The analysis of covariance as a procedure for statistical correction of the effects for an extraneous variable, called a "covariate," is presented. An heuristic data set is used to make the discussion of the calculation of ANCOVA partitions easier to follow. A discussion of homogeneity of regression as an essential condition to be met when conducting ANCOVA is discussed. Data reliability and the interpretation of the residualized dependent variable as major issues when applying ANCOVA are also discussed. It is suggested that caution must be exerted when applying ANCOVA to statistically correct for differences due to a covariate. Five tables and two appendixes. (Contains 24 references.) (Author)
Analysis of Covariance

The Use of Analysis of Covariance: User Beware

Bernadette Delgado Rivera
Texas A&M University 77843-4225

Analysis of Covariance

Abstract

The analysis of covariance as a procedure for statistical correction of the effects for an extraneous variable, called a covariate, is presented. An heuristic data set is used to make the discussion of the calculation of ANCOVA partitions easier to follow. A discussion of homogeneity of regression as an essential condition to be met when conducting ANCOVA is discussed. Data reliability and the interpretation of the residualized dependent variable as major issues when applying ANCOVA are also discussed. It is suggested that caution must be exerted when applying ANCOVA to statistically correct for differences due to a covariate.
The Use of Analysis of Covariance: User Beware

Analysis of variance methods and their analog (ANCOVA, MANOVA, MANCOVA) remain tools of choice for many researchers (Thompson, 1988). Willson (1980) examined the articles published in AERJ from 1969 to 1978 and found that ANOVA and ANCOVA were used in 41% of the articles. Elmore and Woehlke (1988) studied several volumes of educational journals published from 1978 to 1987 and found that ANOVA/ANCOVA were the most frequently used research methods. Though ANOVA methods are frequently used, ANCOVA is used much less often and has not been widely used in the published behavioral science research (Loftin & Madison, 1991; Thompson, 1992).

Analysis of covariance (ANCOVA) is used primarily as a procedure for statistical control of the effects of an extraneous variable, called a covariate, on the dependent measure (Hinkle, Weisman, & Jurs 1988; Keppel & Zedeck, 1989). Cohen (1968) states that a covariate is

after all, nothing but an independent variable, which because of the logic dictated by the substantive issues of the research, assumes priority among the set of independent variables as a basis for accounting for Y variance. (p. 439)
Analysis of Covariance

ANCOVA integrates a regression analysis of the dependent variable with the covariate and an ANOVA on the adjusted (residual or error) scores on the dependent variable (Huitema, 1980; Loftin & Madison, 1991; Wildt & Ahtola, 1978). ANCOVA purports to control for the effects of the covariate by partitioning out the variance attributed to it (Hinkle, Wiersma, & Jurs, 1988). By statistically controlling for the variance attributed to the covariate, the error variance is hopefully reduced. In addition, the treatment effects can be clarified and the probability of obtaining statistically significant results will be increased (Loftin & Madison, 1991), if the assumptions required by ANCOVA are met.

However, this is of limited importance in and of itself. Thompson (1988) indicates that statistical significance "is not the end-all and be-all of research" (p. 100). Statistical significance is largely an artifact of sample size. Since the null hypothesis of no difference is almost always false, with a large enough sample the null hypothesis will always be rejected, indicating statistical significant results. In addition, statistical significance does not provide information about result importance or generalizability (Carver, 1978).

Figure 1 illustrates the partitioning of variance in ANCOVA. The area inside the circle represents the total variance of the dependent variable. The proportion of variance attributed to the
Analysis of Covariance

treatment effects along with the variance attributed to the
covariate are shown.

Huitema (1980) indicates that ANCOVA has two advantages, when
it is correctly applied. ANCOVA provides greater power against
Type II error and reduces the bias caused by differences that
exist among groups before experimental treatments are considered.
However, due to the erroneous belief that ANCOVA will always
provide "control" and "power", the method is used by researchers
even in cases in which ANCOVA is not appropriate (Thompson, 1988).

Various conditions should be met in order to perform ANCOVA
correctly (Elashoff, 1969; Bump, 1991). ANCOVA assumes a high
correlation between the covariate and the dependent variable. If
this condition is not met, the covariate will do little to reduce
the error sum of squares, which is the primary objective of ANCOVA

ANCOVA also requires that the covariate must be unaffected by
the independent variable(s) and thus, explains different portions
of the total variance of the dependent variable. Also in ANCOVA,
the residualized dependent variable is assumed to be normally
distributed for each level of the independent variable, and the
variances of the residualized dependent variable for each level of
Analysis of Covariance

the dependent variable are assumed to be equal. Next ANCOVA assumes a linear relationship between the covariate and the dependent variable. A linear relationship implies that a change in magnitude on the covariate is presumed to cause a proportional change on the dependent variable at each level of the covariate. Finally, ANCOVA requires that the regression slopes between the covariate and the dependent variable must be parallel for each independent variable group. This is known as homogeneity of regression.

The purpose of the present paper is to explain the computational processes of ANCOVA partitions. A discussion of homogeneity of regression as an essential condition to be met when conducting ANCOVA is presented. Data reliability and the interpretation of the residualized dependent variable as major issues when applying ANCOVA are also discussed.

Computing the adjusted sum of squares for ANCOVA

Like ANOVA, ANCOVA is often used to test whether group means differ. However, in the ANCOVA case, the means have been adjusted for differences between the groups on the covariate(s) (Huck, Cormier, & Bounds, 1974).

As previously discussed, ANCOVA combines regression analysis and analysis of variance (ANOVA) when adjusting sum of squares for the variance attributed to the covariate(s) (Wildt & Ahtola, 1978). Table 1 presents a general summary table for ANCOVA.
Analysis of Covariance

The calculation of ANCOVA sum of squares involves several steps (Hinkle, Wiersma, & Jurs, 1988). Table 2 presents an heuristic data set used to make the calculation of ANCOVA partitions easy to follow.

The adjusted total sum of squares ($S_{OST'}$) is defined as the total sum of squares after removing the variance attributed to the covariate(s). Thus,

$$S_{OST'} = S_{OST}(1 - r_T^2)$$

where S_{OST} is the total sum of squares from the ANOVA on the dependent variable and r_T is the correlation between all scores on the dependent variable and the covariate. These calculations are presented in Table 3.

The SAS commands to perform ANOVA/ANCOVA are presented in Appendix A. Table 4 presents an ANOVA summary table for the data set, as a basis for comparison with the results for the same data once a covariance correction is involved.
The adjusted within group sum of squares is defined as,

\[\text{SOS}_W' = \text{SOS}_W(1 - r_w^2) \]

where SOS\(_W\) is the within group sum of squares from the ANOVA on the dependent variable and \(r_w \) is the pooled correlation coefficient between the scores on the dependent variable(s) and the covariates(s).

The calculation of the adjusted between group sum of squares involves several somewhat complicated steps. For the purpose of this paper, the SOS\(_B'\) will be calculated as,

\[\text{SOS}_B' = \text{SOS}_T - \text{SOS}_W' \]

where SOS\(_T\) is the adjusted total sum of squares and SOS\(_W'\) is the adjusted within sum of squares.

The sum of squares for the covariate is computed by subtracting the adjusted sum of squares total (SOS\(_T'\)) from the total sum of squares (SOS\(_T\)),

\[\text{SOS}_{\text{cov}} = \text{SOS}_T - \text{SOS}_T' \]

Table 5 presents a summary table for the ANCOVA partitions for the data set.
Analysis of Covariance

Computing the ANCOVA test statistic and testing significance

The adjusted sum of squares partitions can be used to test the statistical significance of difference in group means after adjustment for the covariate(s) is made (Hinkle, Wiersma, & Jurs, 1988). The test statistic for ANCOVA (F) is the ratio of the adjusted between group mean square (MS_{B'}) and the adjusted within group mean square (MS_{W'}),

\[F = \frac{MS_{B'}}{MS_{W'}} \]

To test significance, the obtained value of F (i.e., "observed F", "F calculated", or "F ratio") is compared to the critical value of F, obtained from a table of critical values found in most statistics books. The critical value of F is obtained using the adjusted between group sum of squares (SOS_{B'}) degrees of freedom for the numerator and the adjusted within group sum of squares (SOS_{W'}) degrees of freedom for the denominator at an alpha level predetermined by the researcher.

When the observed value of F exceeds the critical value of F, the null hypothesis of no difference among the adjusted means can be rejected, implying that the result is statistically significant. If the observed value of F is less than the critical value of F, then the null hypothesis is not rejected.

Obtaining statistically significant results is not indicative of results importance, replicability, or generalizability (Carver, 1978). It only indicates that a decision to reject or not reject
Analysis of Covariance

the null hypothesis has been taken (Haase & Thompson, 1992; Thompson, 1993). The only conclusion that can be drawn at this point is that at least one pair or combination of adjusted means differs. To determine which pair or combination of pairs differ, a post hoc analysis must be conducted (Hinkle, Wiersma, & Jurs, 1988). However, Thompson (1988) discusses the limitations of post hoc comparisons and the advantages of a priori or planned comparisons, and can also be used in ANCOVA. A priori or planned comparisons provide more power against Type II error and force the researcher to be more thoughtful in conducting research.

Keppel and Zedeck (1989) discuss a multiple regression approach to ANCOVA involving a hierarchical strategy “in which the covariate is the first variable (or set of variables) to be entered into the analysis and the vectors representing the independent variable are entered next” (p. 457). For a thorough discussion of this approach see Keppel and Zedeck (1989).

The homogeneity of regression assumption

As previously discussed, various conditions should be met to perform ANCOVA correctly. ANCOVA requires that the slope of the regression line is the same for all treatment groups. This is what is so called homogeneity of regression assumption (Wildt & Ahtola, 1978). Loftin and Madison (1991) argue that “this is exactly where most applications of ANCOVA fail, since researchers quite often have truly non equivalent K groups for which the
What ANCOVA does, according to Thompson (1992), is to create a single pooled regression equation ignoring group assignment, to calculate the adjustment in the dependent variable using the covariate(s). This pooled equation is created by assuming that the equations are the same across groups and that an "average" equation can be used for all subjects ignoring group membership (Bump, 1992). Then an ANOVA, not ignoring groups, of the deviation of the residualized scores from the regression line is performed (Cliff, 1987).

The homogeneity of regression is legitimate if and only if the regression equation of the groups have parallel slopes (Huck, Cormier, & Bounds, 1974; Thompson, 1992). This assumption requires that the "b" weights applied to the covariate(s) be reasonably equal across each groups. That is, any adjustment in the covariate(s) will result in the same proportionate adjustment in the dependent variable for each K level of the independent variable.

Two other conditions ought to be met in order to perform ANCOVA correctly. One deals with the reliability of the covariate(s). As Thompson (1992) points out researchers often incorrectly presume that the characteristic of reliability inures to tests, when in fact reliability is a characteristic of a given set of
Analysis of Covariance

data collected using a given time from a given set of subjects using a given protocol (p.xii).
Due to this erroneous belief, many researchers do not check and do not report the reliability of their data. Loftin and Madison (1991) argue that the covariate(s) used must be especially reliable, "or one will end up potentially adjusting sampling error with measurement error, and creating a mess" (p. 145).

The other condition involves the interpretation of the residualized dependent variable. As discussed, ANCOVA is used to correct for the effects of a covariate(s) on the dependent variable (Huck, Cormier, & Bounds, 1974). Then the residual is analyzed, thus partitioning the effects of the treatment. However, as Thompson (1992) states, the use of statistical correction may be dangerous especially when using multiple covariates. It may result in the analysis of a dependent variable that no longer makes sense.

Summary

The analysis of covariance is used to statistically correct for the effect of an extraneous variable. The purpose is to adjust for initial group differences before the treatment is applied. However, several conditions should be met when applying ANCOVA. Due to the erroneous belief that ANCOVA will always provide "control" and "power", the method is applied even when is not appropriate. Caution should be exerted when applying ANCOVA
Analysis of Covariance
as a method for statistical correction, especially when using multiple covariates; the researcher may end with a dependent variable that does not make any sense. The reliability of the data and the interpretation of the residual are issues of concern when applying statistical correction methods.
Analysis of Covariance

References

Analysis of Covariance

Analysis of Covariance

Thompson, B. (1993, April). The general linear model (as opposed to the classical ordinary y sum of squares) approach to analysis of variance should be taught in introductory statistical methods classes. Paper presented at the annual meeting of the American Educational Research Association, Atlanta, GA.
Analysis of Covariance

Table 1.

General summary table for ANCOVA

<table>
<thead>
<tr>
<th>Source</th>
<th>SOS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Fcv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between</td>
<td>k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>n-k-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{SS Covariate} = \text{SS Total}$ times r^2 between the covariate and the dependent variable

- $k =$ number of groups
- $n =$ sample size
- $\text{MS Cov} = \text{SS Cov}/\text{df Cov}$
- $\text{MS Between} = \text{SS Between}/\text{df Between}$
- $\text{MS Within} = \text{SS Within}/\text{df Within}$
- $F = \text{MS Between}/\text{MS Within}$
Analysis of Covariance

Table 2.

Data set and analysis for ANCOVA example

<table>
<thead>
<tr>
<th>Group</th>
<th>Achievement Score (Y)</th>
<th>IQ Covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>104</td>
</tr>
<tr>
<td>1</td>
<td>69</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>109</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>108</td>
</tr>
<tr>
<td>3</td>
<td>76</td>
<td>105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean (Y)</th>
<th>Std Dev (Y)</th>
<th>Mean (Cov)</th>
<th>Std Dev (Cov)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>64.50</td>
<td>3.87</td>
<td>102.25</td>
<td>1.71</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>65.75</td>
<td>4.11</td>
<td>108.50</td>
<td>6.14</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>70.25</td>
<td>4.79</td>
<td>108.00</td>
<td>6.48</td>
</tr>
</tbody>
</table>
Table 3.

Calculation of ANCOVA partitions

\[S_{OST} = S_{OST} (1 - r^2_T) \]
\[= 237.67 (1 -.41(.41)) \]
\[= 237.67 (.8341) \]
\[= 198.24 \]

\[S_{OSw} = S_{OSw} (1 - r^2_w *) \]
\[= 164.50 (1 -.32(.32)) \]
\[= 164.50 (1 - .1037) \]
\[= 164.50 (.8963) \]
\[= 147.45 \]

*see Appendix B for rw calculation

\[S_{OSb} = S_{OST} - S_{OSw} \]
\[= 198.24 - 147.5 \]
\[= 50.79 \]

\[S_{OScov} = S_{OST} - S_{OST} \]
\[= 237.67 - 198.24 \]
\[= 39.42 \]
Table 4.

ANOVA summary for data set

<table>
<thead>
<tr>
<th>Source</th>
<th>SOS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Fcv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>73.17</td>
<td>2</td>
<td>36.58</td>
<td>2.00</td>
<td>4.26</td>
</tr>
<tr>
<td>Within</td>
<td>164.50</td>
<td>9</td>
<td>18.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>237.67</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Covariance

Table 5.

ANCOVA summary table for data set

<table>
<thead>
<tr>
<th>Source</th>
<th>SOS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Fcv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>39.42</td>
<td>1</td>
<td>39.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between</td>
<td>50.79</td>
<td>2</td>
<td>25.40</td>
<td>1.38</td>
<td>4.46</td>
</tr>
<tr>
<td>Within</td>
<td>147.45</td>
<td>8</td>
<td>18.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>237.67</td>
<td>11</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Covariance

Figure 1
Partitioning of variance in ANCOVA

Note: This diagram presumes that the covariate does not overlap at all the variance due to treatment.
Analysis of covariance

Appendix A

SAS program listings for ANCOVA job

TITLE 'ANCOVA';
DATA D1; INFILE ABC;
INPUT GROUP 1 DEPVAR 3-4 COV 6-8;
PROC PRINT;
 TITLE 'DATA PRINT OUT';
PROC CORR;
PROC SORT;BY GROUP;
PROC MEANS;BY GROUP;
PROC GLM;
 CLASSES GROUP;
 MODEL DEPVAR COV = GROUP;
MEANS GROUP/TUKEY;
PROC GLM;
 CLASSES GROUP;
 MODEL DEPVAR COV GROUP GROUP*COV;
PROC GLM;
 CLASSES GROUP;
 MODEL DEPVAR = COV GROUP;
LSMEANS GROUP/PDIFF;
MEANS GROUP;

APPENDIX B
Calculation of r_w

<table>
<thead>
<tr>
<th>Group</th>
<th>X</th>
<th>Y</th>
<th>XY</th>
<th>X^2</th>
<th>Y^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>60</td>
<td>6000</td>
<td>10000</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>63</td>
<td>6426</td>
<td>10404</td>
<td>3969</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>66</td>
<td>6864</td>
<td>10816</td>
<td>4356</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>69</td>
<td>7107</td>
<td>10609</td>
<td>4761</td>
</tr>
<tr>
<td>Sum</td>
<td>409</td>
<td>258</td>
<td>26397</td>
<td>41829</td>
<td>16686</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>62</td>
<td>6448</td>
<td>10816</td>
<td>3844</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>63</td>
<td>6867</td>
<td>11881</td>
<td>3969</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>67</td>
<td>6968</td>
<td>10816</td>
<td>4489</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>71</td>
<td>8307</td>
<td>13689</td>
<td>5041</td>
</tr>
<tr>
<td>Sum</td>
<td>434</td>
<td>263</td>
<td>28590</td>
<td>47202</td>
<td>17343</td>
</tr>
<tr>
<td>3</td>
<td>102</td>
<td>65</td>
<td>6630</td>
<td>10404</td>
<td>4225</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>68</td>
<td>7956</td>
<td>13689</td>
<td>4624</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>72</td>
<td>7776</td>
<td>11664</td>
<td>5184</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>76</td>
<td>7980</td>
<td>11025</td>
<td>5776</td>
</tr>
<tr>
<td>Sum</td>
<td>432</td>
<td>281</td>
<td>30342</td>
<td>46782</td>
<td>19809</td>
</tr>
</tbody>
</table>

$$r_w = \frac{\Sigma \left(n_k \Sigma X_i Y_i \right) - \Sigma X_i \Sigma Y_i}{\sqrt{\left\{ \Sigma \left[n_k \Sigma X_i^2 \right) - \left(\Sigma X_i \right)^2 \right\} \left\{ \Sigma \left[n_k \Sigma Y_i^2 \right) - \left(\Sigma Y_i \right)^2 \right\}}}$$

$$\Sigma \left(n_k \Sigma X_i Y_i \right)$$

<table>
<thead>
<tr>
<th>n_i</th>
<th>ΣX_i</th>
<th>ΣY_i</th>
<th>$\Sigma X_i Y_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>26397</td>
<td>409</td>
<td>258</td>
</tr>
<tr>
<td>105588</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26397</td>
<td>105522</td>
<td>66</td>
</tr>
<tr>
<td>114142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>28590</td>
<td>434</td>
<td>263</td>
</tr>
<tr>
<td>114360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30342</td>
<td>432</td>
<td>281</td>
</tr>
<tr>
<td>121392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30342</td>
<td>121392</td>
<td>-24</td>
</tr>
<tr>
<td>121368</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$\Sigma = 66 + 218 + -24 = 260$$
\[
\sqrt{\{ \Sigma [n_K \Sigma X_K^2 - (\Sigma X_K)^2] \} \{ \Sigma [n_K \Sigma Y_K^2 - (\Sigma Y_K)^2] \}}
\]

\[
\begin{array}{ccc}
\begin{array}{ccc}
n_1 & \Sigma X_1^2 - (\Sigma X_1)^2 & n_1 & \Sigma Y_1^2 - (\Sigma Y_1)^2 \\
4 & 41829 & 4 & 1668664 & 2858 \\
4 & 41829 & 4 & 1668664 & 2858 \\
167316 & 167281 & 35 & 180 \\
\end{array}
\end{array}
\begin{array}{ccc}
n_2 & \Sigma X_2^2 - (\Sigma X_2)^2 & n_2 & \Sigma Y_2^2 - (\Sigma Y_2)^2 \\
4 & 47202 & 4 & 17343263 \\
4 & 188356 & 4 & 17343263 \\
4 & 188356 & 4 & 69169 \\
452 & 203 \\
\end{array}
\end{array}
\begin{array}{ccc}
n_3 & \Sigma X_3^2 - (\Sigma X_3)^2 & n_3 & \Sigma Y_3^2 - (\Sigma Y_3)^2 \\
4 & 46782 & 4 & 19809281 \\
4 & 186624 & 4 & 19809281 \\
4 & 186624 & 4 & 78961 \\
504 & 275 \\
\end{array}
\]

\[
\Sigma = 35 + 452 + 504 = 991 \quad \Sigma = 180 + 203 + 275 = 658
\]

\[
991 \times 658 = 652078
\]

\[
652078 \times 5 = 807.5134
\]

\[
r_w = \frac{\Sigma (n_K \Sigma X_K Y_K - \Sigma X_K \Sigma Y_K)}{\sqrt{\{ \Sigma [n_K \Sigma X_K^2 - (\Sigma X_K)^2] \} \{ \Sigma [n_K \Sigma Y_K^2 - (\Sigma Y_K)^2] \}}}
\]

\[
= 260 / 807.5134 = 0.321976
\]