This pack of resource materials is designed for students in Scotland, ages 5-7, to be done with their parents at home or with another student in school. Forty-five activity sheets cover 7 different areas of science: Air, Magnets, Moving Things, Light, Heat, Myself and Water. The pack also includes a leaflet for parent or peer tutors, lists of simple equipment easily found at home and school, record cards, practical suggestion on evaluation and an evaluation questionnaire. (PR)
PAIRED SCIENCE
a resource pack
for parents and children
by
Susan Croft and Keith Topping
with Barbara Harris and Sheridan Earnshaw

Shaw Cross Infant School, Kirklees, West Yorkshire &
Centre for Paired Learning, University of Dundee, Scotland

CONTENTS

1. Parent Leaflet
2. List of Equipment
3. List of Activities
4. Activity Sheets
5. Activity Sheet Record
6. Note on Evaluation
7. List of Keywords
8. Parent Questionnaire

COPYRIGHT WARNING

Purchase of this pack licences you to reproduce it as much
as you wish for use within one school. Teachers from other
schools must purchase their own pack. © 1992
PAIRED SCIENCE
a resource pack

7. Floating and Sinking
Steam
Why?

What?
Air is inside the jars. When the burning candle is no longer possible, "air goes out."

How?
Feely Bag: "It is used up by the oxygen, burning is no more oxygen, burning is..."

Floating and Sinking

This pack of resource materials makes it easy to set up a project to help children aged 5 to 7 years with National Curriculum science activities.

Many schools will encourage parents to help children with these activities at home. Alternatively, older children could act as peer tutors in school.

The Activity Sheets include scientific "keywords" - a framework to help helpers discuss the activity in the most productive way.

Forty-five Activity Sheets cover 7 different areas of science: Air, Magnets, Moving Things, Light, Heat, Myself and Water. The Pack also includes a leaflet for parent or peer tutors, lists of simple equipment easily found at home and school, record cards, practical suggestions on evaluation and an evaluation questionnaire. There are 108 printing masters to reproduce as much as you need for one school.

The Paired Science Pack costs £25 (plus £2.50 carriage in the U.K., £7.50 overseas).

It is supplied only on a cash-with-order basis (no invoicing or charge cards).

For overseas orders, convert the total cost of your order into your own currency at the current exchange rate and send a cheque in your own currency.

*******************************
Please send me _ Paired Science Pack(s).
I enclose a cheque made payable to "The Centre for Paired Learning" for ______

Name ___________________________ Tel. __________ Date of Order __________

Address ____________________________ Post/Zip Code ______

Send your order to: Centre for Paired Learning, Department of Psychology,
University of Dundee, Scotland DD1 4HN
PAIRED SCIENCE

Why?  What?  What if?

How?  How?  Why?
WHAT'S IT ALL ABOUT?

Science is taught to much younger children now.

Science is very important in the world today.

Children who like science do better at it.

Paired Science is about parents or older children helping young children with science activities that are practical and fun.

It is difficult for teachers to give children enough practical work in science in class. With big groups, teachers cannot usually give enough individual attention to make science in class really interesting and easy to understand.

With the Paired Science activities, perhaps YOU can help!
ACTIVITY SHEETS

There are 45 Paired Science Activity Sheets. They are divided into 7 different areas of science: Air, Magnets, Moving Things, Light, Heat, Myself and Water.

Each activity sheet has a code number, so you can keep track of which you have done.

Each sheet has a list of What You Need to do the activity. Most equipment is very simple and you will already have lots of it at home. What you don't have, ask for at school! (They will probably have some especially for you to borrow).

Then the sheet tells you What to Do. You might need to read this to the child, step by step, to make sure they understand it. Help the child with the practical bits as much as they need to be successful, but don't help ('interfere') too soon!

You will see some key words are printed bold. These are important words in science. Please use them as much as you can, as you talk about
the activity with the child. Talking helps understanding. Explain the words as well as you can. Listen patiently to your child too. Give them time to think.

The activity sheets also have lots of questions. Do not just tell the child the answer. Help them bit by bit to work it out for themselves.

You may feel you are not very good at science yourself. Don't worry. Under the heading Parents you will find the main scientific ideas behind each activity. Don't just read these to the child - see if they can work it out for themselves.

Under the last heading, Children, there are some more questions and ideas for the children to follow up if they are really interested. Sometimes there is a space for them to write and draw. You might need to help write in their answers.

Please write your own short comment here as well - on the activity, the child, or both! Your child will want to show your comments to the teacher. Use another piece of paper if there is not enough room.
ORGANISATION

A Paired Science project usually lasts for 7 weeks.

Parents and children are asked to choose one activity sheet each week. Try to choose from a different area of science each week.

Parents may be able to come into school to help the children choose. Write the number of the activity sheet you have chosen in the correct column of the activity sheet record card in school, against the correct name.

The pair explore the activity during the week. You will need at least 15 minutes perhaps 3 times each week.

Each activity needs only very simple equipment. You may have much of it at home. You should be able to borrow the rest from school. A resealing plastic bag is handy to bring the activity sheet and smaller borrowed equipment back home.

At the end of the week return the activity sheet to school with your comments on it, together with the borrowed equipment left over. The teacher will look at the activity sheet and try to find time to discuss it with your child. Then the sheet will be kept in your child's file as part of their "Profile of Achievement".

Then choose an activity for the next week. If you need help at any time, ask the teacher as soon as you can.
After the seven weeks of the project, your child will have had a 'taste' of all seven science areas. Sometimes parents and teachers meet together at this time to see how the project could be made better.

There is no need to stop! The children will want to go on doing science activities at home. They can go on choosing activity sheets, from any area - they might have a favourite. We would not like them to take more than one each week - because you will get worn out! If they don't want to take one every week, that's fine. Return the sheets to school after use in the usual way.

A few children might do all 45 activity sheets. There is still no need to stop! There are a lot of up-to-date books just right for parents and children to go on exploring science. Your school may be able to lend you some. Or if you can afford it, try the nearest big bookshop (look for books from Walker, Longman, Usborne or Kingfisher publishers to begin with).

Remember, if you can help your children to gain an interest in science, you will help them in life. All the activity sheets are linked to National Curriculum attainment targets. By helping children to understand practical science in everyday life, you are giving them a really good head start.
PAIRED SCIENCE EQUIPMENT

EQUIPMENT PROVIDED BY THE SCHOOL

To Buy
Cress seeds, plastic mirror, magnets with/without holes, night lights, balloons.

To Collect
Yoghurt cartons, jars, margarine cartons, shampoo bottles, washing up liquid bottles, toilet roll middles, polystyrene trays.

From School Stock
Thick and thin card, tissue paper, coloured papers, rubber bands, sand, glue, paper clips, straws, drawing pins, plasticine.

EQUIPMENT TO BE FOUND IN THE HOME

<table>
<thead>
<tr>
<th>Magazine</th>
<th>Newspaper</th>
<th>Stone</th>
<th>Metal Spoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knife</td>
<td>Fork</td>
<td>Soap</td>
<td>Milk Bottle Top</td>
</tr>
<tr>
<td>Penny</td>
<td>Wooden Peg</td>
<td>Apple</td>
<td>Potato</td>
</tr>
<tr>
<td>Carrots</td>
<td>Orange</td>
<td>Banana</td>
<td>Pear</td>
</tr>
<tr>
<td>Nail</td>
<td>Matchstick</td>
<td>Button</td>
<td>Cling-film</td>
</tr>
<tr>
<td>Tissues</td>
<td>Kitchen Roll</td>
<td>Kitchen Foil</td>
<td>Tumbler</td>
</tr>
<tr>
<td>Duster</td>
<td>Sugar</td>
<td>Salt</td>
<td>Coffee</td>
</tr>
<tr>
<td>Soup Powder</td>
<td>Flour</td>
<td>Mug</td>
<td>Plates</td>
</tr>
<tr>
<td>Soup Dishes</td>
<td>Saucers</td>
<td>Plates</td>
<td>Pen</td>
</tr>
<tr>
<td>Pencils</td>
<td>Crayons or Felt Tips</td>
<td>Plates</td>
<td>Cloth for Blindfold</td>
</tr>
<tr>
<td>Toothpaste</td>
<td>Cheese</td>
<td>Sellotape</td>
<td>Clock or Watch</td>
</tr>
<tr>
<td>Large Needle</td>
<td>Pins</td>
<td>String</td>
<td>Hair Grip</td>
</tr>
<tr>
<td>Pillow Case</td>
<td>Gloves</td>
<td>Safety Pins</td>
<td>Milk</td>
</tr>
<tr>
<td>Butter/Margarine</td>
<td>Chocolate</td>
<td>Milk</td>
<td>Ice-cubes</td>
</tr>
<tr>
<td>Toaster or Grill</td>
<td>Torch or Lamp</td>
<td>Milk</td>
<td>Scissors</td>
</tr>
<tr>
<td>Books</td>
<td>Bricks</td>
<td>Toy Car</td>
<td>Bread</td>
</tr>
<tr>
<td>Thread</td>
<td>Comb</td>
<td>Masking Tape or Similar</td>
<td>Keys</td>
</tr>
</tbody>
</table>

Toothpaste | Comb | Masking Tape or Similar | |

Books | Bricks | Toy Car | Masking Tape or Similar | 10 |
PAIRED SCIENCE ACTIVITIES

**Air**
1. Keep the Paper Dry
2. 3 Candle Race
3. Balloon in the Matchbox
4. Upside Down Water
5. Helicopters
6. Spinning Snake

**Magnets**
1. Magnet Sorting
2. How Strong is Your Magnet?
3. Paperclip in the Jar
4. Pairs of Socks
5. Getting Dressed
6. Car Race

**Moving**
1. Static Electricity
2. Bridges
3. Water Jets
4. Hovercraft
5. Sailing Boat
6. Fish Race

**Light**
1. Growing Cress
2. Fading Colours
3. Funny Faces
4. Shadow Game
5. Symmetrical Pictures
6. Mirror Magic
7. Broken Spoon
Heat
1. Cottage Cheese
2. Ice
3. Jacket Potato
4. Keeping Warm
5. What Melts?
6. Toast

Myself
1. Goldfish Bowl
2. Kim's Game
3. Smelling and Tasting Game
4. Yoghurt Pot Telephone
5. Listening Game
6. Big Ears
7. Feely Bag

Water
1. Carrot Tops
2. Dissolving
3. Steam
4. Rising Water
5. Evaporation
6. Rust
7. Floating and Sinking
<table>
<thead>
<tr>
<th>Name of Child</th>
<th>Air (A)</th>
<th>Magnets (M)</th>
<th>Moving Things (MT)</th>
<th>Light (L)</th>
<th>Heat (H)</th>
<th>Myself (MY)</th>
<th>Water (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE ON EVALUATION

The objectives of Paired Science are to increase motivation, confidence, understanding and practical skills in science, and improve communication and generalisation of these by the child.

In evaluative terms, none of these are easy or quick to measure in a reliable and valid way. Some practical possibilities will be briefly outlined.

1. The Activity Sheets themselves form a permanent record, and even the number of activity sheets completed voluntarily by children is a crude index of their enthusiasm and involvement.

2. Direct observation by professionals during science activities in the classroom should give an indication of whether the effects of Paired Science are generalising into the classroom. If there is time, teachers could use items A1-7 of the parent questionnaire as a checklist to structure such observation of individual children, perhaps relating this to National Curriculum assessment tasks. These structured observations could then be summarised quantitatively, perhaps comparing participant and non-participant groups.

3. The children and parents will give you their opinions of the project verbally, individually or in a group (perhaps at a 'feedback' or review meeting). However, the views of the more verbal and confident will tend to dominate, especially in a group setting. Also, very various verbal feedback is very difficult to summarise - and both parents and children are likely to contradict each other!

4. The Parent Questionnaire in this pack enables you to gather very crude, forced-choice, paper and pencil feedback, but at least this allows quiet pairs to have their say and gives results which are easy to summarise. The summarised results should be fed back to the parents.
5. For older children, it might be possible to construct some form of simple paper and pencil scale of "attitude to science", which could perhaps be used before and after a project. A few simple questions with responding by choosing smiley or grumpy faces could be used. The validity and reliability would certainly be doubtful, however.

6. Assessing changes in scientific understanding is facilitated by the keyword structure. A random sample of 10 high frequency keywords (take every 6th word from the list) could be used with children before a project, and a different random sample (as above but start at the next word) after the project. Children could be asked to explain the keyword or (more reasonably) asked to say which of two or three given explanations is correct, or (even easier) asked to point to which of three or four pictures demonstrates the idea embodied in the keyword. This would be very time consuming done individually, although less reliable done in a group, but may represent an alternative approach to required National Curriculum assessment and thereby kill two birds with one stone.

7. In this latter context, improvements in children's practical scientific skills could be assessed by giving them a sample task requiring them to formulate and test a hypothesis, on an individual basis. Sample tasks could be drawn from a bank of such tasks. (Generalisation to completely novel tasks could also be assessed in this way). Again, this is very close to National Curriculum prescribed assessment methodology - but very time consuming!

Whatever form of evaluation you use, the creators of this pack would be very interested to see a summary of your results. This will help us to improve the pack. Please write to: The Centre for Paired Learning, Department of Psychology, University of Dundee, DD1 4HN. Thank you and good luck!
Some keywords will be found frequently in many activities. The most common are what? what happens? why? and how? Test, same and different, change and change back are frequent too. Some activities ask the child the improve the design. Other scientific keywords are listed below, by activity, and a list of the next most frequent keywords is at the end.

**Air**

A1  Wet, full, air, experiment.
A2  Burn, length of time, air, oxygen, used up, burning.
A3  Feel, hear, inflate, air pressure, stretch, vibrate, force, escaping, push.
A4  Hold up, normal, air pressure, push, upwards, weight, downwards.
A5  Height, time, fall, quickly, slowly, air, trapped, push up, larger area.
A6  Warm, draughty, movement, air, hot, rises, cool, sinks, wind.

**Magnets**

M1  Object, attract, magnet, metal, iron, steel.
M2  Strong, hold, strength, attract, attraction.
M3  Touch, through, water, attract, thickness, pick up, move.
M4  Power, magnetism, easier, harder.
M5  In order, correct, power, magnetism, easier, harder, magnetic.
M6  Attract, power, magnet, invent, magnetic.

**Moving Things**

MT1  Attract, static electricity, safe, dangerous.
MT2  Bridge, strong, weight, span, structure, strength.
MT3  Blow, above, pressure, air, pressing.
MT4  Hovercraft, move, touching, cushion of air, higher pressure, hover.
MT5  Boat, shape, float, move, touching, wind, air pressure, push, surface area, strong, heavier.
MT6  Move, touching, wind, air pressure, push.
Light
L1 W. light, dark, look, grow, cold, warm, dry, heat, water.
L2 Colour, dark, light, look, fade.
L3 Shiny, reflection, mirror, smaller, larger, size, curve, direction, image, beams, light, up-side down.
L4 light, shadow, turn round, recognise, nearer, further, travels, straight lines, shape.
L5 Look, exactly, both sides, symmetrical, flat, reflect, straight, image.
L6 Mirror, longer, shorter, shape, fewer, pair, flat, reflect, straight, image, double.
L7 Look, broken, whole, through, water, bigger, smaller, travel, straight, air, water, image.

Heat
H1 Heat, boil, liquid, solid, chemical, acid, separate.
H2 Freeze, ice, water, expand, contract, melt.
H3 Look, feel, smell, rises, hot, taste, size, shape, colour, liquid, steam, gas, solid, melt, reverse.
H4 Hot, cover, escape, cool, stop, insulation, keep heat in, warm, cold.
H5 Melt, hot, time, longest, liquid, solid, shape, heated.
H6 Look, feel, smell, sound, taste, see, permanent, reverse, heat.

Myself
MY1 Spins, pictures in our mind, images.
MY2 Look, remember, feel, senses, memory.
MY3 Smell, taste, senses.
MY4 Talk, listen, hear, sound, travel, vibrate, air, string.
MY5 Listen, sound, loudest, travel, air, liquid.
MY6 Hear, distance, cone, air, vibrate, collect, concentrate, waves.
MY7 Look, describe, feel, sense.

Water
W1 Water, dry, wet, growth, plants, light.
W2 Warm, water, dissolve, liquid, solid, see, disappeared, cold, temperature.
W3 Shiny, look, feel, rise, cold, steam, water, condensation.
W4 Water, level, heavy, sink, push out, displace, size, volume, float.
W5 Wet, cover, warm, cool, air, vapour, escapes, evaporation.
W6 Do, made of, iron, water, rust, combines, oxygen, oxidise.
W7 Float, sink, heavy, density, shape, weight, size, hollow, air, water, displace, experiment.

(For other keywords appearing more than once, frequency of occurrence is in brackets).

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>11</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Look</td>
<td>9</td>
</tr>
<tr>
<td>Feel</td>
<td>6</td>
</tr>
<tr>
<td>Shape</td>
<td></td>
</tr>
<tr>
<td>Air Pressure</td>
<td></td>
</tr>
<tr>
<td>Push (out &amp; up)</td>
<td></td>
</tr>
<tr>
<td>Attract(ion)</td>
<td></td>
</tr>
<tr>
<td>Warm</td>
<td>5</td>
</tr>
<tr>
<td>Heat(ed)</td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>4</td>
</tr>
<tr>
<td>Hot</td>
<td></td>
</tr>
<tr>
<td>Touch</td>
<td></td>
</tr>
<tr>
<td>Move</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>4</td>
</tr>
<tr>
<td>Travel</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>3</td>
</tr>
<tr>
<td>Vibrate</td>
<td>2</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Cool</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Float</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td></td>
</tr>
<tr>
<td>Melt</td>
<td></td>
</tr>
<tr>
<td>Smell</td>
<td></td>
</tr>
<tr>
<td>Taste</td>
<td></td>
</tr>
<tr>
<td>Sound</td>
<td></td>
</tr>
<tr>
<td>Sense</td>
<td></td>
</tr>
<tr>
<td>Shine</td>
<td></td>
</tr>
<tr>
<td>Reflect</td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td>2</td>
</tr>
<tr>
<td>Burn</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
</tr>
<tr>
<td>Escape</td>
<td>2</td>
</tr>
<tr>
<td>Hold</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Through</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Easier</td>
<td></td>
</tr>
<tr>
<td>Harder</td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td></td>
</tr>
<tr>
<td>Rise</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td></td>
</tr>
<tr>
<td>Steam</td>
<td></td>
</tr>
<tr>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>Cover</td>
<td></td>
</tr>
<tr>
<td>See</td>
<td></td>
</tr>
<tr>
<td>Listen</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>Grow</td>
<td></td>
</tr>
<tr>
<td>Displace</td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td></td>
</tr>
<tr>
<td>Mirror</td>
<td></td>
</tr>
<tr>
<td>Smaller</td>
<td></td>
</tr>
<tr>
<td>Larger</td>
<td></td>
</tr>
</tbody>
</table>
**PAIRED SCIENCE**

What do you think?

Name of child: ______________________

<table>
<thead>
<tr>
<th>A Since doing Paired Science, is your child:</th>
<th>(Choose &amp; Tick)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. More interested in science?</td>
<td>NOT</td>
</tr>
<tr>
<td>2. Enjoying science more?</td>
<td></td>
</tr>
<tr>
<td>3. More confident in science?</td>
<td></td>
</tr>
<tr>
<td>4. Understanding science words and ideas more?</td>
<td></td>
</tr>
<tr>
<td>5. Better at testing out ideas practically?</td>
<td></td>
</tr>
<tr>
<td>6. Able to explain science ideas better?</td>
<td></td>
</tr>
<tr>
<td>7. Asking more 'why?' and 'how?' questions about everyday life?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B Are YOU:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Enjoying science more?</td>
<td></td>
</tr>
<tr>
<td>2. Understanding science more?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C Are you going to:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Stop Paired Science and perhaps start again later?</td>
<td></td>
</tr>
<tr>
<td>(b) Go on doing Activity Sheets, but only now and again?</td>
<td></td>
</tr>
<tr>
<td>(c) Go on doing Activity Sheets every week?</td>
<td></td>
</tr>
<tr>
<td>(d) Go on doing science together, but in a different way?</td>
<td></td>
</tr>
</tbody>
</table>

| D If you have any other comments, perhaps about some practical problems you met, please write them on the back of this form. Thank you for helping make Paired Science better. | |
A1  Keep the Paper Dry

You Need:

- a small glass
- a big bowl of water
- a small piece of paper

What to do:

Can you put the paper into the water without getting it wet? Screw the paper into a ball and push it into the glass. Turn the glass upside down and put it straight down into the water.

What happens? Why can't the water get into the glass? Tip the glass sideways. What happens now?
Parents:

Water cannot get into the glass because it is full of air.

Air cannot get out until you tip the glass sideways, allowing water in.

Children:

Can you draw a line to show where the water will be in this glass?

You might like to experiment with plastic tubs and cartons in the bath.
AIR

A2

3 Candle Race

You Need:
three saucers
one large jar
one small jar
3 small candles or night lights

What to do:
Ask a grown up to put each candle on a saucer and light them. Then cover two of the candles with a jar, at the same time.

What will happen to the candles?
Will they all burn for the same length of time?
Why do you think this happens?
What else is inside the jars with the candles?
Parents:

**Air** is inside the jars and the **oxygen** in it is **used up** by the **burning** candle. When there is no more oxygen, burning is no longer possible and the candle goes out.

The larger the jar, the more air (and oxygen) is available.

Children:

What did the candles need to go on **burning**?

Have you ever made a turnip lantern?

How should you make it so that the flame burns well?

You can draw or write about it here.
### A3 Balloon in the Matchbox

**You Need:**
- balloon
- matchbox

**What to do:**

Put the balloon into the matchbox. Does it go in easily?

Take the balloon out. Blow it up and hold the neck tightly. Can you put it into the matchbox now?

How have you **changed** the balloon? What have you put inside it?

Now let go of the neck of the balloon slightly. What can you **feel**? What can you **hear**?

Hold the balloon up in the air and let go. What happens? **Why** does this happen?
Parents:

When you blow up a balloon it is inflated by extra air pressure and the rubber stretches.

When you let go of the balloon the extra air rushes out of it. If you hold the neck of the balloon the rushing air vibrates it and makes a noise. When you let go completely, the force of the escaping air pushes the balloon forwards, like a jet engine.

Children:

Some people travel in baskets hanging from large balloons. Can you find out what makes them rise up into the air? You can draw or write about it here.
Upside Down Water

You Need:

- straw
- water
- small glass
- small piece of thin card

What to do:

Ask a grown up to help you to do this.

Fill the glass with water until it overflows.

Press the piece of card down onto the top of the glass and turn it upside down quickly.

Keep hold of the glass but let go of the card. **What do you think will happen?** **What does happen** to the card? **What happens** to the water? **What is holding the card up?**
Parents:

The normal air pressure all around us is pushing upwards more strongly than the weight of the water is pushing downwards.

Why doesn't this work without the piece of card?

Children:

Dip a straw into a glass of water.

If you keep your finger over the top, and lift the straw out, the straw will stay full of water.

What will happen if you take your finger off the straw? Why do you think this happens?

You can draw and write about it here.
## A5 Helicopters

### What to do:

Drop both pieces of paper from the **same height** at the **same time**. What happens?

Do they fall **quickly** or **slowly**?

Change one piece of paper by screwing it into a ball. Now drop them again. What happens?

Do they both fall in the **same way** this time? Can you explain what is happening?

Now try making something that falls in a different way.

### You Need:

- scissors
- paper clip
- 2 pieces of paper (exactly the same)
Parents:

As the papers fall, **air is trapped** underneath them. The air pushes up and stops the papers falling so fast.

The flat paper falls more slowly than the crumpled one because it has a **larger area** and so traps more air underneath.

Children:

Cut out your helicopter and fold one wing forwards, the other backwards. Fold up the end of the tail and put on a paper clip.

Have helicopter races.

See if you can **improve the design.**
Air

A6 Spinning Snake

You Need:
- card
- thread
- scissors
- drawing pin
- crayons or felt tips

What to do:

Draw a big snake like this onto your card.

Colour the snake and cut it out. Put a piece of thread through the top of its head and hang it up. Watch what happens. Try putting your snake in different places in your house. Try a warm place such as over a radiator, near a draughty place like the front door, and so on. What happens?
Parents:

The snake is moved by movement in the air which is all around us.

Hot air above radiators rises and causes the snake to spin.

Cool air is heavier and sinks. Wind also moves air.

Children:

Where does your snake spin the most?

What does this tell you about air?

Why does air move? How many reasons can you think of?

You can draw or write about it here.
MAGNETS

Magnet Sorting

You Need:

- nail
- stone
- comb
- magnet
- paperclip
- safety pin
- drawing pin
- rubber band
- hairgrip
- penny
- pencil

What to do:

Guess which of the objects will be attracted by the magnet and which will not. Sort them into two sets. Draw them.

<table>
<thead>
<tr>
<th>ATTRACTED</th>
<th>NOT ATTRACTED</th>
</tr>
</thead>
</table>

Now test them all by holding each one near to the magnet. Put a ✓ if you were right, a X if you were wrong.
Parents:

Magnets only attract certain things.

They will attract metals containing iron or steel, but not other metals.

Children:

Can you find anything else to test?

Look around your house, but keep the magnet away from watches or tape recorders.

The fridge might have a magnet in it. Can you find it?
How Strong is your Magnet

You Need:
- magnet
- pins
- paper clips
- drawing pins

What to do:

How strong is your magnet? Use the pins to find out. How many pins will your magnet hold at once? Hang them on one after the other like this:

Do the same with drawing pins or paper clips. Write down how many pins, drawing pins, paperclips. Why are the numbers different?
Parents:

Different magnets have different strengths and powers of attraction, which is only partly to do with the size of the magnet.

What other things might effect the different results in these activities?

Children:

Find out how far your magnet can attract or pull a pin.

<table>
<thead>
<tr>
<th>Put your magnet here</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>

Put the pin at 10cm. Push it slowly towards the magnet. When the pin jumps to the magnet, keep your finger still. This shows how far the pin has jumped.

How can you find out which part of the magnet attracts the most?
You Need:
- paperclip
- jar of water
- magnet
- tissue

What to do:

Put the paperclip into a jar of water.

How can you take it out of the water without touching it or getting your fingers wet?

Think. Will your magnet work through water? What else will the magnet work through?
Parents:

A magnet will attract through some other substances.

Does the thickness of the other substance make any difference?

Children:

Put a tissue and the paperclip on the table.

How can you use your magnet to pick up the tissue?

How else can you use the magnet to move things or pick them up?

Write or draw about it here.
MAGNETS

M4

Pairs of Socks

You Need:

- thread
- scissors
- 12 paperclips
- crayons or felt tips
- 2 magnets with a hole

What to do:

Colour the socks so all six pairs look different.

Cut them out and fix a paperclip onto each one.

Tie a thread to your magnet and try to catch the socks.

Whoever catches the most pairs wins.
Parents:

This activity shows the power of magnetism - and is fun.

How could the game be made easier or harder?

Children:

You can do this with fish or anything else you like.

Make fishing rods if you like.
Getting Dressed

You Need:

- thread
- scissors
- magnet with a hole
- crayons or felt tips
- 8 paper clips or safety pins

What to do:

Colour the clothes and cut them out.

Put a paper clip or pin on each.

Now try to catch the clothes in the correct order for getting dressed or undressed.
Parents:

This activity shows the power of magnetism - and is fun.

How could the game be made easier or harder?

Children:

Can you make up a different magnetic game of your own?
**MAGNETS**

<table>
<thead>
<tr>
<th>M6</th>
<th>Car Race</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>You Need:</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>glue</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>card</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>scissors</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>sellotape</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>2 pencils</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>2 magnets</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>2 paper clips</td>
</tr>
<tr>
<td><img src="image" alt="magnet diagram" /></td>
<td>crayons or felt tips</td>
</tr>
</tbody>
</table>

**What to do:**

Draw two cars on card, colour them and cut them out.

Fix a paper clip onto the back of each with sellotape.

Fix each magnet onto the end of a pencil with sellotape.

Use them to **attract** the cars round the track.

**READY . . . STEADY . . . GO !**
CUT THIS OUT AND STICK ONTO CARD

Parents:

Another fun game showing the power of magnets.

Children:

If you like, colour the race track and draw people watching.

Can you invent another magnetic game?
MOVING THINGS

MT1 | Static Electricity

You Need:
- pen
- tissue
- kitchen foil
- newspaper

What to do:

Tear a thin sheet of tissue paper into small pieces. Hold the pen near to them. What happens?

Rub the pen on a woollen jumper several times, whilst counting to twenty. Now hold the pen near to the pieces of paper again. What happens now?

Try it with small pieces of foil or newspaper. Does the same thing happen?

Look for other things that are made of plastic, like a comb or a plastic spoon. Will they attract pieces of paper when rubbed?

Why and how do you think this happens?
Parents:

The rubbing makes static electricity on the pen.

This attracts the tissue to the pen.

Children:

You have made static electricity. It is safe electricity.

Try rubbing other things to see if they make static electricity.

Can you find anything that is worked by dangerous electricity in your home?

Ask your parents about the safe way to hold plugs.

You can draw or write about it here.
MOVING THINGS

MT2 Bridges

You Need:
small car or a pile of coins
three pieces of paper
books or bricks

What to do:
Make a bridge with the books or bricks and the paper.

Put the car or coins on top. What happens to the paper? Is it a strong bridge?

Try folding your papers. Fold them in different ways. Can you make stronger bridges now?

Test your bridges.

Which one is the strongest? Why do you think that is?

How many cars or coins will it hold (weight)? How long can the bridge be (span)?
Parents:

Try folding the paper backwards and forwards like this:

Or fold the edges of the paper like this:

Different **structures** have different **strengths**.

Children:

Real bridges are not made of paper.

What other things could you make bridges of, so they would be stronger?

Bridges often carry roads. Can you think of any other ways of travelling over a bridge?

You can draw or write about it here.
## MOVING THINGS

### MT3

### Water Jets

<table>
<thead>
<tr>
<th>You Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>an empty washing-up liquid bottle</td>
</tr>
<tr>
<td>a large needle</td>
</tr>
<tr>
<td>sellotape</td>
</tr>
<tr>
<td>water</td>
</tr>
</tbody>
</table>

### What to do:

Ask a grown up to make four holes in the bottle like this:

- Cover the holes with sellotape.
- Now stay by the sink or go outside - this could be messy! Fill the bottle with water. Now take off the tape. See how the water squirts out of each hole in a different way. **What different ways? Why is this?** Try blowing into the top of the bottle. **What happens now? Why?**
Parents:

The more weight of water there is above each hole the more pressure there is to push the water out further.

Blowing into the top of the bottle adds extra air pressure on the water.

Talk about pressing and pressure with your child. Pressure does not always make movement - why?

Children:

Can you draw the way the water comes out of the holes?

Where does it squirt out the furthest - at the top or at the bottom?

Try making a different pattern of holes on another bottle. How does the water come out now?
# Hovercraft

### What to do:

Ask a grown up to fix the toilet roll middle into a hole in the tray like this:

### You Need:

- toilet roll middle (or other cardboard tube)
- polystyrene tray (or thin round margarine carton)
- sellotape
- scissors

How can you make your **hovercraft** move **without touching it**?
Parents:

By blowing down the hole in the top you create a **cushion of air of higher pressure** on which the hovercraft "floats" or hovers.

Children:

**Test** your hovercraft on different surfaces - the table, the carpet, outside on the path, on the kitchen floor.

Where does it work best? **Why**?

Make another and have races.

How can you **improve** the **design**?

What other things **hover** - and how?

You can draw and write about it here.
MOVING THINGS

MT5
Sailing Boat

You Need:
- straws
- sellotape
- newspaper
- piece of card
- piece of kitchen foil
- bowl or bath of water

What to do:

Make your piece of foil into a **boat shape**.

Put it on the water. Does it **float**?

How can you make your boat **move** without touching it? What can you use to make a **wind**?

Try different ways: blow, wave your hands, wave a piece of card or a newspaper, blow through a straw - which works best?

**Why?**
Parents:

Blowing or fanning increases the air pressure and pushes the boat through the water.

The bigger the surface area of the boat the more it will move, other things being equal.

Children:

Give your boat a sail.

Does this make any difference to the way it moves?

Make a paper man for your boat and give him a ride. Is the boat strong enough to hold him?

Will the boat hold anything heavier?

Now make another boat and have a race.

Can you improve the design?

You can draw and write about it.
# MOVING THINGS

## MT6  Fish Race

**You Need:**
- card
- pencil
- scissors
- magazine
- newspaper
- tissue paper
- writing paper

**What to do:**

Cut out a fish shape from tissue paper by tracing this pattern.

Put the fish on the floor.

How can you move the fish without touching it?

Clue - make a wind.
Parents:

Fanning makes a wind and creates air pressure which pushes the fish.

Children:

Which is the best for making a wind? - the card, writing paper, newspaper or magazine?

Why is it the best?

How do you think the winds in the sky are made?

Make another fish and have races.
Growing Cress

You Need:
- two saucers
- tissue or kitchen roll
- cress seeds
- water

What to do:

Put the paper onto the saucers, wet it, then sprinkle the seeds evenly over the paper. Put one saucer in the light and one in the dark.

Look at your seeds every day. What do you notice about your seeds when they are wet? How do they change?

Remember to water them every day. Where do your seeds grow best - in the light or in the dark?

How many days does it take for your cress seeds to grow? How can you find out if seeds like cold or warmth? Do they like to be wet or dry?
Parents:

Seeds need **light**, **heat** and **water** to give them **energy** to grow.

Children:

What did you find out?

You can draw or write about your seeds here.
LIGHT

L2 Fading Colours

You Need:

- 8 paper clips
- black paper
- something to draw round (to make a circle)
- two sets of coloured papers (red, yellow, brown, blue in each)

What to do:

Cut out 8 black circles. Clip each circle over a piece of coloured paper.

Put one set of coloured paper in a dark cupboard. Put the other set on a windowsill in the light.

Look at them after one week. Take off the black circles. Have any of the papers changed in any way? How are they different?

Have some changed more than others? What did the light do to the colours? What did the black paper do?
Parents:

Light makes **colours fade** (go less bright). Some colours fade more than others.

Children:

What did you find out?

You can draw or write about it here.
You Need:

a large shiny metal spoon

What to do:

Look at yourself in the shiny back of a large spoon. What do you notice about your reflection (the picture or image of yourself which shines back at you)?

Is it the same as in a mirror? Are you smaller, or larger, or the same size?

Now look at yourself in the front of the spoon. What do you notice about your reflection now?

Can you find your reflection anywhere else in the house?
Parents:

Because light is reflected off different parts of the curve of the spoon in different directions, you get a bent or distorted image.

If the beams of light that are reflected cross each other, you also get an inverted (upside down) image.

A flat mirror reflects all light back in a straight line.

Children:

Where else did you find your reflection? What did it look like - the same as in the spoon or different?

What did your reflection look like in different places?

You can draw or write about it here.
L4

Shadow Game

You Need:

- a dark room
- a torch or a table lamp
- six hidden objects
  (eg: keys, fork, toy, mug, plate, scissors)

What to do:

Ask a grown up to hide the 6 objects until you are ready to begin.

The grown up should shine a light on the wall and hold an object in the light to make a shadow. Sit facing the wall and try to guess the name of each shadow as the objects are held up.

How many can you guess correctly? If the object is turned round, can you still recognise it?

Try moving the object nearer or further away from the light. What difference does this make?

Now you try. Use the plate. Can you make the shadow into a circle or into a straight line? Try the mug. Can you change its shadow shape into a rectangle or into a circle?
Parents:

Because light travels in straight lines through the air and cannot bend around objects, the shadows have the same shape as the objects.

The nearer the object is to the light, the more light it blocks out and the bigger the shadow.

Children:

What did you find out?

You can write or draw about it here.

Can you draw different shadow shapes that could be made by the same object?

What shadow shapes can you make with your fingers?
You Need:

- a mirror with a flat side
- crayons or felt tips

What to do:

Look at these pictures. Which are the same on both sides of the dotted line?
Put your mirror on the dotted line to help find out. Things that look exactly the same on both sides are called symmetrical.

Colour in the pictures that really are symmetrical.

Parents:

Flat mirrors reflect light in straight lines and give you exactly the same image as the original object. If a flat mirror put across half of any drawing or letter does not give a combined (real + reflected) image which looks like the whole thing should be, either you have not found the right 'line of symmetry' to split it in half, or the original just isn't symmetrical in any way.

Children:

Can you finish off drawing these letters with the help of your mirror?

A
V
C
K

Can you draw a circle round all the capital letters of the alphabet that are symmetrical?

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z L5
L6

Mirror Magic

You Need.

a flat sided mirror

What to do:

Can you use your mirror to make this skipping rope longer? Can you make it shorter? How?

Can you change this shape into a circle? What other shapes can you make from it?
Parents:

Flat mirrors reflect light in straight lines and give you exactly the same image as the original object reflected.

So you can double any picture or drawing or any part of it - just depending on where you decide to put the mirror.

Children:

Can you make more or fewer sweets by moving the mirror?

Can you make a pair of shoes and a pair of trousers?

What can you draw to do the same mirror magic with? L6
You Need:

a spoon
a glass of water

What to do:

Put the spoon into the glass of water. Look at the spoon carefully. What seems to have happened to it?

In the water it looks as though it is broken. Take the spoon out and it will look whole again.

Find something else to put into the water. Does the same thing happen? Why do you think this is?

Write your name on a piece of paper. Look at it through the water. What do you notice about your writing?

Draw a monster. Look at it through the water. How can you make your monster grow bigger? Now make it grow smaller.
Parents:

The spoon looks to be broken because light travels in a straight line through air but differently through water.

Our view or image of the spoon or drawing changes because the light coming to our eyes takes a different path as it hits the water.

Children:

What else did you put into the water?

What did you find out?

You can draw or write about it here.

If you leave the spoon in the water you will notice that bubbles have formed on it. What is inside the bubbles? Where do you think it has come from?
HEAT

H1 Cottage Cheese

You Need:

a pudding spoon full of vinegar
a third of a pint (200cc) of milk

What to do:

Ask a grown up to heat the milk for you until it begins to boil and then take it off the heat.

Add the vinegar and stir. What changes are happening to the milk?

What does it look like now? Some of the milk has changed from liquid (watery) to solid (lumpy).

Now it is called curds (solid) and whey (liquid).
Parents:

Heat and other things (eg chemicals like vinegar, which is an acid) can bring about big changes - like turning liquids to solids or solids into liquids.

In making cottage cheese, two liquids and heat result in one liquid and one solid.

Talk about heat, liquids and solids with your child - what other examples can you think of?

Children:

What does the curd look like?

What does the whey look like?

Can you change it back to milk again?

How can you separate the curds and whey?

Do you want to taste them?

Can you draw a picture of a little girl who ate curds and whey? What was her name? Why was she frightened?

Do you know anything else that changes from solid to liquid? When and why does it do that?
HEAT

<table>
<thead>
<tr>
<th>H2</th>
<th>Ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>You Need:</td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
</tr>
<tr>
<td>freezer or fridge</td>
<td></td>
</tr>
<tr>
<td>masking tape or other marker</td>
<td></td>
</tr>
<tr>
<td>large margarine carton with a lid</td>
<td></td>
</tr>
</tbody>
</table>

What to do:

Stick a piece of tape on the carton about 4cm (one and a half inches) from the top.

Fill the carton with water exactly to that mark. Put the carton in the freezer.

Next day have a look. What has happened to it? Where is the mark now?

How can you change your ice back to water? How long will it take?

Where is your mark when it is all water again?
Parents:

Water *expands* (gets bigger) when it *freezes* and turns into ice.

It *contracts* (gets smaller) when it *melts* and turns back into water.

Children:

If you filled a carton with water to the very top and put on the lid and then froze it, what do you think would happen?

Will a grown up help you try this?

When the milkman leaves the milk outside your house on an icy cold day, the bottles sometimes look different. Can you say what happens?

Draw or write about it here.
HEAT

Jacket Potato

You Need:

knife
butter
two plates
oven or microwave
two small clean potatoes

What to do:

Put both potatoes onto plates. Look at them carefully. Do they look the same? Do they feel the same or smell the same?

Ask a grown up to put one potato into the oven or microwave.

When one is cooked, cut both potatoes in half carefully. Do they both look the same inside? What rises from the hot potato? Do they smell the same? Do they taste the same? Do they feel the same?

In how many ways has the hot potato changed? Can you change it back again?

What will happen if butter is put onto both potatoes? Try it. Were you right?
Parents:

Heat changes things, including things we eat.

These changes can be in size, shape, colour and other features we can see. Heat can be felt, and can cause changes which can be felt. It can also cause changes which we can smell and taste - like in cooking.

Heat can turn water (liquid) into steam (a sort of gas) - like that rising off the hot potato. It can also turn butter (a solid) into a liquid by melting it.

Some of these changes are permanent - they can't be changed back or reversed.

Children:

How many different ways can you cook potatoes?

How is it done?

What is your favourite?

You can write or draw about it here.
Keeping Warm

You Need:

two shampoo bottles
(exactly the same)
large glove, or thick hat or scarf
some hot water

What to do:

Ask a grown up to help you fill each plastic bottle with hot water.

Put both bottles outside, but cover one bottle with a glove, hat or scarf.

Leave them outside for about twenty minutes.

Guess what will happen to the bottles.

Now feel them. Were you right?
Parents:

Heat *escapes* into the *cooler* air around us unless we *stop* it.

Some kind of *insulation* helps keep heat in.

Clothes help *keep* our body *heat in* - they insulate us.

Children:

Can you find anything else to cover your bottle with?

Why is the covered bottle always *warmer*?

Why do you wear more clothes on a *cold* day?

*Test* to see how good they are at *keeping heat in*.

You can draw and write about them here.
HEAT

H5

What Melts?

You Need:

chocolate
an ice cube
butter or margarine
three yoghurt cartons
three dishes
hot water

What to do:

Colour the pictures. Put a ✓ next to the ones that will melt.
Put a square of chocolate, an ice cube and a small lump of butter or margarine each into a separate yoghurt carton.

Stand each carton in a bowl of hot water, all at the same time, so the test is fair.

What happens? Which melts first? Which takes longest to melt? What has made them melt? Do they look different now that they have melted into liquids?

Can you change them back to a solid again? What about the ice cube?

Parents:

Heat causes melting in some substances.

This is a change from solid to liquid.

Removing heat usually causes a change back to solid - but the shape will have changed!

Children:

Have cheese on toast or pizza for supper.

What happens to the cheese on top when it is heated?

Do any other foods do this?

Draw or write about them.
HEAT

H6 Toast

You Need:
- two slices of bread
- toaster or grill
- two plates

What to do:

Put both pieces of bread onto plates.

Look at them carefully. Are they both the same? Do they feel and smell the same?

Ask a grown up to put one piece of bread into the toaster or on the grill for you.

What happens to it now? How does it change? Why has it changed? Can you change it back again?

Look at the toast and the bread carefully. Do they look the same? Do they smell or feel the same?

Bite each piece - do they sound the same or taste the same?
Parents:

Heat changes things, including things we eat. These changes can be in colour or other features we see, in feel, smell and taste.

Some of these changes are permanent - they can't be changed back or reversed.

Children:

Can you draw or write about the things you like to eat with toast?

You could cook bread other ways, but it might not end up as toast.

What kind of cooking heat is needed to make toast?
Goldfish Bowl

You Need:

- thick card
- pencil
- crayons or felt tips
- sellotape
- glue

What to do:

1. Colour the fish orange and the water in the bowl blue.

2. Cut out the squares and stick them onto both sides of a piece of card. Sellotape the card onto the end of a pencil. Now hold the pencil between two flat hands and rub hard so that the card spins. Look at the card. What do you see? Spin quickly, spin slowly - does it make a difference? Why do you think this is?
Parents:

Our eyes and brain keep **pictures in our mind** after things have actually changed.

The **images** of both fish and bowl are retained so we see the fish **in** the bowl.

Children:

Can you make a different spinner?

Draw a bird and a cage. How fast should you spin it so the bird seems to be **in** the cage?

Can you think of other things to draw on a spinner?
Kim's Game

You Need:

six different objects
a blindfold

What to do:

Look carefully at the objects for one minute, then look away and ask a friend to take away one secretly.

Look back - can you remember which one has gone? Do this again until all the objects have gone. Did you get them all right?

Now it's your friend's turn to guess.

Now play the game again, blindfolded. Now you must feel which objects are still there. Can you tell which one has been taken away now?
Parents:

In this game children are learning to look carefully and feel carefully. These are both important senses. They are also practising remembering - memory is very important in life.

Can you think of times in your life when looking, feeling and remembering are particularly important?

Children:

Can you draw the objects you felt in the blindfold game?

Which was the easiest to guess?

Which was the most difficult? Why?
### Smelling & Tasting Game

**You Need:**
- a blindfold
- orange
- banana
- soap
- toothpaste
- coffee
- cheese
- apple
- pear

**What to do:**

Wear the blindfold. Ask a friend to hold the different things close to your nose. Can you tell what they are by **smelling** them?

Now wear the blindfold **and** hold your nose. Ask your friend to give you a piece of pear and a piece of apple. Can you tell which is which?

**Taste** them again without holding your nose. Does being able to **smell** help you to **taste**?
Parents:

Taste and smell are closely connected senses. Being able to smell food helps us to tell difference in taste as well.

Children:

You can write or draw about your favourite smell here.

What smell do you dislike?
MYSELF

MY4  Yoghurt Pot Telephone

You Need:

two yoghurt cartons
length of string

What to do:

Make a tiny hole in the bottom of each yoghurt carton and thread the string through. Tie big knots in the ends of the string.

Take one pot each and keep the string tight and don't let it touch anything.

Talk quietly into one of the cartons while your friend listens. Can they hear? Move nearer so that the string is loose. Can you hear each other now?

How does the sound travel to your friend?

Try using different lengths and kinds of string. What is the longest length you can use? What is the shortest length? Which is best? Why?
Parents:

**Sound** is a kind of *vibration*. It usually travels through the *air* around us, by making the air *vibrate*. It travels along the *string* by making the string *vibrate*. If the string is floppy or touching something it won't vibrate.

---

Children:

Do you think your yoghurt pot telephone would work under water?

Why?

Can people hear anything under water?

What else can sound travel through?

Do you know how to use a real telephone?

How does that work?

Do you have a telephone?

Do you know your telephone number?

What is the emergency number?
MY5
Listening Game

You Need:
pencil
paper
a blindfold

What to do:

Sit at a table and draw a picture. Listen to the sound your pencil makes on the paper.

Put your ear onto the table. Draw again and listen to the sound. Which was the loudest? Does the sound travel to your ears better through the solid table or through the air?

Wear a blindfold and ask a friend to walk quietly towards you. Can you hear footsteps?

Now put your ear to the ground and try again. Which sounds the loudest? Does sound travel better through the floor or through the air?
Parents:

Sound can **travel** better through **solids** and **liquids** than through **air**.

Children:

Red Indians were very good at hearing far away sounds. They would listen for the sound of galloping horses by putting an ear to the ground.

Can you draw a picture about this?
Big Ears

You Need:
- ticking clock or watch
- stiff paper or card
- sellotape
- pin
- plate

What to do:

How far away can you hear the ticking of a clock or watch? Cover each ear in turn. Is it the same distance for each ear? Now make yourself a 'big ear'. Cut out this shape from a large piece of stiff paper and roll it into a cone.

Tape the edges together. Do large ears help you to hear sounds better? Why?
Parents:

Sound **travels** through the **air** by **vibrating** the air. A "big ear" **collects** more **vibrating air** and **concentrates** it into the ear.

Animals with big ears usually have better hearing than those with small ears. The flap of your ear is to **collect** sound **waves**.

Children:

Ask someone to drop a pin onto a plate. Can you hear the sound better with your 'big ear' or without it?

Can you draw an animal that has big ears?
MYSELF

Feely Bag

You Need:
gloves
pillow case
six objects

What to do:

Ask a friend secretly to hide six different objects in a pillow case.

Put your hand in the bag and feel one without looking. Can you describe it so well that your friend can guess what it is?

Now do it wearing gloves. Can you still feel what the objects are?
Parents:

Encourage as full a description as possible, not just one word, like "big" or "soft".

Usually we take the sense of feeling for granted, but it is very important.

Children:

Try feeling with your feet instead of your hands.

Which is best? Why?

When would a sense of feeling be especially important - for what kinds of people?

You might draw or write about your answers.
### Carrot Tops

#### You Need:
- water
- two saucers
- the tops from six carrots

#### What to do:

Put three carrot tops on one saucer and three on the other. Put water on one saucer and leave the other dry.

Put both saucers on the windowsill and leave them for a week.

If you make sure that the wet carrot tops always have plenty of water, they will begin to change. What happens to them?

Does the same thing happen to the dry carrot tops? How are they different?
Parents:

The **wet** carrot tops **absorb** water which encourages **growth**.

The **dry** carrot tops **lose** water and shrivel up.

Water is essential for growth (**plants** need **light** as well).

Children:

What did you find out about water?

What would happen if the wet and dry carrot tops were kept in the **dark**?

You can draw and write about it here.
WATER

W2

Dissolving

You Need:
salt
sand
sugar
flour
coffee
soap powder
warm water
a teaspoon
6 glasses or jam jars

What to do:

Can you guess what will happen when a teaspoonful of each of the six substances is put in to a separate jar of warm water?

Will they dissolve (turn into wet sloppy liquid) or not? Guess first and then find out.

Use the same amount of water and substance each time, and stir each one 20 times. Which solid substances can you still see? They have not dissolved.

Which ones have disappeared? They have dissolved.

Did you guess correctly each time?
Parents:

Some solid substances dissolve in water, making a different kind of liquid. Others do not.

The temperature of the water makes a difference with some substances.

Children:

You can write down what happened like this:

<table>
<thead>
<tr>
<th>I Tried</th>
<th>I Guessed</th>
<th>What Happened</th>
</tr>
</thead>
<tbody>
<tr>
<td>sugar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>powder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Try using cold instead of warm water.

Does it make any difference to the way things dissolve?
WATER

W3

Steam

You Need:

- a duster
- a wash basin or bath

What to do:

Polish the taps so that they are really shiny. Do both taps look the same? Do both taps feel the same?

Put the plug in and run the water as you usually do to get washed. What can you see rising from the water?

Look at the taps again. Do both taps look the same now? Are they both shiny? Touch the cold tap. What is on the tap now? What can you feel on your finger?

Why did one tap change and not the other?
Parents:

**Hot** water gives off **steam**. Steam changes back to water again when it touches a **cold** surface. We call this changing back **condensation**.

Explain what steam is made of. (It is tiny droplets of hot water suspended in air).

Children:

Can you find any more places in the bathroom, kitchen or other rooms that get **condensation** on them?

How has the condensation got there?

You can draw or write about it here.
WATER

W4 Rising Water

You Need:

- water
- a glass jar
- a rubber band
- a ball of plasticine

What to do:

Put the rubber band around the jar. Fill the jar with water to the level of the band.

What will happen to the water level when the plasticine is put into the jar? Will it change or stay the same? Guess.

Now test it. Were you right?

Find other heavy things to put into the water. Guess first whether the water will change a little or a lot.

What happens when you take the object out again? Can you explain what is happening to the water each time something is put into the jar?
Parents:

When objects which sink are put into water they push out or up (displace) an amount of water the same as their own size or volume. (Objects which float displace a smaller amount of water).

Children:

What happens to the water level when you get into the bath?

What happens when two people get into the bath together?
How could you make a jar or bath overflow?

You can draw or write about it here.
WATER

W5 Evaporation

You Need:
cling-film
rubber band
kitchen roll
2 yoghurt cartons
water
2 saucers
a teaspoon

What to do:

Wet 2 pieces of kitchen roll and put each into a separate yoghurt carton.

Cover the top of one of the cartons with cling-film. What do you think will happen?

Will both the pieces stay the same?

Now try something else. Put one teaspoonful of water onto each saucer.

Leave one saucer in a warm place and put the other in a cool place.

What will happen? Will they both stay the same? Why?
Parents:

Left exposed to the air, water slowly "dries up". What really happens is that the water turns into water vapour and escapes into the air.

This happens faster if the air and/or water are warmer, and is called evaporation.

('Evaporated' milk has had some of the water content of ordinary milk removed in this way, so what is left behind is thicker and more concentrated).

Children:

What happens to the water? Where does it go?

Where do puddles go after rain?

You can draw or write about it here.
You Need:

- water
- a nail
- a button
- a matchstick
- 3 yoghurt cartons or jars

What to do:

Put each object into a separate carton or jar of water.

What happens to the matchstick? Does it do the same as the button and the nail?

One of these 3 objects will change if we leave it long enough in water. Can you guess which it is?

What do you think will happen to it? What is this object made of? Why doesn't the same thing happen to the other objects?
Parents:

When iron is in contact with water it gradually rusts, which means the iron combines with oxygen in the water or 'oxidises' to make a new substance (rust).

Some other metals oxidise, but no other metal oxidises as much as iron in water (brass, lead and zinc do not rust for example).

Children:

What would happen to your bike if you left it out on a rainy day?

What if you left out a steel screw and a brass screw?

You can draw or write about it here.
Floating and Sinking

You Need:

- soap
- paper
- penny
- apple
- potato
- a stone
- wooden peg
- lump of plasticine
- a metal spoon
- milk bottle top
- bowl of water

What to do:

Guess which of the objects will float and which will sink.

Sort them into two sets. Draw them.

<table>
<thead>
<tr>
<th>FLOAT</th>
<th>SINK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Now test them all by putting them in water.

Put a ✓ if you were right, a ✗ if you were wrong. Why do some float and some sink?

---

Parents:

Whether things float or sink does not just depend on how heavy they are.

It depends on their density and shape.

The density of an object is its weight in relation to its size (a penny is heavy for its size and sinks, but a tree trunk is light for its size and floats).

Also, shape is important - hollow shapes which can hold air and keep water out are more likely to float - like boats!

Objects that displace lots of water in relation to their own weight float better.

---

Children:

What did your lump of plasticine do - float or sink?

Can you change the shape of the plasticine so that it will float better?

What other experiments can you do with floating and sinking?