This packet contains 15 lessons developed in a workplace basic skills project for the metal casting industry established jointly by Central Alabama Community College and Robinson Foundry, Inc. The lessons cover the following topics: (1) green sand schedule; (2) the core room; (3) the core room (continued); (4) figuring time; (5) the cleaning room; (6) the EPS (Evaporated Polystyrene System) process; (7) green sand; (8) EPS-1; (9) EPS-2; (10) grinding production sheet; (11) building and grounds; (12) molding production sheet; (13) forms; (14) grinding production sheet; and (15) vocabulary. Lessons contain information sheets, vocabulary (in some cases), technical information particular to the Robinson Foundry, pretests/posttests with answers, and learning activities for each of the factory processes covered in the lessons. (KC)
JOBS
A PARTNERSHIP BETWEEN EDUCATION AND INDUSTRY

Central Alabama Community College
&
Robinson Foundry, Inc.

1992

BEST COPY AVAILABLE

JOBS
A National Workplace Literacy Project
P.O. Box 699
Alexander City, AL 35010
JOBS
A PARTNERSHIP BETWEEN EDUCATION AND INDUSTRY

CENTRAL ALABAMA COMMUNITY COLLEGE & ROBINSON FOUNDRY, INC.
1992

Robert E. Stone,
Project Director

LESSON I
GREEN SAND SCHEDULE

Prepared by
Bonnie Rasmussen,
Curriculum Consultant

JOBS: 205 329 8947 ext. 81
CACC: 205 329 8946

3
In the following lesson on the Green Sand Schedule you will learn how to read and understand the schedule of job orders used throughout the Foundry.

First, take the quiz on the next 2 pages to see what you already know.
QUIZ 1

Using the schedule on p. 3, circle the answers you think are correct.

The first one is done for you.

1. How many jobs are scheduled for Floor 36,4?
 a. 7
 b. 20
 c. 2

2. How many molds should be made for the 1st job on Floor 9&10?
 a. 25
 b. 184
 c. 95

3. What is the flask size for the 1st job on Floor 9&10?
 a. 25x30
 b. 22x22
 c. 30x30

4. What is the class of iron for the 1st job on Floor 9&6?
 a. 20-s
 b. 25
 c. 90

5. What is the casting number for the 1st job on the Hunter?
 a. 121-0035
 b. 300
 c. 20-s

6. How do you know that a job is a Hot Job?
 a. the square has an X through it
 b. the square has a star in it
 c. the square is first on the chart

7. How many jobs are scheduled for the HUNTER?
 a. 8
 b. 25
 c. 31
Most trainees don't know all the answers to the quiz you've just taken, but after you work through the lesson on the following pages, you'll know a lot more about the Green Sand Schedule. At the end of the lesson you'll take the quiz again, and see your scores for both times.
LESSON

On the opposite page is a Green Sand Schedule for the 1st and 2nd shifts, Monday, May 6, 1991. Study the green areas.

In '5/6/91' the '5' means the fifth month, or May. The '6' means the 6th day, or May 6. And the last part of '5/6/91' means the year 1991.
Each day Nancy Sewell, Production Manager at Robinson, fills in the work for that day. Customers send their orders on OPOS (Open Purchase Order Status), and Nancy studies the orders and then fills in the Green Sand Schedule.
<table>
<thead>
<tr>
<th>DAY:</th>
<th>Monday</th>
<th></th>
<th>DATE: 5-6-91</th>
<th>126</th>
<th>SHIF: 1ST + 2ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.P.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 & 2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 & 10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: ______________________

19
Copies of the day's schedule go to the following departments:
Core Room
Pattern Set-up
Pallet Line
Cleaning Room
Quality Control
The schedule is a chart that shows all the work to be run, together with where jobs will be run.
<table>
<thead>
<tr>
<th>DAY: Wednesday</th>
<th>"135" DATE: 5-15-91</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>16-11</td>
</tr>
<tr>
<td>131-0026</td>
<td>901553</td>
</tr>
<tr>
<td>BP</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>333</td>
</tr>
<tr>
<td>300</td>
<td>333</td>
</tr>
<tr>
<td>1 & 2</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Data</td>
</tr>
<tr>
<td>6536-4939</td>
<td>121-0022-10</td>
</tr>
<tr>
<td>3 & 4</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Test</td>
</tr>
<tr>
<td>121-0022</td>
<td>121-0022</td>
</tr>
<tr>
<td>5 & 6</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>V.L.</td>
</tr>
<tr>
<td>121-0022</td>
<td>121-0022</td>
</tr>
<tr>
<td>NOTES:</td>
<td></td>
</tr>
<tr>
<td>7/15/91 - 2E644</td>
<td>40615 Check to warp</td>
</tr>
<tr>
<td>901505 - Unknown Feared Critical</td>
<td></td>
</tr>
<tr>
<td>901504 - """""""</td>
<td></td>
</tr>
<tr>
<td>9524 - Case Needs Revising</td>
<td></td>
</tr>
</tbody>
</table>
Once you know how to use it, a glance at the schedule will tell you what jobs have to be done that day, and in what order.
16.

The day is Monday.
The date is June 5, 1991.
The shifts are 1st and 2nd.

What does the number '126' mean? It means that it is the one-hundred-twenty-sixth day of the year.
<table>
<thead>
<tr>
<th>DAY:</th>
<th>Monday</th>
<th>DATE: 5-6-91</th>
<th>126</th>
<th>SHIFT: 1ST & 2ND</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td>[]</td>
</tr>
<tr>
<td>BP</td>
<td>[]</td>
</tr>
<tr>
<td>1 & 2</td>
<td>[]</td>
</tr>
<tr>
<td>3 & 4</td>
<td>[x]</td>
<td>[]</td>
</tr>
<tr>
<td>5 & 6</td>
<td>[x]</td>
<td>[]</td>
</tr>
<tr>
<td>9 & 10</td>
<td>[x]</td>
<td>[]</td>
</tr>
</tbody>
</table>

NOTES:

__
__
On January 8th of next year, the top line will read differently.

The day is Friday.
The date is January 8, 1993.
It is the 8th day of the year.
The shifts are 1st and 2nd.
20.

Castings poured on January 8 will have the number '8' on them, alongside the pattern number.
(Every casting poured on June 6 had the number '126' put alongside the pattern number.)
Nancy Sewell writes the day, date, and shift information on the schedule form. She does not have to fill in the molding machines and sections of the Pallet Line. That information is printed on the blank schedule, making a column down the lefthand side.
The work for Pallet Lines 9 & 10 is in the bottom row of boxes.
26.

The job squares for Pallet Lines 3 & 4 are filled in on this schedule.

The job farthest to the left -- number 1 -- will be done first, then the others, in order.

The Green Sand Schedule has 7 job squares for Pallet Lines 3 & 4, but only 4 jobs are filled in here.
<table>
<thead>
<tr>
<th>DAY: Monday</th>
<th>DATE: 5-6-91</th>
<th>27.</th>
<th>126</th>
<th>SHIFT: 1st + 2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 & 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 & 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

56

55

The HUNTER can do up to 25 jobs, so all the last three columns are used for Hunter jobs. Thirteen of the Hunter's job squares are filled in on this day.
30.

If you check the Green Sand Schedule once in awhile throughout your shift, you'll notice when jobs are moved ahead.

On this schedule a job has been moved. Now it is to be done before the jobs in squares '4' and '5'.
A starred job is a HOT JOB and has to be done as quickly as possible.
34.

You can tell the CLASS OF IRON to be poured for all the jobs.

20-s...........softest iron
25................regular iron
30-A...............25 class plus 10 lbs steel
30-B (35).........strongest iron

The HUNTER's first job uses regular iron, while the third job for Pallet Line 1&2 uses the strongest iron.
<table>
<thead>
<tr>
<th>DAY:</th>
<th>DATE: 5-6-91</th>
<th>SHIFT:</th>
<th>Notes: 405925 - BHN 187-231 - Check Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 & 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 & 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The CUSTOMER NAME is abbreviated. For instance, 'VUL' is short for Vulcan, and 'SI' is an abbreviation for Siemens.

<table>
<thead>
<tr>
<th>Company</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldour Electric Co.</td>
<td>BE</td>
</tr>
<tr>
<td>Brown Machine</td>
<td>BM</td>
</tr>
<tr>
<td>BTR Precision Die Casting</td>
<td>BTR</td>
</tr>
<tr>
<td>Caterpillar Inc.</td>
<td>CAT</td>
</tr>
<tr>
<td>Century, Inc.</td>
<td>CE</td>
</tr>
<tr>
<td>Clow Valve Co.</td>
<td>CLOW</td>
</tr>
<tr>
<td>Cloyes Gear</td>
<td>Cloy</td>
</tr>
<tr>
<td>Conine Manufacturing Co.</td>
<td>CON</td>
</tr>
<tr>
<td>Delavan Products</td>
<td>DEL</td>
</tr>
<tr>
<td>Delco Products Division, GMC</td>
<td>DELCO</td>
</tr>
<tr>
<td>Dupage Precision Products</td>
<td>DUPAGE</td>
</tr>
<tr>
<td>Fairbanks Morse Pump Corp.</td>
<td>FMP</td>
</tr>
<tr>
<td>Ford Meter Box Co., Inc.</td>
<td>FMB</td>
</tr>
<tr>
<td>G&E Machine Works, Inc.</td>
<td>G&E</td>
</tr>
<tr>
<td>General Electric -DCM&G</td>
<td>GE</td>
</tr>
<tr>
<td>Genicom Corp.</td>
<td>GENI</td>
</tr>
<tr>
<td>Gravely Corp.</td>
<td>GRAV</td>
</tr>
<tr>
<td>Grinnell Corp</td>
<td>GRIN</td>
</tr>
<tr>
<td>Harvey Engineering & Mfg.</td>
<td>HAR</td>
</tr>
<tr>
<td>Hennessy Ind., Inc.</td>
<td>Henn</td>
</tr>
<tr>
<td>J&B Industrial Services</td>
<td>J&B</td>
</tr>
<tr>
<td>John Deere Dubuque Works</td>
<td>JD</td>
</tr>
<tr>
<td>Kennedy Valve</td>
<td>KV</td>
</tr>
<tr>
<td>Little Giant Pump Co.</td>
<td>LGP</td>
</tr>
<tr>
<td>Louis Alls</td>
<td>LA</td>
</tr>
<tr>
<td>M&H Valve</td>
<td>M&H</td>
</tr>
<tr>
<td>Mueller Co.</td>
<td>MUELL</td>
</tr>
<tr>
<td>Pneumatic</td>
<td>PNEU</td>
</tr>
<tr>
<td>Reliance Electric</td>
<td>RE</td>
</tr>
<tr>
<td>Roper Pump Co.</td>
<td>RP</td>
</tr>
<tr>
<td>Siemens</td>
<td>SI</td>
</tr>
<tr>
<td>Toshiba International</td>
<td>TOSH</td>
</tr>
<tr>
<td>Texsteam Products</td>
<td>TXT</td>
</tr>
<tr>
<td>Unfon Foundry</td>
<td>UF</td>
</tr>
<tr>
<td>US Electrical Motors</td>
<td>USEM</td>
</tr>
<tr>
<td>Vulcan Engineering</td>
<td>Vu</td>
</tr>
<tr>
<td>Wilton Corp.</td>
<td>WIL</td>
</tr>
<tr>
<td>Watts/Muesco</td>
<td>Watts</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Monday</td>
<td>5-6-91</td>
</tr>
<tr>
<td>HUNTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td>BP</td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>1 & 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Q & 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td>3 & 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5 & 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
</tbody>
</table>

Notes: 405925 - BHN 137-241 - Check For Warp
The green part of the schedule this time shows the **NUMBER OF MOLDS** to be poured. The biggest job is the first one for the HUNTER.
40.

If you see a 'c' in the bottom bracket -- [c] -- the casting requires a CORE to be placed inside the mold.

If there is no [c], the casting does not require a CORE.
<table>
<thead>
<tr>
<th>DAY:</th>
<th>DATE: 5-6-91</th>
<th>SHIFT: MM/DD/YY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONDAY</td>
<td>126</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 405925 - BHN 137-241 - Check for warp
42.

These numbers tell you what FLASK SIZE to use to mold this casting.

(The HUNTER molds only the FLASK SIZE that is built into it.)
Each square shows the PATTERN NUMBER.
<table>
<thead>
<tr>
<th>DAY</th>
<th>A51</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>W6</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4725</td>
<td>90</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>31/2</td>
<td>2404</td>
<td>6199</td>
<td>6449</td>
<td>6864</td>
<td>6937</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/1000</td>
<td>1284</td>
<td>52</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>5-6-91</th>
<th>1.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFT</td>
<td>INIT</td>
<td>I</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- 405925 - BHN 187-241 - Check For Work
46.

If the top brackets have 'SO' written in them -- [SO] -- that means 'SPECIAL ORDER'. Look below at the notes section of the schedule to see how the order is special.
<table>
<thead>
<tr>
<th>DAY:</th>
<th>DATE: 5-6-91</th>
<th>SHIFT:</th>
<th>HUNTER</th>
<th>BP</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>5/6/91</td>
<td>126</td>
<td>72</td>
<td>99</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

OTES: 405925 - BHN 137-241 - CheckFor Warf
This schedule shows a number of SPECIAL ORDERS. The notes can be matched to job squares by matching up pattern numbers.
Day: Wednesday

Date: 5-15-91

| HUNTER | 10 A.M. | 2 P.M. | 4 P.M. | 6 P.M. | 8 P.M. | 10 P.M. | 12 A.M. | 2 A.M. | 4 A.M. | 6 A.M. | 8 A.M. | 10 A.M. | 12 P.M. | 2 P.M. | 4 P.M. | 6 P.M. | 8 P.M. | 10 P.M. | 12 A.M. | 2 A.M. | 4 A.M. | 6 A.M. | 8 A.M. |
|--------|---------|
| 1 & 2 | 10 A.M. | 2 P.M. | 4 P.M. | 6 P.M. | 8 P.M. | 10 P.M. | 12 A.M. | 2 A.M. | 4 A.M. | 6 A.M. | 8 A.M. | 10 P.M. | 12 A.M. | 2 P.M. | 4 P.M. | 6 P.M. | 8 P.M. | 10 P.M. | 12 A.M. | 2 A.M. | 4 A.M. | 6 A.M. | 8 A.M. |
| B & D | 10 A.M. | 2 P.M. | 4 P.M. | 6 P.M. | 8 P.M. | 10 P.M. | 12 A.M. | 2 A.M. | 4 A.M. | 6 A.M. | 8 A.M. | 10 P.M. | 12 A.M. | 2 P.M. | 4 P.M. | 6 P.M. | 8 P.M. | 10 P.M. | 12 A.M. | 2 A.M. | 4 A.M. | 6 A.M. | 8 A.M. |

Notes:
- 765273 - Difference
- 901507 - Direct Finish Critical
- 901587 - Direct Finish Critical
- 95247 - Complete Final Balance

Shift:
- 49

50. The Green Sand Schedule will keep you on top of what work is to be done when.

The following questions will help you review what we've covered so far.
Directions: Choose the correct answer. Write the letter of your answer in the blank.

The first one is done for you.

1. This is a _____
 a. green sand schedule
 b. lost foam schedule
 c. SPC chart

2. The number '20' will be printed alongside the pattern number on _____
 a. castings poured on molding machine number 20
 b. castings poured on January 20
 c. castings poured from the softest iron

3. HUNTER jobs are filled in on the _____ of the Green Sand Schedule.
 a. bottom line
 b. top line
 c. middle line

4. An arrow drawn from one square to in front of other squares means that _____
 a. the job is explained on the OP0S
 b. the job is a special order
 c. the job is to be done earlier than it was scheduled.

5. The special order note for the job square with pattern number 718273 _____
 a. is explained in the note for 406115
 b. is explained in the note for 718273
 c. is explained in the note for 901505

6. The customer abbreviation 'FMB' means the job is for _____
 a. Ford Meter Box Company
 b. Siemens
 c. Baldour Electric Co.

The correct answers are on the next two pages.
ANSWERS

1. a. This is the correct answer.
 b. There is a Lost Foam Schedule, and a DISA Schedule, but they are different from this one.
 c. SPC (Statistical Process Control) charts are used at Robinson, but this is the Green Sand Schedule.

2. b. This is the correct answer.
 a. The '20' means the 20th day of the year.
 c. The '20' means the 20th day of the year.

3. b. This is the correct answer.
 a. Read the column along the left hand side of the paper to see which machine or pallet lines the jobs match up with.
 c. Read the column along the left hand side of the paper to see which machine or pallet lines the jobs match up with.
4. c. This is the correct answer.
 a. All jobs are explained on the OPOS (Open Purchase Order Status), but that has nothing to do with the arrow and star.
 b. Special Order jobs are shown by 'SO' written in the brackets, but that has nothing to do with the arrow and star.

5. b. This is the correct answer.
 a. Match the pattern number (718273) to the number next to the note.
 c. Match the pattern number (718273) to the number next to the note.

6. a. This is the correct answer.
 b. The abbreviation for Siemens is 'Si'.
 c. The abbreviation for Baldour Electric is 'BE'.

7. b. This is the correct answer.
 a. The customer name appears in abbreviated form in the upper right hand corner of each job square.
 c. The number of moldings appears in the center oval on each job square.
Focus on a single job square

Now let's look closely at a single job square, and review what each part tells us. First, we know that this is the first job for Pallet Lines 3&4 on Wednesday, May 15, 1991.
We know that the class of iron is 20-S
The company is TOSH.
There is a core [c] in the mold.
DAY: Wednesday

<table>
<thead>
<tr>
<th>DAY</th>
<th>HUNTER</th>
<th>BP</th>
<th>1A & 2</th>
<th>3A & 4</th>
<th>5A & 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.5</td>
<td>30</td>
<td>25</td>
<td>4A</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>26.5</td>
<td>25</td>
<td>25</td>
<td>10.5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>26.5</td>
<td>25</td>
<td>10</td>
<td>25</td>
<td>3A</td>
</tr>
<tr>
<td>4</td>
<td>26.5</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>5A</td>
</tr>
<tr>
<td>5</td>
<td>26.5</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>

SHIFTS:

<table>
<thead>
<tr>
<th>5A & 6</th>
<th>6A</th>
<th>7A</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>26.5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>26.5</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>26.5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>26.5</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

NOTES:

- 115.223 - Change
- 901.525 - Change
- 901.250 - Change
- 403.115 - Check for warp
- 403.25 - Change
The flask size is 30 x 30. The pattern number is 121-0002. The order is to make 1000 molds.
In this case, the job is a Hot Job. Pallet Lines 36.4 have to do this job.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td>BP</td>
<td>1 & 2</td>
</tr>
<tr>
<td>203</td>
<td>10-2</td>
<td>106</td>
</tr>
<tr>
<td>10-2</td>
<td>106</td>
<td>127</td>
</tr>
<tr>
<td>106</td>
<td>127</td>
<td>320</td>
</tr>
<tr>
<td>127</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>NOTES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9S,223 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>901525 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-078 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-087 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-224 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-078 =</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
64.

The class of iron is 25.
The company is SI.
There is a core in the mold.
<table>
<thead>
<tr>
<th>DAY: Wednesday</th>
<th>"135" DATE: 5-15-91</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td>BP</td>
</tr>
<tr>
<td>20s 30s</td>
<td>55s</td>
</tr>
<tr>
<td>325s</td>
<td>90s</td>
</tr>
<tr>
<td>131-0035</td>
<td>4016.2p</td>
</tr>
<tr>
<td>90150s</td>
<td>919701</td>
</tr>
<tr>
<td>65327101</td>
<td>41114973</td>
</tr>
<tr>
<td>1 & 2</td>
<td>3 & 4</td>
</tr>
<tr>
<td>35s</td>
<td>15</td>
</tr>
<tr>
<td>161s</td>
<td>15</td>
</tr>
<tr>
<td>800533</td>
<td>1407207</td>
</tr>
<tr>
<td>810207</td>
<td>35951</td>
</tr>
<tr>
<td>131-0025</td>
<td>131-0026</td>
</tr>
<tr>
<td>6531-4439</td>
<td>6531-4439</td>
</tr>
<tr>
<td>5 & 6</td>
<td>7 & 8</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>9 & 10</td>
<td>11 to 13</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>14 to 16</td>
<td>17 to 19</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

SHIFT:

NOTES:

- 7/29: 235s - T10
- 5/15: 295s - A1021, Final Critical
- 2/10: 595s - 4004, Check Swp
- 2/4: 295s - 1209, HU2054

SESSIONS:

- 5/15: 295s - 1209, HU2054
66. The order is to make molds.
The flask size is 25 x 36.
The pattern number is 32410.
The following questions will help you review the information about job squares.
Questions about job squares.

Directions

Look at the enlarged job square on the opposite page. Choose the correct answer. Write the letter of your answer in the blank.

The first one is done for you.

1. The class of iron is a.
 a. 30-A
 b. 125
 c. 63197787

2. The company is b.
 a. [illegible]
 b. TOSH
 c. DELCO

3. Is there a core in the mold?
 a. yes
 b. no
 c. can't tell

5. The pattern number is a.
 a. 63197787
 b. 125
 c. 30-A

6. The order is to make c.
 a. 125
 b. 25 x 30 molds
 c. 63197787 molds
When you have finished, check your answers with those on the next two pages.
ANSWERS
Questions about job squares

1. a. This is the correct answer.
 b. 125 molds are to be poured.
 c. 63197787 is the pattern number.

2. c. This is the correct answer.
 a. This is the correct answer.
 b. This is the correct answer.
 a. [c] means there is a core in the mold.
 b. TOSH is the abbreviation of Toshiba International Corp.

3. a. This is the correct answer.
 b. [c] means there is a core in the mold.
 c. [c] means there is a core in the mold.

4. b. This is the correct answer.
 a. 125 molds are to be made.
 c. 63197787 is the pattern number.

5. a. This is the correct answer.
 b. 125 molds are to be made.
 c. 30-A is the class of iron.

6. a. This is the correct answer.
 b. 25x30 is the flask size.
 c. 63197787 is the pattern number.
Delco

\[
\frac{125}{30} \times \frac{25}{3197787}
\]
You have completed the lesson.

Go on to the next page to retake the quiz you started this booklet with, or go back and review the lesson before retaking the quiz.
QUIZ 2

Using the schedule on p. 79, circle the answers you think are correct.

The first one is done for you.

1. How many jobs are scheduled for Floor 3&4?
 a. 7
 b. 20
 c. 2

 The square has an x through it

2. How many molds should be made for the 1st job on Floor 9&10?
 a. 25
 b. 184
 c. 95

3. What is the flask size for the 1st job on Floor 9&10?
 a. 25x30
 b. 22x22
 c. 30x30

4. What is the class of iron for the 1st job on Floor 5&6?
 a. 20-s
 b. 25
 c. 90

5. What is the casting number for the 1st job on the Hunter?
 a. 121-0035
 b. 300
 c. 20-s

6. How do you know that a job is a Hot Job?
 a. the square has an x through it
 b. the square has a star in it
 c. the square is first on the chart

7. How many jobs are scheduled for the HUNTER?
 a. 8
 b. 25
 c. 31
<table>
<thead>
<tr>
<th>DAY:</th>
<th>"135"</th>
<th>DATE: 5-15-91</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUNTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>112</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>BP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>112</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>1 & 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>3 & 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>5 & 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>NOTES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>
Check the next page for the correct answers to the quiz.
ANSWERS

1. How many jobs are scheduled for Floor 3&4?
 a. 7
 b. 20
 c. 2

2. How many molds should be made for the 1st job on Floor 9&10?
 a. 25
 b. 164
 c. 95

3. What is the flask size for the 1st job on Floor 18&2?
 a. 25x30
 b. 22x22
 c. 30x30

4. What is the class of iron for the 1st job on Floor 5&6?
 a. 20-s
 b. 25
 c. 90

5. What is the casting number for the 1st job on the Hunter?
 a. 121-0035
 b. 300
 c. 20-s

6. How do you know that a job is a Hot Job?
 a. the square has an X through it
 b. the square has a star in it
 c. the square is first on the chart

7. How many jobs are scheduled for the HUNTER?
 a. 8
 b. 25
 c. 31
In the following lesson on the CORE ROOM you will learn about the two kinds of cores used at Robinson Foundry.

First, take the quiz on the next page to see what you already know.
CORE ROOM QUIZ 1

DIRECTIONS

Circle the answer you think is correct.
The first one is done for you.

1. How is sand made into a core?
 a. It is sifted and packed into a core box.
 b. It is rammed and packed into a core box.
 (c.) It is chemically bonded and packed into a core box.

2. Why are cores put in castings?
 a. To make the surface finish good.
 b. To make the outside dimensions accurate.
 c. To make a hollow space inside the casting.

3. How are Airset cores made?
 a. They are made with chemically bonded sand which hardens when air hits it.
 b. They are made with chemically bonded sand which hardens when the heat of a cast iron core box activates the resin.

4. How can you tell if a Shell core is strong?
 a. Weigh it
 b. Look at the color.
 c. Measure it.

5. How can you tell Airset and Shell cores apart by color?
 a. Airset is yellow and brown; Shell is off-white.
 b. Airset is off-white; Shell is yellow and brown.

6. If you needed cores that were good for detail and dimensional accuracy, which would you pick?
 a. Airset
 b. Shell
Most trainees don't know all the answers to the quiz you've just taken, but after you read the passages and answer the questions on the following pages, you'll know a lot more about the CORE ROOM.

At the end of the lesson you'll take a quiz and see your scores for both times.
CORE ROOM

The Core Room makes the cores needed for Green Sand castings. Sand is chemically bonded together and packed into a core box to form a shape. The shape, or core, is placed inside the green sand mold. When molten iron is poured into the mold, the sand part does not fill up. Instead, there is a hollow shape inside the casting in the exact shape of the core.

There are two processes used in the production of packed sand cores. One process makes an Airset core. The other process makes a Shell core.

ANSWER THE FOLLOWING QUESTIONS

DIRECTIONS
Chose the correct answer. Circle the letter of your answer.

1. What is the passage mostly about?
 a. How cores are made.
 b. Core set-up for Green Sand Castings.
 c. Airset cores.

2. What are the two types of cores made in the core room?
 a. Bonded and Packed.
 b. Airset and Shell.
 c. Molten and Hollow.

3. Why are cores needed in casting?
 a. To make a hollow space inside a casting.
 b. To make gating for Green Sand molds.
 c. To chemically bond sand.

CHECK YOUR ANSWERS ON THE NEXT PAGE.
ANSWERS

1. a. This answer is correct.
 b. This is not mentioned in the passage.
 c. Airset is mentioned; however, the passage talks about more information than just airset cores.

2. b. This answer is correct.
 a. Bonded and packed are words describing how cores are made. They do not name the two types of cores.
 c. Molten is a word which is used to describe iron. It is not about cores. Hollow is used to tell the shape of the inside of a shell core. It is not the type of core.

3. a. This answer is correct.
 b. This is not mentioned in the passage.
 c. To chemically bond sand is how cores are made, not why they are needed in castings.
Airset

Airset cores harden when air hits them. They are made from chemicals and sand grains mixed together and heated in the mixing machines.

Airset sand is mixed in two different-sized mixing machines. The 150 mixer prepares sand for the smaller cores. The chemical balance and temperature help the sand mixture harden quickly.

The 300 mixer prepares sand for larger cores. The sand from the 300 machine sets slower because the cores are so much bigger.

Airset cores are solid. They are generally made in bodies which are glued together at the glue-up table. The glue seams are sealed to keep the hot iron from melting the glue seam.

Airset cores are off-white in color. They are generally not designed for use in castings that need a good surface finish or a high degree of dimensional accuracy. They tend to swell as they set up. The swelling can make the dimensions of the castings be wrong and can cause defects.

Shell Core

Shell cores are made of resin coated sand. Heat bonds the grains of sand. The sand comes to Robinson with the resin already added.

Shell cores are made in machines which have cast iron core boxes. An operator fills the core box with sand. The heat of the core box activates the resin and bonds the sand to make a core.

Shell cores can be solid or hollow. If the core is not heated long enough, there will be a hole in the bottom. Any un-bonded sand will drain out and leave a hollow core.

The color of the Shell core is an indicator of its quality. The darker the Shell core is "cooked" without burning it black, the stronger the core will be. The strongest core is a dark brown.

Shell cores are good for castings requiring detail and dimensional accuracy.
ANSWER THE FOLLOWING QUESTIONS

DIRECTIONS

Choose the correct answer. Circle the letter of your answer.

1. After reading the passage about Airset and Shell cores, you should be able to the difference between the cores by looking at the...
 - a. size
 - b. color
 - c. shape

2. If you needed cores that were good for detail and dimensional accuracy, you would pick...
 - a. Airset cores
 - b. Shell cores

3. If you needed a very strong Shell core, which would you pick?
 - a. A light yellow one
 - b. An off-white one
 - c. A dark brown one

4. Casting Number 9804 needs a hollow core. Which would you send to the Green Sand Pallet line?
 - a. Airset
 - b. Shell

5. Core Number 405926 is a very large Airset core. Which sand mixer would you use to make this core?
 - a. 150
 - b. 300

6. If you put resin-coated sand in a heated cast iron core box, what would you get?
 - a. An Airset core
 - b. A Shell core

7. After reading the lesson about the Core Room you should know that cores are...
 - a. only mixed in the 300 machine.
 - b. made from chemically bonded sand.
 - c. always solid.

CHECK YOUR ANSWERS ON THE NEXT PAGE.
Answers

1. b. This answer is correct.
 a. The passage does not mention the size of the cores.
 b. The passage does not mention the shape of the cores.

2. b. This answer is correct.
 a. Read the last paragraph about Airset Cores. You will learn why airset cores are good for detail and dimensional accuracy.

3. c. This answer is correct.
 a. Read the passage about Shell cores. It explains that the strongest Shell cores are dark brown.
 b. Airset cores are off-white.

4. b. This answer is correct.
 a. Airset cores are solid.

5. b. This answer is correct.
 a. The 150 machine makes small cores.

6. b. This answer is correct.
 a. Airset sand does not have resin. Airset sand is heated and mixed in a mixing maching, not a core box.

7. b. This answer is correct.
 a. The 300 machine is only for large Airset, not all cores.
 c. Airset cores are solid, but Shell cores are hollow.
FOCUS ON VOCABULARY

As you were reading the lesson, did you find words you didn't know? You could have gone to the dictionary to find the meaning of the strange word... OR you could have guessed the word by looking at the other words around it.

This is called "looking at the CONTEXT of a word".

CONTEXT is the rest of the sentence or paragraph.

Let's look at a sentence from the lesson and see if you can figure out the meaning of an underlined word by looking at the rest of the sentence.

"When molten iron is poured into the mold, the sand part does not fill up."

In the sentence, molten is in front of iron. It is telling you what kind of iron is being used.

The next part of the sentence tells you that iron is poured into the mold.

You should ask yourself, "What form does iron have to be if you have to pour it?"

Your answer should be, "A liquid!"

You have figured out that molten means liquid iron. You did that by looking at the rest of the sentence and asking yourself questions.

Now, try your new skill with the questions on the next page!
DIRECTIONS

Choose the correct answer. Circle the letter of your answer.

1. What is the meaning of **generally** in the sentence below?

 Airset cores are **generally** not used in castings that need a high degree of dimensional accuracy.

 a. most of the time
 b. having high rank
 c. belonging to all persons

2. What is the meaning of **bonded** in the sentence below?

 Sand is chemically **bonded** together and packed into a core box to form a shape.

 a. a written agreement
 b. stuck together
 c. a note of debt that is due

3. What is the meaning of **activates** in the sentence below?

 The heat of the core box **activates** the resin and bonds the sand to make a core.

 a. to place on active military duty
 b. to cause something to start working
4. What is the meaning of indicator in the sentence below?

The color of a Shell core is an indicator of its quality.

a. a pointer on an instrument
b. something that points out or makes known
c. a by-product

5. What is the meaning of process in the sentence below?

One process makes an Airset core.

a. court summons
b. lines of things moving along
c. a way of doing something

CHECK YOUR ANSWERS ON THE NEXT PAGE.
ANSWERS

1. a. This answer is correct.
 b. Rank has nothing to do with castings or dimensional accuracy.
 c. The sentence is not about people or ownership.

2. b. This is the correct answer.
 a. A bond can be a written agreement; however, in the sentence bonded is before the word together. The word is not used to talk about an agreement.
 b. A bond can be a debt that is due; however, in the sentence bonded is not used to talk about debt. It is used to show how sand is put together to make a core.

3. b. This answer is correct.
 A. The word activates is used to show what the heat of the core box does. Military duty is not discussed in the sentence.

4. b. This is the correct answer.
 a. An indicator can be a pointer on an instrument; however, the sentence does not discuss instruments.
 b. The color of a Shell core shows how good it is. The color is not a by-product.

5. c. This answer is correct.
 a. A court summons can be processed; however, it has nothing to do with making Airset cores.
 b. A line of things moving along has nothing to do with making Airset cores.
You have completed the lesson.

Go on to the next page to retake the quiz you started this booklet with, or go back and review the lesson before taking the quiz.
CORE ROOM QUIZ 2

DIRECTIONS

Circle the answer you think is correct.

The first one is done for you.

1. How is sand made into a core?
 a. It is sifted and packed into a core box.
 b. It is rammed and packed into a core box.
 (c.) It is chemically bonded and packed into a core box.

2. Why are cores put in castings?
 a. To make the surface finish good.
 b. To make the outside dimensions accurate.
 c. To make a hollow space inside the casting.

3. How are Airset cores made?
 a. They are made with chemically bonded sand which hardens when air hits it.
 b. They are made with chemically bonded sand which hardens when the heat of a cast iron core box activates the resin.

4. How can you tell if a Shell core is strong?
 a. Weigh it
 b. Look at the color.
 c. Measure it.

5. How can you tell Airset and Shell cores apart by color?
 a. Airset is yellow and brown; Shell is off-white.
 b. Airset is off-white; Shell is yellow and brown.

6. If you needed cores that were good for detail and dimensional accuracy, which would you pick?
 a. Airset
 b. Shell
Check the next page for the correct answers to the quiz.
1. This one is done for you.

2. c. This answer is correct.
 a. Airset cores are not used in castings that need a good surface finish; therefore, this cannot be the correct answer.
 b. The reading passage does not mention outside dimensions.

3. a. This answer is correct.
 b. This is how Shell cores are made.

4. b. This is the correct answer.
 a. The passage does not mention weighing castings.
 b. The passage does not mention measuring castings.

5. b. This answer is correct.
 a. Read the parts of the passage which tells about the color of each shell.

6. b. This is the correct answer.
 a. Read the passage about Airset cores. They swell as they set up. This can make a casting have a defect.
LESSON 3
THE CORE ROOM

ROBERT E. STONE,
PROJECT DIRECTOR
205 234 6346

WRITTEN BY:
BETH MAXWELL,
INSTRUCTOR
205 329 8481 EXT. 81
CORE ROOM

WORD LIST

1. CORE
2. MOLD
3. FLASK
4. SAND
5. CASTING
6. GREEN SAND
7. EPS
8. FINS
CORE ROOM

Willie works in the core room. He helps make cores to go inside a mold. The molds are placed in a flask. The sand in the mold makes the form of the casting. The casting comes from Green Sand or EPS process. Fins are found on some castings.

Circle the following words in the passage:

1. core
2. mold
3. flask
4. sand
5. casting
6. Green Sand
7. EPS
8. fins
CORE ROOM

Willie works in the ____ room. He helps make ____ to go inside a _____. The _____ are placed in a _____. The ___ in the ______ makes the form of the _______. The ________ comes from ______ ______ or ____ process. _____ are found on some ________.

Word List:
1. core
2. mold
3. flask
4. sand
5. casting
6. Green Sand
7. EPS
8. fins
Fill in the missing letters:

<p>| c__re | M__LD | F__N |
| c____e | M__D | F____ |
| c__r__ | M__ L__ | FI__ |
| __ re | LD | __ N |
| co__ __ | MO__ | F__N |
| s__nd | DE__E__T | CA__ IN|
| s____d | D__F__C__T | __ TI |
| s__n__ | DEF__ __ | C__ST__N__ |
| __ nd | __ ECT | C__S__I__G |
| sa __ | DEFE __ | CAST__ __ |
| E__S | F__A__K | SC__ P |
| __ __ S | __ ASK | S__R__P |
| E __ __ | FLA __ | S __ P |
| E P __ | FL SK | SC__ __ |
| __ P __ | FL__ __K | __ __AP |</p>
<table>
<thead>
<tr>
<th>core</th>
<th>mold</th>
<th>scrap</th>
<th>sand</th>
<th>fin</th>
<th>blast</th>
<th>slag</th>
<th>safety</th>
<th>EPS</th>
<th>casting</th>
<th>defect</th>
<th>flask</th>
<th>accident</th>
<th>pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>care</td>
<td>mold</td>
<td>scrape</td>
<td>sand</td>
<td>fan</td>
<td>blend</td>
<td>slag</td>
<td>safe</td>
<td>EPS</td>
<td>case</td>
<td>defect</td>
<td>flake</td>
<td>accident</td>
<td>path</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>core</td>
<td>mill</td>
<td>scrap</td>
<td>send</td>
<td>fin</td>
<td>blast</td>
<td>sling</td>
<td>safety</td>
<td>EPC</td>
<td>casting</td>
<td>defeat</td>
<td>flask</td>
<td>accurate</td>
<td>pattern</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cure</td>
<td>mild</td>
<td>script</td>
<td>sand</td>
<td>find</td>
<td>blow</td>
<td>slag</td>
<td>sift</td>
<td>safety</td>
<td>EPS</td>
<td>cast</td>
<td>defeat</td>
<td>fact</td>
<td>accident</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>core</td>
<td>mild</td>
<td>scrap</td>
<td>sun</td>
<td>fin</td>
<td>blast</td>
<td>slight</td>
<td>safety</td>
<td>EPT</td>
<td>casting</td>
<td>deflate</td>
<td>flask</td>
<td>occure</td>
<td>pattern</td>
</tr>
</tbody>
</table>
PREACTIVITY FOR A to Z

1. ________st
2. b______d
3. jk_____
4. x____z
5. mn_____
6. ______fg
7. op_____
8. h____j
9. pr____r
10. ______vw
11. ab_____
12. ______jk
13. d_____f
14. ______xy
15. gh_____
16. s____u
17. np____p
18. ef_____
19. hi_____
20. tu_____

120
<table>
<thead>
<tr>
<th>Preactivity for Alphabetical Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Flask</td>
</tr>
<tr>
<td>2. Accident</td>
</tr>
<tr>
<td>3. Core</td>
</tr>
<tr>
<td>4. Sand</td>
</tr>
<tr>
<td>5. Pattern</td>
</tr>
</tbody>
</table>

| 1. Mold |
| 2. Slag |
| 3. Fin |
| 4. EPS |
| 5. Casting |

| 1. Defect |
| 2. Scrap |
| 3. BP |
| 4. Safety |
| 5. Hammer |
FIND THE DEPARTMENTS ON THE MAP

1. Personnel and Lab
2. Supply
3. Cleaning Room
4. Shipping
5. Pattern Shop
6. Iron Melting
7. EPS
8. Green Sand
9. Disa
10. Core Room
11. Storage
12. Storage
13. Maintenance
14. Security
In the following lesson on Figuring Time you will learn how to work with time problems.

First, take the quiz on the next page to see what you already know.
TIME PROBLEMS-QUIZ 1

1. Jessie Tolison's shell core machine broke down for 44 minutes and was out of sand for 10 minutes. The power was off for 17 minutes. What is his total **DOWN TIME** for that day?

 a. 1 hour and 5 minutes
 b. 1 hour and 11 minutes
 c. 75 minutes
 d. none of the above

2. Derrick Spivey worked 2 hours and 37 minutes overtime on Monday and 1 hour 53 minutes overtime on Tuesday. How much is his **OVER TIME** for both days?

 a. 4 hours and 30 minutes
 b. 3 hours and 87 minutes
 c. 3 hours and 60 minutes
 d. None of the above

3. At 6:51 the Melt Deck ran out of iron. James McCoy needed to pour castings but he has to wait for iron. It's 8:10 before he got any iron. How long did he wait?

 a. 1 hour and 45 minutes
 b. 2 hours
 c. 1 hour and 19 minutes
 d. none of the above

4. Celso Cruz works from 10:35 pm to 6:15 am every day. How many hours is he at work?

 a. 7 hours and 40 minutes
 b. 6 hours and 35 minutes
 c. 8 hours and 10 minutes
 d. none of the above

5. Howard Marcantel goes to work at 4:40 am and gets off at 1:15 pm. He takes 45 minutes for lunch and takes two 10 minute GatorAde breaks. How many hours a day does he actually work?

 a. 7 hours and 50 minutes
 b. 8 hours
 c. 7 hours and 30 minutes
 d. none of the above

6. Jay Edmondson goes to work at 4:10 am and works 9 hours and 15 minutes. What is his quitting time?

 a. 1:45 pm
 b. 2:30 pm
 c. 1:25 pm
 d. none of the above
TIME PROBLEMS AT ROBINSON FOUNDRY

An important job skill is to be able to fill out the occupational forms used in your department. Many occupational forms are used to record the amount of work which has been done in a certain amount of time.

These forms are called PRODUCTION FORMS. In order to correctly fill out production forms, you must be able to write clock time.

If your work is stopped for some reason, you have to write the amount of DOWN TIME. This means you must be able to add and subtract time.

This booklet will show you quick and easy ways to figure time problems in your work.
ADDING TIME

Here is an example of writing DOWN TIME on a Robinson production form:

Suppose your molding machine broke down for 15 minutes. Then the power went off for 12 minutes. Next, you took a break for 10 minutes.

What will you write for your total DOWN TIME?

Add the minutes together like this

<table>
<thead>
<tr>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 minutes</td>
</tr>
<tr>
<td>12 minutes</td>
</tr>
<tr>
<td>10 minutes</td>
</tr>
</tbody>
</table>

37 minutes
NOW TRY THIS ONE!

It takes you 40 minutes to eat lunch. You take two 10 minute breaks. You are out of iron for 35 minutes.

What will you write for TOTAL DOWNTIME?

Add the minutes like this:

\[
\begin{array}{c}
40 \text{ minutes} \\
10 " \\
10 " \\
+ 35 " \\
\hline
95 \text{ minutes}
\end{array}
\]

95 minutes is the right answer---however---you must write DOWNTIME in hours and minutes.

Look below to see how to do this:

Divide the minutes by 60 (minutes in an hour).

\[
\begin{array}{c}
1 \rightarrow \text{number of hours} \\
60 \underline{95} \\
- 60 \\
\hline
35 \rightarrow \text{number of minutes}
\end{array}
\]

You would write 1 hour and 35 minutes for DOWNTIME.

Change these minutes into hours and minutes:

a. 85

b. 76

c. 92

d. 147

e. 65

CHECK YOUR ANSWERS ON THE NEXT PAGE
ANSWERS

a. 1 hour and 25 minutes
b. 1 hour and 16 minutes
c. 1 hour and 32 minutes
d. 2 hour and 27 minutes
e. 1 hour and 5 minutes

If you do not understand why these answers are correct, ask your teacher for help.
MORE ADDING PROBLEMS

Suppose you worked overtime 3 afternoons this week. You worked 1 hour and 25 minutes on Monday. You worked 2 hours and 10 minutes on Tuesday. You worked 1 hour and 15 minutes on Wednesday.

How can you find out the total amount of overtime you have worked this week?

DO IT LIKE THIS

\[\begin{align*}
1:25 \\
2:10 \\
+ 1:15 \\
\hline
4:50
\end{align*}\]

You worked 4 hours and 50 minutes
LET'S TRY ANOTHER PROBLEM

Suppose you worked 1 hour and 45 minutes overtime on Monday. Then you worked 1 hour and 45 minutes overtime on Tuesday. How much time did you have in overtime pay?

*** If you add your time like this ***

\[
\begin{array}{c}
1:45 \\
+ \ 1:45 \\
\hline \\
2:90
\end{array}
\]

Your answer is correct, but it just doesn't look right!

Your minutes have added up to more than an hour. WHAT DO YOU DO NOW?

Divide the minutes by 60 (minutes in an hour)

\[
\begin{array}{c}
\hspace{1cm} 90 \\
\hline \\
-60 \\
\hline \\
-30
\end{array}
\]

Now add 1 hour and 30 minutes to 2:00

\[
\begin{array}{c}
2:00 \\
+ \ 1:30 \\
\hline \\
3:30
\end{array}
\]

*** You have 3 hours and 30 minutes in overtime pay! ***
SUBTRACTING TIME

Let's do problems with subtracting time.

The Muller breaks down at 10:47 am. You can't run your molding machine without sand. The Muller isn't fixed until 11:15 am.

How much DOWN TIME should you write on the Molding production sheet?

*** You could write the problem like this ***

11:15
- 10:47

But that won't work! You can't subtract 47 from 15.

Look at the problem worked like this:

Borrow an hour

11:15
- 1:00

10:15

Change the hour to 60 minutes and add back to 10:15

10:15
+ :60

10:75

NOW you can subtract 10:47 and find the DOWN TIME.

10:75
- 10:47

:28

*** You will write 28 minutes as your DOWN TIME. ***
Let's do a few more of these problems

1. You work in the cleaning room at a grinding booth. Today Roy Watts sent you a pallet of castings with the number 63196008. You start grinding at 2:43. By 5:06 you only had 5 castings ground.

 How long did it take you to do that work?

 a. 3 hours and 5 minutes
 b. 2 hours and 23 minutes
 c. 1 hour and 47 minutes
 d. none of the above

 (Did you remember to "borrow" 60 minutes?)

2. You work in EPS Assembly. Rick Johnson brings you a box of foam patterns to assemble. You begin at 7:00 am. Normally, you get through with this box by 7:50 am. Today you work until 8:23 am.

 How much extra time did you spend working on this box?

 a. 45 minutes
 b. 1 hour and 23 minutes
 c. 33 minutes
 d. none of the above

CHECK YOUR ANSWERES ON THE NEXT PAGE
ANSWERS

1. The correct answer is b. Work the problem like this:

 Step 1. 5:06 You can't subtract this problem.
 -2:43

 Step 2. You have to borrow an hour from 5:06.
 5:06
 -1:00
 4:06

 Step 3. Change the hour to 60 minutes and add it back to 4:06
 4:06
 + :60
 4:66

 Step 4. NOW you can subtract 2:43 from 4:66 and find the time.
 4:66
 - 2:43
 2:23

 Step 5. Write the answer as 2 hours and 23 minutes.

2. The correct answer is c. Work the problem like this:

 Step 1. Set up the problem.
 8:23
 - 7:50

 Step 2. Change 8:23 by borrowing an hour and adding it back as 60 minutes.
 8:23
 - 1:00
 7:23
 Then do this: + :60
 7:23

 Step 3. NOW you can subtract and find the extra time.

 7:83 new finishing time
 - 7:50 normal finishing time
 33 minutes extra time spent of the box.
Let's look at another problem involving SUBTRACTING TIME.

Suppose you work from 6:15 am to 2:00 pm. How long are you at work?

*** You could write the problem like this. ***

\[
\begin{align*}
2:00 \text{ pm} \\
- 6:15 \text{ am} \\
\hline
?
\end{align*}
\]

But that won't work! You can't subtract a large number from a smaller number.

TRY THIS

Change your quitting time to a number that is large enough to allow you to subtract your starting time. You can do that by adding your quitting time to 12:00 noon...just like this.

\[
\begin{align*}
12:00 \text{ noon} \\
+ 2:00 \text{ pm (quitting time)} \\
\hline
14:00 \text{ pm (NEW quitting time)}
\end{align*}
\]

*** NOW write the problem like this ***

\[
\begin{align*}
14:00 \text{ pm} = (\text{don't forget to borrow}) = 13:60 \text{ pm} \\
- 6:15 \text{ am} \\
\hline
7:45
\end{align*}
\]

You are at work 7 hours and 45 minutes!
TRY IT AGAIN!

1. You go to work in EPS at 8:05 am. You get off early at 1:15 pm.

 How many hours did you work today?

 a. 5 hours and 10 minutes
 b. 5 hours and 20 minutes
 c. 4 hours and 55 minutes
 d. none of the above

2. You start work in the Core Room at 4:43 am and quit work at 1:25.

 How long did you work today?

 a. 9 hours and 10 minutes
 b. 8 hours and 42 minutes
 c. 8 hours and 18 minutes
 d. none of the above

3. You are working overtime at the Cleaning Room. You start work at 4:10 am and you regularly get off at 12:15 pm. However, today you work until 2:23 pm. Answer the following questions about your time at work:

 (a) How many hours did you work today?
 (b) How many hours do you work without overtime?
 (c) How much overtime did you work today?

CHECK YOUR ANSWERS ON THE NEXT PAGE
ANSWERS

1. The correct answer is a.

2. The correct answer is b.

3. The correct answer is:
 a. 10 hours and 13 minutes
 b. 8 hours and 5 minutes
 c. 2 hours and 8 minutes

If you do not understand why these answers are correct, ask your teacher for help.
OTHER TIME PROBLEMS

Let's look at another type of time problem. Sam Huntley came to work at 7:10 am. He hid behind the Core Room and took 35 minutes to eat 2 steak biscuits. He watched Robert Angle rake leaves for 30 minutes. He hid in Annette's office for 15 minutes and drank a cup of coffee. He went home at 2:45 pm.

How many hours did Sam actually work today?

DO IT LIKE THIS

Add the "goof-off" time----> 35 minutes
30 "
+ 15 "
--
80 "

Change 80 minutes to hours and minutes----> 1 hour and 20 minutes

Find how long Sam was at Robinson---->

(1) 2:45 (quitting time)
+ 12:00 noon

14:45 (new quitting time)

(2) 14:45 (new quitting time)
- 7:10 (starting time)

7:35 Hours at Robinson

Subtract the DOWNTIME (the "goof-off" time) from the hours he was at Robinson---->

7:35 (hours he was at Robinson)
- 1:20 ("goofing-off" time)

6:15

Sam actually worked 6 hours and 15 minutes!
Let's look at another TIME PROBLEM.

1. If you go to work at 6:10 am and work 8 hours, what will be your quitting time?

DO IT LIKE THIS:

step 1.

6:10 am (starting time)
+ 8:00 (hours at work)

14:10 pm (quitting time)

step 2.

14:10 pm
-12:00 noon

2:10 pm (quitting time in clock time)

Your quitting time is 2:10!
TRY THIS ONE!

You come into EPS at 5:30 and start work. Joe Clark comes by and tells you that you have to work 10 hours and 45 minutes today.

This is fine with you because you need the extra overtime; however, you carry riders in your car. They only have to work 8 hours today.

1. What time will you tell your riders that you will be leaving work?
 a. 3:76 pm
 b. 2:45 pm
 c. 4:15 pm

2. If your riders went to work at 5:30 and worked 8 hours, how long will they have to wait for you after they get off work?
 a. 2 hours and 45 minutes
 b. 3 hours
 c. 4 hours and 15 minutes

CHECK YOUR ANSWERS ON THE NEXT PAGE
ANSWERS

1. The correct answer is b.
2. The correct answer is a.

If you do not understand why these answers are correct, ask your teacher for help.
You have completed the lesson.

Go to the next page to take a practice quiz to see how well you have learned to figure time.

Check your answers to see if you need to review the lesson before you take the last quiz.
TIME PROBLEMS Practice Quiz

1. James Baggett's molding machine broke down for 27 minutes. The Muller stopped for 35 minutes and he couldn't get sand. A pattern change took 25 minutes.

What is his total DOWNTIME for the day?

 a. 1 hour and 10 minutes
 b. 1 hour and 27 minutes
 c. 1 hour
 d. none of the above

2. Charles Mather worked 1 hour and 53 minutes overtime on Wednesday and 2 hours and 43 minutes overtime on Thursday.

How much is his overtime for both days?

 a. 4 hours and 36 minutes
 b. 4 hours and 15 minutes
 c. 3 hours and 67 minutes
 d. none of the above

3. Harry Brown runs the Hunter molding machine. He had to wait from 6:54 am to 8:17 for sand.

How long did he wait?

 a. 2 hours and 3 minutes
 b. 1 hour and 23 minutes
 c. 2 hours
 d. none of the above

4. Rose Ware works from 4:40 am to 1:13 pm.

How many hours a day is she at work?

 a. 9 hours and 13 minutes
 b. 7 hours and 45 minutes
 c. 8 hours and 33 minutes
 d. none of the above
5. Wayne Browning goes to work at 5:48 am and gets off at 2:10 pm. He takes 35 minutes for lunch and takes two 15 minute breaks. How many hours a day does he actually work?

a. 6 hours and 13 minutes
b. 7 hours and 17 minutes
c. 8 hours and 22 minutes
d. none of the above

6. Tommy Green goes to work at 4:17 am and works 10 hours and 35 minutes. What is his quitting time?

a. 3:10 pm
b. 2:52 pm
c. 2:18 pm
d. none of the above

CHECK YOUR ANSWERS ON THE NEXT PAGE
ANSWERS

1. The correct answer is b.
2. The correct answer is c.
3. The correct answer is b.
4. The correct answer is c.
5. The correct answer is b.
6. The correct answer is b.

If you missed many of these questions, ask your teacher to help you find the places in the lesson you need to review.

If you are ready, go the next page and retake the quiz you took when you started this booklet.
TIME PROBLEMS-QUIZ 2

1. Jessie Tolison's shell core machine broke down for 44 minutes and was out of sand for 10 minutes. The power was off for 17 minutes. What is his total DOWN TIME for that day?
 a. 1 hour and 5 minutes
 b. 1 hour and 11 minutes
 c. 75 minutes
 d. none of the above

2. Derrick Spivey worked 2 hours and 37 minutes overtime on Monday and 1 hour 53 minutes overtime on Tuesday. How much is his OVER TIME for both days?
 a. 4 hours and 30 minutes
 b. 3 hours and 87 minutes
 c. 3 hours and 60 minutes
 d. None of the above

3. At 6:51 the Melt Deck ran out of iron. James McCoy needed to pour castings but he has to wait for iron. It's 8:10 before he got any iron. How long did he wait?
 a. 1 hour and 45 minutes
 b. 2 hours
 c. 1 hour and 19 minutes
 d. none of the above

4. Celso Cruz works from 10:35 pm to 6:15 am every day. How many hours is he at work?
 a. 7 hours and 40 minutes
 b. 6 hours and 35 minutes
 c. 8 hours and 10 minutes
 d. none of the above

5. Howard Marcantel goes to work at 4:40 am and gets off at 1:15 pm. He takes 45 minutes for lunch and takes two 10 minute GatorAde breaks. How many hours a day does he actually work?
 a. 7 hours and 50 minutes
 b. 8 hours
 c. 7 hours and 30 minutes
 d. none of the above

6. Jay Edmondson goes to work at 4:10 am and works 9 hours and 15 minutes. What is his quitting time?
 a. 1:45 pm
 b. 2:30 pm
 c. 1:25 pm
 d. none of the above
ANSWERS

1. The correct answer is b.
2. The correct answer is a.
3. The correct answer is c.
4. The correct answer is a.
5. The correct answer is c.
6. The correct answer is c.
LESSON 5
THE CLEANING ROOM
CLEANING ROOM

WORD LIST:

1. Cleaning Room
2. grind
3. casting
4. core
5. sand
6. mold
7. fins
8. Green Sand
9. EPS
10. defects
11. scrap
12. safety
13. Jessie
CLEANING ROOM READING

Jessie works in the cleaning room in the foundry. His job is to grind castings to finish casting for shipping. The core and sand have already been removed from mold of casting. Jessie must be very careful with fins on castings. They can easily break off. The cleaning room puts finishing touches on castings from Green Sand as well as EPS. In the cleaning room Jessie must notice castings to make sure there is no defects. Defects on castings means the castings must be considered scrap and must be remelted. Safety is very important in the cleaning room. There is blowing particles from large blowers in the cleaning room. There is a great deal of noise in the cleaning room. A worker in the cleaning room must wear safety glasses, earplugs, and steel toed shoes.

Circle the words in the reading above:

1. cleaning room
2. grind
3. casting
4. core
5. sand
6. mold
7. fins
8. Green Sand
9. EPS
10. defects
11. scrap
12. safety
13. Jessie
Fill in missing words:

Jessie works in the ___ ___ ___ ___ ___ room in the foundry. His job is to ___ ___ ___ ___ ___ ___ ___ to finish ___ ___ ___ ___ ___ ___ for shipping. The ___ ___ and ___ ___ have already been removed from ___ ___ of ___ ___ ___ ___ __. Jessie must be careful with ___ ___ on ___ ___ ___ ___ __. They can easily break off. The ___ ___ ___ ___ ___ ___ room puts finishing touches on ___ ___ ___ ___ ___ from ___ ___ ___ ___ ___ ___ ___ as well as ___ ___ __. In the ___ ___ ___ ___ ___ ___ room Jessie must notice ___ ___ ___ ___ ___ ___ ___ ____ to make sure there is no ___ ___ ___ ___ ___ ___ ___ on ___ ___ ___ ___ ___ __ means they must be considered ___ ___ ___ ___ and must be remelted. ___ ___ ___ ___ is very important in the ___ ___ ___ ___ ___ ___ room. There is blowing particles from large blowers in the ___ ___ ___ ___ ___ ___ room. There is a great deal of noise in the ___ ___ ___ ___ ___ ___ room. A worker in the cleaning room must wear ___ ___ ___ ___ glasses, earplugs, and steel toed shoes.
Fill in missing:

cl__ ni_g_ o_m

_ e_n n ro__
__ ani__ om
_l a i g o m

 g i d
__ i__
 r n
_ _nd
 gri__
__ ting
c_ t g
c_s_i g
__ t g
cas__

c_r_
__re
c__
c__ e
 o_e
 or__
s_ d
 s n_
 _nd
 sa__
__an__
m_l__
_ ld
 o__
m_ d
__ol__
__n
f_n
f__
_ in
_ i__
Gr__n S__
G_ _ _n S__d
G_e_n S__
_ _en Sa__
Gre__ _ _ d
PRACTIVITY FOR A TO Z

1. _______st
2. b_______d
3. j k _____
4. x_______z
5. m n ____
6. _______f g
7. o p _____
8. h_______j
9. p_______r
10. _______v w
11. a b _____
12. _____j k
13. d_______f
14. _______x y
15. g h _____
16. s_______u
17. n_______p
18. e f ______
19. h i ______
20. t u ______

fn: Beth\alpha
Preactivity for Alphabetical Order

1. Flask	1. __________
2. Accident	2. __________
3. Core	3. __________
4. Sand	4. __________
5. Pattern	5. __________
1. Mold	1. __________
2. Slag	2. __________
3. Fin	3. __________
4. EPS	4. __________
5. Casting	5. __________
1. Defect	1. __________
2. Scrap	2. __________
3. BP	3. __________
4. Safety	4. __________
5. Hammer	5. __________

FN: BETH\ALPHA2
FIND THE DEPARTMENTS ON THE MAP

1. Personnel and Lab
2. Supply
3. Cleaning Room
4. Shipping
5. Pattern Shop
6. Iron Melting
7. EPS
8. Green Sand
9. Disa
10. Core Room
11. Storage
12. Storage
13. Maintenance
14. Security
JOBS
A PARTNERSHIP BETWEEN EDUCATION AND INDUSTRY

CENTRAL ALABAMA COMMUNITY COLLEGE & ROBINSON FOUNDRY, INC.
1992

LESSON 6
THE EPS PROCESS

ROBERT E. STONE
PROJECT DIRECTOR
205 234 6346

WRITTEN BY:
SANDRA MANN,
INSTRUCTOR/COUNSELOR
205 329 0481 EXT. 81
In the following lesson on The EPS Process you will learn how EPS castings are made.

First, take the quiz on the next 2 pages to see what you already know.
EPS--Quiz 1

DIRECTIONS

Circle the answer you think is correct. The first one is done for you.

1. What does EPS mean?

 a. Exothermic Polystyrene Styrofoam
 b. Expandable Process Styrofoam
 {c.} Evaporated Polystyrene System

2. How old is the "lost foam" process?

 a. over 3000 years old
 b. over 300 years old
 c. over 30 years old

3. What are EPS patterns made of?

 a. excess styrofoam
 b. expandable polystyrene beads
 c. iron, aluminum, plastic, or wood.

4. Which of the following is an important part of the foam assembler's job?

 a. Making a strong glue seam between the pattern and the gating.
 b. Making sure the pattern is completely covered by the coating.
 c. Setting the sprue correctly.

5. Why are EPS patterns dipped in a coating?

 a. To keep the styrofoam from melting.
 b. To eliminate mold wall movement.
 c. To keep the iron from touching the sand when the iron is poured.
6. Why is EPS called "Lost Foam"?
 a. Because EPS castings have fewer defects and have "lost" the need for grinding.
 b. Because the pattern evaporates when the molten iron hits it.
 c. Because EPS castings have "lost" the extra metal such as the parting line.

7. Why are EPS castings better than Green Sand castings?
 a. Tolerance bands are higher.
 b. Better dimensional accuracy
 c. Sand binders eliminate gas defects.
Most trainees do not know all the answers to the quiz you've just taken, but after you read the passage and answer the questions on the following pages, you'll know a lot more about the EPS process.

At the end of the lesson you'll take a quiz and see your scores for both times.
EPS...The "Lost Foam" Process

EPS stands for Evaporated Polystern System. This new way of making castings was invented by H. F. Shroyer in 1958. Castings are made by pouring molten metal into styrofoam patterns.

This is a new way of making castings. The Green Sand way of making castings is thousands of years old.

Robinson began making EPS castings in 1984. The process is still new, and Robinson is still making improvements.

ANSWER THESE QUESTIONS

DIRECTIONS

Circle the letter of your answer choice.

1. What is the passage mainly about?
 a. EPS is a new way of making castings.
 b. H.F. Shroyer invented EPS in 1958
 c. EPS castings are made out of styrofoam.

2. When did Robinson start making EPS Castings?
 a. 1958
 b. 1984
 c. 1989

CHECK YOUR ANSWERS ON THE NEXT PAGE
ANSWERS

1. a. This is the correct answer.

b. While this is true, other information is discussed in the passage.

c. While this is true, other information is discussed in the passage.

2. b. This is the correct answer.

c. This is an incorrect date.
OUTLINE OF THE EPS PROCESS

EPS patterns are made from expandable polystyrene beads. The beads are heated and injected into a mold. The heat makes the beads puff up and stick together. This process makes foam pattern pieces in the shape of castings.

Robinson does not make EPS patterns. They buy them from different companies. When the pieces come to EPS Receiving and Inspection, the Robinson worker weighs them. The patterns are sent to Foam Assembly.

The workers in Foam Assembly must first check the pattern pieces for defects. Next, the workers must glue together pattern pieces and attach the gating. The glue is a "hot melt adhesive". The glue seam between the pattern piece and the gating must be very strong. To make a good seam, the glue must be between 260-290 degrees in temperature.

Next the patterns go to the Dipping Area. The patterns are dipped in a refractory coating. The coating will keep the iron from touching the sand when the casting is poured. The coated patterns are put in a dryer. Each piece is weighed after dipping and after drying.

The patterns go to the Cluster Table. The patterns are glued together into groups called clusters.

The patterns clusters are moved to Molding. The clusters are put into a special flask and covered with unbonded sand.

Next, the flasks move around to the Pouring Station. Molten iron is poured into the flasks. The hot iron hits the foam pattern and evaporates, or melts, it. This is why the EPS process is called "lost foam. The foam is "lost" when the iron hits it. The metal then fills the hole left by the pattern.

After pouring, the flasks move to Shakeout. The castings are removed from the sand and sent to the Cleaning Room. The sand in cooled for reuse in the process.

ANSWER THE QUESTIONS ON THE FOLLOWING PAGE
DIRECTIONS

Circle the answer you think is correct. The first one is done for you.

1. How are EPS patterns made?

{a} Expandable polystyrene beads are heated and injected into a mold.
b. Wood masters are cut on the lathe in the pattern shop.
c. The bead collapse is filled into the mold.

2. According to the passage, if you worked in Receiving, what would be your job responsibility?

a. gluing the gating
b. assembling the patterns
c. weighing the patterns

3. After reading this passage, you should know that an important part of an Assembler's job is to

a. weigh the pattern pieces
b. keep the glue temperature within specification
c. sand the gating edges

4. According to the passage, why is the coating important?

a. It keeps the gating from melting.
b. It keeps the iron from touching the sand.
c. It keeps the glue seam from melting.

5. According the passage, if you worked in Dipping, which of the following skills would you need?

a. To be able to fill out a time sheet.
b. To be able to read a weighing scale.
c. To be able to read a Zahn scale.

6. After reading the passage, you should know that a cluster is the

a. gating glued on correctly
b. patterns glued together
c. refractory coating
7. Which sand is used in EPS flasks?
 a. bonded
 b. unbonded

8. Why is EPS called "Lost Foam"?
 a. The hot iron evaporates, or melts, the foam.
 b. The castings have "lost" the extra metal such as the parting line.
 c. The castings have "lost" the need for grinding.

9. According to the passage, which of the following tells how iron makes an EPS casting?
 a. It melts the refractory coating.
 b. It fills the hole left by the evaporated pattern.
 c. It moves thru the gating and then through the sprue.
ANSWERS

1. a. This answer is correct.
 b. This is the way Green Sand patterns are made. This is not mentioned in the passage.
 c. This is false information.

2. c. This answer is correct.
 a. This is the job of the Assembly Room.
 b. This is the job of the Assembly Room.

3. b. This answer is correct. The assembler must make a good glue seam. A good glue seam requires glue that is kept within the temperature specifications.
 a. Workers in Receiving do this job.
 b. This was not mentioned in the passage.

4. b. This answer is correct.
 a. This was not mentioned in the passage.
 b. This was not mentioned in the passage.

5. b. This answer is correct. The worker must weigh the patterns after dipping and after drying; therefore, the worker must be able to read weighing scales.
 a. This was not mentioned.
 b. The Zahn cup measures paint thickness. It was not mentioned in class.

6. b. This answer is correct.
 a. This is incorrect.
 b. This is incorrect.

7. b. This answer is correct.
 a. Green Sand molds use bonded sand.

8. a. This answer is correct.
 b. Even though the EPS castings have lost extra metal, this is not why they are called "lost foam".
 c. Some EPS castings have to be ground; therefore, this answer is incorrect.

9. b. This answer is correct.
 a. This is false information.
 c. This is not mentioned in the passage.
WHY EPS CASTINGS ARE BETTER

EPS castings have a very good surface finish. EPS castings have cleaner surfaces and cleaner inside spaces.

EPS casting have better detail and dimensional accuracy. Dimensions are the measurements of length, width, and thickness of a casting. EPS casting dimensions are easier to control than Green Sand.

EPS castings have fewer defects than Green Sand. Because EPS sand does not have binders and the patterns do not have cores, EPS castings do not have gas porosity defects. The unbonded sand keeps the EPS casting from having shrinkage defects.

EPS casting have a lower finishing cost. The castings do not have extra metal on them that has to be ground off. The castings do not require as much machining as Green Sand castings.

THE FUTURE OF EPS

Today Robinson is a leader in the EPS process. They make more grey iron castings by lost foam than any other independent foundry in the world. Foundry owners from 22 different countries have come to Alex. City to see the EPS process. The future looks bright.

ANSWER THESE QUESTIONS

DIRECTIONS

Fill in the blanks with words from the passage.

The first one is done for you.

1. EPS castings generally have better ______ surface ______ finish and have cleaner _______spaces.

2. Castings measurements of length, width, and thickness are called _______.

3. Cleaning room cost are _______ with EPS because extra _______ doesn't have to be ground off.

4. EPS castings don't have _______ _______ defects because the sand doesn't have binders.
5. Because EPS castings don't have cores, the castings do not have gas porosity ____________.

6. Because EPS sand is ______________, EPS castings do not have shrinkage defects.

7. EPS casting __________ are easier to control than Green Sand.

8. Robinson makes more "lost foam" castings than any other independent foundry in the ____________.

MATCH THE WORDS TO THEIR MEANING*

DIRECTIONS

Put the number of the word in front of the correct meaning.

1. glue __________ Holds the cluster for the iron pouring
2. dimension __________ Keeps iron from touching the sand
3. Receiving __________ another name for EPS
4. Lost Foam __________ groups of EPS patterns glued together
5. coating __________ Evaporated Polystyrene System
6. EPS __________ hot melt adhesive
7. EPS pattern __________ length, width, thickness of a casting
8. Robinson __________ They weigh EPS patterns
9. flask __________ Makes more EPS castings than anyone else
10. cluster __________ Made out of Expandable Polystyrene Beads

CHECK YOUR ANSWER ON THE NEXT PAGE
FILL IN THE BLANKS

1. surface, inside
2. dimensions
3. lower, metal
4. gas porosity
5. defects
6. unbonded
7. dimensions
8. world

MATCHING

9
5
4
10
6
1
2
3
8
7
You have completed the lesson.

Go on to the next page to retake the quiz you started this booklet, or go back and review the lesson before taking the quiz.
EPS--Quiz 2

DIRECTIONS

Circle the answer you think is correct.

1. What does EPS mean?
 a. Exothermic Polystyrene Styrofoam
 b. Expandable Process Styrofoam
 c. Evaporated Polystyrene System

2. How old is the "lost foam" process?
 a. over 3000 years old
 b. over 300 years old
 c. over 30 years old

3. What are EPS patterns made of?
 a. excess styrofoam
 b. expandable polystyrene beads
 c. iron, aluminum, plastic, or wood.

4. Which of the following is an important part of the foam assembler's job?
 a. Making a strong glue seam between the pattern and the gating.
 b. Making sure the pattern is completely covered by the coating.
 c. Setting the sprue correctly.

5. Why are EPS patterns dipped in a coating?
 a. To keep the styrofoam from melting.
 b. To eliminate mold wall movement.
 c. To keep the iron from touching the sand when the iron is poured.
6. Why is EPS called "Lost Foam"?
 a. Because EPS castings have fewer defects and have "lost" the need for grinding.
 b. Because the pattern evaporates when the molten iron hits it.
 c. Because EPS castings have "lost" the extra metal such as the parting line.

7. Why are EPS castings better than Green Sand?
 a. Tolerance bands are higher.
 b. Better dimensional accuracy
 c. Sand binders eliminate gas defects.

CHECK THE NEXT PAGE FOR THE CORRECT ANSWER TO THE QUIZ
1. c
2. c
3. b
4. a
5. c
6. b
7. b
WORD LIST

1. Pallet line
2. Shake-out
3. Castings
4. Sand
5. Core
6. Mold
7. Green Sand
8. EPS
9. Fins
10. Product
Frank works in the Pallet Line or green sand process. He works on shake-out line. All the castings come out of shake-out machine for Frank to remove excess sand. The core of castings also comes out of the machine. The sand holds together to form mold of casting. The green sand process is done through pallet line. The process uses sand other than foam like in EPS. Fins must be added to castings for finished product. The product must be done completely to be taken by the customer.

Circle the following words in the reading:

1. Pallet line
2. shake-out
3. castings
4. sand
5. core
6. mold
7. Green Sand
8. EPS
9. fins
10. product
Fill in missing words:

Frank works in the ___ ___ ___ ___ ___ ___ ___ . He works on ___ ___ ___ ___ ___ ___ . All the ___ ___ ___ ___ ___ ___ come out of ___ ___ ___ ___ ___ ___ machine for Frank to remove excess ___ ___ ___ . The ___ ___ ___ of ___ ___ ___ ___ ___ also comes out of machine. The ___ ___ ___ holds together to form ___ ___ ___ ___ ___ of ___ ___ ___ ___ ___ . The ___ ___ ___ ___ ___ ___ ___ process is done through ___ ___ ___ ___ ___ ___ . The process uses ___ ___ ___ other than foam as in ___ ___ . ___ ___ ___ ___ must be checked on ___ ___ ___ ___ ___ . The ___ ___ ___ ___ ___ must be done completely to be taken by the customer.
PREACTIVITY FOR A to Z

1. _______st
2. b______d
3. j k ______
4. x____ z
5. m n ______
6. ______f g
7. o p ______
8. h _____ j
9. p ____r
10. ______v w
11. a b ______
12. ______j k
13. d ____ f
14. ______x y
15. g h ______
16. s ____ u
17. n ____ p
18. e f ______
19. h i ______
20. t u ______

fn: Beth/alpha
PREACTIVITY FOR ALPHABETICAL ORDER

<table>
<thead>
<tr>
<th>1. FLASK</th>
<th>1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. ACCIDENT</td>
<td>2.</td>
</tr>
<tr>
<td>3. CORE</td>
<td>3.</td>
</tr>
<tr>
<td>4. SAND</td>
<td>4.</td>
</tr>
<tr>
<td>5. PATTERN</td>
<td>5.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. MOLD</th>
<th>1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. SLAG</td>
<td>2.</td>
</tr>
<tr>
<td>3. FIN</td>
<td>3.</td>
</tr>
<tr>
<td>4. EPS</td>
<td>4.</td>
</tr>
<tr>
<td>5. CASTING</td>
<td>5.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. DEFECT</th>
<th>1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. SCRAP</td>
<td>2.</td>
</tr>
<tr>
<td>3. BP</td>
<td>3.</td>
</tr>
<tr>
<td>4. SAFETY</td>
<td>4.</td>
</tr>
<tr>
<td>5. HAMMER</td>
<td>5.</td>
</tr>
</tbody>
</table>

FN: BETH\ALPHA2
FIND THE DEPARTMENTS ON THE MAP

1. Personnel and Lab
2. Supply
3. Cleaning Room
4. Shipping
5. Pattern Shop
6. Iron Melting
7. EPS
8. Green Sand
9. Disa
10. Core Room
11. Storage
12. Storage
13. Maintenance
14. Security
EPS WORD LIST

1. EPS
2. PROCESS
3. FOUNDRY
4. CASTING
5. FOAM
6. Poured
7. SAND
8. FLASK
9. IRON
10. DUMP
Quinton works in EPS at Robinson Foundry. EPS is the process in the Foundry that uses styrofoam to make castings. The foam is placed inside the flask. The sand is poured over the foam from an automatic sand dump. After the dump packs the sand, then the iron is poured through a sprue into the foam. The foam evaporates when iron is poured into the flask.

Circle these words in the reading:

1. EPS
2. process
3. Foundry
4. casting
5. foam
6. poured
7. sand
8. flask
9. iron
10. Quinton
11. dump
EPS READING

— — — — — — — works in — — —. — — — is the — — — — — in the — — — — — — that uses styrofoam to make — — — — — —. The — — — is placed inside the — — — —. The — — — is — — — — — over the — — — from an automatic — — — dump. After the — — — packs the — — — then the — — — is — — — — through a sprue into the — — —. The frame exaporates when the — — — is — — — — into the — — — — .

Fill in the following words:

1. EPS
2. process
3. Foundry
4. casting
5. foam
6. poured
7. sand
8. flask
9. iron
10. Quinton
11. dump
Fill in the missing letters:

P__
P__S
__S
E__

F__u__d__y
F____d__
__o__n__r__
__n d__
__d__

f__a__
f__m
__a__
__o__m
__a__

p__o__e__s
p__c__s
__c__s__
__c__
p__s

c__s__t__n__
c__t__g
__s__i__
__a__t__n__
c__a__g
__o__d
__r__
p__u__e__
p__r__

f__a__
fl__k
__l__s__
__a__k
__s__
__r__n
__o__
_i__
_r__
PREADIVITY FOR A to Z

1. ________st
2. b______d
3. j k ______
4. x______z
5. m n ______
6. ______fg
7. o p ______
8. h ____ j
9. p ____ r
10. ______vw
11. a b ______
12. ______jk
13. d _____ f
14. ______xy
15. g h ______
16. s _____ u
17. n _____ p
18. e f ______
19. h i ______
20. t u ______
Preactivity for Alphabetical Order

1. Flask	1. ___________
2. Accident	2. ___________
3. Core	3. ___________
4. Sand	4. ___________
5. Pattern	5. ___________

1. Mold	1. ___________
2. Slag	2. ___________
3. Fin	3. ___________
4. EPS	4. ___________
5. Casting	5. ___________

1. Defect	1. ___________
2. Scrap	2. ___________
3. BP	3. ___________
4. Safety	4. ___________
5. Hammer	5. ___________
EPS READING-2 WORD LIST

1. EPS
2. foam
3. department
4. pattern
5. sprue
6. sand
7. iron
8. cluster
9. flask
10. assembly
In EPS the styrofoam patterns are ordered from other companies. The patterns are delivered to assembly at Robinson Foundry. In assembly the pieces are glued together and then sent up to EPS department. In the department the foam is dipped in a mixture to keep the sand and foam separate. Then the foam is put in a cluster to place in the flask. A cone shaped foam piece called a sprue is glued to the cluster. The sprue is attached to the cluster before sand is dumped in the flask. After the sand is packed, then the iron is poured into the sprue and runs into the foam. The foam evaporates as soon as the hot iron hits it. The casting is formed by the pattern made in the sand.

Circle the following words in reading:

1. EPS
2. foam
3. department
4. pattern
5. sprue
6. sand
7. iron
8. cluster
9. flask
10. assembly
In ___ the styrofoam ___ are ordered from other companies. The ___ are delivered to ___ at Robinson Foundry. In ___ the pieces are glued together and then sent up to ___. In the ___ the ____ is dipped in a mixture to keep the ___ and ___ separate. Then the ___ is put in a ___ to place in the ____. A cone shaped ___ piece called a ___ is glued to the ___. The ___ is attached to the ___ before ___ is dumped in the ___. After the ___ is packed then the ___ is poured into the ___ and runs into the ___. The ___ evaporates as soon as the hot ___ hits it. The casting is formed by the ___ made in the ___.
Fill in the missing letters:

E__ __
__ P __
__ __ __
E P __
__ _ S
__ o _ m
f o __
__ _ a m
f __ a __
f __ m
__ e _ a _ t _ e _ t
d __ p _ r _ m _ n _
__ a _ n _ t
__ a __ e __
__ p _ t _ n t
__ t _ n
__ t _ r n
p _ t _ e _ n
p _ t _ __
__ t t _ n
s _ r _ e
s __ u __
__ r __
__ p _ u __
__ __ u __
__ n __
__ a _ d
__ n d
s a __
s __ d
a __ e m __
as __ b y
____ e __ l __
a __ s __ m __ l __
__ s __ b y
c l __ t __
__ u t __
__ l s __
c u t __ r
__ t __
PREADCTIVITY FOR A to Z

1. _______st
2. b______d
3. j k _____
4. x_____z
5. m n _____
6. _____f g
7. o p _____
8. h ____ j
9. p ____r
10. _____v w
11. a b _____
12. _____j k
13. d _____ f
14. _____x y
15. g h _____
16. s _____ u
17. n _____ p
18. e f _____
19. h i _____
20. t u _____
Preactivity for Alphabetical Order

<table>
<thead>
<tr>
<th>1. Flask</th>
<th>1. ____________</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Accident</td>
<td>2. ____________</td>
</tr>
<tr>
<td>3. Core</td>
<td>3. ____________</td>
</tr>
<tr>
<td>4. Sand</td>
<td>4. ____________</td>
</tr>
<tr>
<td>5. Pattern</td>
<td>5. ____________</td>
</tr>
<tr>
<td>6. Mold</td>
<td>1. ____________</td>
</tr>
<tr>
<td>7. Slag</td>
<td>2. ____________</td>
</tr>
<tr>
<td>8. Fin</td>
<td>3. ____________</td>
</tr>
<tr>
<td>9. EPS</td>
<td>4. ____________</td>
</tr>
<tr>
<td>10. Casting</td>
<td>5. ____________</td>
</tr>
<tr>
<td>11. Defect</td>
<td>1. ____________</td>
</tr>
<tr>
<td>12. Scrap</td>
<td>2. ____________</td>
</tr>
<tr>
<td>13. BP</td>
<td>3. ____________</td>
</tr>
<tr>
<td>14. Safety</td>
<td>4. ____________</td>
</tr>
<tr>
<td>15. Hammer</td>
<td>5. ____________</td>
</tr>
</tbody>
</table>
JOBS
A PARTNERSHIP BETWEEN EDUCATION AND INDUSTRY

CENTRAL ALABAMA COMMUNITY COLLEGE & ROBINSON FOUNDRY, INC.
1992

LESSON 10
GRINDING PRODUCTION SHEET

ROBERT E. STONE,
PROJECT DIRECTOR
205 234 6346 EXT 6217

WRITTEN BY:
SANDRA MANN,
INSTRUCTOR/COUNSELOR
205 329 8481 EXT 81
The **GRINDING PRODUCTION SHEET** is used in the Cleaning Room.

Grinders fill out this form to report the number of castings they have cleaned. The completed forms go to the office where the information is put into the computer.

Read the following pages to learn how to read and fill out a **GRINDING PRODUCTION SHEET**.

Ask your teacher for a blank **GRINDING PRODUCTION SHEET** to use while learning about this form.

Answer any questions on your paper.

DO NOT WRITE IN THIS BOOKLET
The orange lines tell information about the employee doing the work.

It is very important for the employee to write his or her full name so the office can put the information in the computer.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: ________________ SHIFT: ______ WORK CENTER: ____________

GRINDER(S): __
The GRINDING PRODUCTION SHEET is different from other productions sheets. It has only column headings. There are no row headings down the side.

Look at the column heading in pink. When a pallet full of castings is placed in front of a grinding station, the worker writes the casting number here.
GRINDING PRODUCTION

DATE: ____________________ **SHIFT:** ________ **WORK CENTER:** ________________

GRINDER(S): ________________

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look at TOT. GROUND in blue. TOT. stands for total. This column shows how many good castings on each pallet are cleaned, ground, and sent to the Finishing Department.

Look at TOT. SCRAP in green. TOT. stands for total. This column shows how many defects were found and set aside for Quality Control to inspect.
GRINDING PRODUCTION

DATE:

SHIFT:

WORK CENTER:

GRINDER(S):

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
</tbody>
</table>

| 4, 1 t | 4/P | RO | D0009:05 | 1 | 1 91 |

PM4/PROD0009:061191
The last two columns show how long it took the worker to grind each pallet of castings.

Look at TIME START in yellow. The worker writes the time he begins work on the pallet.

Look at TIME STOP in pink. The worker writes the time he finishes the pallet.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: __________________ SHIFT: _____ WORK CENTER: ____________
GRINDER(S): __________________
Do the exercises on the following pages to see how much you have learned about the GRINDING PRODUCTION SHEET.
GRINDING PRODUCTION SHEET

DIRECTIONS: Answer the following questions about the GRINDING PRODUCTION SHEET on the next page. Write your answers on your paper.

1. How many pallets did the worker complete for this day?
2. Which pallet had less than 5 castings ground?
3. Which pallet had the most scrap?
4. Which pallet had the least scrap?
5. Which pallet took the most time to grind?
6. Which pallet took the least time to grind?

CHECK YOUR ANSWERS ON THE NEXT PAGE.
GRINDING PRODUCTION

DATE: 1-20-92 **SHIFT:** 1 **WORK CENTER:**

GRINDER(S): Dexter Russell

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
<tr>
<td>346038</td>
<td>15</td>
<td>3</td>
<td>6:10</td>
</tr>
<tr>
<td>121-0028</td>
<td>22</td>
<td>4</td>
<td>8:10</td>
</tr>
<tr>
<td>32007-10-10</td>
<td>5</td>
<td>0</td>
<td>10:05</td>
</tr>
<tr>
<td>436038</td>
<td>2</td>
<td>1</td>
<td>12:10</td>
</tr>
<tr>
<td>09193-10-0</td>
<td>6</td>
<td>2</td>
<td>1:10</td>
</tr>
</tbody>
</table>
ANSWERS

1. 5 pallets
2. 32007-10-10
3. 121-0028
4. 32007-10-10
5. 09193-10-0
6. 436038
GRINDING PRODUCTION EXERCISE

DIRECTIONS: Fill out a GRINDING PRODUCTION SHEET for the following work.

The TOT SCRAP is not shown. You figure this by subtracting the number ground from the number on the pallet.

1. Beginning at 6:00, you work on 346038. You have 18 castings on your pallet. You grind 15 castings and finish at 6:48.

2. At 6:50, you work on 905866. You have 3 on your pallet. You get 3 ground by 7:14.

3. You begin work on 905978 at 7:30. You have 4 castings on your pallet. You get 4 done by 7:54.

4. Work on 095F1201 begins at 8:00. There are 13 castings on your pallet. 11 castings are ground. The castings are finished at 8:54.

5. At 9:10, you begin work on 122 castings of SD-6065. You grind 110 and finish at 10:00.

6. At 11:00, you begin on 121-0028. There are 31 castings on the pallet. You grind 22 castings and you finish the pallet at 12:42.

7. You begin work on 09234-10-0 at 12:45. There are 69 castings on your pallet. You grind 65 castings. This takes you until 2:03, the end of your shift.

DID YOU REMEMBER TO SUBTRACT TO FIND THE SCRAP TOTALS?

CHECK YOUR ANSWERS ON THE NEXT PAGE
The document is a table under the title "GRINDING PRODUCTION," detailing the production data for various items. Here is the table in markdown format:

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3460 38</td>
<td>15</td>
<td>6:00</td>
<td>6:48</td>
</tr>
<tr>
<td>9058 66</td>
<td>3</td>
<td>6:50</td>
<td>7:14</td>
</tr>
<tr>
<td>905978</td>
<td>4</td>
<td>7:30</td>
<td>7:54</td>
</tr>
<tr>
<td>09SF 1201</td>
<td>11</td>
<td>8:00</td>
<td>8:54</td>
</tr>
<tr>
<td>SD-6065</td>
<td>110</td>
<td>9:10</td>
<td>10:10</td>
</tr>
<tr>
<td>121-0028</td>
<td>22</td>
<td>11:00</td>
<td>12:42</td>
</tr>
<tr>
<td>09234-10-0</td>
<td>65</td>
<td>12:45</td>
<td>2:03</td>
</tr>
</tbody>
</table>

The table includes columns for the casting number, production details, time started, and time stopped for each entry.
CONGRATULATIONS!

You have learned how to read and fill out a GRINDING PRODUCTION SHEET.

If you have any questions, ask your teacher for help.
LESSON 11
BUILDING AND GROUNDS
BUILDING AND GROUNDS WORD LIST

1. Building
2. Grounds
3. Foundry
4. Trash
5. Cleans
6. Safety
7. Departments
8. Pallet Line
9. Core
10. EPS
11. Cleaning
12. Materials
Robert works on Building and Grounds at Robinson Foundry. He emptys trash and cleans departments. He must be careful and watch safety signs. He must do many tasks. He reports to his supervisor, Sam Huntley, who gives him orders for the day. He works in all departments, Pallet Line, Melt Deck, Core Room, Cleaning Room and EPS. He sometimes must go to special places in the Foundry to clean or put materials away.

Circle these words in the reading:

1. Building
2. Grounds
3. Foundry
4. trash
5. cleans
6. safety
7. departments
8. Pallet Line
9. Core
10. EPS
11. Cleaning
12. materials
Fill in the missing letters:

Robert works on B ___ ___ i ___ ___ and ___ ___ nds
at Robinson F___ ___ d ____ . He emptys ___ ___ ___ and
___ ___ ___ departments. He must be careful and watch
___ ___ ___ signs. He must do many tasks. He reports to his
supervisor, Sam Huntley, who gives him orders for the day. He
works in all ___ ___ ___ ___ ___ , P ___ ___ t
Line, Core Room, Cl___ ___ ___ Room and ___ _. He
sometimes must go to special places in the ___ ___ ___ ___
to ___ ___ ___ of put ___ ___ ___ ___ away.

WORD LIST:
1. Buildings
2. Grounds
3. Foundry
4. trash
5. cleans
6. safety
7. departments
8. Pallet Line
9. Cleaning
10. EPS
11. materials
FILL IN THE MISSING LETTERS:

B __ __ i g
B __ i d n __
B __ __ d __ g
__ __ ld __ ng
__ i __ i __

g __ o n s
__ __ und __
__ r u d __
gr __ __ d __
gro __ __

F __ __ d __
Fou __ __
__ __ n r y
F __ u d __ y
F __ ndry
__ r __
t r s __
__ __ a __
thr __ __
t __ r __ __

__ e __ __
c __ e n __
__ __ ans
cl __ ns
__ __ ans
s __ f ty
saf __ __
__ __ et __
__ a ety
s __ __ y
d __ p r m n s
__ __ __ __ ments
__ __ ar m __ __ s
__ __ art __ __ ts
dep __ __ a __ __ ts

P __ __ t Line
P __ l e __ i __
__ __ le __ Li __
__ __ ll __ L __ e
Pal __ __ Li __
BUILDING AND GROUNDS-READING

Fill in the missing letters:

c __ __
c __ r __
c __ re
c __ e
c __ __ e
__ __ __ e

E __ __
__ __ S
__ P __
__ PS
EP __

__ __ er __ l __
m __ t __ r __ a __ s
__ __ er __ l s
mat __ __ ials
m __ __ __ __ ls
PREACTIVITY FOR A to Z

1. _______st
2. b_____d
3. j k _____
4. x_____z
5. m n _____
6. ______fg
7. o p _____
8. h _____j
9. p - _____r
10. ______vw
11. a b _____
12. ______jk
13. d _____f
14. ______xy
15. g h _____
16. s _____u
17. n _____p
18. e f _____
19. h i _____
20. t u _____
PREADACTIVITY FOR ALPHABETICAL ORDER

<table>
<thead>
<tr>
<th>1. Flask</th>
<th>1. ____________</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Accident</td>
<td>2. ____________</td>
</tr>
<tr>
<td>3. Core</td>
<td>3. ____________</td>
</tr>
<tr>
<td>4. Sand</td>
<td>4. ____________</td>
</tr>
<tr>
<td>5. Pattern</td>
<td>5. ____________</td>
</tr>
<tr>
<td>1. Mold</td>
<td>1. ____________</td>
</tr>
<tr>
<td>2. Slag</td>
<td>2. ____________</td>
</tr>
<tr>
<td>3. Fin</td>
<td>3. ____________</td>
</tr>
<tr>
<td>4. EPS</td>
<td>4. ____________</td>
</tr>
<tr>
<td>5. Casting</td>
<td>5. ____________</td>
</tr>
<tr>
<td>1. Defect</td>
<td>1. ____________</td>
</tr>
<tr>
<td>2. Scrap</td>
<td>2. ____________</td>
</tr>
<tr>
<td>3. BP</td>
<td>3. ____________</td>
</tr>
<tr>
<td>4. Safety</td>
<td>4. ____________</td>
</tr>
<tr>
<td>5. Hammer</td>
<td>5. ____________</td>
</tr>
</tbody>
</table>
FIND THE DEPARTMENTS ON THE MAP

1. Personnel and Lab
2. Supply
3. Cleaning Room
4. Shipping
5. Pattern Shop
6. Iron Melting
7. EPS
8. Green Sand
9. Disa
10. Core Room
11. Storage
12. Storage
13. Maintenance
14. Security
The MOLDING PRODUCTION SHEET is used in Green Sand and in EPS. Read the following pages to learn how to read and fill out the MOLDING PRODUCTION SHEET.
The green boxes tell when the worker starts work and stops work in each hour. The yellow boxes show the hours of the shift from the 1st hour to the 9th hour.
<table>
<thead>
<tr>
<th>TIME</th>
<th>START</th>
<th>STOP</th>
<th>TOTAL</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>CLASS</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
</tr>
</tbody>
</table>

MOLDS
- GOOD
- PO
- S

DOWN TIME
- No
- Inch
- Mach
- Hot
- Sand
- Foam
- Other

COMMENTS
- NO CAUSE
- SUPERVISO'S COMMENTS & REQUIRED CORRECTIVE ACTION
 - A. SAVO
 - B. MACH.
 - C. PATTERN
 - D. OTHER

TOTAL
The pink box tells the machine being used.
MOLDING PRODUCTION

The blue box shows which casting number is molded in each hour.
MOLDING PRODUCTION

<table>
<thead>
<tr>
<th>DATE</th>
<th>SHIFT</th>
<th>MOLDING PRODUCTION</th>
</tr>
</thead>
</table>

TIME

<table>
<thead>
<tr>
<th>TIME</th>
<th>START</th>
<th>STOP</th>
<th>TOTAL</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>PO</th>
<th>CLASS</th>
<th>IRON</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
</tr>
</tbody>
</table>

DOWN TIME

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOTAL TIME</th>
</tr>
</thead>
</table>

COMMENTS

- *PO CAUSE*
- *SUPERVISORS COMMENTS & REQUIRED CORRECTIVE ACTION*

<table>
<thead>
<tr>
<th>& PO CAUSE</th>
<th>SUPERVISORS COMMENTS & REQUIRED CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SAWO</td>
<td></td>
</tr>
<tr>
<td>B. MACHINE</td>
<td></td>
</tr>
<tr>
<td>C. PATTERN</td>
<td></td>
</tr>
<tr>
<td>D. OTHER</td>
<td></td>
</tr>
</tbody>
</table>

3rd of
The orange box shows how many impressions are on the pattern.
<table>
<thead>
<tr>
<th>TIME MAIN</th>
<th>TIME STOP</th>
<th>TOTAL</th>
<th>MACH</th>
<th>CASTING NO.</th>
<th>IMPL.</th>
<th>MOLDS</th>
<th>GOOD</th>
<th>PO</th>
<th>IRON</th>
<th>CLASS</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:

- GOOD
- PO
- REWORK
- MOLD
- BATTERY
- D OTHER

SUPervisors COMMENTS & REQUIRED COURSIVE ACTION:

TOTAL

TOtAL

R Poor Cast

S Sand

P Pattern

M Melt

B Bin

D Debris

O Other

Notes:

- **Date:**
- **Shift:**
The green box shows how many GOOD molds were made in each hour.
<table>
<thead>
<tr>
<th>TIME START</th>
<th>TIME STOP</th>
<th>TOTAL TIME</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>CLASS</th>
<th>DEPTH</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
</tr>
</tbody>
</table>

PO CAUSE

SUPERVISORS COMMENTS & REQUIRED CORRECTIVE ACTION

A. SANDING
B. MACHINE
C. PATTERN
D. OTHER
The yellow box tells how many "PLUG-OFFS" or bad molds were made in each hour.

The * shows the reason for the plug-off.

The pink box shows the plug-off reason and the supervisor comments.
Molding Production

<table>
<thead>
<tr>
<th>TIME</th>
<th>TIME STOP</th>
<th>TOTAL TIME</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>CLASS</th>
<th>IRON</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
<th>No. Iron</th>
<th>Spec.</th>
<th>Mach.</th>
<th>No. Sand</th>
<th>No. Foam</th>
<th>Other</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Total

* PO CAUSE
SUPERVISOR'S COMMENTS & REQUIRED CORRECTIVE ACTION
A: SAND
B: MACHINE
C: PATTERN
D: OTHER
The blue box shows the class of iron poured for each casting number.
Molding Production

<table>
<thead>
<tr>
<th>MOLDING PRODUCTION</th>
<th>DATE</th>
<th>SHIFT</th>
</tr>
</thead>
</table>

Down Time

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOTAL TIME</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>CLASS</th>
<th>DEPTH</th>
<th>CHILL</th>
<th>TIME</th>
<th>TIME STOP</th>
<th>TOTAL TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOWN TIME</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>

Comments

- CAUSE:
 - SAND
 - MACHING
 - PATTERN
 - DESIGN

Supervisors' Comments & Required Corrective Action

- **SCORE:** 320
TOTAL CASTING NUMBER

The orange box is the total castings made from the 1st hour through the 4th hour.

The worker found this number by multiplying the number of impressions (the green number) times the number of good molds (the yellow number).

The worker added the totals for the first 4 hours of work and put the answer in the orange box.
Molding Production

<table>
<thead>
<tr>
<th>TIME</th>
<th>START</th>
<th>STOP</th>
<th>TOTAL</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>PO</th>
<th>CLASS</th>
<th>IRON</th>
<th>DEPT. OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL</th>
<th>No.</th>
<th>RAW</th>
<th>HOT</th>
<th>SAND</th>
<th>OTHER</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 x</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 x</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 x</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 x</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1:36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>PO CAUSE</th>
<th>SUPERVISORS COMMENTS & REQUIRED CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SAFETY</td>
<td></td>
</tr>
<tr>
<td>B. MACH.</td>
<td></td>
</tr>
<tr>
<td>C. PATTERN</td>
<td></td>
</tr>
<tr>
<td>D. OTHER</td>
<td></td>
</tr>
</tbody>
</table>

The form captures the production data for a given day, including time tracking, machine usage, mold quality, and comments for any issues or observations.
The pink box is the total castings made from the 5th hour through the 9th hour.

The worker found this number by multiplying the number of impressions (the blue number) times the good molds (the orange number).

The worker added the totals and put the answer in the pink box.
<table>
<thead>
<tr>
<th>TIME</th>
<th>TOTAL TIME</th>
<th>MACH</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>CLASS</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td></td>
</tr>
<tr>
<td>5th</td>
<td>1 x 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>1 x 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>2 x 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>3 x 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>1 x 73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS

- PO CAUSE: SUPERVISORS' COMMENTS & REQUIRED CORRECTIVE ACTION
- A: SAND
- B: MACHINE
- C: PATTERN
- D: OTHER

TODAY'S TOTAL:

- Machine Hours: 14
- Total Molds: 106
- Total Castings: 82
- Total Time: 300 minutes
The green box shows the total number of castings made for the day. The worker added the totals for the 4th hour (in orange) and for the 9th hours (in pink). He put the answer in the pink box.
ROBINSON MOLDING PRODUCTION

MOLDER

<table>
<thead>
<tr>
<th>TIME</th>
<th>TIME</th>
<th>TOTAL TIME</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>CLASS</th>
<th>IRON</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
<th>OTHER</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

- PO CAUSE
- SUPERVISORS COMMENTS & REQUIRED CORRECTIVE ACTION
 - A: SANO
 - B: MACHINE
 - C: PATTERN
 - D: OTHER
DOWN TIME

The yellow box shows the time a worker stops work.

The orange box shows the time a worker starts back to work.

The pink box shows the number of minutes the worker was not at work.
Molding Production Report

Molding Production

<table>
<thead>
<tr>
<th>Date</th>
<th>Shift</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Start</th>
<th>Stop</th>
<th>Total Time</th>
<th>Machine</th>
<th>Casting Number</th>
<th>Imp.</th>
<th>Molds</th>
<th>Good</th>
<th>PO</th>
<th>Imp.</th>
<th>Molds</th>
<th>Good</th>
<th>PO</th>
<th>Iron</th>
<th>Depth of Chill</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PO Cause</th>
<th>Supervisor's Comments & Required Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Sand</td>
<td></td>
</tr>
<tr>
<td>B: Machine</td>
<td></td>
</tr>
<tr>
<td>C: Pattern</td>
<td></td>
</tr>
<tr>
<td>D: Other</td>
<td></td>
</tr>
</tbody>
</table>

Down Time

<table>
<thead>
<tr>
<th>Time</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
<th>No.</th>
<th>Iron</th>
<th>Spec</th>
<th>Mach</th>
<th>Tool</th>
<th>Sand</th>
<th>Power</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Comments

- PO cause
- Supervisor's comments & required corrective action
 - A: Sand
 - B: Machine
 - C: Pattern
 - D: Other
The blue boxes show the reason for each of the down times.
| TIME | TIME | TOTAL | MACHINE | CASTING | IMP. | MOLDS | CLASS | DEPTH | TIME FROM | TIME TO | TOTAL | TIME | MACHINES | NO. | IRON | PO | CHILL | TIME FROM | TIME TO | TOTAL | NO. | IRON | PO | CHILL | TIME FROM | TIME TO | TOTAL | NO. | IRON | PO | CHILL | TIME FROM | TIME TO | TOTAL | NO. | IRON | PO | CHILL | TIME FROM | TIME TO | TOTAL | NO. | IRON | PO | CHILL | TIME FROM | TIME TO | TOTAL | NO. | IRON | PO | CHILL |
|------------|------------|---------|---------|---------|------|-------|-------|-------|-----------|---------|---------|-----------|----------|-----|------|---|-------|-----------|---------|---------|-----|------|---|-------|-----------|---------|---------|-----|------|---|-------|-----------|---------|---------|-----|------|---|-------|-----------|---------|---------|-----|------|---|-------|-----------|---------|---------|-----|------|---|-------|-----------|---------|---------|
| 1st Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2nd Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3rd Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4th Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5th Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6th Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7th Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8th Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9th Hour | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| TOT | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
The green box is a place for the worker to write a reason for any

down time that is not listed in the blue boxes.
<table>
<thead>
<tr>
<th>TIME START</th>
<th>TIME STOP</th>
<th>TOTAL TIME</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>MOLDS</th>
<th>GOOD</th>
<th>PO</th>
<th>#</th>
<th>CLASS</th>
<th>IRON</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
</tr>
<tr>
<td>TOT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NO PO CAUSE</th>
<th>SUPERVISOR'S COMMENTS & REQUIRED CORRECTIVE ACTIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. MACHINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. PATTERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMENTS</th>
<th></th>
</tr>
</thead>
</table>

Date: ____________ Shift: ____________
Do the exercise on the next 2 pages to see how well you have learned to read the MOLDING PRODUCTION SHEET.

Write your answers on your paper. Do not write in this booklet.
MOLDING PRODUCTION SHEET

DIRECTIONS: Answer the following questions about the MOLDING PRODUCTION SHEET filled out by George Smith on 5-15-91.

1. Which CASTING NUMBER has the most IMPRESSIONS on the pattern plate?
2. Which CASTING NUMBERS have the least IMPRESSIONS on the pattern plate?
3. In which hour were the most MOLDS made? How many castings were made in this hour?
4. In which hour were the least amount of MOLDS made? How many castings were made in this hour?
5. Which hour had the most PO? What was the cause?
6. Why was the work stopped at the following times?
 - 4:30
 - 7:05
 - 10:13
 - 11:05
7. What was the total DOWN TIME?
8. How many castings were made during the following hours?
 - 1st Hour
 - 2nd Hour
 - 3rd Hour
 - 5th Hour
 - 6th Hour
 - 7th Hour

TURN THE PAGE AND CHECK YOUR ANSWERS
<table>
<thead>
<tr>
<th>TIME START</th>
<th>TIME STOP</th>
<th>TOTAL TIME</th>
<th>MACHINE</th>
<th>CASTING NUMBER</th>
<th>IMP.</th>
<th>GOOD</th>
<th>PO</th>
<th>MOLDS CLASS</th>
<th>DEPTH OF CHILL</th>
<th>TIME FROM</th>
<th>TIME TO</th>
<th>TOTAL TIME</th>
<th>NO. REASON</th>
<th>NO. SPEC.</th>
<th>NO. MACH.</th>
<th>NO. SAND</th>
<th>NO. FLOW</th>
<th>CLEAR</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00</td>
<td>4:12</td>
<td>2:12</td>
<td>Hunter</td>
<td>R-1543</td>
<td>2</td>
<td>7</td>
<td></td>
<td>30A</td>
<td></td>
<td>4:12</td>
<td>4:22</td>
<td>4:22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lab running a sample</td>
</tr>
<tr>
<td>5:00</td>
<td>5:05</td>
<td>0:05</td>
<td></td>
<td>63197787</td>
<td>1</td>
<td>25</td>
<td>8</td>
<td>A II</td>
<td></td>
<td>5:05</td>
<td>5:10</td>
<td>5:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pattern change</td>
</tr>
<tr>
<td>6:00</td>
<td>7:05</td>
<td>1:05</td>
<td></td>
<td>901621</td>
<td>1</td>
<td>100</td>
<td>5</td>
<td>D II</td>
<td></td>
<td>8:05</td>
<td>8:10</td>
<td>8:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pattern change</td>
</tr>
<tr>
<td>7:00</td>
<td>8:05</td>
<td>1:05</td>
<td></td>
<td>300333</td>
<td>3</td>
<td>91</td>
<td>6</td>
<td>C II</td>
<td></td>
<td>10:10</td>
<td>10:25</td>
<td>10:25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pattern change</td>
</tr>
<tr>
<td>8:00</td>
<td>9:00</td>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td>11:05</td>
<td>11:50</td>
<td>11:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Working on a pattern</td>
</tr>
<tr>
<td>9:00</td>
<td>10:00</td>
<td>1:00</td>
<td></td>
<td>63196003</td>
<td>2</td>
<td>96</td>
<td>6</td>
<td>D II</td>
<td></td>
<td>11:00</td>
<td>12:00</td>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>11:00</td>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>86</td>
<td></td>
<td></td>
<td>11:00</td>
<td>12:00</td>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>12:00</td>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>15</td>
<td>7</td>
<td>C II</td>
<td></td>
<td>11:00</td>
<td>12:00</td>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
</tr>
</tbody>
</table>

| TOT | 8:36 | | | | | | | | | | | | | | | | | | |

| TOT | 5:40 | | | | | | | | | | | | | | | | | | |

PO Cause | Supervisors Comments & Required Corrective Action | 133

A: Savo
B: Material
C: Pattern
D: Other
ANSWERS

1. 300333
2. 63197787
3. The 3rd hour; 100
4. The 1st hour; 14
5. The 2nd hour; A (sand)
6. 4:30 no iron
 7:04 pattern change
 10:13 Electric Bull down
 11:05 working on pattern
7. 54
8. 1st hour: 14
 2nd hour: 25
 3rd hour: 100
 5th hour: 30
 6th hour: 192
 7th hour: 172
Now that you know how to read a MOLDING PRODUCTION FORM, do the exercise on the next 2 pages.

Ask your teacher for a blank MOLDING PRODUCTION FORM to use for the exercise.

Check your answers by the answer key at the end of the book.
THE MOLDING PRODUCTION SHEET

DIRECTIONS: Fill in a production sheet with the following information about each job.

Use your own name, your shift, and today's date.

THE FIRST JOB

You start work at 4:00. You work on the Hunter today. The first job is on CASTING NUMBER 901504. This casting has 2 impressions. This casting is made with 25 CLASS IRON.

Fill in the rest of the sheet using the following information:

1st hour: GOOD MOLDS: 25 PO: 0 PO CAUSE: 0
2nd hour: GOOD MOLDS: 30 PO: 0 PO CAUSE: 0
3rd hour: GOOD MOLDS: 10 PO: 15 PO CAUSE: A

THE SECOND JOB

You start work on the second job at 7:00. This job is on CASTING NUMBER 40162P. This casting has 5 impressions. This casting is poured with 30-A CLASS IRON.

Fill in the rest of the sheet using the following information:

4th hour: GOOD MOLDS: 55 PO: 0 PO CAUSE: 0
5th hour: LUNCH
6th hour: GOOD MOLDS: 25 PO: 13 PO CAUSE: B
THE THIRD JOB

You start work on the third job at 12:00 noon. This job is on CASTING NUMBER R-153-E. This casting has 1 impression. This casting is poured with 25 CLASS IRON.

Fill in the rest of the sheet using the following information:

7th hour: GOOD MOLDS: 85 PO: 0 PO CAUSE: 0
8th hour: GOOD MOLDS: 95 PO: 0 PO CAUSE: 0
9th hour: GOOD MOLDS: 75 PO: 22 PO CAUSE: C

TOTALS

Add up the total molds through the 4th hour. Add up the total molds from the 6th hour through the 9th hour. Add up the total for the day's production.

DOWN TIME

DIRECTIONS: Fill out the DOWN TIME side with the following information:

5:05 to 5:22 NO IRON
6:15 to 6:45 DRY SAND
10:36 to 10:55 ELECTRIC BULL DOWN
11:11 to 11:35 WORKING ON PATTERN

TOTALS

Add up the TOTAL TIME for each DOWN TIME.
Molding Production

<table>
<thead>
<tr>
<th>Time Start</th>
<th>Time Stop</th>
<th>Total Time</th>
<th>Machine</th>
<th>Casting Number</th>
<th>Imp.</th>
<th>Molds</th>
<th>Class Iron</th>
<th>Depth of Chill</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00</td>
<td>5:00</td>
<td></td>
<td>Hunter</td>
<td>901504</td>
<td>2 x</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>6:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>7:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
<td>5 x</td>
<td>55</td>
<td>30A</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td>5 x</td>
<td>25</td>
<td>13B</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>11:00</td>
<td></td>
<td>R-153-E</td>
<td>1 x 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td>1 x</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td>1 x</td>
<td>75</td>
<td>22C</td>
<td></td>
</tr>
</tbody>
</table>

Down Time

<table>
<thead>
<tr>
<th>Time From</th>
<th>Time To</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:05:55</td>
<td>4:22</td>
<td>17</td>
</tr>
<tr>
<td>6:15:45</td>
<td>7:30</td>
<td>30</td>
</tr>
<tr>
<td>10:36:10</td>
<td>11:56</td>
<td>19</td>
</tr>
<tr>
<td>11:11:35</td>
<td>12:24</td>
<td>24</td>
</tr>
</tbody>
</table>

Comments

- Dry Sand
- Electric Bell Down
- Working on Pattern

Molds

- Good: x
- Poor:
- Iron:
- Sand:
- Coolant:

Comments

- PO Cause
- Super-Inspection
- Corrective Action

Totals

<table>
<thead>
<tr>
<th>Imp. GOOD</th>
<th>Imp. PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>785</td>
</tr>
</tbody>
</table>

Tot 90
CONGRATULATIONS!

You have learned how to read and fill out the MOLDING PRODUCTION SHEET.
If you have any questions, ask your teacher for help.
OCCUPATIONAL FORMS USED AT ROBINSON

To be a successful worker, you need to know how to read and understand occupational forms such as charts, graphs, tables, and forms. Robinson Foundry uses many different kinds of occupational forms every day. Charts, graphs, tables, and forms are used to record and store information about the work Robinson employees do each day.

It is important for you to know how to read and understand any occupational form that is used in your department. You also need to know how to write information on these forms.
Many occupational forms used at Robinson are in the form of a CHART.

A CHART is a way to show facts and figures so that you can see the information easily.

Look at the CHARTS on the next 6 pages to learn how to read occupational charts.
The blue boxes tell what is written in the boxes down below them.
<table>
<thead>
<tr>
<th>Time</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp./Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The pink boxes tell what is written in the rows *across* to the right.
<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp./Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look at the orange box where the two lines meet.
This shows how many pieces were made in the 5th hour.
<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box x</th>
<th>Machine Cylces = Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Now that you know how to read a CHART, do the exercises on the next two pages.

Write your answers on your paper. Do not write in this booklet.
SHELL CORE PRODUCTION SHEET

Look at the SHELL CORE PRODUCTION SHEET on the next page. Answer the questions about that sheet. Write the answers on your paper.

1. What is the CORE I.D. NO. for the work done in the 5th hour?
2. How many PIECES were made in the 8th hour?
3. How many PIECES SCRAP were made in the 7th hour?
4. Jack went to lunch in the _______ hour.
5. The machine broke down in the _______ hour.
6. What is the CORE DESCRIPTION for the 1st hour?
7. What is the CORE WEIGHT for the 4th hour?
8. Core I.D. No. 1202963 has _______ IMPRESSIONS.
9. How many MACHINE CYCLES were run in the 2nd hour?
Shell Core Production

Date: __________
Shift: __________
Name: ______________
Machine No.: __________

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cylces</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td>4:10 - 5:00</td>
<td>5260260</td>
<td>Sump Pot</td>
<td>5lbs</td>
<td>1</td>
<td>38</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>2nd Hour</td>
<td>5:00 - 6:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>37</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>3rd Hour</td>
<td>6:00 - 7:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>35</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>4th Hour</td>
<td>7:00 - 8:00</td>
<td>6321</td>
<td>Main Body</td>
<td>5.2lbs</td>
<td>1</td>
<td>42</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>5th Hour</td>
<td>8:00 - 9:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>21</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>6th Hour</td>
<td>9:00 - 10:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>41</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>7th Hour</td>
<td>10:00 - 11:00</td>
<td>1202963</td>
<td>Main Body</td>
<td>5lbs</td>
<td>2</td>
<td>40</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>8th Hour</td>
<td>11:00 - 12:00</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>23</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>9th Hour</td>
<td>12:00 - 1:00</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>39</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

PM4/PROD0005
Now that you know how to read a CHART, let's learn how to fill out to a SHELL CORE PRODUCTION SHEET.

Get a blank SHELL CORE PRODUCTION SHEET from your teacher.

Turn the page to see how you fill out this form.
Look at the blank lines. This is the place for the DATE, the SHIFT, the FULL NAME, and the Shell Core MACHINE NUMBER.

If you do not put your FULL NAME on the line, the computer will not give you credit for your work.

Fill in your practice sheet with the following:

DATE: put today's date
SHIFT: 1ST
NAME: write your own name
MACHINE NO.: 400
SHELL CORE PRODUCTION

Table of Production Data

<table>
<thead>
<tr>
<th>Time</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look at the blue box. This shows the time work begins and ends for each hour. The numbers show how this column should be filled in for the first shift.

Copy the numbers on your practice sheet.
SHELL CORE PRODUCTION

Date: __________ Shift: __________ Name: ____________________________ Machine No.: __________

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td>4:00 - 5:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td>5:00 - 6:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td>6:00 - 7:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td>7:00 - 8:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td>8:00 - 9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td>9:00 - 10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td>10:00 - 11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td>11:00 - 12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td>12:00 - 1:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The orange numbers are the CORE I.D. NO.

The green words are the CORE DESCRIPTIONS.

These numbers and words are always filled in by the leadman.

Copy them on your practice sheet.
SHELL CORE PRODUCTION

Date:

Shift:

Name:

Machine No.:

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cylces</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td>525'1697</td>
<td>Glue-In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td>12735'75</td>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td>5263'102</td>
<td>Stick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The yellow box shows the CORE WEIGHT.

The worker weighs the first core he makes and writes the amount in this column.

Put these core weights on your practice sheet:

1st hour: 9.5 lbs.
2nd hour: "
3rd hour: "
4th hour: 1.5 lbs.
5th hour: "
6th hour: "
7th hour: 3 lbs.
8th hour: "
9th hour: "
SHELL CORE PRODUCTION

<table>
<thead>
<tr>
<th>Time</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cylces</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:
Shift:
Name:
Machine No.:

Date:
Shift:
Name:
Machine No.:

PM4/PROD0005
The pink box shows the number of IMPRESSIONS in the core box.

Put these IMPRESSIONS on your practice sheet:

1st hour: 1
2nd hour: 1
3rd hour: 1
4th hour: 2
5th hour: 2
6th hour: 2
7th hour: 1
8th hour: 1
9th hour: 1
SHELL CORE PRODUCTION

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date: _______ Shift: _______ Name: _______________________________ Machine No.: ____________
The blue box shows the number of MACHINE CYCLES.

The worker writes how many times he runs his machine a full cycle and makes one or more cores.

Put these MACHINE CYCLES on your practice sheet:

1st hour: 35
2nd hour: 34
3rd hour: 32
4th hour: 67
5th hour: 34
6th hour: 60
7th hour: 25
8th hour: 35
9th hour: 31
SHELL CORE PRODUCTION

Date: __________ Shift: __________ Name: ___ Machine No.: __________

<table>
<thead>
<tr>
<th>Time</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The green box shows the number of PIECES MADE in each hour. The worker multiplies the orange numbers under IMP/BOX times the blue numbers under MACHINE CYCLES. He writes the answer in the yellow box under PIECES MADE. The 1st hour and the 4th hour are filled in to show you how to do this. Fill in the rest of the PIECES MADE column on your practice sheet.
<table>
<thead>
<tr>
<th>Time</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Weight</th>
<th>Imp/Bx</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Scrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td>35</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Machine No.: 74
The pink box shows the number of PIECES SCRAP.

At the end of each hour the worker writes the number of scrap pieces he made.

Put these SCRAP numbers on your practice sheet:

- 1st hour: 0
- 2nd hour: 1
- 3rd hour: 3
- 4th hour: 10
- 5th hour: 4
- 6th hour: 6
- 7th hour: 0
- 8th hour: 0
- 9th hour: 0
SHELL CORE PRODUCTION

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box x</th>
<th>Machine Cylces</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The blue box shows the DOWN TIMES.

The worker writes in the amount of time he is not running his machine. He also writes the reason for the DOWN TIME. The first DOWN TIME is filled in to show you how to do this.

Put these DOWN TIMES on your practice sheet:

5th hour: 30 min lunch
7th hour: 15 min power off

TURN THE PAGE TO SEE IF YOUR PRACTICE SHEET IS CORRECT.
SHELL CORE PRODUCTION

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box x</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 min Break</td>
</tr>
<tr>
<td>4th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHELL CORE PRODUCTION

<table>
<thead>
<tr>
<th>Date:</th>
<th>Shift:</th>
<th>Name:</th>
<th>Machine No.: 400</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour 4:00-5:00</td>
<td>5257697</td>
<td>Glue In</td>
<td>9.5 lbs</td>
<td>1</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2nd Hour 5:00-6:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>34</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3rd Hour 6:00-7:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>32</td>
<td>32</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4th Hour 7:00-8:00</td>
<td>1273575</td>
<td>Body</td>
<td>1.5 lbs</td>
<td>2</td>
<td>67</td>
<td>134</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5th Hour 8:00-9:00</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>34</td>
<td>68</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6th Hour 9:00-10:00</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>60</td>
<td>120</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7th Hour 10:00-11:00</td>
<td>5263702</td>
<td>Stick</td>
<td>3 lbs</td>
<td>1</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8th Hour 11:00-12:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>35</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9th Hour 12:00-1:00</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>31</td>
<td>31</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hours: 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th
Get another blank *Shell Core Production Sheet*.

Turn the page and read about another day in the career of Jack Doss.

Fill in your blank sheet with Jack's work. If you need to, look back in the booklet for help in doing this exercise.
1st Hour through 3rd Hour

START WITH THE 1ST HOUR AND PUT THESE NUMBERS ON THE SHEET: Jack starts work at 5:00 on a 400 machine. The first job is Core I.D. No. 5267997. The leadman tells Jack to write "Body" under the description. The core weighs 4.02 pounds. The core box has 1 impression.

<table>
<thead>
<tr>
<th>Hour</th>
<th>Machine cycles</th>
<th>Scrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>2nd</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>3rd</td>
<td>23</td>
<td>0</td>
</tr>
</tbody>
</table>

4th Hour through 6th Hour

START WITH THE 4TH HOUR AND PUT THESE NUMBERS ON THE SHEET: The 4th hour starts with a "body" core with the I.D. No. of 1273574/01. The core box has 2 impressions. It weighs 1.5 pounds.

<table>
<thead>
<tr>
<th>Hour</th>
<th>Machine cycles</th>
<th>Scrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>5th</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>6th</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>

7th Hour through 9th Hour

START WITH THE 7TH HOUR AND PUT THESE NUMBERS ON THE SHEET: The 7th hour starts with a Body core with the I.D. No. 5253741/01. The core weights 30 pounds. There is 1 impression in the core box.

<table>
<thead>
<tr>
<th>Hour</th>
<th>Machine cycles</th>
<th>Scrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>7th</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>8th</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>9th</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>
DID YOU REMEMBER TO MULTIPLY THE IMPRESSIONS TIMES THE CYCLES TO FIND THE NUMBER OF PIECES MADE?

Down Time

Jack had the following Down Times. Put these times on the sheet.

7:15 to 7:25...10 minute break
10:00 to 10:30...30 minute lunch
12:07 to 12:23...16 minute power off

LOOK AT THE NEXT PAGE AND SEE IF YOUR SHEET IS CORRECT!
SHELL CORE PRODUCTION

<table>
<thead>
<tr>
<th>Time From - To</th>
<th>Core I.D. No.</th>
<th>Core Description</th>
<th>Core Weight</th>
<th>Imp/Box</th>
<th>Machine Cycles</th>
<th>Pieces Made</th>
<th>Pieces Scrap</th>
<th>Down Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hour</td>
<td>5:00 - 6:00</td>
<td>5267997</td>
<td>Body</td>
<td>4.00 lbs</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>2nd Hour</td>
<td>6:00 - 7:00</td>
<td>"</td>
<td>"</td>
<td>1</td>
<td>23</td>
<td>23</td>
<td>0</td>
<td>"</td>
</tr>
<tr>
<td>3rd Hour</td>
<td>7:00 - 8:00</td>
<td>"</td>
<td>"</td>
<td>1</td>
<td>23</td>
<td>23</td>
<td>0</td>
<td>10 min Break</td>
</tr>
<tr>
<td>4th Hour</td>
<td>8:00 - 9:00</td>
<td>1273574/01</td>
<td>Body</td>
<td>1.5 lbs</td>
<td>2</td>
<td>67</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>5th Hour</td>
<td>9:00 - 10:00</td>
<td>"</td>
<td>"</td>
<td>2</td>
<td>65</td>
<td>130</td>
<td>4</td>
<td>"</td>
</tr>
<tr>
<td>6th Hour</td>
<td>10:00 - 11:00</td>
<td>"</td>
<td>"</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>5</td>
<td>30 min Lunch</td>
</tr>
<tr>
<td>7th Hour</td>
<td>11:00 - 12:00</td>
<td>5253741/01</td>
<td>Body</td>
<td>30 lbs</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>8th Hour</td>
<td>12:00 - 1:00</td>
<td>"</td>
<td>"</td>
<td>1</td>
<td>21</td>
<td>21</td>
<td>3</td>
<td>16 min Power Off</td>
</tr>
<tr>
<td>9th Hour</td>
<td>1:00 - 2:00</td>
<td>"</td>
<td>"</td>
<td>1</td>
<td>18</td>
<td>18</td>
<td>5</td>
<td>"</td>
</tr>
</tbody>
</table>
CONGRATULATIONS!

You have learned how to read and fill out one of the OCCUPATIONAL FORMS used at Robinson Foundry.

If you have any further questions, ask your teacher.
LESSON 14
GRINDING PRODUCTION SHEET

ROBERT E. STONE,
PROJECT DIRECTOR
205 234 6346 EXT 6217

WRITTEN BY:
BETH MAXWELL,
INSTRUCTOR
205 329 8481 EXT 81
GRINDING PRODUCTION SHEET

The grinding production sheet is used in the cleaning room to keep a count of pieces ground. It is important to the worker to keep up with each number every hour.

In this booklet we are going to attempt to learn to find the parts of a grinding production sheet. The worker will learn to find the part by first coloring the part, next he will learn to fill in the part of the sheet.

Turn to the next page to learn about the first part of the grinding production sheet.
The Date is placed at the top of the grinding production sheet. Color Date blue.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill in the date on each of the following sheets:

1. Date: 3/13/92
2. Date: 1/11/92
3. Date: 2/10/92
4. Date 1/17/92
GRINDING PRODUCTION

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The shift is placed at the top of each sheet.

Color the shift red:
GRINDING PRODUCTION

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill the shift in for each sheet:

1. Shift: 1st
2. Shift: 2nd
3. Shift: 3rd
4. Shift: 2nd
GRINDING PRODUCTION

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
</tbody>
</table>

DATE: ______________________ SHIFT: __________ WORK CENTER: __________ GRINDER(S): ______________________
In the cleaning room there are different areas for each grinders. These are called work centers. Color work center on the sheets-yellow.
GRINDING PRODUCTION

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE:

SHIFT:

WORK CENTER:

GRINDER(S):
Also in the cleaning room there are many different kinds of grinders. Look at the top of the sheet and color the word grinders-purple.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

453
In working with castings, all castings have a number. The numbers are marked somewhere on the casting. Color column marked casting number-black.

Now fill in the following casting numbers on the other sheet:

1. 56044
2. 40424
3. 24816
4. 06F141000
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM 4/10</td>
<td>RO 00039/061</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ToT. ground means the total number of castings that grinder grinds. Color ToT. ground on your sheet-green.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On each line under ToT. ground the grinder writes the number ground of that casting number. Please fill in on each line each of the following numbers:

1. 525
2. 200
3. 100
4. 225
Tot. scrap means number that was no good in Tot. ground. These must be remelted. Color Tot. scrap column on the following sheet-orange.
GRINDING PRODUCTION

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: ____________ | **SHIFT:** _______ | **WORK CENTER:** ____________

GRINDER(S): ____________
On each line under Tot. scrap are filled in the number
of scrap the grinder finds each casting number. Please fill in
each number on each line under Tot. scrap:

1. 10
2. 25
3. 40
4. 60
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All time on sheets must be kept. Time start means the time you begin to work on each casting. Color Time start column-pink.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE: ____________________ SHIFT: ______ WORK CENTER: ____________________

GRINDER(S): ____________________
On each line under Time start the grinder is to place the time he begins to work on each casting. On each line under Time start please fill in the following times:

1. 4:00 A.M.
2. 5:00 A.M.
3. 6:00 A.M.
4. 8:00 A.M.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Time stop means the time the grinder stops has grinding on a certain casting number. Color time stop column-brown.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>TOT. SCRAP</td>
<td></td>
</tr>
</tbody>
</table>
On each line under Time stop each grinder must place the time he stops. Please fill in the following times on each line:

1. 5:00 A.M.
2. 6:00 A.M.
3. 7:00 A.M.
4. 9:30 A.M.
<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME START</th>
<th>TIME STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRINDING PRODUCTION

DATE:

SHIFT:

WORK CENTER:

GRINDER(S):
Now let's try filling out all the material on the grinding production sheet. Fill in the following items on the sheet:

1. For casting number 09SF1112, fill in total amount ground 85 with total scrap of 18. The grinder started grinding at 5:00 A.M. and stopped at 6:15 A.M. Fill in the grinding production sheet.

2. Casting number 08EG2233 was started at 9:00 A.M. and stopped at 10:15 A.M. There were 35 ground and 8 scraped. Fill in the grinding production sheet.
GRINDING PRODUCTION

Form Details
- **DATE:**
- **SHIFT:**
- **WORK CENTER:**
- **GRINDER(S):**

Table

<table>
<thead>
<tr>
<th>CASTING NUMBER</th>
<th>PRODUCTION</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOT. GROUND</td>
<td>START</td>
<td>STOP</td>
</tr>
<tr>
<td></td>
<td>TOT. SCRAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents in this Learning Package

RF Vocabulary (for early readers)

1. Pretest

Trainee is given list of pairs of words. Instructor reads one word of each pair, which the trainee is to circle.

2. Hear-and-see exercise

Trainee listens to an audio tape which reads the list of vocabulary words, and then reads sentences using the vocabulary words. Trainee 'reads along' on with cards.

(Trainee is given list of vocabulary words to take home.)

3. Alphabetizing exercise (trainee can refer to master list of vocabulary words)

Trainee draws lines to show correct alphabetical order of a printed list of vocabulary words.

4. Matching exercises

a. Trainee draws line from each vocabulary word to its match, choosing from a pair of words in each case.

b. Same as 4a, but more difficult because of similarity of paired words.

5. Underlining exercises

a. Trainee underlines the vocabulary words in familiar sentences.

b. Same as 5a, but more difficult because sentences are mixed up.

6. Fill-in-the-blank exercises

a. Trainee fills in vocabulary words which have been left out of familiar sentences.

b. Same as 6a, but more difficult because sentences are mixed up.
7. Narrative exercises (after listening to audio tape)
 a. Trainee finds and circles vocabulary words in narrative paragraphs.
 b. Trainee fills in vocabulary words in cloze exercise.
 c. Trainee answers multiple choice questions based.

8. Post test (same as pre test)
Pre test and Post test

ant

1. Alex City

boy

2. BP Machine

Coca Cola

core

3. Dadaville

DANGER

5. elephant

EPS

foundry

6. football

green

7. green sand

heat

8. Hardee's

IRS

9. iron

July

10. January
11. K-Mart
 Kentucky Fried Chicken

12. lost
13. lost foam
 McDonald's
 mold
 No Smoking Area
14. N Street
15. OK
16. October
 pay check
17. pattern
18. quality control
19. quiet zone
 Robinson - Bodine
 Robinson Foundry
20. STOP
21. Saturday
22. telephone
23. taxes
B Street
21. U Street
22. V-8 engine
vegetables
Wal-Mart
23. wildcats
x-ray
24. x-rated movie
you
25. yes
zebra
26. zero
2. Vocabulary List

<table>
<thead>
<tr>
<th>Letter</th>
<th>Word</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alex City</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>BP machine</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>core</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>DANGER</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>EPS</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>foundry</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>green sand</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>heat</td>
<td>8</td>
</tr>
<tr>
<td>I</td>
<td>iron</td>
<td>9</td>
</tr>
<tr>
<td>J</td>
<td>July</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>Kentucky Fried Chicken</td>
<td>11</td>
</tr>
<tr>
<td>L</td>
<td>lost foam</td>
<td>12</td>
</tr>
<tr>
<td>M</td>
<td>McDonald's</td>
<td>13</td>
</tr>
<tr>
<td>N</td>
<td>No Smoking Area</td>
<td>14</td>
</tr>
<tr>
<td>O</td>
<td>OK</td>
<td>15</td>
</tr>
<tr>
<td>P</td>
<td>pattern</td>
<td>16</td>
</tr>
<tr>
<td>Q</td>
<td>quality control</td>
<td>17</td>
</tr>
<tr>
<td>R</td>
<td>Robinson Foundry</td>
<td>18</td>
</tr>
<tr>
<td>S</td>
<td>STOP</td>
<td>17</td>
</tr>
<tr>
<td>T</td>
<td>taxes</td>
<td>20</td>
</tr>
<tr>
<td>U</td>
<td>U Street</td>
<td>21</td>
</tr>
<tr>
<td>V</td>
<td>V-8 engine</td>
<td>22</td>
</tr>
<tr>
<td>W</td>
<td>Wal-Mart</td>
<td>23</td>
</tr>
<tr>
<td>X</td>
<td>x-ray</td>
<td>24</td>
</tr>
<tr>
<td>Y</td>
<td>you</td>
<td>25</td>
</tr>
<tr>
<td>Z</td>
<td>zero</td>
<td>26</td>
</tr>
</tbody>
</table>
2. Sentences Using Vocabulary Words

I live in Alex City.
I work on the BP Machine.
Run a core on this job.

The sign says 'Danger'.
I work in the EPS Department.
I work in a foundry.

I work on the Green Sand line.
We heat the iron.
We heat the iron.

We eat fried chicken on July 4th.
We eat Kentucky Fried Chicken on July 4th.
I work on the lost foam process.

We eat at McDonald's.
McDonald's has a No Smoking Area.
It's OK to smoke in the parking lot.

The pattern number is 346036.
I work in the Quality Control Department.
I work at Robinson Foundry.

The sign says 'STOP'.
You can't stop taxes.
The sign says 'U Street'.

That Ford has a V-8 engine.
That Ford is parked outside Wal-Mart.
Get an X-ray at the Alex City Hospital.

You can't stop taxes.
Five, four, three, two one, zero.
3. Alphabetizing exercise

Alex City
core
BP machine

EPS
foundry
DANGER

heat
green sand
iron

Kentucky Fried Chicken
lost-foam
July

McDonald's
OK
No Smoking Area

Robinson Foundry
quality control
pattern

STOP
U Street
taxes

V-8 engine
x-ray
Wal-Mart

zero
you
4a. Matching

1. Alex City
 ant
 Alex City

2. BP Machine
 boy
 BP Machine

3. core
 Coca Cola
 core

4. DANGER
 Dadeville
 DANGER

5. EPS
 EPS
 elephant

6. foundry
 foundry
 football

7. green sand
 green
 green sand

8. heat
 heat
 Hardee's

9. iron
 IRS
 iron

10. July
 July
 January
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kentucky Fried Chicken</td>
<td>K-Mart</td>
</tr>
<tr>
<td></td>
<td>Chicken</td>
<td>Kentucky Fried Chicken</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>lost foam</td>
<td>lost foam</td>
</tr>
<tr>
<td>13</td>
<td>mold</td>
<td>McDonald's</td>
</tr>
<tr>
<td>14</td>
<td>No Smoking Area</td>
<td>No Smoking Area</td>
</tr>
<tr>
<td>15</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>16</td>
<td>pay check</td>
<td>pay check</td>
</tr>
<tr>
<td>17</td>
<td>quality control</td>
<td>quality control</td>
</tr>
<tr>
<td>18</td>
<td>Robinson - Bodine</td>
<td>Robinson - Bodine</td>
</tr>
<tr>
<td>19</td>
<td>STOP</td>
<td>STOP</td>
</tr>
<tr>
<td>20</td>
<td>taxes</td>
<td>telephone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>taxes</td>
</tr>
</tbody>
</table>
21. U Street
 B Street
 U Street

22. V-8 engine
 V-8 engine
 vegetables

23. Wal-Mart
 Wal-Mart
 wildcats

24. x-ray
 x-ray
 x-rated

25. you
 you
 gun

26. zero
 zebra
 zero
4b. Matching

1. Alex City apple pie
 Alex City

2. BP Machine Coke machine
 BP Machine

3. core care
 core

4. DANGER dogwood
 DANGER

5. EPS IBM
 EPS

6. foundry family
 foundry

7. green sand gray sand
 green sand

8. heat he
 heat

9. iron wine
 iron

10. July June
 July

486
11. Kentucky Fried Chicken

12. lost foam

13. McDonald's

14. No Smoking Area

15. OK

16. pattern

17. quality control

18. Robinson - Bodine

19. STOP

20. taxes
21. U Street
D Street
U Street
22. V-8 engine
V-8 engine
V-6 engine
23. Wal-Mart
Wal-Mart
wishing well
24. x-ray
x-ray
x-rays
25. you
you
yes
26. zero
zero
zoo
5a. Underlining

I live in Alex City.
I work on the BP Machine.
Run a core on this job.

The sign says 'Danger'.
I work in the EPS Department.
I work in a foundry.

I work on the Green Sand line.
We heat the iron.
We heat the iron.

We eat fried chicken on July 4th.
We eat Kentucky Fried Chicken on July 4th.
I work on the lost foam process.

We eat at McDonald's.
McDonald's has a No Smoking Area.
It's OK to smoke in the parking lot.

The pattern number is 346036.
I work in the Quality Control Department.
I work at Robinson Foundry.

The sign says 'STOP'.
You can't stop taxes.
The sign says 'U Street'.

That Ford has a V-8 engine.
That Ford is parked outside Wal-Mart.
Get an x-ray at the Alex City Hospital.

You can't stop taxes.
Five, four, three, two one, zero.
5b. Underlining

We eat at McDonald's.
We heat the iron.
I work on the BP Machine.

The sign says 'Danger'.
I live in Alex City.
I work in a foundry.

The pattern number is 346036.
We heat the iron.
That Ford is parked outside Wal-Mart.

I work in the Quality Control Department.
I work in the EPS Department.
We eat fried chicken on July 4th.

You can't stop taxes.
Five, four, three, two one, zero.
I work on the Green Sand line.

McDonald's has a No Smoking Area.
It's OK to smoke in the parking lot.
That Ford has a V-8 engine.

I work at Robinson Foundry.
I work on the lost foam process.
The sign says 'STOP'.

The sign says 'U Street'.
You can't stop taxes.
Get an x-ray at the Alex City Hospital.

We eat Kentucky Fried Chicken on July 4th.
Run a core on this job.
6a. Fill-in-the-blank

I live in ___ ___.
I work on the ___ ___.
Run a ___ on this job.

The sign says ___.
I work in the ___ Department.
I work in a ___.

I work on the ___ ___ line.
We ___ the iron.
We heat the ___.

We eat fried chicken on ___ 4th.
We eat ___ ___ ___ on July 4th.
I work on the ___ ___ process.

We eat at ___.
McDonald's has a ___ ___ ___ ___.
It's ___ to smoke in the parking lot.

The ___ number is 346036.
I work in the ___ ___ ___ Department.
I work at ___ ___.

The sign says ___.
You can't stop ___.
The sign says ___ ___.

That Ford has a ___ ___.
That Ford is parked outside ___.
Get an ___ at the Alex City Hospital.

___ can't stop taxes.
Five, four, three, two one, ___.

6b. Fill-in-the-blank

We heat the _____.
I live in _____ _____.
I work in the _____ Department.

We eat at _____.
The sign says _____.
I work in a _____.

You can't stop _____.
We _____ the iron.
It's _____ to smoke in the parking lot.

I work on the _____ _____.
We eat fried chicken on _____ 4th.
I work in the _____ _____ Department.

I work on the _____ _____ process.
That Ford is parked outside _____.
Get an _____ at the Alex City Hospital.

McDonald's has a _____ _____ _____.
Run a _____ on this job.
The _____ number is 346036.

I work at _____ _____.
I work on the _____ _____ line.
The sign says _____.

The sign says _____ _____.
We eat _____ _____ on July 4th.
That Ford has a _____ _____.

_____ can't stop taxes.
Five, four, three, two one, _____.
7a. Narrative

1.
I live in Alex City and work at a foundry. Some of the departments at Robinson Foundry are the Green Sand line, EPS, and Quality Control. A sign says 'DANGER' near where we heat the iron.

The first job for the BP Machine today had a core in the mold. That job's pattern number was 346036.

2.
Five, four, three, two, one, zero.

3.
I live in Alex City on U Street. I drive a V-8 Ford. I work at Wal-Mart and eat at McDonald's and Kentucky Fried Chicken. Both places are OK to eat at.

I can read signs. The sign at the end of the street says 'STOP'. Signs at the Alex City hospital say 'No Smoking Area', and 'X-ray' machine.

4.
The year has these months in it: January, February, March, April, May, June, July, August, September, October, November, December. In January I file my taxes with the IRS. Then I have zero dollars left.
7.b Narrative fill-in-the-blank

1.
I live in ______ City and work at a foundry. Some of the departments at Robinson _____ are the Green _____ line, EPS, and Quality Control. A sign says _____ near where we heat the iron.

The first job for the BP _____ today had a core in the mold. That job's _____ number was 346036.

2.
Five, four, three, two, one, _____.

3.
I live in Alex City on U ______. I drive a _____ Ford. I work at Wal-______ and eat at McDonald's and _____ Fried Chicken. Both places are _____ to eat at.

I can _____ signs. The _____ at the end of the street says 'STOP'. Signs at the Alex _____ hospital say 'No _____ Area', and 'X-ray' machine.

4.
The year has these months in it: January, February, _____, April, May, June, _____, August, September, October, November, December. In January I file my _____ with the IRS. Then I have _____ dollars left.
7c. Narrative Multiple Choice

I

1. I live
 a. in Alex City.
 b. in Robinson Foundry.

2. I work
 a. at Alex City Hospital.
 b. at Robinson Foundry.

3. EPS
 a. is a department.
 b. is where we heat the iron.

4. The job's pattern number
 a. was 346222.
 b. was 346036

II

1. Five, four
 a. three
 b. zero

2. one + three =
 a. five
 b. four

III

1. I live
 a. in Alex City.
 b. in the machine.

2. I eat at
 a. Wal-Mart
 b. McDonald's

3. The sign at U Street says
 a. 'STOP'
 b. 'x-ray machine'
4. The sign at Alex City Hospital says
 a. 'DANGER'
 b. 'x-ray machine'

IV
1. January, February
 a. July
 b. March
2. I file my taxes with
 a. the IBM.
 b. the IRS.
3. October, November
 a. June
 b. December