DECADE COUNTER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #18

Competency: Verification of Correct Operation of a Seven-Segment Display Driven by a Decoder Driver and a Decade Driver

Performance Objective: Demonstrate the ability to a minimum performance check of a seven-segment display driven by a decoder driver and a decade counter using the TTL Data Book as a standards, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) You will be rated on your ability to perform a minimum performance check of the circuit included with this exam.

3) The maximum time for this exam is one hour.

4) When instructed by the examiner, return the workstation to its pretest condition.

5) The student exam booklet, any scrape paper, and all equipment must be returned before you are allowed to leave the area.

6) After you have read these instructions, inform the examiner that you are ready to began the exam.

Equipment/Materials Required:

1 Dual trace oscilloscope
1 DMM 3 1/2 Digit 10 MΩ input Ω
1 Digital Logic Probe
1 Logic Pulser or TTL Clock Generator
1 TTL Data Book

Time started: ___________
Time finished: ___________
COMPETENCY EXAMINATION

VERIFICATION OF CORRECT OPERATION OF A
SEVEN-SEGMENT DISPLAY DRIVEN BY A DECODER
DRIVER AND A DECADE DRIVER

PERFORMANCE EXAM:

TASK 1 Verify that all sections of the display driver circuit are working correctly.

A) Seven-Segment Display Status.
 1) defective
 EXAMINER INIT 2) checks ok

 B) Decoder Driver Status.
 1) Output Lines a-g normal/abnormal.
 EXAMINER INIT 2) Lines A-D select correct output lines.

 C) Decade Counter Status.
 EXAMINER INIT 1) Provides correct count. Yes No

 D) After all sections have been checked, connect a
 10HZ TTL signal to the decade counter to verify that all
 sections will function as a unit.
Connecting a seven-segment display to a counter with a 7447 decoder/driver.
COMPETENCY:

VERIFICATION OF CORRECT OPERATION OF A
SEVEN-SEGMENT DISPLAY DRIVEN BY A DECODER
DRIVER AND A DECADE COUNTER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #18

Competency: Verification of Correct Operation of Seven-Segment Display Driven by a Decoder Driver and Decade Counter

Performance Objective: Demonstrate the ability to minimum performance check of a seven-segment display driven by decoder-driver and a decade counter using the TTL Data Book as a standard, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time allowed for this exam is one hour.

4) When the student notifies you that he/she has read their instruction, you will record the starting time.

5) Upon completion of the exam, verify that all testing materials are in your possession.

Equipment/Materials Required:

1 Dual trace oscilloscope
1 DMM 3 1/2 Digit 10 MΩ input Z
1 Digital Logic Probe
1 Logic Pulser or TTL Clock Generator
1 TTL Data Book

Time started: ____________
Time finished: ____________
COMPETENCY EXAMINATION

VERIFICATION OF CORRECT OPERATION OF A SEVEN-SEGMENT DISPLAY DRIVEN BY A DECODER DRIVER AND A DECADE DRIVER

PERFORMANCE EXAM:

TASK 1 Verify that all sections of the display driver circuit are working correctly.

A) Seven-Segment Display Status.
 1) defective
 EXAMINER INIT 2) checks ok

B) Decoder Driver Status.
 1) Output Lines a-g normal/abnormal.
 EXAMINER INIT 2) Lines A-D select correct output lines.

C) Decade Counter Status.
 EXAMINER INIT 1) Provides correct count. Yes No

D) After all sections have been checked, connect a 10HZ TTL signal to the decade counter to verify that all sections will function as a unit.
Connecting a seven-segment display to a counter with a 7447 decoder/driver.

(A) Circuit

SEVEN-SEGMENT DISPLAY

DECODER/DRIVER

DECcade COUNTER

INPUT PULSES
COMPETENCY EXAMINATION RATING SHEET

Competency: Verification of Correct Operation of Seven-Segment Display Driven by a Decoder Driver and Decade Counter

Performance Objective: Demonstrate the ability to a minimum performance check of a seven-segment display driven by a decoder driver and a decade counter using the TTL Data Book as a standards, achieving 100% mastery on the performance exam.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Competency Mastered</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMINER</td>
<td>Date of Rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE CRITERIA

<table>
<thead>
<tr>
<th>No. of Attempts</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
<td></td>
</tr>
</tbody>
</table>

1. Able to verify correct operation of the seven segment display.

2. Able to briefly correct operation of the decoder driver.

3. Able to verify correct operation of the decade counter.

4. Verify that all sections function as a single unit.

Comments:
COMPETENCY:
PERFORM MINIMUM PERFORMANCE CHECK
OF AN EIGHT TRACE LOGIC ANALYZER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #19

Competency: Perform Minimum Performance Check of an Eight Trace Logic Analyzer.

Performance Objective: Given the proper material and equipment the student will demonstrate the ability to perform a minimum performance check of an eight trace logic analyzer and adjust or repair as necessary, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) You will be rated on your ability to perform to this exam according to the specification sheet accompanying this test. You may use the TTL Data Book to verify correct wiring and pin out information.

3) The maximum time allowed for this exam is one hour.

4) When instructed by the examiner return the workstation to its pretest conduction.

5) This student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area.

6) After you have read these instructions, inform the examiner you are ready to begin the exam.

Equipment/Materials Needed:

1 DMM
1 Dual Trace Oscilloscope
1 Logic Pulser or TTL Clock Generator
1 Logic Probe
1 The Circuit in Figure 3 Previously Constructed on Suitable Breadboard
1 5 Volt Power Supply
1 Frequency Counter
1 TTL Data Book

Time started:
Time finished:
PRELIMINARY SETTINGS

PERFORM MINIMUM PERFORMANCE CHECK
OF AN EIGHT TRACE LOGIC ANALYZER

PERFORMANCE EXAM:

TASK 1 Using the following values as preliminary settings for this exam.

A) R_1 set to 224 OHMS
B) R_2 set to 370 OHMS
C) R_4 set 8K OHMS
D) R_5 set to 6.2K OHMS

NOTE: Adjustment to these values may be required as the performance exam progresses. Do not change them unless they fail to meet the specifications listed on the minimum performance section.
SPECIFICATIONS FOR THE LOGIC ANALYZER

A) Clock Generator - the clock generator is designed to operate at $1 \text{MHz} \pm 0.5 \text{MHz}$. Adjustment of R1 and R2 in Figure 2 may be required to obtain the specified output.

B) The output of the staircase generator shall be eight separate steps as shown in Figure 1.

C) The input to the 74151 MUX unit can be any 8 bits of information that requires analysis with respect to time. This unit is particularly useful for analyzing counter circuits. Two 7493 IC's can be used for the eight data inputs.

D) Use the following settings for preliminary settings for the performance exam.

 A) R1 Fig. 2 to 220 Ω
 B) R2 Fig. 2 to 370 Ω
 C) R4 Fig. 3 to 8 K Ω
 D) R5 Fig. 3 to 6.2 K Ω
COMPETENCY EXAMINATION

PERFORM MINIMUM PERFORMANCE CHECK OF AN EIGHT TRACE LOGIC ANALYZER

PERFORMANCE EXAM:

TASK 1 Perform minimum performance check as listed in the specification sheet that accompanies this exam.

A) Clock generator frequency check:

Measure and record the output ________.

1) If within limits go to step two. If not adjust or repair as necessary.

2) Use the oscilloscope to observe the staircase generator output. If normal proceed to the Mux check section, otherwise troubleshoot and repair to obtain correct output. R4 and R5 should be adjusted to obtain proper symmetry.

3) Multiplexer check - check each line of the 74151 MUX IC to verify proper operation. If the IC fails this check, the IC should be replaced.
Figure 1

Figure 2
Figure 3
EXAMINER MANUAL
COMPETENCY EXAMINATION

COMPETENCY:

PERFORM MINIMUM PERFORMANCE CHECK
OF AN EIGHT TRACE LOGIC ANALYZER

ELECTRONICS / INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #19

Competency: Perform Minimum Performance Check of an Eight Trace Logic Analyzer.

Performance Objective: Given the proper materials, and equipment the student will demonstrate the ability to perform a minimum performance check of an eight trace logic analyzer and adjust or repair as necessary, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time for this exam is one hour.

4) When the student notifies you that he/she has read their instructions, you will record the start time.

5) Upon completion of the exam verify that all testing materials are in your possession.

Equipment/Materials Needed:

1 DMM
1 Dual Trace Oscilloscope
1 Logic Pulser or TTL Clock Generator
1 Logic Probe
1 The Circuit in Figure 3 Previously Constructed on Suitable Breadboard
1 5 Volt D. C. Power Supply
1 Frequency Counter
1 TTL Data Book

Time started: ___________

Time finished: ___________
PRELIMINARY SETTINGS

PERFORM MINIMUM PERFORMANCE CHECK
OF AN EIGHT TRACE LOGIC ANALYZER

PERFORMANCE EXAM:

TASK 1 Using the following values as preliminary settings for this exam.

A) R₁ set to 224 OHMS
B) R₂ set to 370 OHMS
C) R₄ set 8K OHMS
D) R₅ set to 6.2K OHMS

NOTE: Adjustment to these values may be required as the performance exam progresses. Do not change them unless they fail to meet the specifications listed on the minimum performance section.
SPECIFICATIONS FOR THE LOGIC ANALYZER

A) Clock Generator - the clock generator is designed to operate at 1MHz ± 1MHz. Adjustment of R1 and R2 in Figure 2 may be required to obtain the specified output.

B) The output of the staircase generator shall be eight separate steps as shown in Figure 1.

C) The input to the 74151 MUX unit can be any 8 bits of information that requires analysis with respect to time. This unit is particularly useful for analyzing counter circuits. Two 7493 IC's can be used for the eight data inputs.

D) Use the following settings for preliminary settings for the performance exam.

 A) R1 Fig. 2 to 220 Ω
 B) R2 Fig. 2 to 370 Ω
 C) R4 Fig. 3 to 8 K Ω
 D) R5 Fig. 3 to 6.2 K Ω
PERFORMANCE EXAM:

TASK 1 Perform minimum performance check as listed in the specification sheet that accompanies this exam.

A) Clock generator frequency check:

Measure and Record the output ______

1) If within limits go to step two. If not adjust or repair as necessary.

2) Use the oscilloscope to observe the staircase generator output. If normal proceed to the Mux check section otherwise troubleshoot and repair to obtain correct output. R4 and R5 should be adjusted to obtain proper symmetry.

3) Multiplexer check - check each line of the 74151 MUX IC to verify proper operation. If the IC fails this check, the IC should be replaced.
Figure 1

Figure 2
Figure 3
COMPETENCY EXAMINATION RATING SHEET

Competency: Perform Minimum Performance Check of an Eight Trace Logic Analyzer.

Performance Objective: Given the proper materials and equipment the student will demonstrate the ability to perform minimum performance check of an eight trace logic analyzer and adjust or repair as necessary, achieving 100% mastery on the performance exam.

STUDENT __ Competency Mastered YES ____ NO ____

EXAMINER __ Date of Rating __________________________

PERFORMANCE CRITERIA

<table>
<thead>
<tr>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1. Demonstrated ability to perform the minimum performance check and repair and adjust the logic analyzer to the specification listed on the specification sheet.

Comments:

177

185
COMPETENCY:

VERIFY PROPER OPERATION OF A

FREQUENCY COUNTER

ELECTRONICS/INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE STUDENT

PERFORMANCE EXAMINATION #20

Competency: Verify Proper Operation of a Frequency Counter.

Performance Objective: Demonstrate the ability to perform a minimum performance check of a frequency counter including troubleshooting adjustment of repair to departmental specifications, achieving 100% mastery on the performance exam.

1) This exam consists of one tasks.

2) You will be rated on your ability to perform the tasks to established departmental standards.

3) The maximum time allowed for this exam is one hour.

4) When instructed by the examiner, return the workstation to its pretest conduction.

5) The student exam booklet, any scrap paper, and all equipment must be returned before you are allowed to leave the area. The results of the exam will be discussed at its conclusion.

6) After you have read these instructions, inform the examiner you are ready to begin the exam.

Equipment/Materials Needed:

1 DMM
1 5VDC power supply
1 Dual trace oscilloscope
Theory of operation
Block diagram
Troubleshooting flowchart
1 Digital Logic Probe
1 Digital Pulser or TTL clock Gen
Frequency counter circuit Figure 11-19
1 TTL Data Book

Time started: __________
Time finished: __________
COMPETENCY EXAMINATION

VERIFY PROPER OPERATION OF A FREQUENCY COUNTER

PERFORMANCE EXAM:

TASK 1 Using the theory of operation, block diagram, and troubleshooting flowchart, perform a minimum performance check of the frequency counter. Adjust, troubleshoot and repair the circuit as necessary to meet minimum standards. A TTL Data Book is available to aid you in this job.
Briefly, here's how the counter operates. The input signal, whose frequency is to be measured, is fed to the squaring block. The squaring circuit essentially amplifies the input signal and forms it into a rectangular wave, which is TTL compatible. Before the start of a measuring period, the timing and control circuitry generates a RESET pulse, then it permits the squared input signal to pass through a gate for exactly 1 s. The output signal from the gate is a series of COUNT pulses, at the same frequency as the original input signal.

The COUNT pulses are fed to decade counters, which total up the number of cycles of the input wave that occur in 1 s. At the end of the 1-s period, the count gate is disabled, preventing any more pulses from getting through. Then a STORE pulse is generated by the control circuitry. It causes the outputs of the counters to be stored in the latches. Latches are essentially D flip-flops, which are used as temporary memory locations. They hold the previous count while the counters are being updated.

The latch outputs feed decoder/driver chips, which are connected to seven-segment displays. The numbers read on the displays represent the number of cycles per second (hertz) of the incoming signal.

Fig. 11-19 shows a detailed chip-level diagram of the frequency counter. The timing diagram is shown in Fig. 11-20. The clock (IC-3) is a 555 timer chip used as an astable multivibrator. The output at pin 3 is a rectangular wave whose positive interval is calibrated to exactly 1 s by adjusting pot R1.
The falling edge of the clock signal triggers a one shot in IC-4, causing pin 13 to go high for a short-duration pulse. The pulse width, which is controlled by R_2-C_2, is approximately 100 μs long. This pulse, called store, is fed to the enable inputs of the 7475 latches and causes the data on the D inputs of the latches to be stored at the Q outputs.

The falling edge of the store pulse triggers a 1-s shot in the 74122 package. The second monostable generates the reset pulse, which is fed to all counters. Thus, the counters are cleared prior to the next counting period.

Notice that the count waveform in Fig. 11-20 consists of a series of pulses at the frequency of the input signal. Since the gate (IC-2) is enabled for exactly 1 s, the number of pulses fed to the 7490 decade counters is equal to the frequency of the input signal. The input frequency must be less than 1000 Hz for this system.

Now let's discuss how to troubleshoot the frequency counter of Fig. 11-19. You start by feeding a signal into the input jack. Let's say the signal is at a frequency of a few hundred hertz. By observing the seven-segment display, you can tell quite a bit about any possible problems. For example, if the least significant digit appears to work properly but the second and third digits do not light or do not change when the input signal frequency is changed, you know that all of the input and timing and control circuitry must be working. Also IC-7, IC-10, and IC-13 must be working. So, the place to look for the problem is from IC-6 on.

Now suppose that none of the displays are working normally. Where do you begin to test? One good method is to split the system in half, say by looking at the outputs of the arithmetic circuits. Do this by clipping a logic monitor over IC-7. Then, if the outputs are not normal, split the first half of the system again, possibly by looking at the inputs to the counters, then at the clock, and so on. If the outputs of the counters are normal, split the second half of the systems by looking at the outputs of the latches. Then look at the outputs of the decoder/drivers, etc.

Fig. 11-21 is a flowchart indicating possible tests to make on the frequency counter of Fig. 11-19. The procedure assumes that an input signal is applied, and either no outputs or abnormal outputs are observed in the displays. Study the flowchart to see how it works. Try to imagine a specific fault and see if the flowchart leads you to it. Obviously, no detailed test procedure is 100% foolproof. There will always be some problems that cannot be solved in any general procedure. The flowchart should stimulate you to think about how to zero in on a defective area with the least amount of unnecessary effort.

As mentioned, you can clip a logic monitor, like the LM-1, over each chip that you wish to test and see if its outputs are normal. However, if the outputs are changing periodically, or if you wish to look at the outputs and inputs of several chips simultaneously, a more useful test instrument is the LM-3 triggerable logic monitor shown in Fig. 11-22.

The LM-3 can simultaneously monitor up to 40 channels, or test points, which are connected to the instrument through a ribbon cable. Tiny clips at the end of each input wire allow you to clip on to any point in the system. A front panel toggle switch allows you to select the logic high input level as TTL/DTL, CMOS, or variable, which is controlled by a threshold control pot.

One powerful feature of the LM-3 is that the data displayed on the 40 LED are latched into the display by the transition if a trigger signal from high to low or from low to high. For example, if you connected input clips to all 7490 outputs and then used the store signal (pin 5 of IC-4) as the trigger, you would latch and display all of the counter outputs at the time of the positive transition of store. This would allow you to compare the counter outputs to the numerals displayed on the seven-segment readouts.

In addition, you could also latch in the outputs of the 7475 chips, 7447 chips, clock, reset, or any combination of these. It is also possible to use the LM-3 in the run mode, which means that input data are not latched. This allows you to observe up to 40 points in the system simultaneously and see what each point is doing in real time. This is particularly useful when testing systems in which major events are occurring slowly enough to be observed by a human but where many points must be monitored simultaneously. The LM-3 collects all test point data and displays them on one panel.

As usual, testing specific single points or signals is probably best done with a logic probe or oscilloscope. For example, the short-duration store and reset pulses can be easily seen after being "stretch out" by the logic probe. But count and input are best observed with an oscilloscope.

The digital pulser again becomes useful to apply a store, reset, or single count pulse at various points in the system.
11-19 MSI frequency counter.
Flowchart for troubleshooting the frequency counter of Fig. 11-19.

ABNORMAL DISPLAY

NO

COUNTER OUTPUTS OK?

RESET OK?

YES

NO

STORE OK?

YES

NO

CHECK IC-4, R2, C3

COUNT OK?

NO

YES

CLOCK OK?

NO

CHECK IC-4, R3, C2

YES

STORE OK?

NO

YES

CHECK LATCH CHIPS

YES

CHECK DRIVER CHIPS

DRIVER OUTPUTS OK?

NO

CHECK DISPLAYS & RESISTORS

YES

CHECK DRIVER CHIPS

INPUT OK?

NO

CHECK IC-1, R5, R4, SIGNAL

YES

CHECK IC-3, R1, R2, C1

CHECK COUNTER CHIPS

CHECK IC-3, R1, R2, C1

CHECK IC-2
EXAMINER MANUAL

COMPETENCY EXAMINATION

COMPETENCY:

VERIFY PROPER OPERATION OF A FREQUENCY COUNTER

ELECTRONICS/ INSTRUMENTATION OCCUPATIONS
SPECIFIC INSTRUCTIONS FOR THE EXAMINER

PERFORMANCE EXAMINATION #20

Competency: Verify Proper Operation of a Frequency Counter.

Performance Objective: Demonstrate the ability to perform a minimum performance check of a frequency counter including troubleshooting adjustment of repair to departmental specifications, achieving 100% mastery on the performance exam.

1) This exam consists of one task.

2) Documentation of ratings should be made on the individual competency exam rating sheet.

3) The maximum time allowed for this exam is one hour.

4) When the student notifies you that he/she has read their instruction, you will record the start time.

5) Upon completion of the exam, verify that all testing materials are in your possession.

Equipment/Materials Needed:

- 1 DMM
- 1 5VDC power supply
- 1 Dual trace oscilloscope
- Theory of Operation
- Block Diagram
- Troubleshooting flowchart
- 1 Digital Logic Probe
- 1 Digital Pulser or TTL clock gen
- Frequency counter circuit Figure 11-19
- 1 TTL Data Book

Time started: ___________
Time finished: ___________
COMPETENCY EXAMINATION

VERIFY PROPER OPERATION OF A FREQUENCY COUNTER

PERFORMANCE EXAM:

TASK 1 Using the theory of operation, block diagram, and troubleshooting flowchart, perform a minimum performance check of the frequency counter. Adjust, troubleshoot and repair the circuit as necessary to meet minimum standards. A TTL Data Book is available to aid you in this job.
Briefly, here’s how the counter operates. The input signal, whose frequency is to be measured, is fed to the squaring block. The squaring circuit essentially amplifies the input signal and forms it into a rectangular wave, which is TTL compatible. Before the start of a measuring period, the timing and control circuitry generates a RESET pulse, then it permits the squared input signal to pass through a gate for exactly 1 s. The output signal from the gate is a series of COUNT pulses, at the same frequency as the original input signal.

The COUNT pulses are fed to decade counters, which total up the number of cycles of the input wave that occur in 1 s. At the end of the 1-s period, the count gate is disabled, preventing any more pulses from getting through. Then a STORE pulse is generated by the control circuitry. It causes the outputs of the counters to be stored in the latches. Latches are essentially D flip-flops, which are used as temporary memory locations. They hold the previous count while the counters are being updated.

The latch outputs feed decoder/driver chips, which are connected to seven-segment displays. The numbers read on the displays represent the number of cycles per second (herz) of the incoming signal.

Fig. 11-19 shows a detailed chip-level diagram of the frequency counter. The timing diagram is shown in Fig. 11-20. The clock (IC-3) is a 555 timer chip used as an astable multivibrator. The output at pin 3 is a rectangular wave whose positive interval is calibrated to exactly 1 s by adjusting pot R_1.

11-18 Block diagram of frequency counter.
The falling edge of the clock signal triggers a one shot in IC-4, causing pin 13 to go high for a short-duration pulse. The pulse width, which is controlled by R_1C_2, is approximately 100 μs long. This pulse, called STORE, is fed to the enable inputs of the 7475 latches and causes the data on the D inputs of the latches to be stored at the Q outputs.

The falling edge of the STORE pulse triggers a 1-s shot in the 74122 package. The second monostable generates the RESET pulse, which is fed to all counters. Thus, the counters are cleared prior to the next counting period.

Notice that the COUNT waveform in Fig. 11-20 consists of a series of pulses at the frequency of the input signal. Since the gate (IC-2) is enabled for exactly 1 s, the number of pulses fed to the 7490 decade counters is equal to the frequency of the input signal. The input frequency must be less than 1000 Hz for this system.

Now let's discuss how to troubleshoot the frequency counter of Fig. 11-19. You start by feeding a signal into the input jack. Let's say the signal is at a frequency of a few hundred hertz. By observing the seven-segment display, you can tell quite a bit about any possible problems. For example, if the least significant digit appears to work properly but the second and third digits do not light or do not change when the input signal frequency is changed, you know that all of the input and timing and control circuitry must be working. Also IC-7, IC-10, and IC-13 must be working. So, the place to look for the problem is from IC-6 on.

Now suppose that none of the displays are working normally. Where do you begin to test? One good method is to split the system in half, say by looking at the outputs of the arithmetic circuits. Do this by clipping a logic monitor over IC-7. Then, if the outputs are not normal, split the first half of the system again, possibly by looking at the inputs to the counters, then at the clock, and so on. If the outputs of the counters are normal, split the second half of the system by looking at the outputs of the latches. Then look at the outputs of the decoder/drivers, etc.

Fig. 11-21 is a flowchart indicating possible tests to make on the frequency counter of Fig. 11-19. The procedure assumes that an input signal is applied, and either no outputs or abnormal outputs are observed in the display. Study the flowchart to see how it works. Try to imagine a specific fault and see if the flowchart leads you to it. Obviously, no detailed test procedure is 100% foolproof. There will always be some problems that cannot be solved in any general procedure. The flowchart should stimulate you to think about how to zero in on a defective area with the least amount of unnecessary effort.

As mentioned, you can clip a logic monitor, like the LM-1, over each chip that you wish to test and see if its outputs are normal. However, if the outputs are changing periodically, or if you wish to look at the outputs and inputs of several chips simultaneously, a more useful test instrument is the LM-3 triggerable logic monitor, shown in Fig. 11-22.

The LM-3 can simultaneously monitor up to 40 channels, or test points, which are connected to the instrument through a ribbon cable. Tiny clips at the end of each input wire allow you to clip on to any point in the system. A front panel toggle switch allows you to select the logic high input level as TTL/DTL, CMOS, or variable, which is controlled by a threshold control pot.

One powerful feature of the LM-3 is that the data displayed on the 40 LED are latched into the display by the transition if a trigger signal from high to low or from low to high. For example, if you connected input clips to all 7490 outputs and then used the STORE signal (pin 5 of IC-4) as the trigger, you would latch and display all of the counter outputs at the time of the positive transition of STORE. This would allow you to compare the counter outputs to the numerals displayed on the seven-segment readouts.

In addition, you could also latch in the outputs of the 7475 chips, 7447 chips, clock, reset, or any combination of these. It is also possible to use the LM-3 in the run mode, which means that input data are not latched. This allows you to observe up to 40 points in the system simultaneously and see what each point is doing in real time. This is particularly useful when testing systems in which major events are occurring slowly enough to be observed by a human but where many points must be monitored simultaneously. The LM-3 collects all test point data and displays them on one panel.

As usual, testing specific single points or signals is probably best done with a logic probe or oscilloscope. For example, the short-duration STORE and RESET pulses can be easily seen after being "stretch out" by the logic probe. But COUNT and INPUT are best observed with an oscilloscope.

The digital pulser again becomes useful to apply a STORE, RESET, or single COUNT pulse at various points in the system.
11-19 MSI frequency counter.

198
Flowchart for troubleshooting the frequency counter of Fig. 11-19.

ABNORMAL DISPLAY

- **NO**
 - **COUNTER OUTPUTS OK?**
 - **NO**
 - **RESET OK?**
 - **NO**
 - **STORE OK?**
 - **NO**
 - **CHECK IC-4, R_s, C_3**
 - **YES**
 - **CHECK IC-3, R_1, R_2, C_1**
 - **YES**
 - **COUNT OK?**
 - **YES**
 - **CLOCK OK?**
 - **YES**
 - **STORE OK?**
 - **NO**
 - **CHECK IC-4, R_s, C_3**
 - **YES**
 - **READ LATCH CHIPS**
 - **NO**
 - **CHECK DRIVER OUTPUTS OK?**
 - **NO**
 - **CHECK DRIVER CHIPS**
 - **YES**
 - **CHECK DISPLAYS & RESISTORS**
 - **NO**
 - **CHECK COUNTER CHIPS**
 - **YES**
 - **INPUT OK?**
 - **YES**
 - **CHECK IC-1, R_s, R_b, SIGNAL**
 - **NO**
 - **CHECK IC-2**
 - **YES**
 - **CHECK LATCH CHIPS**
 - **YES**
 - **STORE OK?**
 - **NO**
 - **CHECK IC-4, R_s, C_3**
 - **YES**
 - **CHECK LATCH CHIPS**

YES

- **LATCH OUTPUTS OK?**
 - **NO**
 - **CHECK IC-4, R_s, C_3**
 - **YES**
 - **STORE OK?**
 - **NO**
 - **CHECK IC-4, R_s, C_3**
 - **YES**
 - **CHECK LATCH CHIPS**

YES

- **CLOCK OK?**
 - **YES**
 - **INPUT OK?**
 - **YES**
 - **CHECK IC-1, R_s, R_b, SIGNAL**
 - **NO**
 - **CHECK IC-2**
 - **NO**
 - **CHECK DRIVER OUTPUTS OK?**
 - **NO**
 - **CHECK DRIVER CHIPS**
 - **YES**
 - **CHECK DISPLAYS & RESISTORS**

- **COUNTER OUTPUTS OK?**
 - **NO**
 - **CHECK IC-3, R_1, R_2, C_1**
 - **YES**
 - **CHECK DRIVER OUTPUTS OK?**
 - **NO**
 - **CHECK DRIVER CHIPS**
 - **YES**
 - **CHECK DISPLAYS & RESISTORS**

- **COUNT OK?**
 - **NO**
 - **CHECK DRIVER OUTPUTS OK?**
 - **NO**
 - **CHECK DRIVER CHIPS**
 - **YES**
 - **CHECK DISPLAYS & RESISTORS**
 - **YES**
 - **CHECK DRIVER OUTPUTS OK?**
 - **NO**
 - **CHECK DRIVER CHIPS**
 - **YES**
 - **CHECK DISPLAYS & RESISTORS**

RESISTORS

YES

- **INPUT OK?**
 - **YES**
 - **CHECK IC-1, R_s, R_b, SIGNAL**
 - **NO**
 - **CHECK IC-2**

RESISTORS

YES

- **INPUT OK?**
 - **YES**
 - **CHECK IC-1, R_s, R_b, SIGNAL**
 - **NO**
 - **CHECK IC-2**
COMPETENCY EXAMINATION RATING SHEET

Competency: Verify Proper Operation of a Frequency Counter.

Performance Objective: Demonstrate the ability to perform a minimum performance check of a frequency counter including troubleshooting adjustment of repair to departmental specifications, achieving 100% mastery on the performance exam.

| STUDENT __________________________ | Competency Mastered | YES | NO |
| EXAMINER __________________________ | Date of Rating __________________________ |

<table>
<thead>
<tr>
<th>PERFORMANCE CRITERIA</th>
<th>STUDENT PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
</tbody>
</table>

1. Demonstrated the ability to perform minimum performance check of the frequency counter.

2. Demonstrated the ability to adjust or repair as necessary to achieve proper operation.

Comments: