This report describes and presents analyses of school climate information collected in the Austin Independent School District (AISD) since 1988-89. Three survey instruments were used to collect most school climate data—an anonymous survey of teachers, a confidential survey of teachers and administrators, and a survey of high school students. Findings indicate that: (1) school climate results have been stable over the last 4 years; (2) students and teachers have similar perceptions of school climate, but teachers are more positive than students; (3) high schools with positive climates have higher rates of learning and lower dropout rates; (4) teacher expectations for student success and teachers' instructional goals had the most significant impact on student achievement; and (5) school climate scores and socioeconomic status both predict dropout rates, but school climate scores are the better predictor.

Recommendations are made to improve school climate with a focus on fostering staff expectations that all students can succeed; to establish goals and related activities for all students; and to continue to conduct and refine the measurement of school climate. Eleven figures are included. (Contains 13 references.) (LMI)
Program Description

This report describes and presents analyses of school climate information collected in AISD. Since 1988-89, a 24-item survey constructed to measure school climate has been administered to campus professionals. In addition, various other surveys collect school climate information.

Contained in this report is a description of school climate and how it is measured in AISD. Also included in this report are:

1. Results of the 24-item survey of campus professionals,
2. An analysis of teacher and student response patterns to school climate questions, and
3. An investigation of the relationship between school climate and dropout rates at the high school level.

Major Findings

- School climate results for the District have been stable over the past four years.
- Districtwide, teachers rate their school highest on Factor 2 (Goals for Student Learning) and lowest on Factor 1 (Teachers as Professionals).
- Students and teachers have similar perceptions of the climate at their school. However, on the average, teachers are more positive than students.
- At high schools where there is a positive school climate, there is also a higher rate of learning and a lower dropout rate.
- The school climate variables most highly related to student achievement are teacher expectations for student success and the instructional goals of teachers.
- School climate scores and SES both predict dropout rates, but school climate scores are the better predictor.

Budget Implications

Mandate:

Districtwide surveys of school staff are required by School Board policy, and are requested by the Superintendent, divisions, departments, and schools.

Funding Amount:

School climate surveys measure attitudes of school staff. The funding amount affected is the amount of the District budget used to pay salaries as well as any other funds that affect school staff attitudes.

Funding Source:

Local, State, and Federal

Implications:

The measurement of school climate should be continued and refined in order to provide information and prescriptions for improvement to District decisionmakers.
This report will describe results of teachers' responses to the 24-item anonymous school climate survey. Some other survey questions and questionnaires used in the Austin Independent School District (AISD) to measure school climate will also be addressed. In addition, results from the surveys will be compared with variables such as SES and the dropout rate. See Shading Light on District Issues: 1991-92 Surveys of Students, Staff, and Graduates (ORE Publication No. 91.21) for more information concerning districtwide results.
• Although individual schools vary, school climate results for the District have been stable over the past four years.

• Districtwide, teachers rate their school highest on Factor 2 (Goals for Student Learning) and lowest on Factor 1 (Teachers as professionals).

• In general, elementary school teachers are most positive about the climate at their school, middle school teachers are least positive, with high school teachers slightly more positive than middle school teachers.

• Although high school teachers are slightly more positive than middle school teachers overall, high school teachers are less positive about the goals for student learning at their school than middle school teachers.

• The two items on the survey of professionals for which teachers were most positive were items 1 and 7. Over 90% of teachers gave positive responses at all three grade levels. Again, middle school and high school results were about the same with elementary school much more positive.

 Item 1: Our school staff has high expectations for success.

 Item 7: Our classrooms are characterized by students actively engaged in learning.
Items 23 and 24 were the least positive items. For these two items the gap between the positive responses of elementary school teachers and other levels is even wider. However, middle school teachers are less positive than high school teachers on these two items.

Item 23: An effort is made to keep paperwork required by my campus to a minimum level.

Item 24: The morale of this staff is generally high.

Teachers and students hold similar perceptions of their school's climate. This similarity holds even though teachers are much more positive than students in their responses.

When the percent low income at a school is high (low socioeconomic status), the school climate scores are low. Socioeconomic status (SES) affects school climate more at the high school and elementary levels than at the middle school level. Variables other than SES are more important in determining school climate at the middle school level.

School climate scores are a better predictor of dropout rates than SES.

The results contained in this report support the idea that school climate is an important variable of interest in the effort to improve schools. At schools where there is a positive climate, there is also a higher rate of learning and a lower dropout rate. Even when the effect due to SES is removed, school climate is still related to dropout rates. This is especially true for Factor 2 (Goals for Student Learning). School climate variables most highly related to student achievement are teacher expectations for student success and the instructional goals of teachers.
Recent research on school climate is beginning to support the long standing hypothesis that the climate, atmosphere, or morale at a school is related to the effectiveness of the school staff. This in turn is thought to affect the learning and achievement of students. Although the relationship between school climate and student achievement is not yet clearly established, efforts are under way to clarify the specific connections between these two constructs.

School climate has been a topic of interest for a long time but has most recently been connected with effective schools research. Current restructuring efforts around the country are designed to increase school effectiveness. Many of these efforts use improved school climate as a stepping stone to improved student achievement. In some cases, improvement of school climate is the main goal, with the improvement of student achievement an assumed outcome. In other cases, specific aspects of school climate related to student achievement are the main concern.

School climate is part of the broader research topic of organizational climate, but with some aspects unique only to schools. Because there is no standard definition of what school climate is, many different instruments or surveys exist to measure this concept. Arter (1987) provides a good overview of standard instruments currently available. School climate instruments usually examine either the overall conditions at a school or the climate of particular classrooms.

School climate, as measured by most instruments, is a general perception of conditions at a school and is not measured in terms of absolute quantities. Most climate questionnaires ask respondents to rate particular areas based upon their own expectations and perceptions of the environment. Specific questions, for example asking how often (e.g. one, two, three or more times per day) some type of event occurs, are less common than questions asking respondents to “rate the quality” of various aspects of the school. School climate items include, among others, topics such as teacher morale, principal leadership style, condition of the school and grounds, and community involvement in the schools.
Many school districts design and construct school climate questionnaires to answer specific questions relevant to that district. Wilson and McGrail (1987) suggest that when choosing or constructing a school climate questionnaire designers should consider the following four issues:

1) What is the purpose of administering a school climate questionnaire? Climate instruments can be used to evaluate specific programs, describe schools, compare schools, or identify specific strengths and weaknesses as a basis for planning for improvement.

2) Which specific areas of school climate are to be examined? For example, one set of questions may measure community involvement while another may look at the leadership style of the principal.

3) Whose opinions and perceptions will be sought? Perceptions among teachers, administrators, students, parents, and other staff have been found to vary.

4) How should the data be gathered and reported? Many school climate questions can be sensitive or controversial and require special administration procedures. In addition, the results of the questionnaires must be reported in some appropriate and meaningful form. For example, scores could be reported as the percent of respondents giving a positive answer (an absolute score) or they could be transformed to reflect distance from the district mean (a norm-referenced score).
In AISD school climate information is gathered for the purpose of describing individual schools in order to facilitate planning and improvement. Another motivation for gathering school climate data is to have measures other than standardized achievement test scores with which to provide feedback to schools.

School climate data are gathered from administrators, teachers, students, and sometimes from parents. The questionnaires used to gather the information are of two basic types:

1) A confidential survey in which no individual data are reported, but individuals can be identified by a code number so that it is possible to look at demographic and other individual differences.

2) An anonymous survey in which no individual data are collected. School code is the only identifying information that is collected.

A wide range of items is used to collect climate data in AISD. For teachers, items cover areas such as the instructional leadership of the principal, collaboration and empowerment conditions of teachers, expectations for student success, and student behavior. For students, items cover areas such as student attitudes toward the principal, teachers, grades, and safety at their school.

Three survey instruments are used to collect most school climate data:

1) The anonymous survey of campus professionals (teachers) is a 24-item scale. This is the only survey that is composed entirely of school climate items. The results of this survey are completely anonymous. No individual data are collected. Therefore, no analysis of ethnic, subject area, or other subgroups is possible.
2) At the same time, a confidential survey is given to campus professionals and administrators. This survey covers many topics, including some school climate items. Items on this survey are randomly assigned to individuals.

3) A survey of high school students also includes some items that fall into the school climate category. Items on this survey are also randomly assigned.

Some parents are also asked school climate questions. See 1991-92 Priority Schools Report (ORE Pub. No. 91.04) for results of this survey.

Results for individual items from these surveys are available from the Office of Research and Evaluation. For the anonymous teacher survey, results are available for individual items as well as for three subscales (or factors) described in the next section.
Much of the following information concerning the anonymous survey of professionals will be presented in terms of three factors. These three factors, listed below, are a grouping of the 24 items on the survey into cohesive groups of items. These groups were first generated empirically and then examined for logical meaning. ORE Report 90.49, School Climate and Student Achievement explains more about the method and rationale of this process. This report also describes the relationship between school climate and student achievement in AISD.

The intent of this grouping is to provide a means for summarizing and reporting results of the survey in a manner that is more meaningful and potentially useful for staff in devising interventions.

- **Factor 1:** Teachers as Professionals. This factor includes items related to job climate, principal leadership, and working conditions.

- **Factor 2:** Goals for Student Learning. Items in this group concern conditions conducive to student learning and achievement.

- **Factor 3:** School Discipline and Management. This group of items is mostly concerned with safety and student behavior.

The 24-item anonymous survey of professionals is given to teachers and a similar 20-item anonymous survey is given to administrators. However, the results in this report include only responses from teachers. See Shedding Light on District Issues: 1991-92 Surveys of Students, Staff, and Graduates (ORE Publication No. 91.21) for results and comparisons concerning administrative staff.
OVERVIEW OF THE LATEST RESULTS

Four Year Trends

As Figure 1 shows, school climate results for the District have been stable over the past four years (although individual schools have varied). Teachers are most positive about Factor 2 (Goals for Student Learning) and least positive about Factor 1 (Teachers as Professionals).

Figure 1

Four-Year Trends

Percent Positive

Legend

- Factor 1
- - Factor 2
- - - Factor 3

Year

85 86 84 81

90 90 90 91
In general, elementary school teachers are the most positive about the climate at their school (see Figure 2), middle school teachers are the least positive, with high school teachers slightly more positive than middle school teachers.
Factors by Grade Level

Figure 3 shows the three grade levels by factor. These results look similar to those in Figure 2. The exception is Factor 2 (Goals for Student Learning) in which high school teachers (82.3% positive) are less positive than middle school teachers (86.0% positive). Although high school teachers overall are slightly more positive than middle school teachers, high school teachers are less positive about the goals for student learning (Factor 2) at their school than middle school teachers.

![Graph showing School Climate Factors by Grade Level](image)
The two items for which teachers were most positive in their responses were items 1 and 7. As Figure 4 shows, over 90% of teachers responded positively at all three grade levels. Again, middle school and high school results were about the same with elementary school much more positive.

Item 1: Our school staff has high expectations for success.

Item 7: Our classrooms are characterized by students actively engaged in learning.
Least Positive Items

The gap between elementary school and other levels widens when we examine the two least positive items. Results for items 23 and 24 are shown below (Figure 5). Also, middle school teachers are less positive than high school on these items.

Item 23: An effort is made to keep paperwork required by my campus to a minimum level.

Item 24: The morale of this staff is generally high.

![Bar chart showing the percent positive for items 23 and 24 across elementary, middle school, and high school levels.]
In order to examine similarities and differences between the perceptions of students and teachers, two items on the student survey were compared with two similar items on the teacher survey. Although the items were not identical, they were similar enough to be compared. The first pair of items asked about student behavior on campus. The second pair asked about the general school climate in relation to learning on the campus. On both pairs of items the teachers were much more positive than the students. However, it should be noted that teachers were not given a "neutral" response option while students were given that option.

This comparison is possible only between high school teachers and students because only high school students are given school climate survey items. A correlational analysis was performed using the 10 high schools to see if teachers and students agreed in the relative ratings given to their campus. In other words, when teachers are positive about their campus, are students also positive about their campus?

Correlation as used here and elsewhere in this report is a statistical measure of the strength of the relationship between one variable and another (based upon the data). The correlation is strong when there is a relationship between being high on one scale and high on the other scale (a positive correlation) or high on one scale and low on the other (a negative correlation).

In the graphs presented in this and the following section, the straight line represents how the points would look if the relation between the two variables was as strong as possible. This line represents the best prediction of one variable given knowledge of the other. The real data points are shown on the graph as well. The correlation coefficient (given as "r=") is a measure of how close the data points come to falling directly on the line.
The first pair of items are as follows:

Teachers: "Overall, students are well behaved in this school."

Students: "Most students in my school are well behaved."

The responses of teachers and students on this pair of items were highly correlated ($r=.79$).

Figure 6 below illustrates the relationship between the following items:

Teachers: "Our school has a safe climate."

Students: "This school is a safe and secure place to learn."

This pair of items was also highly correlated ($r=.87$).
This analysis indicates that there is a high level of agreement between teachers and students on these two particular pairs of items. The distribution of points shows that teachers are more positive in their responses than students. Some schools' teachers are more positive, in relation to students, than other schools in the District (those points above the line).

As an indirect check on these results, two dissimilar items were compared to verify that students and teachers were not responding to some more general factor. In other words, a check was made to insure that individuals did not answer all items the same way, no matter what the item asked. The two dissimilar items compared concerned students' views of general climate and teachers' views of performance appraisals on their campus.

No relation was found between the dissimilar items. This indicates that on the items asking similar questions, students and teachers hold similar perceptions of their school's climate. This similarity holds even though teachers are much more positive than students in their responses.
Evidence of a relationship between school climate and student achievement in AISD has previously been reported in School Climate and Student Achievement (ORE Pub. No. 90.49). It is also possible that a relationship exists between school climate and dropout rates. Results of a study examining this relationship are presented below. It is hoped that this information will supplement the identification of conditions contributing to dropping out of school and the identification of at-risk students.

Below are summary statements concerning the relationship among school climate, dropout rates, and socioeconomic status (SES). Dropout rates (see 1990-91 Dropout Report, ORE Pub. No. 91.12) and school climate scores used in this section were for the 1990-91 school year. The estimate of SES used was the percent of students at a school eligible for a free or reduced lunch. The school climate score used here is a standardized score. This standardized score is a transformation of the school climate responses into a number for each school with a range of about 1 to 10. This score indicates the relative distance each school is above or below the District mean of 7.

There is a relationship between the reported climate at a school and the dropout rate for that school.

Figure 7 shows the relationship between high school dropout rates and Factor 2 (Goals for Student Learning) of the school climate survey. The correlation illustrated is r=-.84 (p<.05). Figure 7 illustrates that when school climate scores are high (more positive) dropout rates are low, and when school climate scores are low (less positive) dropout rates are high. Points
above the line in Figure 7 are of schools whose dropout rates are higher than would be predicted based upon the school climate score and those points below the line are of schools whose dropout rates are lower than would be predicted.

Dropout rates also correlated highly with Factor 1 ($r=-.71$, $p<.05$) and with Factor 3 ($r=-.74$, $p<.05$).
School climate is related to the general SES of the school.

The following correlations indicate the strength of the relationship between SES and the three school climate factors. The negative correlations in Table I indicate that when the percent low income at a school is high, the school climate scores are low.

The relationship between SES and all three factors of the school climate survey is greatest at the high school level. As shown in Table I, correlations are high at the high school level and low at the middle school level with elementary schools in between.

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>-.29*</td>
<td>-.51*</td>
<td>-.43*</td>
<td>65</td>
</tr>
<tr>
<td>Middle School</td>
<td>-.27</td>
<td>-.22</td>
<td>-.30</td>
<td>13</td>
</tr>
<tr>
<td>High School</td>
<td>-.51</td>
<td>-.70*</td>
<td>-.76*</td>
<td>12</td>
</tr>
</tbody>
</table>

* = significant at p<.05
These results indicate that SES affects school climate more at the high school and elementary levels than at the middle school level. Variables other than SES are more important in determining school climate at the middle school level.

Figure 8 illustrates the relationship between percent low income and Factor 2 (Goals for Student Learning) of the school climate survey. Points above the line in Figure 8 are schools whose school climate score is higher than would be predicted with the percent low income of the school. Those points below the line are schools whose school climate score is lower than would be predicted by SES.
There is also a relationship between dropout rates and SES.

These data show a correlation of $r=.68$ ($p<.05$) between dropout rates at high school and SES.

When the effect of SES is removed, there is still a relationship between school climate and dropout rates.

We know that both school climate and SES are related to dropout rates. If we remove the effect due to SES, will we still find a relationship between school climate and dropout rates?

A partial correlation analysis was performed on the data. School climate scores were correlated with dropout rates, with the effect of SES partialed out. Factor 2 was still highly correlated with dropout rates. Correlations of Factor 1 and Factor 3 were still fairly large but not statistically significant. This means that even with the effect of SES removed, school climate is still related to dropout rates. This is especially true for Factor 2 (Goals for Student Learning).

Table II

<table>
<thead>
<tr>
<th>Correlation of Dropout Rate with School Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
</tr>
<tr>
<td>Dropout and Climate</td>
</tr>
<tr>
<td>SES removed</td>
</tr>
</tbody>
</table>

* = significant at $p<.05$
If all schools had the same SES, the relationship between school climate and dropout rates would be even stronger.

Figure 9 (dark squares) compares the dropout rates of AISD high schools with an adjusted dropout rate. The dropout rates shown by the dark squares are adjusted by holding SES constant. In other words, the values used are the dropout rates we would estimate if all schools had the same SES.

The actual unadjusted dropout rates were used to plot the hollow circles directly above or below each dark square. These are the same values plotted in Figure 7 (actual dropout rates with school climate).

Figure 9 shows that taking SES into account increases our ability to predict dropout rates (since the points are closer to the prediction line). This figure also shows that actual dropout rates are higher than the estimated dropout rate (with SES held constant) for all except one of the high schools.
School climate is a better predictor of dropout rates than SES.

We know that even with the effect of SES removed, there is still a relationship between school climate and dropout rates, but which one (SES or school climate) is most highly related?

Three multiple regression analyses were performed on the high school data. SES and one of the school climate factors were used as predictors in the model. Climate scores were the better predictor of dropout rates in all three cases. The same analysis was performed using middle school dropout rates and school climate. At the middle school level, school climate was also the better predictor in all three cases.

A multivariate analysis of variance was performed in order to determine how much Factor 2 of the school climate survey and SES contribute to the correlation with dropout rates. Figure 10 shows the amount of variability in 1990-91 dropout rates that can be accounted for (or predicted) by school climate and SES. Since school climate and SES are also correlated, the amount of variability accounted for by each overlaps with the other (42%). If we look at school climate, the amount of variability accounted for is 71% (42% plus 29%). If we look at SES, the amount of variability accounted for is 46% (42% plus 4%). The unique variability accounted for by school climate is 29%, that is, the amount of variability not already accounted for by SES. The unique variability accounted for by SES is only 4%.
School climate is related to student achievement.

Studies of school climate and scores on standardized achievement tests (e.g., Gottfredson & Gottfredson, 1989, and van der Sijde, 1988) have revealed a relationship between school climate and achievement. This relationship holds even after SES and other demographic variables have been held constant. In AISD, school climate scores have been found to be related to ROSE (Report on School Effectiveness) scores. ROSE scores control for the previous achievement of students in addition to SES and other demographic variables.

ROSE scores are an analysis of gains on norm-referenced achievement tests. For each student, a ROSE score is produced that adjusts for factors such as previous achievement, gender, ethnicity, income level, age in grade, and limited English proficiency. This score is expressed as a residual. The residual is the difference between the student's actual score and the score that a student with similar characteristics would be predicted to achieve. The ROSE score is an indication of how far above or below the student scored on the tests relative to the predicted score. ROSE results for a campus or program are the average of these residuals.
ROSE scores for high schools were computed in each subject area of the ITBS/TAP (Iowa Tests of Basic Skills/Tests of Achievement and Proficiency) and NAPT (Norm-Referenced Assessment Program for Texas). These ROSE scores were correlated with school climate scores for the 10 high schools. Figure 11 illustrates the correlation ($r=.56$, $p<.10$) between mathematics scores and Factor 2 (Goals for Student Learning) of the school climate survey.

In general, schools with higher school climate scores have higher ROSE scores and schools with lower school climate scores have lower ROSE scores. Schools above the line have higher ROSE scores than would be predicted by their school climate scores and schools below the line have ROSE scores lower than would be predicted.

Figure 11
Effective Schools and At-Risk Students

It is clear from the results contained in this report that differences in the average achievement gains and the dropout rate of students in a school are related to the learning and working conditions at that school. In other words, at schools where there is a positive school climate, there is also a higher rate of learning and a lower dropout rate.

The results contained in this report support the idea that school climate should be an important variable of interest in the effort to improve schools. Other research done by ORE (see ORE Pub. No. 90.49, School Climate and Student Achievement) indicates that school climate variables such as staff morale, safety concerns, and student behavior concerns are important to the achievement of students and the mission of the school district. However, the school climate variables most highly related to student achievement are teacher expectations for student success and the instructional goals of teachers. "Effective schools research" reaches similar conclusions.

"The effective school research strongly supports that schools establish and maintain high expectations and standards for all students and focus on helping them all meet those expectations." In contrast, research on at-risk youth indicates that they are often directed to programs and courses that have special, reduced expectations for the academic performance of the students.

Research on at-risk youth shows that "a problem in schools with high at-risk populations is the decline of teacher involvement and/or accountability for the performance of these students. The use of effective classroom instruction and management techniques, with emphasis on teacher responsibility and the expectation that all students can and will learn, may counteract this teacher withdrawal."

"... at-risk youth are often characterized by a lack of engagement in learning. The effective schools research emphasizes holding the expectation that all students are involved in their own
learning and that all students understand and respect the fact that school is a place dedicated to learning” (Druian & Butler, 1987).

In AISD the climate of expectations varies from school to school, from classroom to classroom. All staff do not share the same level of confidence that all students can learn. Teachers may feel this way because they believe that the student does not have the background knowledge or skill to succeed or that there are not enough school resources available to address the special needs of those students.

Tuck (1989) found in a study of dropouts that the greatest factor interfering with continuation of a high school education was the classroom instructional climate. This factor was also responsible for the higher level of absenteeism among the retained dropouts. On the other hand, less than half of the secondary school administrators (49.2%) felt that school problems contributed to their leaving.

Focus of Efforts

“Catterall cautions that the school might better focus on improving academic skills for all its students rather than attempting intensive pullout intervention programs with targeted secondary students” (cited in Garber, Sunshine, & Reid, 1989).

“High statistics on school drop-out may indeed reflect failures to learn, but must also be acknowledged as evidence of schools that fail to teach....A basic restructuring of the school experience may be needed to ensure that schools are more capable of providing a supportive, educationally meaningful, and inclusive environment for today’s diverse student population” (Meyer, Harootunian & Williams, 1991).

An example of the effort to provide this kind of environment is a project at Syracuse. This project was directed to the social and academic structure of the mainstream. Students were neither labeled nor pulled out. The focus was upon “instructional
innovations within the regular classroom delivered by the teacher, including cooperative learning, peer support networking, and multicultural education” (Meyer, Harootunian & Williams, 1991).

Recommendations

In order to improve academic achievement and lower the dropout rate, it is recommended that AISD work to improve school climate with a focus upon increasing confidence among school staff that all students can succeed. The realistic belief that all students can learn must be based not only upon optimistic hopes for the future, but also upon tangible changes in school structure and curriculum.

It is also recommended that staff establish goals for all students, with activities tied to those goals. The monitoring and evaluation of students’ progress toward those objectives is also important. The implementation of other effective school practices so that fewer students will be at risk of failing and more students will be productive and successful in school is also desirable.

It is clear from the research presented in this report that the findings about school climate as related to academic achievement and dropout rate of students must be taken into consideration in any discussions of school restructuring. Also, another important issue that must be addressed more thoroughly in studying school climate is how much the perceived conditions at a school affect student outcomes (such as achievement) versus how much those outcomes affect the perceptions reported by respondents.

"Currently most discussions about restructuring schools involve some mix of ideas about increased school-site management and autonomy, more flexibility and variability in the organization of schools, greater teacher participation in school decision making, decentralization of decision making, and deregulation of schooling. While each of these ideas, and others, properly belong
in a discussion on restructuring schools, rarely if ever are they related in any clear way to improved school productivity or student acquisition of skills. Until such connections are made, it will be difficult to build political or policy support for initiatives to restructure schools and even more difficult to know how to go about doing so” (Cohen, 1990).

More research is needed, and refinements in the measurement of school climate in AISD are necessary, before more specific changes in programs and practices can be recommended. Recommendations to improve school and classroom climate must include more than imperatives for teachers to set high goals and to believe in their students. Changes in school structure and curriculum which enhance the possibility of student success must accompany a modification in teachers’ attitudes and beliefs.

Austin Independent School District

Department of Management Information
Dr. Glynn Ligon, Executive Director

Office of Research and Evaluation
Dr. Evangelina Mangino, Assistant Director

Systemwide Evaluation
Dr. Linda Frazer, Research Analyst

Authors:
Vicente Paredes, Evaluation Associate
Dr. Linda Frazer, Research Analyst

Board of Trustees
Dr. Beatriz de la Garza, President
Kathy Rider, Vice President
Dr. Gary McKenzie, Secretary
Diana Castañeda
Bernice Hart
Liz Hartman
Melissa Knippa
John Lay
Ted Whatley

Superintendent of Schools
Dr. Jim B. Hensley

Publication Number 9138
September 1992