Electronics Troubleshooting. High-Technology Training Module.

Northcentral Technical Coll., Wausau, WI.

Office of Vocational and Adult Education (ED), Washington, DC.

29 Sep 89

Developed as part of the High-Technology Training Model for Rural Based Business and Industry, Technical Colleges, and Local and State Educational Agencies.

Guides - Classroom Use - Teaching Guides (For Teacher) (052)

Behavioral Objectives; Classroom Techniques; Course Content; Electrical Systems; Electric Circuits; Electromechanical Technology; Electronic Equipment; Electronics; Electronic Technicians, Equipment Maintenance; Learning Activities; Learning Modules; Lesson Plans; Pretests Posttests; Teaching Methods; Technical Education; Test Items; Troubleshooting; Two Year Colleges

This learning module for a postsecondary electronics course in solid state circuits is designed to help teachers lead students through electronics troubleshooting. The module is intended to be used for a second-semester technical college course for electromechanical technology majors. The module introduces students to semiconductor devices and circuits. It contains a module objective and five specific objectives, a content outline, suggested instructor methodology, a list of student activities, evaluation criteria and procedures, a list of seven resources, an outline of the troubleshooting process, troubleshooting tips and assumptions, worksheets, and a posttest. (KC)
High-Technology Training Module

Module Title: ELECTRONICS TROUBLESHOOTING

Unit: DIODE APPLICATIONS

Course: SEMICONDUCTOR FUNDAMENTALS

Grade Level (s): POSTSECONDARY

Developed by: DAN LODAHL

Date: SEPTEMBER 29, 1989

School: NORTHCENTRAL TECHNICAL COLLEGE

1000 CAMPUS DRIVE, WAUSAU, WI 54401

Developed as a part of the High-Technology Training Model for Rural Based Business and Industry, Technical Colleges and Local and State Educational Agencies under Grant No. V199A90151.
TITLE: "ELECTRONICS TROUBLESHOOTING"

SCHOOL: NORTHCENTRAL TECHNICAL COLLEGE, DAN LODAHL

DESCRIPTION:
The module of instruction fits into a course called Solid State Circuits. This is a second semester Technical College course for Electromechanical Technology majors. The students are introduced to semiconductor devices and circuits. The module is a response to industry's request for a technician that can troubleshoot and be able to use sound reasoning to solve problems.

Before the module is attempted, the student must have demonstrated a fundamental knowledge of circuit operation and familiarity with the use of test equipment.

MODULE OBJECTIVE:
Given an Oscilloscope, multimeter and a defective DC power supply, the student will locate the defect within a specified time period according to the provided troubleshooting guide.

SPECIFIC OBJECTIVES:
- Attend an informational demonstration on troubleshooting
- Complete worksheet on troubleshooting DC power supply
- Complete lab experiment on troubleshooting a DC power supply
- All lab work will be done following the safety guidelines of the lab
- Complete follow-up report
CONTENT OUTLINE
TROUBLESHOOTING A DC POWER SUPPLY

I. Lecture/Demo on troubleshooting
 A. System operation review
 B. Troubleshooting procedure
 a. Flow diagrams
 b. Parts and purposes analysis
 c. Troubleshooting process, assumptions and tips
 d. Failure probabilities

II. Worksheet on troubleshooting DC power supplies
 A. Students individually complete worksheet
 B. Worksheet is reviewed and evaluated

III. Lab experiment
 A. Determine system flow
 a. Use schematic diagram of power supply
 b. Draw block diagram of system
 c. Complete supplied "Parts of Purposes Sheet"
 d. Calculate and predict voltages and waveforms
 e. Instructor check
 B. Take measurements at specified test points
 a. Voltages
 b. Waveforms
 c. Record results
 d. Instructor check
 C. Analyze Data
 a. Compare measured results with expected results
 b. Describe problem
 c. List possible causes
 d. Determine most likely cause
 e. Instructor check
 D. Repair circuit
 a. Corrective action taken
 b. Repeat measurements and analysis, steps B and C
 E. Troubleshooting report
 a. Block diagram
 b. Parts and purposes sheet
 c. Data
 d. Analysis
 e. Corrective action
 f. Final instructor check
 F. Follow safety guidelines of lab
METHODOLOGY

1. Prepare for presentation a lecture on troubleshooting
2. Write a troubleshooting procedures handout
3. Write a troubleshooting assumptions and tips handout
4. Write a troubleshooting worksheet
5. Design and draw a schematic of DC power supply to be used
6. Construct several DC power supplies with concealed switches which will be used to insert faults
7. Write a system "Parts and Purposes" form
8. Write a troubleshooting experiment procedure form
9. Write a future probability handout

STUDENT ACTIVITIES

1. Attend a lecture/demonstration on troubleshooting
2. Complete the worksheet on troubleshooting
3. Draw a system flow diagram of the DC power supply
4. Complete the "Parts and Purposes" worksheet
5. Predict voltage levels and waveforms indicated on the systematic
6. Measure voltages and waveforms at test points with the oscilloscope or multimeter
7. Record results from step 6
8. Compare measured results with expected results
9. Describe problem
10. Determine the most likely cause
11. Take corrective action
12. Repeat measurements, and if necessary, analyze. (If circuit still not functioning.)
13. Complete a troubleshooting report
14. Follow the safety guidelines of the lab
EVALUATION CRITERIA AND PROCEDURE

1. PRETEST: Student will troubleshoot a DC power supply circuit without troubleshooting background knowledge. They will be allowed 45 minutes to determine the fault. I will tally how many faults were discovered during the time allotted. ex. 10 students determined 8 faults in 45 minutes.

2. TROUBLESHOOTING BACKGROUND: The next 45 minutes will be devoted to troubleshooting presentation. Included will be information on procedures, flow diagrams, parts and purposes analysis, basic assumptions, tips, and failure probabilities.

3. POST TEST: Students will again troubleshoot DC power supply circuit with new faults inserted. Once again they will be allowed 45 minutes to determine the fault. I will tally how many faults were determined during the time allotted.

4. Upon completion of the post test, the student will fill out an evaluation form on the unit. (Enclosure (4))

NOTE: I will be doing this module on October 16th at 1:30 p.m.
RESOURCES

Author: Metzger, Daniel
Title: Electronic Component Instruments, and Troubleshooting

Author: Ahlers, R. H. and others
Title: Special Issue on Special Systems for Department of Defense Training
Source: Journal of Computer Based Instruction; v13 n2 p2-61, Spring 86

Author: Morrow, Rick and Humler, John
Title: Applied Industrial Electronics: Power Control and Electronic Troubleshooting
Source: Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center, 1985

Author: Knerr, Bruce and others
Title: Computer-based Simulations for Maintenance Training: Current ARI Research. Technical Report 544
Source: Army Research Inst. for the Behavioral and Social Sciences, Alexandria, VA 1979

Author: Swanson, Richard A. and Sisson, Gary R.
Title: Analysis of Process and Troubleshooting Work Behavior

Author: Long, William E.
Title: Getting Started in Electronic Troubleshooting
Source: Reston Publishing Co., Inc., 1979

Author: Woods, Donald R.
Title: Novice Versus Expert Research
TROUBLESHOOTING PROCESS

1. Gain understanding of normal circuit operation
 a. System flow diagram (block diagram)
 b. Parts and purposes analysis
 c. Expectations at test points

2. Gather data: Visual, measurements, etc.

3. Determine problem
 (Is there a match between expectations and measurements? Be specific)

4. List possible causes and most likely causes (Why isn't there a match?)

TROUBLESHOOTING TIPS AND ASSUMPTIONS

1. Get a schematic

2. Gain at least basic understanding of how circuit is supposed to work

3. Break circuit into functional blocks. ie. rectified, filter, zener regulator, etc.

4. Know what you're "suppose" to find before making a measurement.

5. If your measurement does not match your expectations, there are 3 possible reasons: 1. circuit is defective
 2. your expectation was wrong
 3. your measurement was wrong

6. Assume equipment once worked properly

7. Assume only 1 problem exists

8. Keep a record of problems, causes, and solutions
Sketch the expected output at each test point for the conditions given. Include voltage levels and frequency if applicable. (Test points referenced to gnd.)

1. Normal operation
2. D2 open
3. C1 Leaky
4. C1 open
5. R1 open
FAILURE PROBABILITIES
(WHAT'S MOST LIKELY TO CAUSE A PROBLEM?)

MOST LIKELY

Operator error
Connectors, cables outside instrument
Switches, relays
Power semiconductors
Connectors, cables inside instrument
Soldering connections, bad circuit boards
Small signal semiconductors
Electrolytic capacitors
Power transformers and inductors
Power resistors
Variable resistors
Ceramic capacitors
Mylar and paper capacitors
Low-power resistors
Mica capacitors
Low-power inductors

LEAST LIKELY
DC Power Supply (Trouble switches added)
DC Power Supply
<table>
<thead>
<tr>
<th>PART</th>
<th>Purpose / What it does and How it works</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TROUBLESHOOTING A DC POWER SUPPLY
(Part 1)

1. Measure and record the waveforms at the three test points specified on
 the schematic.

2. Is there a problem indicated by your measurements?

3. What is wrong about your measured values?

4. List some possible causes and most likely cause.

5. Instructor check.

EXPERIMENT: Troubleshooting a DC Power Supply (Part 2)

OBJECTIVE: Given an oscilloscope, multimeter, and a defective DC power
supply trainer, the student will locate the defect according to the procedure
guide lines within the time available.

PROCEDURE:

1. Draw system flow diagram

2. Complete parts and purposes form

3. Calculate and record expected waveforms at test points.

4. Measure and record waveforms at test points.

5. Compare measured values with expected values and indicate the problem.
 (What is wrong with waveforms).

6. List possible causes and most likely cause.

7. Instructor check.

8. Report write up:
 a. flow diagram
 b. parts and purposes form
 c. Calculated and measured data
 d. Indicated problem, cause, and corrective action necessary

9* Additional faults will be inserted if time permits