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ABSTRACT
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random, or subject to measurement error, or there is not an obvious
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variables is Least Principal Components Analysis. Least Principal
Components are robust, consistent, and sufficient maximum likelihood
estimates of the best total linear fit to observed data. They are
more appropriate than regression estimates when the smallest
eigenvalue exists and is distinct from the next smallest, and the
variability to minimize is in more than one variable or when
multicollinearity is a problem. They are as easy to compute as are
common principal components because they are principal components. T.
W. Anderson (1963) provides a theory of inferential statistics for
Principal Components that can be used in computing significance
levels and confidence intervals for least principal components as
well. Bootstrap approaches have also been developed. (SLD)
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Least Principal Components Analysis (LPCA) 2

Regression analysis is a powerful statistical tool; however, there are times when its
assumptions are inapprr priate or too restrictive. One often inappropriate assumption is that the
only latent, random, or erroneously measured variable is the dependent variable. Often all of the
variables in the model are latent, random or subject to measurement error, or there is not an
obvious dependent variable. When any of these conditions exist, a more appropriate method for
estimating the linear relationships among the variables is Least Principal Components Analysis
(LPCA).

In 1901, Carl Pearson noted that the linear model that provides the best least squares fit to
observed data is the model that has for its coefficients the eigenvector associated with the smallest
eigenvalue of the covariance matrix. These are the Least Principal Comporents coefficients.
Pearson's paper provided the basis for conventional principal components analysis, but its full
implications for an alternative to Regression apparently have not previously been recognized.!

Why Use LPCA?

LPCA is a relatively straightforward method of estimation that provides the best overall fit
to the observations. It does not make a priori assumptions about error, latency or randomness that
are as restrictive as Regression; and yet, the two methods are conceptually very similar.

When Is LPCA Used?

There are at least four circumstances when it would be sensible to use LPCA instead of
Regression Analysis. First, sometimes it is more sensible to minimize the unexplained variability
of all the observed variables rather than just a dependent variable. For example, multiple-ouput
production models in economics are often defined in implicit functional form--without a dependent
variable. These might sensibly be estimated through LPCA. Second, sometimes it is not wisest to
assume in advance of estimation the direction of the randomness, latency or error that is to be
minimized. Regression Analysis assumes that such variability lies only in the dependent variable.
Third, LPCA can be used to check the price that is paid in explanatory value for using Regression
Analysis. Regression estimat n is a limiting case of LPCA (as I later explain) so the results from
LPCA and Regression can be compared to determine how much the overall error is increased in
Regression. Fourth, coefficient instability from multicollinearity in Regression Analysis can
sometimes be overcome through LPCA because the covariance assumptions of the two methods
differ. If the covariance assumptions of LPCA are satisfied, then LPCA provides an alternative to
Regression that avoids instability from multicollinearity.

What Is LPCA?

Coefficients

ILPCA, like regression analysis, estimates the coefficients of an equation that fits a linear
model of observed phenomena. The elements of a vector orthogonal to a linear space equal the
coefficients of the equation of the space (Figure 1) as is demonstrated in any elementary text of
analytical geometry (for example, see Fuller, 1967, pp. 195-204).

1In 1989, I developed the Least Principal Components approach under the direction of William F. Massy
and Michael S. Garet without being aware of the contents of Pearson's paper. 1 have searched widely in the
multivariate literature for a paper that refers to this lincar modcling approach. It makes so much intuitive sense that
I assumed someone else had already explored its implications, but I have not yet found one.




Least Principal Components Analysis (LPCA)
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Figure 1. Vector components orthogonal to a linear surface equal the coefficients of the linear
surface

The eigenvector associated with the smallest eigenvalue of the covariance matrix is the
vector orthogonal to the space that miniinizes the total unexplained variance of the model (for
example, Flury, 1988). Figure 2 presents this in two dimensions.

y

Figure 2. LPCA minimizes the orthogonal rather than the vertical distance from the observations

The elements of this eigenvector are the Least Principal Components coefficients because they are
associated with the principal components of least variability--the smallest possible dimension of
error.

References to Common Principal Components in the statistics literature are relevant to
LPCA; Flury (1988) provides an excellent overview. LPC estimates not only provide the linear
coefficients of best fit to the model (Pearson 1901); but like other principal components, they are
consistent, efficient, and robust estimators when the distribution of the observations satisfy
assumptions of normality and the smallest eigenvalue is distinct from the next smallest (Flury,
1988, pp. 14 and 20). :

A two dimensional model provides a good view of both the similarity and difference
?etween a linear estimate from regression analysis and one from Least Principal Components
Figure 3).
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Figure 3. Regression of undergraduates on faculty (A) and faculty on undergraduates (B), and
LPCA of raculty and undergracduates (C).

Figure 3. shows the nurnber of fulltime faculty members plotted against the number of
undergraduate students for the universities that awarded doctoral, first professional and bachelor’s
degrees in the 1982-1983 academic year. If you assume that the number of faculty members
determines the number of undergraduates and that the variability of the model is only in that
measurement, then you should regress the number of undergraduate students on the number of
faculty members (line A), minimizing the sum of vertical squared distances from the observations
to the estimation line. On the other hand, if you assume that the number of undergraduates
determines the number of faculty members and that the total variability in the model is in that
measurement, then you should regress the number of faculty members on the number of students
(line B), minimizing the sum of horizontal squared distances from the observations to the
estimation line. But, if you assume that they determine each other, neither one being the
appropriate dependent variable--or variability being in more than the dependent variable and total fit
making sense--then you should use LPCA (line C), minimizing the total squared distance from the
observations to the estimation line.

Our three different approaches to estimation result in three different sets of estimates (Table
1), normalized to facilitate comparisons; although, rounding hides the differences between two of
the sets. Regressing undergraduates on faculty results in coefficients that round to the same
thousandths as the LPCA estimates. This means that the linear combination of the variables that is
the dimension of least unexplained variability is very nearly the variable of undergraduates itself.
On the cther hand, regressing choosing a different dependent variable for regression results in a
different resu!t. The choice of dependenrt variable can have considerable impact on Regression
estimates.

(L

4




Least Principal Coimponents Analysis (LPCA)

Table 1
A Comparison of Regressions with Two Different Dependent Variables and LPCA

Regression LPCA
Undergraduates on Faculty ~ Faculty on Undergraduates
A B C
Faculty 1.000 1.000 1.000
Undergraduates .054 .066 .054

The relative explanatory value of the two methods in terms of overall fit to the data can be
compared through the proportion of the generalized variance of the all of the variables that is
~xplained by each model. The proportion explained is one minus the proporticn not explained.
For both LPCA and Regression, the proportion of variance not explained is the variance of the
respective error term, € and e*. For LPCA, e equals the smallest eigenvalue:

o—te o b
p p

(n) X 1 > L
r=1 =1

?

where |j is the ith eigenvalue of the covariance matrix of all variables, 1, is the smallest eigenvalue,
and n is the number of observadons. For Regression, the proportion explained equals

eke*

p
m 2 L
=1

The proportions for LPCA and Regression equal each other when the smallest dimension of
unexplained variance is in the dependent variable in the Regression.

Fitted or Latent Values
The latent values of the variables in LPCA are the projections of the observations of all of
the variables onto the p-1 dimensions of the largest eigenvalues:

7 = ZA1" A4,

where 2. is a set of fitted values corresponding to the mean-centered matrix of observations Z, and
A1 is a matrix of eigenvectors of the covariance matrix with zeroes substituted for the last
eigenvector. The latent values for regression analysis are the projections of the observations of the
dependent variable onto the p-1 column vectors of the independent variables:

AN ALVAN ASDY AN M

where zy is the vector of observations of the mean-centered dependent variable and Z* is the
matrix of independent variables.
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Error Theory

LPCA shares the assumption of regression analysis that the error lies in the same
dimension for every observation, but LPCA is less restrictive in not assuming a priori what
dimension. In regression the error term is assumed to be in the dimension of the dependent
variable. In LPCA there is no prior assumption about the dimension; all variables can contribute to
it. Itis in this sense that LPCA acknowledges the possibility that more than one variable is latent
or random or contains measurement error. The estimated error for LPCA lies orthogonal to the p-1
dimensional space of greatest variance.

The matrix of error £ is the projection of the mean-centered observations Z onto the
partitioned matrix A of eigenvectors containing zeroes for the first p-1 eigenvectors:

£=2A"A, =20 -A"A)).

Regression Analysis assumes that there is no error, latency, or randomness in the p-1
dimensions of the independent variables; all is in the dependent variable, a strong assumption.
While possible for LPCA, as previously mentioned, it is not assumed.

The error estimates for Regression are the projections of the dependent variable zk onto the
orthogonal complement of the column space of the independent variables:

2k = (1 - Z*@Z*'T%)1Z%")zy.

Although LPCA and regression analysis intersect where the dependent variable is the
observed multivariate dimension of least variance, regression analysis is not a subset of LPCA.

Covariance Requirements

The covariance assumptions of LPCA and Regression Analysis also provide insights into
the relative assumptions. Whereas, the covariance matrix of interest in LPCA is the one of all
variables, the covariance matrix of interest in Regression Analysis is the one of the independent
variables. Both methods of linear analysis assume that p-1 of the eigenvalues do not equal zero.
For Regression, these are the p-1 dimensions of the independent variables.

LPCA assumes that the two smallest eigenvalues do not equal each other--called the
sphericity assumption. If any two linear combinations equal each other in total variability then any
one of their infinite combinations is an equally good fit and LPCA cannot discriminate (Figure 4).

Figure 4. LPC estimates of spherical data are unstable

The sphericity test, described in the next section, checks this assumption.
On the other hand, Regression Analysis assumes that the ratio of the largest and smallest
eigenvalues is not so large as to create problems of multicollinearity.

6
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How Are LPCA Coefficients and Standard Errors Estimated?
To estimate a linear equaton with LPCA:

(1) Compute eigenvectors and eigenvalues using the covariance matrix rather than the
correlation matrix;

(2) Take the elements of the eigenvector associated with the smallest eigenvalue as the
estimates of the linear coefficients of the respective variables; and

(3) Compute the intercept by summing the products of each of the LPC coefficients and
means of the variables.

Where n is the number of observations, it does not matter whether you use 1/nor 1/(n-1) in

computing the covariance martrix, the eige::vectors remain the same (Flury, 1988, p. 14 and 17).
Anderson (1963) developed the asymptotic theory of statistical inference for Common

Principal Components .2 His result, adapted to LPCA, provides an estimate of the standard error:

p-1 1
1 .2}z
s(amp) =[H Ip (_I,‘ll;? a4 form =1 to p, where

i=1

n is the number of observations, 1 is the ith eigenvalue, ap; is the mth element of the eigex_wector
associated with the ith eigenvalue, and p is the index of the smallest eigenvalue. The multivariate
nature of the estimates makes a Bonferroni adjustment appropriate. The sphericity test is implicitly
included.

Flury (1988, pp. 29-30) provides an explicit test of sphericity--the null hypothesis that the
smallest eigenvalue is not smaller than the next smallest one:

2n log (lp-1 +1p) X2
12 A

S(lp-l, lp) =

The tests of statistical significance and confidence intervals for the LPC estimates and
sphericity of the smallest eigenvalue do not depend on the normality of the data. They apply as
long as the fourth moments of the data exist (Muirhead, 1982, p. 19, Theorem 1.2.17). Also,
Diaconis and Efron (1983), Stauffer et al. (1985), and Daudin et al. (1988) have applied non-
parametric bootstrap methods to infer statistical significance and confidence intervals for non-
normal principal components (Flury, 1988).

An Example of LPCA Estimation of Academic Activity and University Faculty
Faculty members divide their academic time between instructing students of differing types
and undertaking scholarship leading to publications. The measurements of the numbers of
students of differing types, faculty, and publications are subject to variability in occurrence and
measurement.
We want the best total linear fit so we will use LPCA. Common Principle Components
Analysis provides us with the eigenvalues and associated eigenvectors displayed in Table 2.

IFew, if any, major packages have the inferential statistics for Principal Components Analysis, which
could also have been used for LPCA. Anderson's asymptotic statistics are reasonably straightforward to compute
from the eigenvalues and principal components which most packages do provide.

e}
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Table 2

Estimargs of Eigenvalues and Eigenvectors of the Covariance Matrix of Data Relating Faculty

Members and Academic ~ctivity

One Two Three Four

Eigenvalues 49,331,217 2,965,478 132,270 16,667

Variance Proportion 0.941 0.057 0.003 0.000
Principal Components

Faculty -0.054 -0.056 0.159 -0.984

Graduate Students -0.196 -0.949 -0.245 0.026

Undergraduates -0.978 0.204 -0.003 0.041

Articles -0.045 -0.233 0.956 0.17

The LPC estimates are the eigenvectors associated with Eigenvalue Four. One minus the ratio of
the smallest eigenvalue to the sum of all of the eigenvalues provides an estimate of the proportion
of covariance explained. Our model explains effectively 100 percent of the total variance.

Table 3 displays the normalized LPC estimates and their Regression equivalents.

Table 3.
LPCA and Regression Coefficients, Standard Errors, T-ratios, and Proportions of Variance Explained for
Data Relating Faculty Members and Academic Activity

Coefficient Coefficient s.C. T-ratio  Proportion
(Normalized) (Original) (Original)  Explained
LPCA 1.000
Faculty 1.000 -0.954 0.004 -245.134
Graduate Students 0.026 0.026 0.008 3.419
Undergraduates 0.042 0.041 0.001 27.901
Articles 0.173 0.170 0.024 7.052
Regression
Faculty 1.000 1.000
Gruaduate Students 0.031 0.031 0.007 4.340
Undergraduates 0.042 0.042 0.002 28.000
Articles 0.152 0.152 0.022 6.890

The estimates normalized per unit of faculty reflect the proportion of faculty time needed for
an additional academic activity of each kind. An additional graduate student requires an additional
2.6 percent of faculty time. An additional undergraduate requires an additional 4.2 percent. And,
an additional article requires an additional 17.3 percent. The amount of time per article is probably
proportional but overstated because the article counts are from citation indexes that include only the
most frequently referenced journals. There is little distinction between the Regression and the LPC
estimates in this model, which would not be the case if the dimension of faculty did not contain so
little unexplained error. It provides a good example of how similar the two methods can be.
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Summary and Conclusion

Least Principal Components (LPC) are robust, consistent, and sufficient maximum
likelihood estimates of the best total linear fit to observed data. They are more appropriate than
Regression estimates when (1) the smallest eigenvalue exists and is distinct from the next smallest
and (2a) the variability to minimize is in more than one variable, or (2b) multicollinearity is a
problem. They are as easy to compute as Common Principal Components, because they are
principal components. Anderson (1963) provides a theory of inferential statistics for Principal
Components that can be used in computing significan.e levels and confidence intervals for LPC as
well. Boot-strap approaches have also been developed.
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